Tumor classification by tissue microarray profiling: random forest clustering applied to renal cell carcinoma
We describe a novel strategy (random forest clustering) for tumor profiling based on tissue microarray data. Random forest clustering is attractive for tissue microarray and other immunohistochemistry data since it handles highly skewed tumor marker expressions well and weighs the contribution of ea...
Saved in:
| Published in | Modern pathology Vol. 18; no. 4; pp. 547 - 557 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Elsevier Inc
01.04.2005
Nature Publishing Group US Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0893-3952 1530-0285 1530-0285 |
| DOI | 10.1038/modpathol.3800322 |
Cover
| Abstract | We describe a novel strategy (random forest clustering) for tumor profiling based on tissue microarray data. Random forest clustering is attractive for tissue microarray and other immunohistochemistry data since it handles highly skewed tumor marker expressions well and weighs the contribution of each marker according to its relatedness with other tumor markers. This is the first tumor class discovery analysis of renal cell carcinoma patients based on protein expression profiles. The tissue array data contained at least three tumor samples from each of 366 renal cell carcinoma patients. The eight tumor markers explore tumor proliferation, cell cycle abnormalities, cell mobility, and the hypoxia pathway. Since the procedure is unsupervised, no clinicopathological data or traditional classifications are used a priori. To explore whether the tissue microarray data can be used to identify fundamental subtypes of renal cell carcinoma patients, we first carried out random forest clustering of all 366 patients. By analyzing the tumor markers simultaneously, the procedure automatically detected classes that correspond to clear- vs non-clear cell tumors (demonstration of proof-of-principle). The resulting molecular grouping provides better prediction of survival (logrank P=0.000090) than this classical pathological grouping (logrank P=0.023). We then sought to extend the class discovery by searching for finer subclasses of clear cell patients. The procedure automatically discovered: (a) two classes corresponding to low- and high-grade patients (demonstration of proof-of-principle); (b) a subgroup of long-surviving clear cell patients with a distinct molecular profile and (c) two novel tumor subclasses in low-grade clear cell patients that could not be explained by any clinicopathological variables (demonstration of discovery). |
|---|---|
| AbstractList | We describe a novel strategy (random forest clustering) for tumor profiling based on tissue microarray data. Random forest clustering is attractive for tissue microarray and other immunohistochemistry data since it handles highly skewed tumor marker expressions well and weighs the contribution of each marker according to its relatedness with other tumor markers. This is the first tumor class discovery analysis of renal cell carcinoma patients based on protein expression profiles. The tissue array data contained at least three tumor samples from each of 366 renal cell carcinoma patients. The eight tumor markers explore tumor proliferation, cell cycle abnormalities, cell mobility, and the hypoxia pathway. Since the procedure is unsupervised, no clinicopathological data or traditional classifications are used a priori. To explore whether the tissue microarray data can be used to identify fundamental subtypes of renal cell carcinoma patients, we first carried out random forest clustering of all 366 patients. By analyzing the tumor markers simultaneously, the procedure automatically detected classes that correspond to clear- vs non-clear cell tumors (demonstration of proof-of-principle). The resulting molecular grouping provides better prediction of survival (logrank P=0.000090) than this classical pathological grouping (logrank P=0.023). We then sought to extend the class discovery by searching for finer subclasses of clear cell patients. The procedure automatically discovered: (a) two classes corresponding to low- and high-grade patients (demonstration of proof-of-principle); (b) a subgroup of long-surviving clear cell patients with a distinct molecular profile and (c) two novel tumor subclasses in low-grade clear cell patients that could not be explained by any clinicopathological variables (demonstration of discovery). We describe a novel strategy (random forest clustering) for tumor profiling based on tissue microarray data. Random forest clustering is attractive for tissue microarray and other immunohistochemistry data since it handles highly skewed tumor marker expressions well and weighs the contribution of each marker according to its relatedness with other tumor markers. This is the first tumor class discovery analysis of renal cell carcinoma patients based on protein expression profiles. The tissue array data contained at least three tumor samples from each of 366 renal cell carcinoma patients. The eight tumor markers explore tumor proliferation, cell cycle abnormalities, cell mobility, and the hypoxia pathway. Since the procedure is unsupervised, no clinicopathological data or traditional classifications are used a priori . To explore whether the tissue microarray data can be used to identify fundamental subtypes of renal cell carcinoma patients, we first carried out random forest clustering of all 366 patients. By analyzing the tumor markers simultaneously, the procedure automatically detected classes that correspond to clear- vs non-clear cell tumors (demonstration of proof-of-principle). The resulting molecular grouping provides better prediction of survival (logrank P =0.000090) than this classical pathological grouping (logrank P =0.023). We then sought to extend the class discovery by searching for finer subclasses of clear cell patients. The procedure automatically discovered: (a) two classes corresponding to low- and high-grade patients (demonstration of proof-of-principle); (b) a subgroup of long-surviving clear cell patients with a distinct molecular profile and (c) two novel tumor subclasses in low-grade clear cell patients that could not be explained by any clinicopathological variables (demonstration of discovery). We describe a novel strategy (random forest clustering) for tumor profiling based on tissue microarray data. Random forest clustering is attractive for tissue microarray and other immunohistochemistry data since it handles highly skewed tumor marker expressions well and weighs the contribution of each marker according to its relatedness with other tumor markers. This is the first tumor class discovery analysis of renal cell carcinoma patients based on protein expression profiles. The tissue array data contained at least three tumor samples from each of 366 renal cell carcinoma patients. The eight tumor markers explore tumor proliferation, cell cycle abnormalities, cell mobility, and the hypoxia pathway. Since the procedure is unsupervised, no clinicopathological data or traditional classifications are used a priori. To explore whether the tissue microarray data can be used to identify fundamental subtypes of renal cell carcinoma patients, we first carried out random forest clustering of all 366 patients. By analyzing the tumor markers simultaneously, the procedure automatically detected classes that correspond to clear- vs non-clear cell tumors (demonstration of proof-of-principle). The resulting molecular grouping provides better prediction of survival (logrank P=0.000090) than this classical pathological grouping (logrank P=0.023). We then sought to extend the class discovery by searching for finer subclasses of clear cell patients. The procedure automatically discovered: (a) two classes corresponding to low- and high-grade patients (demonstration of proof-of-principle); (b) a subgroup of long-surviving clear cell patients with a distinct molecular profile and (c) two novel tumor subclasses in low-grade clear cell patients that could not be explained by any clinicopathological variables (demonstration of discovery).We describe a novel strategy (random forest clustering) for tumor profiling based on tissue microarray data. Random forest clustering is attractive for tissue microarray and other immunohistochemistry data since it handles highly skewed tumor marker expressions well and weighs the contribution of each marker according to its relatedness with other tumor markers. This is the first tumor class discovery analysis of renal cell carcinoma patients based on protein expression profiles. The tissue array data contained at least three tumor samples from each of 366 renal cell carcinoma patients. The eight tumor markers explore tumor proliferation, cell cycle abnormalities, cell mobility, and the hypoxia pathway. Since the procedure is unsupervised, no clinicopathological data or traditional classifications are used a priori. To explore whether the tissue microarray data can be used to identify fundamental subtypes of renal cell carcinoma patients, we first carried out random forest clustering of all 366 patients. By analyzing the tumor markers simultaneously, the procedure automatically detected classes that correspond to clear- vs non-clear cell tumors (demonstration of proof-of-principle). The resulting molecular grouping provides better prediction of survival (logrank P=0.000090) than this classical pathological grouping (logrank P=0.023). We then sought to extend the class discovery by searching for finer subclasses of clear cell patients. The procedure automatically discovered: (a) two classes corresponding to low- and high-grade patients (demonstration of proof-of-principle); (b) a subgroup of long-surviving clear cell patients with a distinct molecular profile and (c) two novel tumor subclasses in low-grade clear cell patients that could not be explained by any clinicopathological variables (demonstration of discovery). |
| Author | Shi, Tao Horvath, Steve Belldegrun, Arie S Palotie, Aarno Seligson, David |
| Author_xml | – sequence: 1 givenname: Tao surname: Shi fullname: Shi, Tao organization: Department of Human Genetics, University of California, Los AngelesCA, USA – sequence: 2 givenname: David surname: Seligson fullname: Seligson, David organization: Department of Pathology & Laboratory Medicine, University of California, Los Angeles, CA, USA – sequence: 3 givenname: Arie S surname: Belldegrun fullname: Belldegrun, Arie S organization: Department of Urology, University of California, Los Angeles, CA, USA – sequence: 4 givenname: Aarno surname: Palotie fullname: Palotie, Aarno organization: Department of Human Genetics, University of California, Los AngelesCA, USA – sequence: 5 givenname: Steve surname: Horvath fullname: Horvath, Steve email: shorvath@mednet.ucla.edu organization: Department of Human Genetics, University of California, Los AngelesCA, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15529185$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkTtvFDEUhS0URDaBH0CDLAq6CX6M5wEVinhJkWhCbd2xPeDIj8H2BO2_x8uOiJRiReNb-Hz2OedeoLMQg0HoJSVXlPDhrY96gfIzuis-EMIZe4J2VHDSEDaIM7Qjw8gbPgp2ji5yviOEtmJgz9A5FYKNdBA75G9XHxNWDnK2s1VQbAx42uNic14N9lalCCnBHi8pztbZ8OMdThB09HiOyeRS4TUXk-oNhmVx1mhcIk4mgMPKuHpAUjZED8_R0xlcNi-2eYm-f_p4e_2lufn2-ev1h5tGVfelGTolYOqg533HR6X7ueunnnXtyCetBiPUrFlHBdWCDETrWRNDe60mBZOmuuWXiB3fXcMC-9_gnFyS9ZD2khJ56E7-605u3VXozRGqQX-tNZj0Nh_8QzBxzbLrBWuZ4FX4-pHwLq6pps2SMcp4KwSpolebaJ280Q__b9VXAT0KasE5JzP_l8X-EaNs-buyksC6k-TWSF4OizLpwfMp6P0RMnVX97ZCWVkTlNE2GVWkjvYE_QcHfNS3 |
| CODEN | MODPEO |
| CitedBy_id | crossref_primary_10_1186_s41241_016_0008_2 crossref_primary_10_1109_TPAMI_2023_3263774 crossref_primary_10_1016_j_jmgm_2007_06_005 crossref_primary_10_1002_cfg_425 crossref_primary_10_1111_j_1863_2378_2012_01487_x crossref_primary_10_3389_fmicb_2021_673632 crossref_primary_10_1038_bjc_2011_505 crossref_primary_10_1158_1078_0432_CCR_06_1864 crossref_primary_10_1182_blood_2016_07_728873 crossref_primary_10_1016_j_crme_2019_11_010 crossref_primary_10_1016_j_rsase_2018_12_011 crossref_primary_10_1111_j_1365_2559_2007_02900_x crossref_primary_10_1016_j_aca_2005_11_083 crossref_primary_10_1093_bib_bbn058 crossref_primary_10_1093_bioinformatics_btx585 crossref_primary_10_4271_2019_01_0128 crossref_primary_10_1186_gb_2007_8_9_r187 crossref_primary_10_1016_j_jhydrol_2011_12_016 crossref_primary_10_1214_07_SS033 crossref_primary_10_1093_bioinformatics_btl545 crossref_primary_10_1089_omi_2006_0002 crossref_primary_10_1002_sctm_20_0127 crossref_primary_10_1586_era_11_65 crossref_primary_10_1016_j_envpol_2017_02_001 crossref_primary_10_1186_s40537_023_00720_9 crossref_primary_10_1121_1_4955066 crossref_primary_10_1089_cmb_2014_0195 crossref_primary_10_1016_j_knosys_2022_109369 crossref_primary_10_1071_MF18376 crossref_primary_10_1016_j_watres_2010_05_019 crossref_primary_10_1007_s00330_018_5395_1 crossref_primary_10_1016_j_media_2020_101947 crossref_primary_10_1093_plankt_fbp094 crossref_primary_10_1016_j_ssmph_2022_101063 crossref_primary_10_1158_1078_0432_CCR_07_1760 crossref_primary_10_1093_bioinformatics_btn239 crossref_primary_10_1080_01969722_2021_1902049 crossref_primary_10_1371_journal_pone_0208737 crossref_primary_10_1080_14498596_2010_487851 crossref_primary_10_1038_npp_2013_328 crossref_primary_10_1186_1471_2164_13_472 crossref_primary_10_1016_j_jstrokecerebrovasdis_2014_12_016 crossref_primary_10_1016_j_ygeno_2009_08_008 crossref_primary_10_1007_s00520_018_4084_6 crossref_primary_10_1186_s13040_022_00306_w crossref_primary_10_1038_s41598_021_92072_8 crossref_primary_10_1200_JCO_2007_14_0723 crossref_primary_10_3390_en18061469 crossref_primary_10_1086_711956 crossref_primary_10_1109_TNSM_2016_2569000 crossref_primary_10_1586_era_10_72 crossref_primary_10_1186_s12859_021_04460_6 crossref_primary_10_1093_bib_bbs034 crossref_primary_10_1158_0008_5472_CAN_07_2607 crossref_primary_10_3390_en15103601 crossref_primary_10_1038_nature03672 crossref_primary_10_1002_jemt_24682 crossref_primary_10_1142_S021972001100546X crossref_primary_10_1158_1055_9965_EPI_05_0717 crossref_primary_10_1097_CM9_0000000000000149 crossref_primary_10_1109_TKDE_2021_3086147 crossref_primary_10_2139_ssrn_3807828 crossref_primary_10_3390_thalassrep12010004 crossref_primary_10_1177_2374289519873088 crossref_primary_10_7717_peerj_cs_2443 crossref_primary_10_1016_j_sigpro_2012_07_034 crossref_primary_10_1016_j_aca_2015_02_012 crossref_primary_10_2217_14622416_7_1_105 crossref_primary_10_1152_physiolgenomics_00167_2007 crossref_primary_10_1016_j_media_2017_08_004 crossref_primary_10_1534_g3_115_019067 crossref_primary_10_1111_pai_12881 crossref_primary_10_1016_j_ygeno_2012_04_003 crossref_primary_10_1111_ele_13327 crossref_primary_10_1093_biostatistics_kxm017 crossref_primary_10_2196_34274 crossref_primary_10_1371_journal_pone_0107105 crossref_primary_10_1007_s10994_013_5342_y crossref_primary_10_1198_106186006X94072 crossref_primary_10_1007_s00521_018_3518_x crossref_primary_10_1186_1471_2105_7_361 crossref_primary_10_1111_j_1468_1331_2010_02955_x crossref_primary_10_1186_s12918_017_0389_1 crossref_primary_10_1080_00313020802198101 crossref_primary_10_1186_1471_2105_8_25 crossref_primary_10_3389_fnana_2016_00102 crossref_primary_10_1200_JCO_2008_17_3567 crossref_primary_10_1016_j_neuroimage_2012_09_065 crossref_primary_10_1016_j_copbio_2007_10_009 crossref_primary_10_1038_ncomms7744 crossref_primary_10_1039_b811008e crossref_primary_10_1186_bcr2187 crossref_primary_10_1088_1741_2552_ab2eb4 crossref_primary_10_1002_cem_3135 crossref_primary_10_1158_1078_0432_CCR_15_1883 crossref_primary_10_1002_pmic_200700288 crossref_primary_10_1111_mec_13466 crossref_primary_10_1016_j_jvolgeores_2017_04_015 crossref_primary_10_1155_2022_1872412 crossref_primary_10_1136_bmjopen_2016_011529 crossref_primary_10_1017_S1470903105003111 crossref_primary_10_1108_JM2_10_2020_0257 crossref_primary_10_1002_wcms_1479 crossref_primary_10_1371_journal_pone_0057680 crossref_primary_10_1080_15376520600558259 crossref_primary_10_1371_journal_pone_0062070 crossref_primary_10_1016_j_socnet_2016_02_003 crossref_primary_10_1371_journal_pone_0185380 crossref_primary_10_1002_cem_2790 crossref_primary_10_1002_eco_1990 crossref_primary_10_1186_s12943_019_1035_x |
| Cites_doi | 10.1023/A:1010933404324 10.1073/pnas.171209998 10.1111/j.1464-410X.2004.04605.x 10.1126/science.286.5439.531 10.1097/00000478-200305000-00005 10.1002/ijc.11000 10.1038/nm0798-844 10.1158/1078-0432.CCR-04-0488 10.1101/gr.184501 10.1046/j.1464-410X.1997.00489.x 10.1038/modpathol.3800032 10.1016/S0090-4295(99)00550-6 10.1038/sj.onc.1206869 10.1016/S0002-9440(10)65349-7 10.1038/modpathol.3880551 10.1097/00000478-198210000-00007 10.1038/sj.bjc.6600922 10.1016/S0140-6736(94)92398-1 10.1080/10618600.1996.10474713 10.1097/00000421-198212000-00014 10.1002/(SICI)1097-0142(19990101)85:1<47::AID-CNCR7>3.0.CO;2-L 10.1038/ng0497-356 10.1002/(SICI)1097-0142(19971101)80:9<1803::AID-CNCR16>3.0.CO;2-9 10.1016/S0002-9440(10)64120-X |
| ContentType | Journal Article |
| Copyright | 2005 United States & Canadian Academy of Pathology United States and Canadian Academy of Pathology, Inc. 2005 Copyright Nature Publishing Group Apr 2005 |
| Copyright_xml | – notice: 2005 United States & Canadian Academy of Pathology – notice: United States and Canadian Academy of Pathology, Inc. 2005 – notice: Copyright Nature Publishing Group Apr 2005 |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7RV 7TK 7X7 7XB 88A 88E 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 ADTOC UNPAY |
| DOI | 10.1038/modpathol.3800322 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Nursing & Allied Health Database Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest Central Student MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology |
| EISSN | 1530-0285 |
| EndPage | 557 |
| ExternalDocumentID | 10.1038/modpathol.3800322 969912031 15529185 10_1038_modpathol_3800322 S0893395222046622 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, U.S. Gov't, P.H.S Journal Article |
| GeographicLocations | Los Angeles California United States--US California |
| GeographicLocations_xml | – name: Los Angeles California – name: United States--US – name: California |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: 2 P30 CA16042-29 |
| GroupedDBID | --- -Q- .GJ 0R~ 123 29M 2WC 36B 39C 3V. 4.4 53G 5RE 6I. 7RV 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8R4 8R5 AADWK AAFTH AANZL AAQQT AASDW AAWBL AAWTL AAXUO AAYFA AAYJO AAZLF ABAWZ ABGIJ ABJNI ABLJU ABUWG ACBMV ACBRV ACBYP ACGFO ACGFS ACIGE ACKTT ACPRK ACRQY ACTTH ACVWB ACZOJ ADBBV ADFRT ADHDB ADMDM ADQMX ADYYL AEDAW AEFTE AEJRE AENEX AEXYK AFKRA AFOSN AFSHS AGAYW AGEZK AGGBP AGHAI AHGBK AHMBA AHSBF AILAN AJDOV AJRNO ALFFA ALMA_UNASSIGNED_HOLDINGS AMRAJ AMRJV AMYLF AXYYD BAWUL BBNVY BENPR BHPHI BKEYQ BKKNO BPHCQ BVXVI CAG CCPQU COF CS3 DIK DNIVK DU5 E3Z EBLON EBS EE. EIOEI EJD EX3 F5P FDB FDQFY FERAY FIZPM FSGXE FYUFA GX1 HCIFZ HMCUK HZ~ IWAJR JSO JZLTJ KQ8 LK8 M0L M1P M7P NAO NAPCQ NYICJ O9- OK1 OWW P2P PQQKQ PROAC PSQYO Q2X RNS RNT RNTTT ROL SNX SNYQT SOHCF SRMVM SWTZT TAOOD TBHMF TDRGL TR2 TSG UKHRP WOW YFH ZA5 AALRI ADVLN AITUG AKRWK ALIPV NQJWS 70F AAYWO AAYXX ACVFH ADCNI AEUPX AFJKZ AFPUW AIGII AKBMS AKYEP APXCP CITATION EFKBS PHGZM PHGZT PJZUB PPXIY PQGLB ZGI ZXP CGR CUY CVF ECM EIF NPM 7QP 7TK 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO ADTOC AGCQF UNPAY |
| ID | FETCH-LOGICAL-c530t-86c5ab6a737639cd7f67b726493bdc8e5cfd26151d5080ddfd0e17dcbcabd1d43 |
| IEDL.DBID | UNPAY |
| ISSN | 0893-3952 1530-0285 |
| IngestDate | Tue Aug 26 13:38:56 EDT 2025 Wed Oct 01 14:44:30 EDT 2025 Fri Oct 03 10:50:26 EDT 2025 Thu Apr 03 07:03:39 EDT 2025 Thu Oct 16 04:40:49 EDT 2025 Thu Apr 24 23:06:00 EDT 2025 Fri Feb 21 02:38:29 EST 2025 Fri Feb 23 02:39:16 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | renal cell carcinoma random forest clustering tumor marker tissue microarray tumor class discovery |
| Language | English |
| License | This article is made available under the Elsevier license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c530t-86c5ab6a737639cd7f67b726493bdc8e5cfd26151d5080ddfd0e17dcbcabd1d43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://www.modernpathology.org/article/S0893395222046622/pdf |
| PMID | 15529185 |
| PQID | 221234550 |
| PQPubID | 33743 |
| PageCount | 11 |
| ParticipantIDs | unpaywall_primary_10_1038_modpathol_3800322 proquest_miscellaneous_67524253 proquest_journals_221234550 pubmed_primary_15529185 crossref_primary_10_1038_modpathol_3800322 crossref_citationtrail_10_1038_modpathol_3800322 springer_journals_10_1038_modpathol_3800322 elsevier_sciencedirect_doi_10_1038_modpathol_3800322 |
| PublicationCentury | 2000 |
| PublicationDate | 2005-04-01 20050401 2005-04-00 2005-Apr |
| PublicationDateYYYYMMDD | 2005-04-01 |
| PublicationDate_xml | – month: 04 year: 2005 text: 2005-04-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States – name: Kidlington |
| PublicationSubtitle | Publishing innovative clinical and translational research in the pathology of human disease |
| PublicationTitle | Modern pathology |
| PublicationTitleAbbrev | Mod Pathol |
| PublicationTitleAlternate | Mod Pathol |
| PublicationYear | 2005 |
| Publisher | Elsevier Inc Nature Publishing Group US Elsevier Limited |
| Publisher_xml | – name: Elsevier Inc – name: Nature Publishing Group US – name: Elsevier Limited |
| References | Young, Amin, Moreno (bib32) 2001; 158 Kononen, Bubendorf, Kallioniemi (bib2) 1998; 4 Velickovic, Delahunt, McIver (bib21) 2002; 15 Breiman (bib3) 2001; 45 Sobin, Fleming (bib22) 1997; 80 Jacobsen, Grankvist, Rasmuson (bib7) 2004; 93 Langner, Ratschek, Rehak (bib6) 2004; 171 Rioux-Leclercq, Turlin, Bansard (bib12) 2000; 55 Cheville, Lohse, Zincke (bib28) 2003; 27 Hotakainen, Ljungberg, Haglund (bib9) 2003; 104 Sabo, Miselevich, Bejar (bib17) 1997; 80 Shetye, Christensson, Rubio (bib14) 1989; 9 Golub, Slonim, Tamayo (bib1) 1999; 286 Oken, Creech, Tormey (bib24) 1982; 5 Takahashi, Rhodes, Furge (bib30) 2001; 98 Kaufman, Rousseeuw (bib26) 1990 Steck, Pershouse, Jasser (bib19) 1997; 15 Kim, Seligson, Liu (bib25) 2004; 10 Shi, Horvath (bib4) 2003 Moch, Schraml, Bubendorf (bib16) 1999; 154 Takahashi, Yang, Sugimura (bib29) 2003; 22 Fuhrman, Lasky, Limas (bib23) 1982; 6 Alimov, Li, Gizatullin (bib20) 1999; 19 Jemal, Murray, Samuels (bib5) 2003; 53 Moch, Schraml, Bubendorf (bib10) 1999; 154 Ihaka, Gentleman (bib27) 1996; 5 Boer, Huber, Sultmann (bib31) 2001; 11 Bui, Seligson, Han (bib18) 2003; 9 Langner, Ratschek, Rehak (bib8) 2004; 17 Riethmuller, Schneider-Gadicke, Schlimok (bib15) 1994; 343 Hedberg, Ljungberg, Roos (bib11) 2003; 88 Shieh, Godleski, Herndon (bib13) 1999; 85 Moch (10.1038/modpathol.3800322_bib16) 1999; 154 Jemal (10.1038/modpathol.3800322_bib5) 2003; 53 Kaufman (10.1038/modpathol.3800322_bib26) 1990 Steck (10.1038/modpathol.3800322_bib19) 1997; 15 Sobin (10.1038/modpathol.3800322_bib22) 1997; 80 Shetye (10.1038/modpathol.3800322_bib14) 1989; 9 Sabo (10.1038/modpathol.3800322_bib17) 1997; 80 Golub (10.1038/modpathol.3800322_bib1) 1999; 286 Alimov (10.1038/modpathol.3800322_bib20) 1999; 19 Hotakainen (10.1038/modpathol.3800322_bib9) 2003; 104 Boer (10.1038/modpathol.3800322_bib31) 2001; 11 Takahashi (10.1038/modpathol.3800322_bib30) 2001; 98 Takahashi (10.1038/modpathol.3800322_bib29) 2003; 22 Jacobsen (10.1038/modpathol.3800322_bib7) 2004; 93 Oken (10.1038/modpathol.3800322_bib24) 1982; 5 Young (10.1038/modpathol.3800322_bib32) 2001; 158 Kononen (10.1038/modpathol.3800322_bib2) 1998; 4 Hedberg (10.1038/modpathol.3800322_bib11) 2003; 88 Velickovic (10.1038/modpathol.3800322_bib21) 2002; 15 Langner (10.1038/modpathol.3800322_bib6) 2004; 171 Fuhrman (10.1038/modpathol.3800322_bib23) 1982; 6 Kim (10.1038/modpathol.3800322_bib25) 2004; 10 Riethmuller (10.1038/modpathol.3800322_bib15) 1994; 343 Langner (10.1038/modpathol.3800322_bib8) 2004; 17 Shi (10.1038/modpathol.3800322_bib4) 2003 Rioux-Leclercq (10.1038/modpathol.3800322_bib12) 2000; 55 Ihaka (10.1038/modpathol.3800322_bib27) 1996; 5 Bui (10.1038/modpathol.3800322_bib18) 2003; 9 Breiman (10.1038/modpathol.3800322_bib3) 2001; 45 Moch (10.1038/modpathol.3800322_bib10) 1999; 154 Cheville (10.1038/modpathol.3800322_bib28) 2003; 27 Shieh (10.1038/modpathol.3800322_bib13) 1999; 85 |
| References_xml | – volume: 154 start-page: 981 year: 1999 end-page: 986 ident: bib16 article-title: High-throughput tissue microarray analysis to evaluate genes uncovered by cDNA microarray screening in renal cell carcinoma publication-title: Am J Pathol – volume: 286 start-page: 531 year: 1999 end-page: 537 ident: bib1 article-title: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring publication-title: Science – volume: 171 start-page: 611 year: 2004 end-page: 614 ident: bib6 article-title: Steroid hormone receptor expression in renal cell carcinoma: an immunohistochemical analysis of 182 tumors publication-title: J Urol – volume: 98 start-page: 9754 year: 2001 end-page: 9759 ident: bib30 article-title: Gene expression profiling of clear cell renal cell carcinoma: gene identification and prognostic classification publication-title: Proc Natl Acad Sci USA – volume: 154 start-page: 981 year: 1999 end-page: 986 ident: bib10 article-title: High-throughput tissue microarray analysis to evaluate genes uncovered by cDNA microarray screening in renal cell carcinoma publication-title: Am J Pathol – volume: 4 start-page: 844 year: 1998 end-page: 847 ident: bib2 article-title: Tissue microarrays for high-throughput molecular profiling of tumor specimens publication-title: Nat Med – volume: 27 start-page: 612 year: 2003 end-page: 624 ident: bib28 article-title: Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma publication-title: Am J Surg Pathol – volume: 93 start-page: 297 year: 2004 end-page: 302 ident: bib7 article-title: Expression of vascular endothelial growth factor protein in human renal cell carcinoma publication-title: BJU Int – year: 2003 ident: bib4 article-title: Using random forest similarities in unsupervised learning: applications to microarray data publication-title: Atlantic Symposium on Computational Biology and Genome Informatics (CBGI'03); 2003; – volume: 88 start-page: 1417 year: 2003 end-page: 1423 ident: bib11 article-title: Expression of cyclin D1, D3, E, and p27 in human renal cell carcinoma analysed by tissue microarray publication-title: Br J Cancer – volume: 80 start-page: 1803 year: 1997 end-page: 1804 ident: bib22 article-title: TNM Classification of Malignant Tumors, fifth edition (1997). Union Internationale Contre le Cancer and the American Joint Committee on Cancer publication-title: Cancer – volume: 15 start-page: 356 year: 1997 end-page: 362 ident: bib19 article-title: Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers publication-title: Nat Genet – volume: 5 start-page: 649 year: 1982 end-page: 655 ident: bib24 article-title: Toxicity and response criteria of the Eastern Cooperative Oncology Group publication-title: Am J Clin Oncol – volume: 104 start-page: 631 year: 2003 end-page: 635 ident: bib9 article-title: Expression of the free beta-subunit of human chorionic gonadotropin in renal cell carcinoma: prognostic study on tissue and serum publication-title: Int J Cancer – volume: 15 start-page: 479 year: 2002 end-page: 485 ident: bib21 article-title: Intragenic PTEN/MMAC1 loss of heterozygosity in conventional (clear-cell) renal cell carcinoma is associated with poor patient prognosis publication-title: Mod Pathol – volume: 343 start-page: 1177 year: 1994 end-page: 1183 ident: bib15 article-title: Randomised trial of monoclonal antibody for adjuvant therapy of resected Dukes' C colorectal carcinoma. German Cancer Aid 17-1A Study Group publication-title: Lancet – volume: 85 start-page: 47 year: 1999 end-page: 57 ident: bib13 article-title: Cell motility as a prognostic factor in Stage I nonsmall cell lung carcinoma: the role of gelsolin expression publication-title: Cancer – volume: 53 start-page: 5 year: 2003 end-page: 26 ident: bib5 article-title: Cancer statistics, 2003 publication-title: CA Cancer J Clin – volume: 19 start-page: 3841 year: 1999 end-page: 3846 ident: bib20 article-title: Somatic mutation and homozygous deletion of PTEN/MMAC1 gene of 10q23 in renal cell carcinoma publication-title: Anticancer Res – volume: 10 start-page: 5464 year: 2004 end-page: 5471 ident: bib25 article-title: Using protein expressions to predict survival in clear cell renal carcinoma publication-title: Clin Cancer Res – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib3 article-title: Random forests publication-title: Machine Learning – volume: 55 start-page: 501 year: 2000 end-page: 505 ident: bib12 article-title: Value of immunohistochemical Ki-67 and p53 determinations as predictive factors of outcome in renal cell carcinoma publication-title: Urology – volume: 9 start-page: 395 year: 1989 end-page: 404 ident: bib14 article-title: The tumor-associated antigens BR55-2, GA73-3 and GICA 19-9 in normal and corresponding neoplastic human tissues, especially gastrointestinal tissues publication-title: Anticancer Res – year: 1990 ident: bib26 publication-title: Finding Groups in Data: an Introduction to Cluster Analysis – volume: 9 start-page: 802 year: 2003 end-page: 811 ident: bib18 article-title: Carbonic anhydrase IX is an independent predictor of survival in advanced renal clear cell carcinoma: implications for prognosis and therapy publication-title: Clin Cancer Res – volume: 6 start-page: 655 year: 1982 end-page: 663 ident: bib23 article-title: Prognostic significance of morphologic parameters in renal cell carcinoma publication-title: Am J Surg Pathol – volume: 11 start-page: 1861 year: 2001 end-page: 1870 ident: bib31 article-title: Identification and classification of differentially expressed genes in renal cell carcinoma by expression profiling on a global human 31,500-element cDNA array publication-title: Genome Res – volume: 22 start-page: 6810 year: 2003 end-page: 6818 ident: bib29 article-title: Molecular subclassification of kidney tumors and the discovery of new diagnostic markers publication-title: Oncogene – volume: 17 start-page: 180 year: 2004 end-page: 188 ident: bib8 article-title: Expression of MUC1 (EMA) and E-cadherin in renal cell carcinoma: a systematic immunohistochemical analysis of 188 cases publication-title: Mod Pathol – volume: 80 start-page: 864 year: 1997 end-page: 868 ident: bib17 article-title: The role of vimentin expression in predicting the long-term outcome of patients with localized renal cell carcinoma publication-title: Br J Urol – volume: 5 start-page: 299 year: 1996 end-page: 314 ident: bib27 article-title: R: a language for data analysis and graphics publication-title: J Comput Graph Stat – volume: 158 start-page: 1639 year: 2001 end-page: 1651 ident: bib32 article-title: Expression profiling of renal epithelial neoplasms: a method for tumor classification and discovery of diagnostic molecular markers publication-title: Am J Pathol – volume: 45 start-page: 5 year: 2001 ident: 10.1038/modpathol.3800322_bib3 article-title: Random forests publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 98 start-page: 9754 year: 2001 ident: 10.1038/modpathol.3800322_bib30 article-title: Gene expression profiling of clear cell renal cell carcinoma: gene identification and prognostic classification publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.171209998 – volume: 93 start-page: 297 year: 2004 ident: 10.1038/modpathol.3800322_bib7 article-title: Expression of vascular endothelial growth factor protein in human renal cell carcinoma publication-title: BJU Int doi: 10.1111/j.1464-410X.2004.04605.x – volume: 286 start-page: 531 year: 1999 ident: 10.1038/modpathol.3800322_bib1 article-title: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring publication-title: Science doi: 10.1126/science.286.5439.531 – volume: 27 start-page: 612 year: 2003 ident: 10.1038/modpathol.3800322_bib28 article-title: Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma publication-title: Am J Surg Pathol doi: 10.1097/00000478-200305000-00005 – volume: 104 start-page: 631 year: 2003 ident: 10.1038/modpathol.3800322_bib9 article-title: Expression of the free beta-subunit of human chorionic gonadotropin in renal cell carcinoma: prognostic study on tissue and serum publication-title: Int J Cancer doi: 10.1002/ijc.11000 – volume: 4 start-page: 844 year: 1998 ident: 10.1038/modpathol.3800322_bib2 article-title: Tissue microarrays for high-throughput molecular profiling of tumor specimens publication-title: Nat Med doi: 10.1038/nm0798-844 – volume: 10 start-page: 5464 year: 2004 ident: 10.1038/modpathol.3800322_bib25 article-title: Using protein expressions to predict survival in clear cell renal carcinoma publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-04-0488 – volume: 11 start-page: 1861 year: 2001 ident: 10.1038/modpathol.3800322_bib31 article-title: Identification and classification of differentially expressed genes in renal cell carcinoma by expression profiling on a global human 31,500-element cDNA array publication-title: Genome Res doi: 10.1101/gr.184501 – volume: 80 start-page: 864 year: 1997 ident: 10.1038/modpathol.3800322_bib17 article-title: The role of vimentin expression in predicting the long-term outcome of patients with localized renal cell carcinoma publication-title: Br J Urol doi: 10.1046/j.1464-410X.1997.00489.x – volume: 53 start-page: 5 year: 2003 ident: 10.1038/modpathol.3800322_bib5 article-title: Cancer statistics, 2003 publication-title: CA Cancer J Clin – volume: 9 start-page: 395 year: 1989 ident: 10.1038/modpathol.3800322_bib14 article-title: The tumor-associated antigens BR55-2, GA73-3 and GICA 19-9 in normal and corresponding neoplastic human tissues, especially gastrointestinal tissues publication-title: Anticancer Res – volume: 9 start-page: 802 year: 2003 ident: 10.1038/modpathol.3800322_bib18 article-title: Carbonic anhydrase IX is an independent predictor of survival in advanced renal clear cell carcinoma: implications for prognosis and therapy publication-title: Clin Cancer Res – volume: 17 start-page: 180 year: 2004 ident: 10.1038/modpathol.3800322_bib8 article-title: Expression of MUC1 (EMA) and E-cadherin in renal cell carcinoma: a systematic immunohistochemical analysis of 188 cases publication-title: Mod Pathol doi: 10.1038/modpathol.3800032 – volume: 55 start-page: 501 year: 2000 ident: 10.1038/modpathol.3800322_bib12 article-title: Value of immunohistochemical Ki-67 and p53 determinations as predictive factors of outcome in renal cell carcinoma publication-title: Urology doi: 10.1016/S0090-4295(99)00550-6 – volume: 22 start-page: 6810 year: 2003 ident: 10.1038/modpathol.3800322_bib29 article-title: Molecular subclassification of kidney tumors and the discovery of new diagnostic markers publication-title: Oncogene doi: 10.1038/sj.onc.1206869 – volume: 154 start-page: 981 year: 1999 ident: 10.1038/modpathol.3800322_bib10 article-title: High-throughput tissue microarray analysis to evaluate genes uncovered by cDNA microarray screening in renal cell carcinoma publication-title: Am J Pathol doi: 10.1016/S0002-9440(10)65349-7 – volume: 15 start-page: 479 year: 2002 ident: 10.1038/modpathol.3800322_bib21 article-title: Intragenic PTEN/MMAC1 loss of heterozygosity in conventional (clear-cell) renal cell carcinoma is associated with poor patient prognosis publication-title: Mod Pathol doi: 10.1038/modpathol.3880551 – volume: 6 start-page: 655 year: 1982 ident: 10.1038/modpathol.3800322_bib23 article-title: Prognostic significance of morphologic parameters in renal cell carcinoma publication-title: Am J Surg Pathol doi: 10.1097/00000478-198210000-00007 – volume: 88 start-page: 1417 year: 2003 ident: 10.1038/modpathol.3800322_bib11 article-title: Expression of cyclin D1, D3, E, and p27 in human renal cell carcinoma analysed by tissue microarray publication-title: Br J Cancer doi: 10.1038/sj.bjc.6600922 – year: 2003 ident: 10.1038/modpathol.3800322_bib4 article-title: Using random forest similarities in unsupervised learning: applications to microarray data publication-title: Atlantic Symposium on Computational Biology and Genome Informatics (CBGI'03); 2003; – volume: 343 start-page: 1177 year: 1994 ident: 10.1038/modpathol.3800322_bib15 article-title: Randomised trial of monoclonal antibody for adjuvant therapy of resected Dukes' C colorectal carcinoma. German Cancer Aid 17-1A Study Group publication-title: Lancet doi: 10.1016/S0140-6736(94)92398-1 – volume: 5 start-page: 299 year: 1996 ident: 10.1038/modpathol.3800322_bib27 article-title: R: a language for data analysis and graphics publication-title: J Comput Graph Stat doi: 10.1080/10618600.1996.10474713 – year: 1990 ident: 10.1038/modpathol.3800322_bib26 – volume: 154 start-page: 981 year: 1999 ident: 10.1038/modpathol.3800322_bib16 article-title: High-throughput tissue microarray analysis to evaluate genes uncovered by cDNA microarray screening in renal cell carcinoma publication-title: Am J Pathol doi: 10.1016/S0002-9440(10)65349-7 – volume: 171 start-page: 611 issue: 2 Part 1 year: 2004 ident: 10.1038/modpathol.3800322_bib6 article-title: Steroid hormone receptor expression in renal cell carcinoma: an immunohistochemical analysis of 182 tumors publication-title: J Urol – volume: 5 start-page: 649 year: 1982 ident: 10.1038/modpathol.3800322_bib24 article-title: Toxicity and response criteria of the Eastern Cooperative Oncology Group publication-title: Am J Clin Oncol doi: 10.1097/00000421-198212000-00014 – volume: 19 start-page: 3841 year: 1999 ident: 10.1038/modpathol.3800322_bib20 article-title: Somatic mutation and homozygous deletion of PTEN/MMAC1 gene of 10q23 in renal cell carcinoma publication-title: Anticancer Res – volume: 85 start-page: 47 year: 1999 ident: 10.1038/modpathol.3800322_bib13 article-title: Cell motility as a prognostic factor in Stage I nonsmall cell lung carcinoma: the role of gelsolin expression publication-title: Cancer doi: 10.1002/(SICI)1097-0142(19990101)85:1<47::AID-CNCR7>3.0.CO;2-L – volume: 15 start-page: 356 year: 1997 ident: 10.1038/modpathol.3800322_bib19 article-title: Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers publication-title: Nat Genet doi: 10.1038/ng0497-356 – volume: 80 start-page: 1803 year: 1997 ident: 10.1038/modpathol.3800322_bib22 article-title: TNM Classification of Malignant Tumors, fifth edition (1997). Union Internationale Contre le Cancer and the American Joint Committee on Cancer publication-title: Cancer doi: 10.1002/(SICI)1097-0142(19971101)80:9<1803::AID-CNCR16>3.0.CO;2-9 – volume: 158 start-page: 1639 year: 2001 ident: 10.1038/modpathol.3800322_bib32 article-title: Expression profiling of renal epithelial neoplasms: a method for tumor classification and discovery of diagnostic molecular markers publication-title: Am J Pathol doi: 10.1016/S0002-9440(10)64120-X |
| SSID | ssj0014582 |
| Score | 2.2101948 |
| Snippet | We describe a novel strategy (random forest clustering) for tumor profiling based on tissue microarray data. Random forest clustering is attractive for tissue... |
| SourceID | unpaywall proquest pubmed crossref springer elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 547 |
| SubjectTerms | Algorithms Biomarkers Biomarkers, Tumor - analysis Carcinoma, Renal Cell - classification Carcinoma, Renal Cell - metabolism Carcinoma, Renal Cell - pathology Cell cycle Cluster Analysis Clustering Female Gene expression Humans Hypoxia Immunohistochemistry Kidney cancer Kidney Neoplasms - classification Kidney Neoplasms - metabolism Kidney Neoplasms - pathology Laboratory Medicine Male Medical prognosis Medicine Medicine & Public Health Middle Aged Neoplasm Metastasis Neoplasm Staging Neoplasms - classification Neoplasms - metabolism Neoplasms - pathology original-article Pathology Protein expression Proteins random forest clustering renal cell carcinoma Survival Analysis Tissue Array Analysis - methods tissue microarray tumor class discovery tumor marker Tumors |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6VrXgdEBQooTx84ESVNomdFxJCgFpVSFsh1Eq9RX7ltImXNFG1_x6P46SVEMs5cTLxzHg-Z8bzAXzIspLHOipCyWoZMl3SkBcitrZsg3miclbWeMB5eZ6dXbIfV-nVDiynszBYVjmtiW6hVkbiP_LjBNdYPIL7Zf07RNIoTK5ODBrcMyuoz67D2D3YTbAx1gJ2v52c__w1pxUwSeRgpRWJlmkypTlpcdwYhRzAZnVELYaiSfKvQPU3EL2TRH0MD4d2zTc3fLW6E6dOn8ITDzDJ19EinsGObvfg_kg5udmDB0ufTH8OzcXQmI5IxM9YMOR0RMSG9E4ZpMFaPd51fENGZm_77k_ExjZlGmKxrhXODh6w04K9QviIZ0lvSKdRBMwJEIlcRa1p-Au4PD25-H4WevaFUKY06sMikykXGc9xCSqlyussF7nFTyUVShY6lbVKEA8pi_EipWoV6ThXUkguVKwYfQmL1rT6FRBqfVvwvNAy50yVSmRMpYWsJYtdO5sAommqK-lbkyNDxqpyKXJaVLN2Kq-dAD7OQ9ZjX45tN7NJf5UHFiNgqGzc2DbsYNJ15T37uprtMID381XrkjinvNVmuK7sHgw3cjSA_dFAbiVM06S0CCmAw8libp-8RY7D2aj-_7Gvt0p9AI9c81lXe_QGFn036LcWVvXinXeWP5TmJUs priority: 102 providerName: ProQuest |
| Title | Tumor classification by tissue microarray profiling: random forest clustering applied to renal cell carcinoma |
| URI | https://dx.doi.org/10.1038/modpathol.3800322 https://link.springer.com/article/10.1038/modpathol.3800322 https://www.ncbi.nlm.nih.gov/pubmed/15529185 https://www.proquest.com/docview/221234550 https://www.proquest.com/docview/67524253 http://www.modernpathology.org/article/S0893395222046622/pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1530-0285 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014582 issn: 0893-3952 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1530-0285 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0014582 issn: 0893-3952 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1530-0285 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0014582 issn: 0893-3952 databaseCode: GX1 dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1530-0285 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014582 issn: 0893-3952 databaseCode: AKRWK dateStart: 20000101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1530-0285 dateEnd: 20221231 omitProxy: true ssIdentifier: ssj0014582 issn: 0893-3952 databaseCode: 7X7 dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1530-0285 dateEnd: 20221231 omitProxy: true ssIdentifier: ssj0014582 issn: 0893-3952 databaseCode: BENPR dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61uwLUA49SaHgsPnCiym7eTrgV1FIhdVVBV1oOyPIrFzZJlSZCy69nHCfbShWL4BjZjj2eiedzxp4P4G2SZNzXXurKKJdupLPQ5anw0ZbRmQeKRlluLjifz5OzRfR5GS93YKBVNKcqi44EzBDydj-WbbJgO42zr56hh88QNAS4sUuCYHal8l0YJzEi8RGMF_OL428dcMROTT2bLtVz0Y3GQ1AzTGfYh-1gGiJiCoPgT27pLuy8FTLdgwctDnT9k69Wt7zS6SP4PtztsYdRfkzbRkzlr7upHv9L4MfwsIer5NjWewI7utyHe5bAcr0P98_70PxTKC7boqqJNGjcHD_qNE7EmjSdaklhTv7xuuZrYnnCUbb3BD2lqgqCyBmFx8atyduAJYRbdEyaitTaDMFEGIg0zEdlVfADWJyeXH48c3suB1fi9DdumsiYi4RTs6BlUtE8oYIiGstCoWSqY5mrwKArhYjRUypXnvapkkJyoXwVhc9gVFalPgQS4kohOE21pDxSmRJJpOJU5jLyu-Q4DniDKpnsE50bvo0V6wLuYco22me99h14t2lyZbN8bKscDfbBephi4QdDL7St2cvBlli_TlyzwCAHc7HcgTebUvzAzZzyUlftNcMdndkWhg48twZ4M8I4DjLEWw4cDRZ58-Yt4zjaGO3fhX3xT7VfwaipW_0acVojJrBLl3QC4w8n84sv-PRp6U_6T_Q3fmNFKw |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVlA4ICivUKA-wIUqNImdF1KFeLTa0u4Koa3Um-vYzmmTLPtQtT-O_8ZMXq2EWE49O3YmnvHM54w9H8DbKEqVb73E1SLXrrApd1WS-WjLGMwDE4s0pwvOw1E0OBffL8KLDfjd3YWhY5WdT6wdtak0_SM_CMjH0hXcT9NfLpFGUXK1Y9BQLbOCOawrjLX3Ok7t6gp3cPPDk2-o7ndBcHw0_jpwW5IBV4fcW7hJpEOVRSqmlZZqE-dRnMUIE1KeGZ3YUOcmoLBvEMp4xuTGs35sdKZVZnwjOI57B7YEFynu_ba-HI1-_OzTGJSUqmEsTgFPw6BLq_LkoKgMcQ5Xkw8cMRsPgn8Fxr-B742k7QPYXpZTtbpSk8mNuHj8CB62gJZ9bizwMWzYcgfuNhSXqx24N2yT90-gGC-LasY04XU6oFTbBMtWbFErnxV0NlDNZmrFGiZxfPdHhrHUVAVDbI3CYeclVXbAFqYa_MwWFZtZEoFyEEwTN1JZFeopnN-KIp7BZlmV9gUwjr4kU3FidayESU0WCRMmOtfCr8vnOOB1Uy11WwqdGDkmsk7J80T22pGtdhx433eZNnVA1j0sOv3JFsg0AEVinFrXbbfTtWw9yVz2du_AXt-KLoDmVJW2Ws4l7vlo48gdeN4YyLWEYRikiMgc2O8s5nrkNXLs90b1_499uVbqPdgejIdn8uxkdLoL9-vCt_W5p1ewuZgt7WuEdIvsTbtwGFze9lr9AxIwY-c |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgocEJRHQ4H6ABeq0CTOEwkhRFm1lFYcWmlvwbGd0ybZZhNV-Wn8O2acRyshllPPjp2J5_U5M54BeBuGiXC1E9vSz6Xt64TbIs5clGV05p6K_CSnC86nZ-HRhf99Hsw34Pd4F4bSKkebaAy1qiT9Iz_wyMaaotr5kBXx83D2eXlpUwMpCrSO3TR6CTnR3RWe3lafjg-R1e88b_bt_OuRPTQYsGXAncaOQxmILBQRaVkiVZSHURYhREh4pmSsA5krj1y-QhjjKJUrR7uRkpkUmXKVz3HdO3A34jyhbMJoPp31XApHGQCLH4-j3hhQ5fFBUSnqNlwtPnBEa9zz_uUS_4a8N8K1D-F-Wy5FdyUWixsecfYYHg1Qln3pZe8JbOhyG-71zS27bdg6HcL2T6E4b4uqZpKQOqUmGWlgWccaw3ZWUFagqGvRsb6HOL77I0MvqqqCIapG4nBySzUdcISJHjmzpmK1JhIo-sAkdUUqq0I8g4tbYcNz2CyrUu8A42hFMhHFWkbCV4nKQl8Fscyl75rCORY441anciiCTr04FqkJxvM4nbiTDtyx4P00ZdlXAFn3sD_yLx0gTA9NUvRQ66btjrxOBxuySieJt2BvGkXlpz0Vpa7aVYqnPToycgte9AJyTWEQeAliMQv2R4m5XnkNHfuTUP3_Y1-upXoPtlBD0x_HZye78MBUvDUJT69gs6lb_RqxXJO9MVrD4Ndtq-kfa-VhgQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrQBx4FGghKcPnKiym8SJk3CrEFWF1AqJrlQOKPIrFzZJlSaqll_PTJxsK1UsgrPH8WPGns8Zez6A90LkMrRB5uu41H5sc-7LTIVoy-jMI5PGeUkPnE9OxfEy_nKenO_ARKtItyqrgQSMCHmHH8suWbCbxsW3gOjhcwQNER7sRBQtLkx5B3ZFgkh8BrvL06-H3wfgiI2SnEuXGvjoRpMpqMmzBbbhGphzREw8iv7klm7Dzhsh0wdwv8eOrq_kanXDKx09gh_T2x53GeXnvO_UXP-6nerxvwb8GB6OcJUdOrknsGPrPbjrCCzXe3DvZAzNP4XqrK-almlC43T9aNA4U2vWDaplFd38k20r18zxhOPYPjL0lKapGCJnHDxW7ilvA5Yw6dAx6xrWWuoCRRiYJuajuqnkM1gefT77dOyPXA6-xunv_EzoRCohU9rQcm3SUqQqRTSWc2V0ZhNdmojQlUHEGBhTmsCGqdFKS2VCE_PnMKub2r4AxnGnUDLNrE5lbHKjRGySTJc6DofkOB4EkyoLPSY6J76NVTEE3HlWbLRfjNr34MOmyoXL8rFNOJ7soxhhioMfBXqhbdVeTbZUjPvEZRERcqCH5R6825TiAqc5lbVt-ssCT3R0LOQe7DsDvO5hkkQ54i0PDiaLvP7yln4cbIz274N9-U_Sr2HWtb19gzitU2_H5fgbQYxBuQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumor+classification+by+tissue+microarray+profiling%3A+random+forest+clustering+applied+to+renal+cell+carcinoma&rft.jtitle=Modern+pathology&rft.au=Shi%2C+Tao&rft.au=Seligson%2C+David&rft.au=Belldegrun%2C+Arie+S&rft.au=Palotie%2C+Aarno&rft.date=2005-04-01&rft.issn=0893-3952&rft.volume=18&rft.issue=4&rft.spage=547&rft_id=info:doi/10.1038%2Fmodpathol.3800322&rft_id=info%3Apmid%2F15529185&rft.externalDocID=15529185 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-3952&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-3952&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-3952&client=summon |