Tumor classification by tissue microarray profiling: random forest clustering applied to renal cell carcinoma

We describe a novel strategy (random forest clustering) for tumor profiling based on tissue microarray data. Random forest clustering is attractive for tissue microarray and other immunohistochemistry data since it handles highly skewed tumor marker expressions well and weighs the contribution of ea...

Full description

Saved in:
Bibliographic Details
Published inModern pathology Vol. 18; no. 4; pp. 547 - 557
Main Authors Shi, Tao, Seligson, David, Belldegrun, Arie S, Palotie, Aarno, Horvath, Steve
Format Journal Article
LanguageEnglish
Published New York Elsevier Inc 01.04.2005
Nature Publishing Group US
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0893-3952
1530-0285
1530-0285
DOI10.1038/modpathol.3800322

Cover

Abstract We describe a novel strategy (random forest clustering) for tumor profiling based on tissue microarray data. Random forest clustering is attractive for tissue microarray and other immunohistochemistry data since it handles highly skewed tumor marker expressions well and weighs the contribution of each marker according to its relatedness with other tumor markers. This is the first tumor class discovery analysis of renal cell carcinoma patients based on protein expression profiles. The tissue array data contained at least three tumor samples from each of 366 renal cell carcinoma patients. The eight tumor markers explore tumor proliferation, cell cycle abnormalities, cell mobility, and the hypoxia pathway. Since the procedure is unsupervised, no clinicopathological data or traditional classifications are used a priori. To explore whether the tissue microarray data can be used to identify fundamental subtypes of renal cell carcinoma patients, we first carried out random forest clustering of all 366 patients. By analyzing the tumor markers simultaneously, the procedure automatically detected classes that correspond to clear- vs non-clear cell tumors (demonstration of proof-of-principle). The resulting molecular grouping provides better prediction of survival (logrank P=0.000090) than this classical pathological grouping (logrank P=0.023). We then sought to extend the class discovery by searching for finer subclasses of clear cell patients. The procedure automatically discovered: (a) two classes corresponding to low- and high-grade patients (demonstration of proof-of-principle); (b) a subgroup of long-surviving clear cell patients with a distinct molecular profile and (c) two novel tumor subclasses in low-grade clear cell patients that could not be explained by any clinicopathological variables (demonstration of discovery).
AbstractList We describe a novel strategy (random forest clustering) for tumor profiling based on tissue microarray data. Random forest clustering is attractive for tissue microarray and other immunohistochemistry data since it handles highly skewed tumor marker expressions well and weighs the contribution of each marker according to its relatedness with other tumor markers. This is the first tumor class discovery analysis of renal cell carcinoma patients based on protein expression profiles. The tissue array data contained at least three tumor samples from each of 366 renal cell carcinoma patients. The eight tumor markers explore tumor proliferation, cell cycle abnormalities, cell mobility, and the hypoxia pathway. Since the procedure is unsupervised, no clinicopathological data or traditional classifications are used a priori. To explore whether the tissue microarray data can be used to identify fundamental subtypes of renal cell carcinoma patients, we first carried out random forest clustering of all 366 patients. By analyzing the tumor markers simultaneously, the procedure automatically detected classes that correspond to clear- vs non-clear cell tumors (demonstration of proof-of-principle). The resulting molecular grouping provides better prediction of survival (logrank P=0.000090) than this classical pathological grouping (logrank P=0.023). We then sought to extend the class discovery by searching for finer subclasses of clear cell patients. The procedure automatically discovered: (a) two classes corresponding to low- and high-grade patients (demonstration of proof-of-principle); (b) a subgroup of long-surviving clear cell patients with a distinct molecular profile and (c) two novel tumor subclasses in low-grade clear cell patients that could not be explained by any clinicopathological variables (demonstration of discovery).
We describe a novel strategy (random forest clustering) for tumor profiling based on tissue microarray data. Random forest clustering is attractive for tissue microarray and other immunohistochemistry data since it handles highly skewed tumor marker expressions well and weighs the contribution of each marker according to its relatedness with other tumor markers. This is the first tumor class discovery analysis of renal cell carcinoma patients based on protein expression profiles. The tissue array data contained at least three tumor samples from each of 366 renal cell carcinoma patients. The eight tumor markers explore tumor proliferation, cell cycle abnormalities, cell mobility, and the hypoxia pathway. Since the procedure is unsupervised, no clinicopathological data or traditional classifications are used a priori . To explore whether the tissue microarray data can be used to identify fundamental subtypes of renal cell carcinoma patients, we first carried out random forest clustering of all 366 patients. By analyzing the tumor markers simultaneously, the procedure automatically detected classes that correspond to clear- vs non-clear cell tumors (demonstration of proof-of-principle). The resulting molecular grouping provides better prediction of survival (logrank P =0.000090) than this classical pathological grouping (logrank P =0.023). We then sought to extend the class discovery by searching for finer subclasses of clear cell patients. The procedure automatically discovered: (a) two classes corresponding to low- and high-grade patients (demonstration of proof-of-principle); (b) a subgroup of long-surviving clear cell patients with a distinct molecular profile and (c) two novel tumor subclasses in low-grade clear cell patients that could not be explained by any clinicopathological variables (demonstration of discovery).
We describe a novel strategy (random forest clustering) for tumor profiling based on tissue microarray data. Random forest clustering is attractive for tissue microarray and other immunohistochemistry data since it handles highly skewed tumor marker expressions well and weighs the contribution of each marker according to its relatedness with other tumor markers. This is the first tumor class discovery analysis of renal cell carcinoma patients based on protein expression profiles. The tissue array data contained at least three tumor samples from each of 366 renal cell carcinoma patients. The eight tumor markers explore tumor proliferation, cell cycle abnormalities, cell mobility, and the hypoxia pathway. Since the procedure is unsupervised, no clinicopathological data or traditional classifications are used a priori. To explore whether the tissue microarray data can be used to identify fundamental subtypes of renal cell carcinoma patients, we first carried out random forest clustering of all 366 patients. By analyzing the tumor markers simultaneously, the procedure automatically detected classes that correspond to clear- vs non-clear cell tumors (demonstration of proof-of-principle). The resulting molecular grouping provides better prediction of survival (logrank P=0.000090) than this classical pathological grouping (logrank P=0.023). We then sought to extend the class discovery by searching for finer subclasses of clear cell patients. The procedure automatically discovered: (a) two classes corresponding to low- and high-grade patients (demonstration of proof-of-principle); (b) a subgroup of long-surviving clear cell patients with a distinct molecular profile and (c) two novel tumor subclasses in low-grade clear cell patients that could not be explained by any clinicopathological variables (demonstration of discovery).We describe a novel strategy (random forest clustering) for tumor profiling based on tissue microarray data. Random forest clustering is attractive for tissue microarray and other immunohistochemistry data since it handles highly skewed tumor marker expressions well and weighs the contribution of each marker according to its relatedness with other tumor markers. This is the first tumor class discovery analysis of renal cell carcinoma patients based on protein expression profiles. The tissue array data contained at least three tumor samples from each of 366 renal cell carcinoma patients. The eight tumor markers explore tumor proliferation, cell cycle abnormalities, cell mobility, and the hypoxia pathway. Since the procedure is unsupervised, no clinicopathological data or traditional classifications are used a priori. To explore whether the tissue microarray data can be used to identify fundamental subtypes of renal cell carcinoma patients, we first carried out random forest clustering of all 366 patients. By analyzing the tumor markers simultaneously, the procedure automatically detected classes that correspond to clear- vs non-clear cell tumors (demonstration of proof-of-principle). The resulting molecular grouping provides better prediction of survival (logrank P=0.000090) than this classical pathological grouping (logrank P=0.023). We then sought to extend the class discovery by searching for finer subclasses of clear cell patients. The procedure automatically discovered: (a) two classes corresponding to low- and high-grade patients (demonstration of proof-of-principle); (b) a subgroup of long-surviving clear cell patients with a distinct molecular profile and (c) two novel tumor subclasses in low-grade clear cell patients that could not be explained by any clinicopathological variables (demonstration of discovery).
Author Shi, Tao
Horvath, Steve
Belldegrun, Arie S
Palotie, Aarno
Seligson, David
Author_xml – sequence: 1
  givenname: Tao
  surname: Shi
  fullname: Shi, Tao
  organization: Department of Human Genetics, University of California, Los AngelesCA, USA
– sequence: 2
  givenname: David
  surname: Seligson
  fullname: Seligson, David
  organization: Department of Pathology & Laboratory Medicine, University of California, Los Angeles, CA, USA
– sequence: 3
  givenname: Arie S
  surname: Belldegrun
  fullname: Belldegrun, Arie S
  organization: Department of Urology, University of California, Los Angeles, CA, USA
– sequence: 4
  givenname: Aarno
  surname: Palotie
  fullname: Palotie, Aarno
  organization: Department of Human Genetics, University of California, Los AngelesCA, USA
– sequence: 5
  givenname: Steve
  surname: Horvath
  fullname: Horvath, Steve
  email: shorvath@mednet.ucla.edu
  organization: Department of Human Genetics, University of California, Los AngelesCA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15529185$$D View this record in MEDLINE/PubMed
BookMark eNqNkTtvFDEUhS0URDaBH0CDLAq6CX6M5wEVinhJkWhCbd2xPeDIj8H2BO2_x8uOiJRiReNb-Hz2OedeoLMQg0HoJSVXlPDhrY96gfIzuis-EMIZe4J2VHDSEDaIM7Qjw8gbPgp2ji5yviOEtmJgz9A5FYKNdBA75G9XHxNWDnK2s1VQbAx42uNic14N9lalCCnBHi8pztbZ8OMdThB09HiOyeRS4TUXk-oNhmVx1mhcIk4mgMPKuHpAUjZED8_R0xlcNi-2eYm-f_p4e_2lufn2-ev1h5tGVfelGTolYOqg533HR6X7ueunnnXtyCetBiPUrFlHBdWCDETrWRNDe60mBZOmuuWXiB3fXcMC-9_gnFyS9ZD2khJ56E7-605u3VXozRGqQX-tNZj0Nh_8QzBxzbLrBWuZ4FX4-pHwLq6pps2SMcp4KwSpolebaJ280Q__b9VXAT0KasE5JzP_l8X-EaNs-buyksC6k-TWSF4OizLpwfMp6P0RMnVX97ZCWVkTlNE2GVWkjvYE_QcHfNS3
CODEN MODPEO
CitedBy_id crossref_primary_10_1186_s41241_016_0008_2
crossref_primary_10_1109_TPAMI_2023_3263774
crossref_primary_10_1016_j_jmgm_2007_06_005
crossref_primary_10_1002_cfg_425
crossref_primary_10_1111_j_1863_2378_2012_01487_x
crossref_primary_10_3389_fmicb_2021_673632
crossref_primary_10_1038_bjc_2011_505
crossref_primary_10_1158_1078_0432_CCR_06_1864
crossref_primary_10_1182_blood_2016_07_728873
crossref_primary_10_1016_j_crme_2019_11_010
crossref_primary_10_1016_j_rsase_2018_12_011
crossref_primary_10_1111_j_1365_2559_2007_02900_x
crossref_primary_10_1016_j_aca_2005_11_083
crossref_primary_10_1093_bib_bbn058
crossref_primary_10_1093_bioinformatics_btx585
crossref_primary_10_4271_2019_01_0128
crossref_primary_10_1186_gb_2007_8_9_r187
crossref_primary_10_1016_j_jhydrol_2011_12_016
crossref_primary_10_1214_07_SS033
crossref_primary_10_1093_bioinformatics_btl545
crossref_primary_10_1089_omi_2006_0002
crossref_primary_10_1002_sctm_20_0127
crossref_primary_10_1586_era_11_65
crossref_primary_10_1016_j_envpol_2017_02_001
crossref_primary_10_1186_s40537_023_00720_9
crossref_primary_10_1121_1_4955066
crossref_primary_10_1089_cmb_2014_0195
crossref_primary_10_1016_j_knosys_2022_109369
crossref_primary_10_1071_MF18376
crossref_primary_10_1016_j_watres_2010_05_019
crossref_primary_10_1007_s00330_018_5395_1
crossref_primary_10_1016_j_media_2020_101947
crossref_primary_10_1093_plankt_fbp094
crossref_primary_10_1016_j_ssmph_2022_101063
crossref_primary_10_1158_1078_0432_CCR_07_1760
crossref_primary_10_1093_bioinformatics_btn239
crossref_primary_10_1080_01969722_2021_1902049
crossref_primary_10_1371_journal_pone_0208737
crossref_primary_10_1080_14498596_2010_487851
crossref_primary_10_1038_npp_2013_328
crossref_primary_10_1186_1471_2164_13_472
crossref_primary_10_1016_j_jstrokecerebrovasdis_2014_12_016
crossref_primary_10_1016_j_ygeno_2009_08_008
crossref_primary_10_1007_s00520_018_4084_6
crossref_primary_10_1186_s13040_022_00306_w
crossref_primary_10_1038_s41598_021_92072_8
crossref_primary_10_1200_JCO_2007_14_0723
crossref_primary_10_3390_en18061469
crossref_primary_10_1086_711956
crossref_primary_10_1109_TNSM_2016_2569000
crossref_primary_10_1586_era_10_72
crossref_primary_10_1186_s12859_021_04460_6
crossref_primary_10_1093_bib_bbs034
crossref_primary_10_1158_0008_5472_CAN_07_2607
crossref_primary_10_3390_en15103601
crossref_primary_10_1038_nature03672
crossref_primary_10_1002_jemt_24682
crossref_primary_10_1142_S021972001100546X
crossref_primary_10_1158_1055_9965_EPI_05_0717
crossref_primary_10_1097_CM9_0000000000000149
crossref_primary_10_1109_TKDE_2021_3086147
crossref_primary_10_2139_ssrn_3807828
crossref_primary_10_3390_thalassrep12010004
crossref_primary_10_1177_2374289519873088
crossref_primary_10_7717_peerj_cs_2443
crossref_primary_10_1016_j_sigpro_2012_07_034
crossref_primary_10_1016_j_aca_2015_02_012
crossref_primary_10_2217_14622416_7_1_105
crossref_primary_10_1152_physiolgenomics_00167_2007
crossref_primary_10_1016_j_media_2017_08_004
crossref_primary_10_1534_g3_115_019067
crossref_primary_10_1111_pai_12881
crossref_primary_10_1016_j_ygeno_2012_04_003
crossref_primary_10_1111_ele_13327
crossref_primary_10_1093_biostatistics_kxm017
crossref_primary_10_2196_34274
crossref_primary_10_1371_journal_pone_0107105
crossref_primary_10_1007_s10994_013_5342_y
crossref_primary_10_1198_106186006X94072
crossref_primary_10_1007_s00521_018_3518_x
crossref_primary_10_1186_1471_2105_7_361
crossref_primary_10_1111_j_1468_1331_2010_02955_x
crossref_primary_10_1186_s12918_017_0389_1
crossref_primary_10_1080_00313020802198101
crossref_primary_10_1186_1471_2105_8_25
crossref_primary_10_3389_fnana_2016_00102
crossref_primary_10_1200_JCO_2008_17_3567
crossref_primary_10_1016_j_neuroimage_2012_09_065
crossref_primary_10_1016_j_copbio_2007_10_009
crossref_primary_10_1038_ncomms7744
crossref_primary_10_1039_b811008e
crossref_primary_10_1186_bcr2187
crossref_primary_10_1088_1741_2552_ab2eb4
crossref_primary_10_1002_cem_3135
crossref_primary_10_1158_1078_0432_CCR_15_1883
crossref_primary_10_1002_pmic_200700288
crossref_primary_10_1111_mec_13466
crossref_primary_10_1016_j_jvolgeores_2017_04_015
crossref_primary_10_1155_2022_1872412
crossref_primary_10_1136_bmjopen_2016_011529
crossref_primary_10_1017_S1470903105003111
crossref_primary_10_1108_JM2_10_2020_0257
crossref_primary_10_1002_wcms_1479
crossref_primary_10_1371_journal_pone_0057680
crossref_primary_10_1080_15376520600558259
crossref_primary_10_1371_journal_pone_0062070
crossref_primary_10_1016_j_socnet_2016_02_003
crossref_primary_10_1371_journal_pone_0185380
crossref_primary_10_1002_cem_2790
crossref_primary_10_1002_eco_1990
crossref_primary_10_1186_s12943_019_1035_x
Cites_doi 10.1023/A:1010933404324
10.1073/pnas.171209998
10.1111/j.1464-410X.2004.04605.x
10.1126/science.286.5439.531
10.1097/00000478-200305000-00005
10.1002/ijc.11000
10.1038/nm0798-844
10.1158/1078-0432.CCR-04-0488
10.1101/gr.184501
10.1046/j.1464-410X.1997.00489.x
10.1038/modpathol.3800032
10.1016/S0090-4295(99)00550-6
10.1038/sj.onc.1206869
10.1016/S0002-9440(10)65349-7
10.1038/modpathol.3880551
10.1097/00000478-198210000-00007
10.1038/sj.bjc.6600922
10.1016/S0140-6736(94)92398-1
10.1080/10618600.1996.10474713
10.1097/00000421-198212000-00014
10.1002/(SICI)1097-0142(19990101)85:1<47::AID-CNCR7>3.0.CO;2-L
10.1038/ng0497-356
10.1002/(SICI)1097-0142(19971101)80:9<1803::AID-CNCR16>3.0.CO;2-9
10.1016/S0002-9440(10)64120-X
ContentType Journal Article
Copyright 2005 United States & Canadian Academy of Pathology
United States and Canadian Academy of Pathology, Inc. 2005
Copyright Nature Publishing Group Apr 2005
Copyright_xml – notice: 2005 United States & Canadian Academy of Pathology
– notice: United States and Canadian Academy of Pathology, Inc. 2005
– notice: Copyright Nature Publishing Group Apr 2005
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7RV
7TK
7X7
7XB
88A
88E
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
ADTOC
UNPAY
DOI 10.1038/modpathol.3800322
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1530-0285
EndPage 557
ExternalDocumentID 10.1038/modpathol.3800322
969912031
15529185
10_1038_modpathol_3800322
S0893395222046622
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, U.S. Gov't, P.H.S
Journal Article
GeographicLocations Los Angeles California
United States--US
California
GeographicLocations_xml – name: Los Angeles California
– name: United States--US
– name: California
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: 2 P30 CA16042-29
GroupedDBID ---
-Q-
.GJ
0R~
123
29M
2WC
36B
39C
3V.
4.4
53G
5RE
6I.
7RV
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8R4
8R5
AADWK
AAFTH
AANZL
AAQQT
AASDW
AAWBL
AAWTL
AAXUO
AAYFA
AAYJO
AAZLF
ABAWZ
ABGIJ
ABJNI
ABLJU
ABUWG
ACBMV
ACBRV
ACBYP
ACGFO
ACGFS
ACIGE
ACKTT
ACPRK
ACRQY
ACTTH
ACVWB
ACZOJ
ADBBV
ADFRT
ADHDB
ADMDM
ADQMX
ADYYL
AEDAW
AEFTE
AEJRE
AENEX
AEXYK
AFKRA
AFOSN
AFSHS
AGAYW
AGEZK
AGGBP
AGHAI
AHGBK
AHMBA
AHSBF
AILAN
AJDOV
AJRNO
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AMRJV
AMYLF
AXYYD
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BKKNO
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DIK
DNIVK
DU5
E3Z
EBLON
EBS
EE.
EIOEI
EJD
EX3
F5P
FDB
FDQFY
FERAY
FIZPM
FSGXE
FYUFA
GX1
HCIFZ
HMCUK
HZ~
IWAJR
JSO
JZLTJ
KQ8
LK8
M0L
M1P
M7P
NAO
NAPCQ
NYICJ
O9-
OK1
OWW
P2P
PQQKQ
PROAC
PSQYO
Q2X
RNS
RNT
RNTTT
ROL
SNX
SNYQT
SOHCF
SRMVM
SWTZT
TAOOD
TBHMF
TDRGL
TR2
TSG
UKHRP
WOW
YFH
ZA5
AALRI
ADVLN
AITUG
AKRWK
ALIPV
NQJWS
70F
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
EFKBS
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c530t-86c5ab6a737639cd7f67b726493bdc8e5cfd26151d5080ddfd0e17dcbcabd1d43
IEDL.DBID UNPAY
ISSN 0893-3952
1530-0285
IngestDate Tue Aug 26 13:38:56 EDT 2025
Wed Oct 01 14:44:30 EDT 2025
Fri Oct 03 10:50:26 EDT 2025
Thu Apr 03 07:03:39 EDT 2025
Thu Oct 16 04:40:49 EDT 2025
Thu Apr 24 23:06:00 EDT 2025
Fri Feb 21 02:38:29 EST 2025
Fri Feb 23 02:39:16 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords renal cell carcinoma
random forest clustering
tumor marker
tissue microarray
tumor class discovery
Language English
License This article is made available under the Elsevier license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c530t-86c5ab6a737639cd7f67b726493bdc8e5cfd26151d5080ddfd0e17dcbcabd1d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=http://www.modernpathology.org/article/S0893395222046622/pdf
PMID 15529185
PQID 221234550
PQPubID 33743
PageCount 11
ParticipantIDs unpaywall_primary_10_1038_modpathol_3800322
proquest_miscellaneous_67524253
proquest_journals_221234550
pubmed_primary_15529185
crossref_primary_10_1038_modpathol_3800322
crossref_citationtrail_10_1038_modpathol_3800322
springer_journals_10_1038_modpathol_3800322
elsevier_sciencedirect_doi_10_1038_modpathol_3800322
PublicationCentury 2000
PublicationDate 2005-04-01
20050401
2005-04-00
2005-Apr
PublicationDateYYYYMMDD 2005-04-01
PublicationDate_xml – month: 04
  year: 2005
  text: 2005-04-01
  day: 01
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Kidlington
PublicationSubtitle Publishing innovative clinical and translational research in the pathology of human disease
PublicationTitle Modern pathology
PublicationTitleAbbrev Mod Pathol
PublicationTitleAlternate Mod Pathol
PublicationYear 2005
Publisher Elsevier Inc
Nature Publishing Group US
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Nature Publishing Group US
– name: Elsevier Limited
References Young, Amin, Moreno (bib32) 2001; 158
Kononen, Bubendorf, Kallioniemi (bib2) 1998; 4
Velickovic, Delahunt, McIver (bib21) 2002; 15
Breiman (bib3) 2001; 45
Sobin, Fleming (bib22) 1997; 80
Jacobsen, Grankvist, Rasmuson (bib7) 2004; 93
Langner, Ratschek, Rehak (bib6) 2004; 171
Rioux-Leclercq, Turlin, Bansard (bib12) 2000; 55
Cheville, Lohse, Zincke (bib28) 2003; 27
Hotakainen, Ljungberg, Haglund (bib9) 2003; 104
Sabo, Miselevich, Bejar (bib17) 1997; 80
Shetye, Christensson, Rubio (bib14) 1989; 9
Golub, Slonim, Tamayo (bib1) 1999; 286
Oken, Creech, Tormey (bib24) 1982; 5
Takahashi, Rhodes, Furge (bib30) 2001; 98
Kaufman, Rousseeuw (bib26) 1990
Steck, Pershouse, Jasser (bib19) 1997; 15
Kim, Seligson, Liu (bib25) 2004; 10
Shi, Horvath (bib4) 2003
Moch, Schraml, Bubendorf (bib16) 1999; 154
Takahashi, Yang, Sugimura (bib29) 2003; 22
Fuhrman, Lasky, Limas (bib23) 1982; 6
Alimov, Li, Gizatullin (bib20) 1999; 19
Jemal, Murray, Samuels (bib5) 2003; 53
Moch, Schraml, Bubendorf (bib10) 1999; 154
Ihaka, Gentleman (bib27) 1996; 5
Boer, Huber, Sultmann (bib31) 2001; 11
Bui, Seligson, Han (bib18) 2003; 9
Langner, Ratschek, Rehak (bib8) 2004; 17
Riethmuller, Schneider-Gadicke, Schlimok (bib15) 1994; 343
Hedberg, Ljungberg, Roos (bib11) 2003; 88
Shieh, Godleski, Herndon (bib13) 1999; 85
Moch (10.1038/modpathol.3800322_bib16) 1999; 154
Jemal (10.1038/modpathol.3800322_bib5) 2003; 53
Kaufman (10.1038/modpathol.3800322_bib26) 1990
Steck (10.1038/modpathol.3800322_bib19) 1997; 15
Sobin (10.1038/modpathol.3800322_bib22) 1997; 80
Shetye (10.1038/modpathol.3800322_bib14) 1989; 9
Sabo (10.1038/modpathol.3800322_bib17) 1997; 80
Golub (10.1038/modpathol.3800322_bib1) 1999; 286
Alimov (10.1038/modpathol.3800322_bib20) 1999; 19
Hotakainen (10.1038/modpathol.3800322_bib9) 2003; 104
Boer (10.1038/modpathol.3800322_bib31) 2001; 11
Takahashi (10.1038/modpathol.3800322_bib30) 2001; 98
Takahashi (10.1038/modpathol.3800322_bib29) 2003; 22
Jacobsen (10.1038/modpathol.3800322_bib7) 2004; 93
Oken (10.1038/modpathol.3800322_bib24) 1982; 5
Young (10.1038/modpathol.3800322_bib32) 2001; 158
Kononen (10.1038/modpathol.3800322_bib2) 1998; 4
Hedberg (10.1038/modpathol.3800322_bib11) 2003; 88
Velickovic (10.1038/modpathol.3800322_bib21) 2002; 15
Langner (10.1038/modpathol.3800322_bib6) 2004; 171
Fuhrman (10.1038/modpathol.3800322_bib23) 1982; 6
Kim (10.1038/modpathol.3800322_bib25) 2004; 10
Riethmuller (10.1038/modpathol.3800322_bib15) 1994; 343
Langner (10.1038/modpathol.3800322_bib8) 2004; 17
Shi (10.1038/modpathol.3800322_bib4) 2003
Rioux-Leclercq (10.1038/modpathol.3800322_bib12) 2000; 55
Ihaka (10.1038/modpathol.3800322_bib27) 1996; 5
Bui (10.1038/modpathol.3800322_bib18) 2003; 9
Breiman (10.1038/modpathol.3800322_bib3) 2001; 45
Moch (10.1038/modpathol.3800322_bib10) 1999; 154
Cheville (10.1038/modpathol.3800322_bib28) 2003; 27
Shieh (10.1038/modpathol.3800322_bib13) 1999; 85
References_xml – volume: 154
  start-page: 981
  year: 1999
  end-page: 986
  ident: bib16
  article-title: High-throughput tissue microarray analysis to evaluate genes uncovered by cDNA microarray screening in renal cell carcinoma
  publication-title: Am J Pathol
– volume: 286
  start-page: 531
  year: 1999
  end-page: 537
  ident: bib1
  article-title: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
  publication-title: Science
– volume: 171
  start-page: 611
  year: 2004
  end-page: 614
  ident: bib6
  article-title: Steroid hormone receptor expression in renal cell carcinoma: an immunohistochemical analysis of 182 tumors
  publication-title: J Urol
– volume: 98
  start-page: 9754
  year: 2001
  end-page: 9759
  ident: bib30
  article-title: Gene expression profiling of clear cell renal cell carcinoma: gene identification and prognostic classification
  publication-title: Proc Natl Acad Sci USA
– volume: 154
  start-page: 981
  year: 1999
  end-page: 986
  ident: bib10
  article-title: High-throughput tissue microarray analysis to evaluate genes uncovered by cDNA microarray screening in renal cell carcinoma
  publication-title: Am J Pathol
– volume: 4
  start-page: 844
  year: 1998
  end-page: 847
  ident: bib2
  article-title: Tissue microarrays for high-throughput molecular profiling of tumor specimens
  publication-title: Nat Med
– volume: 27
  start-page: 612
  year: 2003
  end-page: 624
  ident: bib28
  article-title: Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma
  publication-title: Am J Surg Pathol
– volume: 93
  start-page: 297
  year: 2004
  end-page: 302
  ident: bib7
  article-title: Expression of vascular endothelial growth factor protein in human renal cell carcinoma
  publication-title: BJU Int
– year: 2003
  ident: bib4
  article-title: Using random forest similarities in unsupervised learning: applications to microarray data
  publication-title: Atlantic Symposium on Computational Biology and Genome Informatics (CBGI'03); 2003;
– volume: 88
  start-page: 1417
  year: 2003
  end-page: 1423
  ident: bib11
  article-title: Expression of cyclin D1, D3, E, and p27 in human renal cell carcinoma analysed by tissue microarray
  publication-title: Br J Cancer
– volume: 80
  start-page: 1803
  year: 1997
  end-page: 1804
  ident: bib22
  article-title: TNM Classification of Malignant Tumors, fifth edition (1997). Union Internationale Contre le Cancer and the American Joint Committee on Cancer
  publication-title: Cancer
– volume: 15
  start-page: 356
  year: 1997
  end-page: 362
  ident: bib19
  article-title: Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers
  publication-title: Nat Genet
– volume: 5
  start-page: 649
  year: 1982
  end-page: 655
  ident: bib24
  article-title: Toxicity and response criteria of the Eastern Cooperative Oncology Group
  publication-title: Am J Clin Oncol
– volume: 104
  start-page: 631
  year: 2003
  end-page: 635
  ident: bib9
  article-title: Expression of the free beta-subunit of human chorionic gonadotropin in renal cell carcinoma: prognostic study on tissue and serum
  publication-title: Int J Cancer
– volume: 15
  start-page: 479
  year: 2002
  end-page: 485
  ident: bib21
  article-title: Intragenic PTEN/MMAC1 loss of heterozygosity in conventional (clear-cell) renal cell carcinoma is associated with poor patient prognosis
  publication-title: Mod Pathol
– volume: 343
  start-page: 1177
  year: 1994
  end-page: 1183
  ident: bib15
  article-title: Randomised trial of monoclonal antibody for adjuvant therapy of resected Dukes' C colorectal carcinoma. German Cancer Aid 17-1A Study Group
  publication-title: Lancet
– volume: 85
  start-page: 47
  year: 1999
  end-page: 57
  ident: bib13
  article-title: Cell motility as a prognostic factor in Stage I nonsmall cell lung carcinoma: the role of gelsolin expression
  publication-title: Cancer
– volume: 53
  start-page: 5
  year: 2003
  end-page: 26
  ident: bib5
  article-title: Cancer statistics, 2003
  publication-title: CA Cancer J Clin
– volume: 19
  start-page: 3841
  year: 1999
  end-page: 3846
  ident: bib20
  article-title: Somatic mutation and homozygous deletion of PTEN/MMAC1 gene of 10q23 in renal cell carcinoma
  publication-title: Anticancer Res
– volume: 10
  start-page: 5464
  year: 2004
  end-page: 5471
  ident: bib25
  article-title: Using protein expressions to predict survival in clear cell renal carcinoma
  publication-title: Clin Cancer Res
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib3
  article-title: Random forests
  publication-title: Machine Learning
– volume: 55
  start-page: 501
  year: 2000
  end-page: 505
  ident: bib12
  article-title: Value of immunohistochemical Ki-67 and p53 determinations as predictive factors of outcome in renal cell carcinoma
  publication-title: Urology
– volume: 9
  start-page: 395
  year: 1989
  end-page: 404
  ident: bib14
  article-title: The tumor-associated antigens BR55-2, GA73-3 and GICA 19-9 in normal and corresponding neoplastic human tissues, especially gastrointestinal tissues
  publication-title: Anticancer Res
– year: 1990
  ident: bib26
  publication-title: Finding Groups in Data: an Introduction to Cluster Analysis
– volume: 9
  start-page: 802
  year: 2003
  end-page: 811
  ident: bib18
  article-title: Carbonic anhydrase IX is an independent predictor of survival in advanced renal clear cell carcinoma: implications for prognosis and therapy
  publication-title: Clin Cancer Res
– volume: 6
  start-page: 655
  year: 1982
  end-page: 663
  ident: bib23
  article-title: Prognostic significance of morphologic parameters in renal cell carcinoma
  publication-title: Am J Surg Pathol
– volume: 11
  start-page: 1861
  year: 2001
  end-page: 1870
  ident: bib31
  article-title: Identification and classification of differentially expressed genes in renal cell carcinoma by expression profiling on a global human 31,500-element cDNA array
  publication-title: Genome Res
– volume: 22
  start-page: 6810
  year: 2003
  end-page: 6818
  ident: bib29
  article-title: Molecular subclassification of kidney tumors and the discovery of new diagnostic markers
  publication-title: Oncogene
– volume: 17
  start-page: 180
  year: 2004
  end-page: 188
  ident: bib8
  article-title: Expression of MUC1 (EMA) and E-cadherin in renal cell carcinoma: a systematic immunohistochemical analysis of 188 cases
  publication-title: Mod Pathol
– volume: 80
  start-page: 864
  year: 1997
  end-page: 868
  ident: bib17
  article-title: The role of vimentin expression in predicting the long-term outcome of patients with localized renal cell carcinoma
  publication-title: Br J Urol
– volume: 5
  start-page: 299
  year: 1996
  end-page: 314
  ident: bib27
  article-title: R: a language for data analysis and graphics
  publication-title: J Comput Graph Stat
– volume: 158
  start-page: 1639
  year: 2001
  end-page: 1651
  ident: bib32
  article-title: Expression profiling of renal epithelial neoplasms: a method for tumor classification and discovery of diagnostic molecular markers
  publication-title: Am J Pathol
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1038/modpathol.3800322_bib3
  article-title: Random forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 98
  start-page: 9754
  year: 2001
  ident: 10.1038/modpathol.3800322_bib30
  article-title: Gene expression profiling of clear cell renal cell carcinoma: gene identification and prognostic classification
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.171209998
– volume: 93
  start-page: 297
  year: 2004
  ident: 10.1038/modpathol.3800322_bib7
  article-title: Expression of vascular endothelial growth factor protein in human renal cell carcinoma
  publication-title: BJU Int
  doi: 10.1111/j.1464-410X.2004.04605.x
– volume: 286
  start-page: 531
  year: 1999
  ident: 10.1038/modpathol.3800322_bib1
  article-title: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
  publication-title: Science
  doi: 10.1126/science.286.5439.531
– volume: 27
  start-page: 612
  year: 2003
  ident: 10.1038/modpathol.3800322_bib28
  article-title: Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma
  publication-title: Am J Surg Pathol
  doi: 10.1097/00000478-200305000-00005
– volume: 104
  start-page: 631
  year: 2003
  ident: 10.1038/modpathol.3800322_bib9
  article-title: Expression of the free beta-subunit of human chorionic gonadotropin in renal cell carcinoma: prognostic study on tissue and serum
  publication-title: Int J Cancer
  doi: 10.1002/ijc.11000
– volume: 4
  start-page: 844
  year: 1998
  ident: 10.1038/modpathol.3800322_bib2
  article-title: Tissue microarrays for high-throughput molecular profiling of tumor specimens
  publication-title: Nat Med
  doi: 10.1038/nm0798-844
– volume: 10
  start-page: 5464
  year: 2004
  ident: 10.1038/modpathol.3800322_bib25
  article-title: Using protein expressions to predict survival in clear cell renal carcinoma
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-04-0488
– volume: 11
  start-page: 1861
  year: 2001
  ident: 10.1038/modpathol.3800322_bib31
  article-title: Identification and classification of differentially expressed genes in renal cell carcinoma by expression profiling on a global human 31,500-element cDNA array
  publication-title: Genome Res
  doi: 10.1101/gr.184501
– volume: 80
  start-page: 864
  year: 1997
  ident: 10.1038/modpathol.3800322_bib17
  article-title: The role of vimentin expression in predicting the long-term outcome of patients with localized renal cell carcinoma
  publication-title: Br J Urol
  doi: 10.1046/j.1464-410X.1997.00489.x
– volume: 53
  start-page: 5
  year: 2003
  ident: 10.1038/modpathol.3800322_bib5
  article-title: Cancer statistics, 2003
  publication-title: CA Cancer J Clin
– volume: 9
  start-page: 395
  year: 1989
  ident: 10.1038/modpathol.3800322_bib14
  article-title: The tumor-associated antigens BR55-2, GA73-3 and GICA 19-9 in normal and corresponding neoplastic human tissues, especially gastrointestinal tissues
  publication-title: Anticancer Res
– volume: 9
  start-page: 802
  year: 2003
  ident: 10.1038/modpathol.3800322_bib18
  article-title: Carbonic anhydrase IX is an independent predictor of survival in advanced renal clear cell carcinoma: implications for prognosis and therapy
  publication-title: Clin Cancer Res
– volume: 17
  start-page: 180
  year: 2004
  ident: 10.1038/modpathol.3800322_bib8
  article-title: Expression of MUC1 (EMA) and E-cadherin in renal cell carcinoma: a systematic immunohistochemical analysis of 188 cases
  publication-title: Mod Pathol
  doi: 10.1038/modpathol.3800032
– volume: 55
  start-page: 501
  year: 2000
  ident: 10.1038/modpathol.3800322_bib12
  article-title: Value of immunohistochemical Ki-67 and p53 determinations as predictive factors of outcome in renal cell carcinoma
  publication-title: Urology
  doi: 10.1016/S0090-4295(99)00550-6
– volume: 22
  start-page: 6810
  year: 2003
  ident: 10.1038/modpathol.3800322_bib29
  article-title: Molecular subclassification of kidney tumors and the discovery of new diagnostic markers
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1206869
– volume: 154
  start-page: 981
  year: 1999
  ident: 10.1038/modpathol.3800322_bib10
  article-title: High-throughput tissue microarray analysis to evaluate genes uncovered by cDNA microarray screening in renal cell carcinoma
  publication-title: Am J Pathol
  doi: 10.1016/S0002-9440(10)65349-7
– volume: 15
  start-page: 479
  year: 2002
  ident: 10.1038/modpathol.3800322_bib21
  article-title: Intragenic PTEN/MMAC1 loss of heterozygosity in conventional (clear-cell) renal cell carcinoma is associated with poor patient prognosis
  publication-title: Mod Pathol
  doi: 10.1038/modpathol.3880551
– volume: 6
  start-page: 655
  year: 1982
  ident: 10.1038/modpathol.3800322_bib23
  article-title: Prognostic significance of morphologic parameters in renal cell carcinoma
  publication-title: Am J Surg Pathol
  doi: 10.1097/00000478-198210000-00007
– volume: 88
  start-page: 1417
  year: 2003
  ident: 10.1038/modpathol.3800322_bib11
  article-title: Expression of cyclin D1, D3, E, and p27 in human renal cell carcinoma analysed by tissue microarray
  publication-title: Br J Cancer
  doi: 10.1038/sj.bjc.6600922
– year: 2003
  ident: 10.1038/modpathol.3800322_bib4
  article-title: Using random forest similarities in unsupervised learning: applications to microarray data
  publication-title: Atlantic Symposium on Computational Biology and Genome Informatics (CBGI'03); 2003;
– volume: 343
  start-page: 1177
  year: 1994
  ident: 10.1038/modpathol.3800322_bib15
  article-title: Randomised trial of monoclonal antibody for adjuvant therapy of resected Dukes' C colorectal carcinoma. German Cancer Aid 17-1A Study Group
  publication-title: Lancet
  doi: 10.1016/S0140-6736(94)92398-1
– volume: 5
  start-page: 299
  year: 1996
  ident: 10.1038/modpathol.3800322_bib27
  article-title: R: a language for data analysis and graphics
  publication-title: J Comput Graph Stat
  doi: 10.1080/10618600.1996.10474713
– year: 1990
  ident: 10.1038/modpathol.3800322_bib26
– volume: 154
  start-page: 981
  year: 1999
  ident: 10.1038/modpathol.3800322_bib16
  article-title: High-throughput tissue microarray analysis to evaluate genes uncovered by cDNA microarray screening in renal cell carcinoma
  publication-title: Am J Pathol
  doi: 10.1016/S0002-9440(10)65349-7
– volume: 171
  start-page: 611
  issue: 2 Part 1
  year: 2004
  ident: 10.1038/modpathol.3800322_bib6
  article-title: Steroid hormone receptor expression in renal cell carcinoma: an immunohistochemical analysis of 182 tumors
  publication-title: J Urol
– volume: 5
  start-page: 649
  year: 1982
  ident: 10.1038/modpathol.3800322_bib24
  article-title: Toxicity and response criteria of the Eastern Cooperative Oncology Group
  publication-title: Am J Clin Oncol
  doi: 10.1097/00000421-198212000-00014
– volume: 19
  start-page: 3841
  year: 1999
  ident: 10.1038/modpathol.3800322_bib20
  article-title: Somatic mutation and homozygous deletion of PTEN/MMAC1 gene of 10q23 in renal cell carcinoma
  publication-title: Anticancer Res
– volume: 85
  start-page: 47
  year: 1999
  ident: 10.1038/modpathol.3800322_bib13
  article-title: Cell motility as a prognostic factor in Stage I nonsmall cell lung carcinoma: the role of gelsolin expression
  publication-title: Cancer
  doi: 10.1002/(SICI)1097-0142(19990101)85:1<47::AID-CNCR7>3.0.CO;2-L
– volume: 15
  start-page: 356
  year: 1997
  ident: 10.1038/modpathol.3800322_bib19
  article-title: Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers
  publication-title: Nat Genet
  doi: 10.1038/ng0497-356
– volume: 80
  start-page: 1803
  year: 1997
  ident: 10.1038/modpathol.3800322_bib22
  article-title: TNM Classification of Malignant Tumors, fifth edition (1997). Union Internationale Contre le Cancer and the American Joint Committee on Cancer
  publication-title: Cancer
  doi: 10.1002/(SICI)1097-0142(19971101)80:9<1803::AID-CNCR16>3.0.CO;2-9
– volume: 158
  start-page: 1639
  year: 2001
  ident: 10.1038/modpathol.3800322_bib32
  article-title: Expression profiling of renal epithelial neoplasms: a method for tumor classification and discovery of diagnostic molecular markers
  publication-title: Am J Pathol
  doi: 10.1016/S0002-9440(10)64120-X
SSID ssj0014582
Score 2.2101948
Snippet We describe a novel strategy (random forest clustering) for tumor profiling based on tissue microarray data. Random forest clustering is attractive for tissue...
SourceID unpaywall
proquest
pubmed
crossref
springer
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 547
SubjectTerms Algorithms
Biomarkers
Biomarkers, Tumor - analysis
Carcinoma, Renal Cell - classification
Carcinoma, Renal Cell - metabolism
Carcinoma, Renal Cell - pathology
Cell cycle
Cluster Analysis
Clustering
Female
Gene expression
Humans
Hypoxia
Immunohistochemistry
Kidney cancer
Kidney Neoplasms - classification
Kidney Neoplasms - metabolism
Kidney Neoplasms - pathology
Laboratory Medicine
Male
Medical prognosis
Medicine
Medicine & Public Health
Middle Aged
Neoplasm Metastasis
Neoplasm Staging
Neoplasms - classification
Neoplasms - metabolism
Neoplasms - pathology
original-article
Pathology
Protein expression
Proteins
random forest clustering
renal cell carcinoma
Survival Analysis
Tissue Array Analysis - methods
tissue microarray
tumor class discovery
tumor marker
Tumors
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6VrXgdEBQooTx84ESVNomdFxJCgFpVSFsh1Eq9RX7ltImXNFG1_x6P46SVEMs5cTLxzHg-Z8bzAXzIspLHOipCyWoZMl3SkBcitrZsg3miclbWeMB5eZ6dXbIfV-nVDiynszBYVjmtiW6hVkbiP_LjBNdYPIL7Zf07RNIoTK5ODBrcMyuoz67D2D3YTbAx1gJ2v52c__w1pxUwSeRgpRWJlmkypTlpcdwYhRzAZnVELYaiSfKvQPU3EL2TRH0MD4d2zTc3fLW6E6dOn8ITDzDJ19EinsGObvfg_kg5udmDB0ufTH8OzcXQmI5IxM9YMOR0RMSG9E4ZpMFaPd51fENGZm_77k_ExjZlGmKxrhXODh6w04K9QviIZ0lvSKdRBMwJEIlcRa1p-Au4PD25-H4WevaFUKY06sMikykXGc9xCSqlyussF7nFTyUVShY6lbVKEA8pi_EipWoV6ThXUkguVKwYfQmL1rT6FRBqfVvwvNAy50yVSmRMpYWsJYtdO5sAommqK-lbkyNDxqpyKXJaVLN2Kq-dAD7OQ9ZjX45tN7NJf5UHFiNgqGzc2DbsYNJ15T37uprtMID381XrkjinvNVmuK7sHgw3cjSA_dFAbiVM06S0CCmAw8libp-8RY7D2aj-_7Gvt0p9AI9c81lXe_QGFn036LcWVvXinXeWP5TmJUs
  priority: 102
  providerName: ProQuest
Title Tumor classification by tissue microarray profiling: random forest clustering applied to renal cell carcinoma
URI https://dx.doi.org/10.1038/modpathol.3800322
https://link.springer.com/article/10.1038/modpathol.3800322
https://www.ncbi.nlm.nih.gov/pubmed/15529185
https://www.proquest.com/docview/221234550
https://www.proquest.com/docview/67524253
http://www.modernpathology.org/article/S0893395222046622/pdf
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1530-0285
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014582
  issn: 0893-3952
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1530-0285
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0014582
  issn: 0893-3952
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1530-0285
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0014582
  issn: 0893-3952
  databaseCode: GX1
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1530-0285
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014582
  issn: 0893-3952
  databaseCode: AKRWK
  dateStart: 20000101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1530-0285
  dateEnd: 20221231
  omitProxy: true
  ssIdentifier: ssj0014582
  issn: 0893-3952
  databaseCode: 7X7
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1530-0285
  dateEnd: 20221231
  omitProxy: true
  ssIdentifier: ssj0014582
  issn: 0893-3952
  databaseCode: BENPR
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61uwLUA49SaHgsPnCiym7eTrgV1FIhdVVBV1oOyPIrFzZJlSZCy69nHCfbShWL4BjZjj2eiedzxp4P4G2SZNzXXurKKJdupLPQ5anw0ZbRmQeKRlluLjifz5OzRfR5GS93YKBVNKcqi44EzBDydj-WbbJgO42zr56hh88QNAS4sUuCYHal8l0YJzEi8RGMF_OL428dcMROTT2bLtVz0Y3GQ1AzTGfYh-1gGiJiCoPgT27pLuy8FTLdgwctDnT9k69Wt7zS6SP4PtztsYdRfkzbRkzlr7upHv9L4MfwsIer5NjWewI7utyHe5bAcr0P98_70PxTKC7boqqJNGjcHD_qNE7EmjSdaklhTv7xuuZrYnnCUbb3BD2lqgqCyBmFx8atyduAJYRbdEyaitTaDMFEGIg0zEdlVfADWJyeXH48c3suB1fi9DdumsiYi4RTs6BlUtE8oYIiGstCoWSqY5mrwKArhYjRUypXnvapkkJyoXwVhc9gVFalPgQS4kohOE21pDxSmRJJpOJU5jLyu-Q4DniDKpnsE50bvo0V6wLuYco22me99h14t2lyZbN8bKscDfbBephi4QdDL7St2cvBlli_TlyzwCAHc7HcgTebUvzAzZzyUlftNcMdndkWhg48twZ4M8I4DjLEWw4cDRZ58-Yt4zjaGO3fhX3xT7VfwaipW_0acVojJrBLl3QC4w8n84sv-PRp6U_6T_Q3fmNFKw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVlA4ICivUKA-wIUqNImdF1KFeLTa0u4Koa3Um-vYzmmTLPtQtT-O_8ZMXq2EWE49O3YmnvHM54w9H8DbKEqVb73E1SLXrrApd1WS-WjLGMwDE4s0pwvOw1E0OBffL8KLDfjd3YWhY5WdT6wdtak0_SM_CMjH0hXcT9NfLpFGUXK1Y9BQLbOCOawrjLX3Ok7t6gp3cPPDk2-o7ndBcHw0_jpwW5IBV4fcW7hJpEOVRSqmlZZqE-dRnMUIE1KeGZ3YUOcmoLBvEMp4xuTGs35sdKZVZnwjOI57B7YEFynu_ba-HI1-_OzTGJSUqmEsTgFPw6BLq_LkoKgMcQ5Xkw8cMRsPgn8Fxr-B742k7QPYXpZTtbpSk8mNuHj8CB62gJZ9bizwMWzYcgfuNhSXqx24N2yT90-gGC-LasY04XU6oFTbBMtWbFErnxV0NlDNZmrFGiZxfPdHhrHUVAVDbI3CYeclVXbAFqYa_MwWFZtZEoFyEEwTN1JZFeopnN-KIp7BZlmV9gUwjr4kU3FidayESU0WCRMmOtfCr8vnOOB1Uy11WwqdGDkmsk7J80T22pGtdhx433eZNnVA1j0sOv3JFsg0AEVinFrXbbfTtWw9yVz2du_AXt-KLoDmVJW2Ws4l7vlo48gdeN4YyLWEYRikiMgc2O8s5nrkNXLs90b1_499uVbqPdgejIdn8uxkdLoL9-vCt_W5p1ewuZgt7WuEdIvsTbtwGFze9lr9AxIwY-c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgocEJRHQ4H6ABeq0CTOEwkhRFm1lFYcWmlvwbGd0ybZZhNV-Wn8O2acRyshllPPjp2J5_U5M54BeBuGiXC1E9vSz6Xt64TbIs5clGV05p6K_CSnC86nZ-HRhf99Hsw34Pd4F4bSKkebaAy1qiT9Iz_wyMaaotr5kBXx83D2eXlpUwMpCrSO3TR6CTnR3RWe3lafjg-R1e88b_bt_OuRPTQYsGXAncaOQxmILBQRaVkiVZSHURYhREh4pmSsA5krj1y-QhjjKJUrR7uRkpkUmXKVz3HdO3A34jyhbMJoPp31XApHGQCLH4-j3hhQ5fFBUSnqNlwtPnBEa9zz_uUS_4a8N8K1D-F-Wy5FdyUWixsecfYYHg1Qln3pZe8JbOhyG-71zS27bdg6HcL2T6E4b4uqZpKQOqUmGWlgWccaw3ZWUFagqGvRsb6HOL77I0MvqqqCIapG4nBySzUdcISJHjmzpmK1JhIo-sAkdUUqq0I8g4tbYcNz2CyrUu8A42hFMhHFWkbCV4nKQl8Fscyl75rCORY441anciiCTr04FqkJxvM4nbiTDtyx4P00ZdlXAFn3sD_yLx0gTA9NUvRQ66btjrxOBxuySieJt2BvGkXlpz0Vpa7aVYqnPToycgte9AJyTWEQeAliMQv2R4m5XnkNHfuTUP3_Y1-upXoPtlBD0x_HZye78MBUvDUJT69gs6lb_RqxXJO9MVrD4Ndtq-kfa-VhgQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrQBx4FGghKcPnKiym8SJk3CrEFWF1AqJrlQOKPIrFzZJlSaqll_PTJxsK1UsgrPH8WPGns8Zez6A90LkMrRB5uu41H5sc-7LTIVoy-jMI5PGeUkPnE9OxfEy_nKenO_ARKtItyqrgQSMCHmHH8suWbCbxsW3gOjhcwQNER7sRBQtLkx5B3ZFgkh8BrvL06-H3wfgiI2SnEuXGvjoRpMpqMmzBbbhGphzREw8iv7klm7Dzhsh0wdwv8eOrq_kanXDKx09gh_T2x53GeXnvO_UXP-6nerxvwb8GB6OcJUdOrknsGPrPbjrCCzXe3DvZAzNP4XqrK-almlC43T9aNA4U2vWDaplFd38k20r18zxhOPYPjL0lKapGCJnHDxW7ilvA5Yw6dAx6xrWWuoCRRiYJuajuqnkM1gefT77dOyPXA6-xunv_EzoRCohU9rQcm3SUqQqRTSWc2V0ZhNdmojQlUHEGBhTmsCGqdFKS2VCE_PnMKub2r4AxnGnUDLNrE5lbHKjRGySTJc6DofkOB4EkyoLPSY6J76NVTEE3HlWbLRfjNr34MOmyoXL8rFNOJ7soxhhioMfBXqhbdVeTbZUjPvEZRERcqCH5R6825TiAqc5lbVt-ssCT3R0LOQe7DsDvO5hkkQ54i0PDiaLvP7yln4cbIz274N9-U_Sr2HWtb19gzitU2_H5fgbQYxBuQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumor+classification+by+tissue+microarray+profiling%3A+random+forest+clustering+applied+to+renal+cell+carcinoma&rft.jtitle=Modern+pathology&rft.au=Shi%2C+Tao&rft.au=Seligson%2C+David&rft.au=Belldegrun%2C+Arie+S&rft.au=Palotie%2C+Aarno&rft.date=2005-04-01&rft.issn=0893-3952&rft.volume=18&rft.issue=4&rft.spage=547&rft_id=info:doi/10.1038%2Fmodpathol.3800322&rft_id=info%3Apmid%2F15529185&rft.externalDocID=15529185
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-3952&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-3952&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-3952&client=summon