Phonon–Phason Coupling Strength in a Tsai-Type Ag–In–Yb Icosahedral Quasicrystal

Owing to the quasiperiodic order, one independent term in the elasticity of quasicrystals (phonon–phason coupling) is characteristic of quasicrystals. It is not seen in conventional crystals and has continued to be a significant subject in the research field of quasicrystals. Recently, a novel metho...

Full description

Saved in:
Bibliographic Details
Published inMATERIALS TRANSACTIONS Vol. 64; no. 5; pp. MT-M2023006 - 949
Main Authors Zhang, Jinjia, Tokumoto, Yuki, Edagawa, Keiichi, Zhou, Jintao
Format Journal Article
LanguageEnglish
Published Sendai The Japan Institute of Metals and Materials 01.05.2023
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN1345-9678
1347-5320
DOI10.2320/matertrans.MT-M2023006

Cover

Abstract Owing to the quasiperiodic order, one independent term in the elasticity of quasicrystals (phonon–phason coupling) is characteristic of quasicrystals. It is not seen in conventional crystals and has continued to be a significant subject in the research field of quasicrystals. Recently, a novel method was applied to a Mackay-type Al–Pd–Mn icosahedral quasicrystal to prove the existence of phonon–phason coupling and to evaluate its strength based on the elasticity of quasicrystals. This study applied the method to a Tsai-type Ag–In–Yb icosahedral system to evaluate its phonon–phason coupling strength. We applied phonon strain to the quasicrystal at a temperature with active phason, and the induction of phason strain was successfully detected and evaluated using powder X-ray diffraction. We evaluated the phonon–phason coupling elastic constant of the Ag–In–Yb icosahedral quasicrystal to be 0.17 ± 0.04 GPa by quantitatively comparing the measured induced phason strain with our calculation results.
AbstractList Owing to the quasiperiodic order, one independent term in the elasticity of quasicrystals (phonon–phason coupling) is characteristic of quasicrystals. It is not seen in conventional crystals and has continued to be a significant subject in the research field of quasicrystals. Recently, a novel method was applied to a Mackay-type Al–Pd–Mn icosahedral quasicrystal to prove the existence of phonon–phason coupling and to evaluate its strength based on the elasticity of quasicrystals. This study applied the method to a Tsai-type Ag–In–Yb icosahedral system to evaluate its phonon–phason coupling strength. We applied phonon strain to the quasicrystal at a temperature with active phason, and the induction of phason strain was successfully detected and evaluated using powder X-ray diffraction. We evaluated the phonon–phason coupling elastic constant of the Ag–In–Yb icosahedral quasicrystal to be 0.17 ± 0.04 GPa by quantitatively comparing the measured induced phason strain with our calculation results.
Owing to the quasiperiodic order, one independent term in the elasticity of quasicrystals (phonon–phason coupling) is characteristic of quasicrystals. It is not seen in conventional crystals and has continued to be a significant subject in the research field of quasicrystals. Recently, a novel method was applied to a Mackay-type Al–Pd–Mn icosahedral quasicrystal to prove the existence of phonon–phason coupling and to evaluate its strength based on the elasticity of quasicrystals. This study applied the method to a Tsai-type Ag–In–Yb icosahedral system to evaluate its phonon–phason coupling strength. We applied phonon strain to the quasicrystal at a temperature with active phason, and the induction of phason strain was successfully detected and evaluated using powder X-ray diffraction. We evaluated the phonon–phason coupling elastic constant of the Ag–In–Yb icosahedral quasicrystal to be 0.17 ± 0.04 GPa by quantitatively comparing the measured induced phason strain with our calculation results.Fig. 2 Phason momentum (|G⊥|) dependence of the full width at half maximum of the X-ray diffraction peaks ((Δq)FWHM) for the as-grown sample, the samples with the compressed stress of 75 and 100 MPa, and the sample subjected to the same heat treatment but without compression (0 MPa). Reciprocal vector (|G|||) dependences of (Δq)FWHM for these samples are shown in the inset.
ArticleNumber MT-M2023006
Author Edagawa, Keiichi
Zhou, Jintao
Tokumoto, Yuki
Zhang, Jinjia
Author_xml – sequence: 1
  fullname: Zhang, Jinjia
  organization: Institute of Industrial Science, The University of Tokyo
– sequence: 1
  fullname: Tokumoto, Yuki
  organization: Institute of Industrial Science, The University of Tokyo
– sequence: 1
  fullname: Edagawa, Keiichi
  organization: Institute of Industrial Science, The University of Tokyo
– sequence: 1
  fullname: Zhou, Jintao
  organization: Institute of Industrial Science, The University of Tokyo
BookMark eNqFkM9O3DAQhy1EJRbKK6BIPWeZOOv8kXpBq7asxIqtmiJxsiaOs_Eq2MF2Ku2Nd-ANeRIMW-iKS08zh9_3m9F3TA610ZKQswSmNKVwfodeWm9Ru-myipcUaAqQHZBJks7ymIXI4evO4jLLiyNy7NwGIM0ZpRNys-pM6Ht6eFx16IyO5mYceqXX0S9vpV77LlI6wqhyqOJqO8joYh3Cixfito4WwjjsZGOxj36O6JSwW-ex_0w-tdg7efp3npDf379V88v46vrHYn5xFQuWgo9LURQpZEUjZrXIMllC3kCdiLoRkNeSNUhnYsYY1rQEWrRJeDsraN2WtGyhLNIT8mXXO1hzP0rn-caMVoeTnBaU5cDKJA-pr7uUsMY5K1sulEevjA7aVM8T4C8m-T-TfFnxN5MBzz7gg1V3aLf_B6sduAlO1vIdQ-uV6OU-hs2fYaw5vC17Ne9x0aHlUqfPNAqhtQ
CitedBy_id crossref_primary_10_1016_j_jallcom_2023_171131
Cites_doi 10.1209/epl/i2000-00213-1
10.1016/S0925-8388(02)00194-9
10.1080/14786435.2022.2052376
10.1080/14786430600891352
10.1209/epl/i1999-00328-9
10.1103/PhysRevB.34.617
10.1080/14786430701264178
10.2320/matertrans.MT-MB2020004
10.1103/PhysRevB.34.596
10.2320/matertrans.M2013448
10.1103/PhysRevLett.75.3462
10.1142/0391
10.1088/2399-6528/ac1875
10.1080/09500830512331329132
10.1103/PhysRevB.80.224204
10.1080/09500830500321191
ContentType Journal Article
Copyright 2023 The Japan Institute of Metals and Materials
Copyright Japan Science and Technology Agency 2023
Copyright_xml – notice: 2023 The Japan Institute of Metals and Materials
– notice: Copyright Japan Science and Technology Agency 2023
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.2320/matertrans.MT-M2023006
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1347-5320
EndPage 949
ExternalDocumentID 10_2320_matertrans_MT_M2023006
article_matertrans_advpub_0_advpub_MT_M2023006_article_char_en
GroupedDBID -~X
.L7
.LE
5GY
93D
ABJNI
ACGFS
ACIWK
ADMLS
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
JSI
JSP
RJT
RZJ
SJN
AAYXX
CITATION
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c530t-9c883068dc4bc66e907d0b1cbdc07be5da24c455ab29028f1037682bf929f0983
ISSN 1345-9678
IngestDate Mon Jun 30 08:26:51 EDT 2025
Tue Jul 01 04:27:42 EDT 2025
Thu Apr 24 23:01:50 EDT 2025
Wed Sep 03 06:31:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c530t-9c883068dc4bc66e907d0b1cbdc07be5da24c455ab29028f1037682bf929f0983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.jstage.jst.go.jp/article/matertrans/advpub/0/advpub_MT-M2023006/_article/-char/en
PQID 2825705917
PQPubID 1976393
PageCount 5
ParticipantIDs proquest_journals_2825705917
crossref_citationtrail_10_2320_matertrans_MT_M2023006
crossref_primary_10_2320_matertrans_MT_M2023006
jstage_primary_article_matertrans_advpub_0_advpub_MT_M2023006_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230500
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 20230500
PublicationDecade 2020
PublicationPlace Sendai
PublicationPlace_xml – name: Sendai
PublicationTitle MATERIALS TRANSACTIONS
PublicationTitleAlternate Mater. Trans.
PublicationYear 2023
Publisher The Japan Institute of Metals and Materials
Japan Science and Technology Agency
Publisher_xml – name: The Japan Institute of Metals and Materials
– name: Japan Science and Technology Agency
References 11
12
13
14
15
16
17
1
2
3
4
5
6
7
8
9
10
References_xml – ident: 17
  doi: 10.1209/epl/i2000-00213-1
– ident: 7
  doi: 10.1016/S0925-8388(02)00194-9
– ident: 12
  doi: 10.1080/14786435.2022.2052376
– ident: 10
  doi: 10.1080/14786430600891352
– ident: 4
– ident: 8
  doi: 10.1209/epl/i1999-00328-9
– ident: 2
  doi: 10.1103/PhysRevB.34.617
– ident: 11
  doi: 10.1080/14786430701264178
– ident: 5
  doi: 10.2320/matertrans.MT-MB2020004
– ident: 1
  doi: 10.1103/PhysRevB.34.596
– ident: 14
  doi: 10.2320/matertrans.M2013448
– ident: 16
  doi: 10.1103/PhysRevLett.75.3462
– ident: 3
  doi: 10.1142/0391
– ident: 6
  doi: 10.1088/2399-6528/ac1875
– ident: 13
  doi: 10.1080/09500830512331329132
– ident: 15
  doi: 10.1103/PhysRevB.80.224204
– ident: 9
  doi: 10.1080/09500830500321191
SSID ssj0037522
Score 2.3730977
Snippet Owing to the quasiperiodic order, one independent term in the elasticity of quasicrystals (phonon–phason coupling) is characteristic of quasicrystals. It is...
SourceID proquest
crossref
jstage
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage MT-M2023006
SubjectTerms Ag–In–Yb alloy
Aluminum
Coupling
Elastic properties
Elasticity
elasticity of quasicrystals
Heat treatment
icosahedral quasicrystal
Manganese
phason strain
Phonons
phonon–phason coupling
Quasicrystals
X ray powder diffraction
X-ray diffraction
Title Phonon–Phason Coupling Strength in a Tsai-Type Ag–In–Yb Icosahedral Quasicrystal
URI https://www.jstage.jst.go.jp/article/matertrans/advpub/0/advpub_MT-M2023006/_article/-char/en
https://www.proquest.com/docview/2825705917
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX MATERIALS TRANSACTIONS, 2023, pp.MT-M2023006
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1347-5320
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037522
  issn: 1345-9678
  databaseCode: ADMLS
  dateStart: 20201001
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZKlwMcEE9tYUE5IC5Vukka53Gsll1tV82yiBS1p8h23Da7S1vaBAQn_gNH_h2_hJk4L0TF6xJFrqdxZr54ZmzPDCHPTY55pSw83WBQ3TZnVPe92NBNYUiLe5LaeTKd4Nw5HdtnEzpptb41Ti1lKe-JzzvjSv5HqtAGcsUo2X-QbPWn0AD3IF-4goTh-lcyvliswHsvzyv0LxYM6wkerbJ1kWh7I5fzNF_TYN1wyxId3c7uYF6RDGvqKe8OxWrLFjLGoP3XGQMBbj6B9XjdtGADlqpXw-oSZanxyjCv1p_PkuVlwurmVVa0pmxVr2xfZYCUfLF2ml0llXUfszn7qGLVZJKIRdJcm7AaJwGV3gB9X09SuBFQ7xfAu2JsaWPq7duAE0cV9OnJss3VsXRFc75WWc8LXNJdagCsRDw3-Q4ZkvOiF4R6gAM0jB15t89fRSfj0SgKjyfhi_V7HUuS4dZ9UZ_lBtmzXMex2mRv8DIYvSkVfd9VyeirgasAdHz44e5H_2T73LwEAc5_tQFywya8S-4UHok2UPC6R1pyeZ_cbuSpfEDeKqB9__JVQUwrIaaVENOSpca0CmLaYA6dh0gx5VoDVloTVg_J-OQ4PDrVi4IcuqB9I9V94XngYnqxsLlwHOkbbmxwU_BYGC6XNGaWLWxKGbcwKdAMY1Adz-IzsMFnhu_1H5E2jFbuE813Z-g72y6Vli1pnnfQFaBNbF8ybjodQktWRaLIVo9FU64j8FqRxVHN4igIo5LFHXJY0a1VvpY_UgRKElX_4ntu9mfxBwB0ZJQ3DfqqO4ZJwqzUIQelQKNirthGGCHugidjuo9___MTcqv-kA5IO91k8imYvSl_VsDvBwRgtS8
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phonon%E2%80%93Phason+Coupling+Strength+in+a+Tsai-Type+Ag%E2%80%93In%E2%80%93Yb+Icosahedral+Quasicrystal&rft.jtitle=Materials+transactions&rft.au=Zhang%2C+Jinjia&rft.au=Zhou%2C+Jintao&rft.au=Tokumoto%2C+Yuki&rft.au=Edagawa%2C+Keiichi&rft.date=2023-05-01&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=1345-9678&rft.eissn=1347-5320&rft.volume=64&rft.issue=5&rft_id=info:doi/10.2320%2Fmatertrans.MT-M2023006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1345-9678&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1345-9678&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1345-9678&client=summon