A role of jasmonate in pathogen defense of Arabidopsis
To investigate the role of jasmonate in the defense of plants against fungal pathogens, we have studied a mutant of Arabidopsis, fad3-2 fad7-2 fad8, that cannot accumulate jasmonate. Mutant plants were extremely susceptible to root rot caused by the fungal root pathogen Pythium mastophorum (Drechs.)...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 95; no. 12; pp. 7209 - 7214 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences of the United States of America
09.06.1998
National Acad Sciences National Academy of Sciences The National Academy of Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 |
DOI | 10.1073/pnas.95.12.7209 |
Cover
Abstract | To investigate the role of jasmonate in the defense of plants against fungal pathogens, we have studied a mutant of Arabidopsis, fad3-2 fad7-2 fad8, that cannot accumulate jasmonate. Mutant plants were extremely susceptible to root rot caused by the fungal root pathogen Pythium mastophorum (Drechs.), even though neighboring wild-type plants were largely unaffected by this fungus. Application of exogenous methyl jasmonate substantially protected mutant plants, reducing the incidence of disease to a level close to that of wild-type controls. A similar treatment with methyl jasmonate did not protect the jasmonate-insensitive mutant coil1 from infection, showing that protective action of applied jasmonate against P. mastophorum was mediated by the induction of plant defense mechanisms rather than by a direct antifungal action. Transcripts of three jasmonate-responsive defense genes are induced by Pythium challenge in the wild-type but not in the jasmonate-deficient mutant. Pythium species are ubiquitous in soil and root habitats world-wide, but most (including P. mastophorum) are considered to be minor pathogens. Our results indicate that jasmonate is essential for plant defense against Pythium and, because of the high exposure of plant roots to Pythium inoculum in soil, may well be fundamental to survival of plants in nature. Our results further indicate that the fad3-2 fad7-2 fad8 mutant is an appropriate genetic model for studying the role of this important signaling molecule in pathogen defense |
---|---|
AbstractList | To investigate the role of jasmonate in the defense of plants against fungal pathogens, we have studied a mutant of Arabidopsis, fad3-2 fad7-2 fad8, that cannot accumulate jasmonate. Mutant plants were extremely susceptible to root rot caused by the fungal root pathogen Pythium mastophorum (Drechs.), even though neighboring wild-type plants were largely unaffected by this fungus. Application of exogenous methyl jasmonate substantially protected mutant plants, reducing the incidence of disease to a level close to that of wild-type controls. A similar treatment with methyl jasmonate did not protect the jasmonate-insensitive mutant coil1 from infection, showing that protective action of applied jasmonate against P. mastophorum was mediated by the induction of plant defense mechanisms rather than by a direct antifungal action. Transcripts of three jasmonate-responsive defense genes are induced by Pythium challenge in the wild-type but not in the jasmonate-deficient mutant. Pythium species are ubiquitous in soil and root habitats world-wide, but most (including P. mastophorum) are considered to be minor pathogens. Our results indicate that jasmonate is essential for plant defense against Pythium and, because of the high exposure of plant roots to Pythium inoculum in soil, may well be fundamental to survival of plants in nature. Our results further indicate that the fad3-2 fad7-2 fad8 mutant is an appropriate genetic model for studying the role of this important signaling molecule in pathogen defense To investigate the role of jasmonate in the defense of plants against fungal pathogens, we have studied a mutant of Arabidopsis , fad3–2 fad7–2 fad8 , that cannot accumulate jasmonate. Mutant plants were extremely susceptible to root rot caused by the fungal root pathogen Pythium mastophorum (Drechs.), even though neighboring wild-type plants were largely unaffected by this fungus. Application of exogenous methyl jasmonate substantially protected mutant plants, reducing the incidence of disease to a level close to that of wild-type controls. A similar treatment with methyl jasmonate did not protect the jasmonate-insensitive mutant coi1 from infection, showing that protective action of applied jasmonate against P. mastophorum was mediated by the induction of plant defense mechanisms rather than by a direct antifungal action. Transcripts of three jasmonate-responsive defense genes are induced by Pythium challenge in the wild-type but not in the jasmonate-deficient mutant. Pythium species are ubiquitous in soil and root habitats world-wide, but most (including P. mastophorum ) are considered to be minor pathogens. Our results indicate that jasmonate is essential for plant defense against Pythium and, because of the high exposure of plant roots to Pythium inoculum in soil, may well be fundamental to survival of plants in nature. Our results further indicate that the fad3–2 fad7–2 fad8 mutant is an appropriate genetic model for studying the role of this important signaling molecule in pathogen defense. jasmonic acid root rot defense signaling Pythium To investigate the role of jasmonate in the defense of plants against fungal pathogens, we have studied a mutant of Arabidopsis , fad3–2 fad7–2 fad8 , that cannot accumulate jasmonate. Mutant plants were extremely susceptible to root rot caused by the fungal root pathogen Pythium mastophorum (Drechs.), even though neighboring wild-type plants were largely unaffected by this fungus. Application of exogenous methyl jasmonate substantially protected mutant plants, reducing the incidence of disease to a level close to that of wild-type controls. A similar treatment with methyl jasmonate did not protect the jasmonate-insensitive mutant coi1 from infection, showing that protective action of applied jasmonate against P. mastophorum was mediated by the induction of plant defense mechanisms rather than by a direct antifungal action. Transcripts of three jasmonate-responsive defense genes are induced by Pythium challenge in the wild-type but not in the jasmonate-deficient mutant. Pythium species are ubiquitous in soil and root habitats world-wide, but most (including P. mastophorum ) are considered to be minor pathogens. Our results indicate that jasmonate is essential for plant defense against Pythium and, because of the high exposure of plant roots to Pythium inoculum in soil, may well be fundamental to survival of plants in nature. Our results further indicate that the fad3–2 fad7–2 fad8 mutant is an appropriate genetic model for studying the role of this important signaling molecule in pathogen defense. To investigate the role of jasmonate in the defense of plants against fungal pathogens, we have studied a mutant of Arabidopsis, fad3-2 fad7-2 fad8, that cannot accumulate jasmonate. Mutant plants were extremely susceptible to root rot caused by the fungal root pathogen Pythium mastophorum (Drechs.), even though neighboring wild-type plants were largely unaffected by this fungus. Application of exogenous methyl jasmonate substantially protected mutant plants, reducing the incidence of disease to a level close to that of wild-type controls. A similar treatment with methyl jasmonate did not protect the jasmonate-insensitive mutant coil1 from infection, showing that protective action of applied jasmonate against P. mastophorum was mediated by the induction of plant defense mechanisms rather than by a direct antifungal action. Transcripts of three jasmonate-responsive defense genes are induced by Pythium challenge in the wild-type but not in the jasmonate-deficient mutant. Pythium species are ubiquitous in soil and root habitats world-wide, but most (including P. mastophorum) are considered to be minor pathogens. Our results indicate that jasmonate is essential for plant defense against Pythium and, because of the high exposure of plant roots to Pythium inoculum in soil, may well be fundamental to survival of plants in nature. Our results further indicate that the fad3-2 fad7-2 fad8 mutant is an appropriate genetic model for studying the role of this important signaling molecule in pathogen defense. To investigate the role of jasmonate in the defense of plants against fungal pathogens, we have studied a mutant of Arabidopsis, fad3-2 fad7-2 fad8, that cannot accumulate jasmonate. Mutant plants were extremely susceptible to root rot caused by the fungal root pathogen Pythium mastophorum (Drechs.), even though neighboring wild-type plants were largely unaffected by this fungus. Application of exogenous methyl jasmonate substantially protected mutant plants, reducing the incidence of disease to a level close to that of wild-type controls. A similar treatment with methyl jasmonate did not protect the jasmonate-insensitive mutant coi1 from infection, showing that protective action of applied jasmonate against P. mastophorum was mediated by the induction of plant defense mechanisms rather than by a direct antifungal action. Transcripts of three jasmonate-responsive defense genes are induced by Pythium challenge in the wild-type but not in the jasmonate-deficient mutant. Pythium species are ubiquitous in soil and root habitats world-wide, but most (including P. mastophorum) are considered to be minor pathogens. Our results indicate that jasmonate is essential for plant defense against Pythium and, because of the high exposure of plant roots to Pythium inoculum in soil, may well be fundamental to survival of plants in nature. Our results further indicate that the fad3-2 fad7-2 fad8 mutant is an appropriate genetic model for studying the role of this important signaling molecule in pathogen defense.To investigate the role of jasmonate in the defense of plants against fungal pathogens, we have studied a mutant of Arabidopsis, fad3-2 fad7-2 fad8, that cannot accumulate jasmonate. Mutant plants were extremely susceptible to root rot caused by the fungal root pathogen Pythium mastophorum (Drechs.), even though neighboring wild-type plants were largely unaffected by this fungus. Application of exogenous methyl jasmonate substantially protected mutant plants, reducing the incidence of disease to a level close to that of wild-type controls. A similar treatment with methyl jasmonate did not protect the jasmonate-insensitive mutant coi1 from infection, showing that protective action of applied jasmonate against P. mastophorum was mediated by the induction of plant defense mechanisms rather than by a direct antifungal action. Transcripts of three jasmonate-responsive defense genes are induced by Pythium challenge in the wild-type but not in the jasmonate-deficient mutant. Pythium species are ubiquitous in soil and root habitats world-wide, but most (including P. mastophorum) are considered to be minor pathogens. Our results indicate that jasmonate is essential for plant defense against Pythium and, because of the high exposure of plant roots to Pythium inoculum in soil, may well be fundamental to survival of plants in nature. Our results further indicate that the fad3-2 fad7-2 fad8 mutant is an appropriate genetic model for studying the role of this important signaling molecule in pathogen defense. To investigate the role of jasmonate in the defense of plants against fungal pathogens, we have studied a mutant of Arabidopsis, fad3-2 fad7-2 fad8, that cannot accumulate jasmonate. Mutant plants were extremely susceptible to root rot caused by the fungal root pathogen Pythium mastophorum (Drechs.), even though neighboring wild-type plants were largely unaffected by this fungus. Application of exogenous methyl jasmonate substantially protected mutant plants, reducing the incidence of disease to a level close to that of wild-type controls. A similar treatment with methyl jasmonate did not protect the jasmonate-insensitive mutant coi1 from infection, showing that protective action of applied jasmonate against P. super( ) mastophorum was mediated by the induction of plant defense mechanisms rather than by a direct antifungal action. Transcripts of three jasmonate-responsive defense genes are induced by Pythium challenge in the wild-type but not in the jasmonate-deficient mutant. Pythium species are ubiquitous in soil and root habitats world-wide, but most (including P. mastophorum) are considered to be minor pathogens. Our results indicate that jasmonate is essential for plant defense against Pythium and, because of the high exposure of plant roots to Pythium inoculum in soil, may well be fundamental to survival of plants in nature. Our results further indicate that the fad3-2 super( ) fad7- 2 fad8 mutant is an appropriate genetic model for studying the role of this important signaling molecule in pathogen defense. To investigate the role of jasmonate in the defense of plants against fungal pathogens, we have studied a mutant of Arabidopsis, fad3–2 fad7–2 fad8, that cannot accumulate jasmonate. Mutant plants were extremely susceptible to root rot caused by the fungal root pathogen Pythium mastophorum (Drechs.), even though neighboring wild-type plants were largely unaffected by this fungus. Application of exogenous methyl jasmonate substantially protected mutant plants, reducing the incidence of disease to a level close to that of wild-type controls. A similar treatment with methyl jasmonate did not protect the jasmonate-insensitive mutant coi1 from infection, showing that protective action of applied jasmonate against P. mastophorum was mediated by the induction of plant defense mechanisms rather than by a direct antifungal action. Transcripts of three jasmonate-responsive defense genes are induced by Pythium challenge in the wild-type but not in the jasmonate-deficient mutant. Pythium species are ubiquitous in soil and root habitats world-wide, but most (including P. mastophorum) are considered to be minor pathogens. Our results indicate that jasmonate is essential for plant defense against Pythium and, because of the high exposure of plant roots to Pythium inoculum in soil, may well be fundamental to survival of plants in nature. Our results further indicate that the fad3–2 fad7–2 fad8 mutant is an appropriate genetic model for studying the role of this important signaling molecule in pathogen defense. To investigate the role of jasmonate in the defense of plants against fungal pathogens, we have studied a mutant of Arabidopsis, fad3-2 fad7-2 fad8, that cannot accumulate jasmonate. Mutant plants were extremely susceptible to root rot caused by the fungal root pathogen Pythium mastophorum (Drechs.), even though neighboring wild-type plants were largely unaffected by this fungus. |
Author | Vijayan, P. (Washington State University, Pullman, WA.) Cook, R.J Shockey, J Levesque, C.A Browse, J |
AuthorAffiliation | Institute of Biological Chemistry, Washington State University, P.O. Box 646340, Pullman, WA 99164-6340; † Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, BC V0H 1Z0, Canada; and ‡ United States Department of Agriculture–Agricultural Research Service, Root Disease and Biological Control Research Unit, 367 Johnson Hall, Washington State University, Pullman, WA 99164-6430 |
AuthorAffiliation_xml | – name: Institute of Biological Chemistry, Washington State University, P.O. Box 646340, Pullman, WA 99164-6340; † Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, BC V0H 1Z0, Canada; and ‡ United States Department of Agriculture–Agricultural Research Service, Root Disease and Biological Control Research Unit, 367 Johnson Hall, Washington State University, Pullman, WA 99164-6430 |
Author_xml | – sequence: 1 fullname: Vijayan, P. (Washington State University, Pullman, WA.) – sequence: 2 fullname: Shockey, J – sequence: 3 fullname: Levesque, C.A – sequence: 4 fullname: Cook, R.J – sequence: 5 fullname: Browse, J |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/9618564$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1rFDEYxoNU6rZ6FgRl8KCn2eb7A7wsxS8oeNCeQ3Ym2WaZTcYkU_S_N-Ouqxa0pxye3_PmfZLnDJyEGCwATxFcIijIxRhMXiq2RHgpMFQPwAJBhVpOFTwBCwixaCXF9BE4y3kLIVRMwlNwqjiSjNMF4KsmxcE20TVbk3cxmGIbH5rRlJu4saHprbMh_wRWyax9H8fs82Pw0Jkh2yeH8xxcv3v75fJDe_Xp_cfL1VXbMQJLKxHEnaHE9Z2sNyor11hKw4V1ne2VYr0SXKyNIz3spDOQUGiF40g5J0yHyTl4s587Tuud7TsbSjKDHpPfmfRdR-P130rwN3oTbzXGQpJqf3Wwp_h1srnonc-dHQYTbJyy5gpzDpW6F6ScCEbR_SDihAlO581f3gG3cUqhPpbGEBFO670Vev5nvGOuw_dUne31LsWck3W688UUH-ewftAI6rkFem6BVkwjrOcWVN_FHd-vyf92vD5sMgvHPY6AdtMwFPutVPLFf8kKPNsD21xiOhKU1WL-TuxM1GaTfNbXn5FSqnYTK0Z-AJQr3kM |
CitedBy_id | crossref_primary_10_1016_j_pmpp_2019_101444 crossref_primary_10_1016_j_plaphy_2016_02_027 crossref_primary_10_1016_S0952_7915_00_00183_7 crossref_primary_10_1016_S1360_1385_02_02290_2 crossref_primary_10_1111_j_1365_313X_2006_02712_x crossref_primary_10_1007_s11103_007_9278_0 crossref_primary_10_1016_j_pmpp_2018_11_002 crossref_primary_10_1371_journal_pone_0180523 crossref_primary_10_1016_S0014_5793_01_03019_8 crossref_primary_10_1111_tpj_13131 crossref_primary_10_1094_MPMI_1999_12_7_640 crossref_primary_10_1094_MPMI_2001_14_4_527 crossref_primary_10_3389_fmicb_2020_00034 crossref_primary_10_1105_tpc_106_046052 crossref_primary_10_1046_j_1365_313X_1998_00265_x crossref_primary_10_1002_pmic_200600470 crossref_primary_10_1134_S1021443708050026 crossref_primary_10_1007_s00468_018_1745_5 crossref_primary_10_1371_journal_pone_0190341 crossref_primary_10_1007_s11101_018_9595_8 crossref_primary_10_1006_abbi_2000_1961 crossref_primary_10_1111_j_1399_3054_2007_00907_x crossref_primary_10_1111_tpj_12058 crossref_primary_10_1093_pcp_pcz236 crossref_primary_10_1105_tpc_113_121731 crossref_primary_10_1073_pnas_151258398 crossref_primary_10_3923_pjbs_2001_508_510 crossref_primary_10_1111_ppa_12190 crossref_primary_10_1038_srep24778 crossref_primary_10_1094_MPMI_20_2_0146 crossref_primary_10_3389_fpls_2022_1050216 crossref_primary_10_1006_jmbi_1999_2992 crossref_primary_10_1007_s13353_014_0227_8 crossref_primary_10_1016_j_plantsci_2023_111972 crossref_primary_10_3390_ijms22168859 crossref_primary_10_1111_j_1469_8137_2010_03622_x crossref_primary_10_1007_s00122_009_1038_x crossref_primary_10_1111_plb_12726 crossref_primary_10_1016_j_biocontrol_2010_07_009 crossref_primary_10_1094_MPMI_19_1127 crossref_primary_10_1093_pcp_pcad163 crossref_primary_10_1007_s00344_024_11620_4 crossref_primary_10_1186_s13007_023_01025_x crossref_primary_10_1093_jxb_erab418 crossref_primary_10_1016_S1369_5266_02_00275_3 crossref_primary_10_1007_s00299_013_1441_2 crossref_primary_10_1139_B10_067 crossref_primary_10_1007_s10059_010_0059_2 crossref_primary_10_1186_s12870_016_0856_7 crossref_primary_10_3389_fpls_2021_609870 crossref_primary_10_1111_j_1744_7909_2012_01098_x crossref_primary_10_1016_j_plipres_2019_100990 crossref_primary_10_1016_j_envexpbot_2016_09_004 crossref_primary_10_1046_j_1365_313x_2000_00692_x crossref_primary_10_1038_s41467_024_52761_0 crossref_primary_10_1603_0046_225X_32_1_220 crossref_primary_10_1007_s10886_005_6070_y crossref_primary_10_1111_pbi_12417 crossref_primary_10_1094_MPMI_2003_16_2_141 crossref_primary_10_1073_pnas_231480898 crossref_primary_10_1146_annurev_phyto_41_052002_095505 crossref_primary_10_1094_MPMI_34_6 crossref_primary_10_3390_ijms12063473 crossref_primary_10_1007_s00344_004_0031_5 crossref_primary_10_1016_S0168_9452_00_00210_7 crossref_primary_10_1007_s12892_019_0352_0 crossref_primary_10_1074_jbc_M207234200 crossref_primary_10_1007_BF02637262 crossref_primary_10_1111_j_1365_3040_2012_02495_x crossref_primary_10_1007_BF02637265 crossref_primary_10_1104_pp_010843 crossref_primary_10_1104_pp_005272 crossref_primary_10_1080_00380768_2017_1403842 crossref_primary_10_1093_plcell_koae161 crossref_primary_10_1105_tpc_006999 crossref_primary_10_1186_s12864_020_07286_3 crossref_primary_10_1006_bbrc_2002_6637 crossref_primary_10_1111_febs_12920 crossref_primary_10_1021_jf062339w crossref_primary_10_1093_treephys_tpt018 crossref_primary_10_1371_journal_pone_0091741 crossref_primary_10_1007_s00344_021_10362_x crossref_primary_10_1016_S0168_9452_99_00046_1 crossref_primary_10_1094_MPMI_2004_17_7_763 crossref_primary_10_1094_MPMI_2004_17_12_1394 crossref_primary_10_3390_ijms22095001 crossref_primary_10_1006_abbi_2000_1810 crossref_primary_10_5458_jag_jag_JAG_2010_013 crossref_primary_10_1111_1744_7917_12010 crossref_primary_10_1104_pp_126_4_1678 crossref_primary_10_1016_j_fcr_2023_109066 crossref_primary_10_1155_2018_8517018 crossref_primary_10_3389_fpls_2016_00570 crossref_primary_10_1371_journal_pone_0050089 crossref_primary_10_1016_j_rsci_2019_03_001 crossref_primary_10_1111_nph_17477 crossref_primary_10_1111_j_1445_6664_2008_00280_x crossref_primary_10_1016_j_plantsci_2004_01_008 crossref_primary_10_1104_pp_111_174169 crossref_primary_10_1104_pp_105_069625 crossref_primary_10_1046_j_1365_313x_2000_00802_x crossref_primary_10_1093_aob_mcl034 crossref_primary_10_1016_j_pmpp_2004_07_003 crossref_primary_10_1111_pbi_13709 crossref_primary_10_3390_plants8080285 crossref_primary_10_1111_j_1744_7909_2006_00416_x crossref_primary_10_1038_hortres_2014_53 crossref_primary_10_1007_s13369_017_2603_2 crossref_primary_10_1016_j_phytochem_2009_07_018 crossref_primary_10_1007_s10142_015_0468_6 crossref_primary_10_1271_bbb_120889 crossref_primary_10_1093_pcp_pcf144 crossref_primary_10_1094_MPMI_2000_13_4_430 crossref_primary_10_1163_15685411_00003205 crossref_primary_10_1046_j_1365_313x_2002_01199_x crossref_primary_10_1007_s00425_012_1698_7 crossref_primary_10_1016_j_plaphy_2007_12_007 crossref_primary_10_1007_s10142_014_0379_y crossref_primary_10_1104_pp_125_2_652 crossref_primary_10_1111_j_1399_3054_2007_00975_x crossref_primary_10_3390_pathogens11101136 crossref_primary_10_4161_psb_5_8_12231 crossref_primary_10_1007_s10327_019_00891_5 crossref_primary_10_1046_j_1365_313X_2002_01453_x crossref_primary_10_1199_tab_0136 crossref_primary_10_1038_hortres_2014_43 crossref_primary_10_1080_07060661_2012_662176 crossref_primary_10_1126_science_1071547 crossref_primary_10_1199_tab_0012 crossref_primary_10_1104_pp_113_214544 crossref_primary_10_1016_j_molp_2022_08_011 crossref_primary_10_1016_j_pmpp_2003_10_003 crossref_primary_10_1081_PLN_200055532 crossref_primary_10_1093_mp_ssn095 crossref_primary_10_1111_tpj_14871 crossref_primary_10_1016_j_plantsci_2004_09_006 crossref_primary_10_3390_genes16010026 crossref_primary_10_3390_ijms20215359 crossref_primary_10_1006_pmpp_1999_0215 crossref_primary_10_1016_j_micpath_2018_08_034 crossref_primary_10_1111_pce_13721 crossref_primary_10_1146_annurev_phyto_081211_172955 crossref_primary_10_1111_ppl_14307 crossref_primary_10_1002_ps_8407 crossref_primary_10_1007_s00425_009_0969_4 crossref_primary_10_1094_MPMI_2003_16_7_588 crossref_primary_10_1007_s00344_004_0030_6 crossref_primary_10_1007_s00425_009_0890_x crossref_primary_10_1034_j_1399_3054_2003_00124_x crossref_primary_10_1007_s00425_013_1840_1 crossref_primary_10_1006_pmpp_1999_0205 crossref_primary_10_1007_s11427_013_4590_1 crossref_primary_10_1104_pp_104_057794 crossref_primary_10_1007_s11103_011_9810_0 crossref_primary_10_1111_tpj_12556 crossref_primary_10_1007_BF03030621 crossref_primary_10_1038_s41598_020_76210_2 crossref_primary_10_1038_nchembio_1575 crossref_primary_10_3390_plants12102050 crossref_primary_10_1007_BF02708414 crossref_primary_10_3390_agronomy12081785 crossref_primary_10_1038_s41598_018_33113_7 crossref_primary_10_1146_annurev_phyto_080508_081820 crossref_primary_10_1016_S0168_9452_99_00131_4 crossref_primary_10_1139_b03_151 crossref_primary_10_1046_j_1365_313X_2001_01148_x crossref_primary_10_1074_jbc_M008606200 crossref_primary_10_1126_stke_3222006cm3 crossref_primary_10_1007_BF03183717 crossref_primary_10_1007_s00299_011_1221_9 crossref_primary_10_1371_journal_pone_0028810 crossref_primary_10_1371_journal_pgen_1000273 crossref_primary_10_3389_fpls_2018_00002 crossref_primary_10_1080_17429145_2018_1550217 crossref_primary_10_1016_j_compbiolchem_2016_07_002 crossref_primary_10_1023_B_BIOP_0000033456_27521_e5 crossref_primary_10_1093_jxb_erv190 crossref_primary_10_1094_MPMI_07_14_0194_R crossref_primary_10_1111_j_1439_0434_2006_01191_x crossref_primary_10_1094_MPMI_2002_15_10_1078 crossref_primary_10_1111_j_1469_8137_2010_03272_x crossref_primary_10_1094_MPMI_12_20_0345_R crossref_primary_10_1104_pp_109_148106 crossref_primary_10_1016_S1360_1385_99_01404_1 crossref_primary_10_3390_ijms18040712 crossref_primary_10_1104_pp_109_139550 crossref_primary_10_1016_S1388_1981_02_00268_8 crossref_primary_10_1094_MPMI_18_0819 crossref_primary_10_1016_S0981_9428_00_00756_7 crossref_primary_10_1177_1934578X0800300803 crossref_primary_10_1007_s11105_014_0822_1 crossref_primary_10_1016_j_micres_2018_04_008 crossref_primary_10_5423_PPJ_OA_08_2023_0112 crossref_primary_10_1094_MPMI_1999_12_1_74 crossref_primary_10_1111_ppl_12320 crossref_primary_10_1016_j_jprot_2009_07_005 crossref_primary_10_1046_j_1364_3703_2001_00063_x crossref_primary_10_1111_j_1744_7909_2006_00405_x crossref_primary_10_1007_s11515_011_1171_1 crossref_primary_10_1007_s10658_014_0453_2 crossref_primary_10_1111_pce_12952 crossref_primary_10_1016_j_devcel_2010_10_024 crossref_primary_10_1074_jbc_M008872200 crossref_primary_10_3390_ijms26051930 crossref_primary_10_1016_j_phytochem_2009_05_018 crossref_primary_10_1038_sj_cr_7310053 crossref_primary_10_1016_j_tplants_2014_09_007 crossref_primary_10_1104_pp_107_115683 crossref_primary_10_1111_j_1364_3703_2011_00727_x crossref_primary_10_1016_S0014_5793_01_02331_6 crossref_primary_10_15252_embj_2018100972 crossref_primary_10_1093_pcp_pch165 crossref_primary_10_1016_j_micres_2016_08_007 crossref_primary_10_1016_j_plantsci_2008_11_003 crossref_primary_10_1073_pnas_96_6_3292 crossref_primary_10_1094_MPMI_18_1285 crossref_primary_10_1094_MPMI_2002_15_10_1025 crossref_primary_10_1111_j_1364_3703_2004_00242_x crossref_primary_10_1146_annurev_nutr_24_121803_063211 crossref_primary_10_1111_tpj_12728 crossref_primary_10_6090_jarq_44_391 crossref_primary_10_1126_scisignal_259pe9 crossref_primary_10_1073_pnas_211311098 crossref_primary_10_7717_peerj_7536 crossref_primary_10_1016_j_phytochem_2009_08_004 crossref_primary_10_1007_s00344_018_9863_2 crossref_primary_10_1093_jexbot_51_348_1267 crossref_primary_10_1038_s41598_023_47456_3 crossref_primary_10_1111_j_1364_3703_2010_00675_x crossref_primary_10_1016_j_pmpp_2005_12_007 crossref_primary_10_1016_S1360_1385_98_01364_8 crossref_primary_10_1016_j_pmpp_2005_12_002 crossref_primary_10_1093_jxb_erae006 crossref_primary_10_1007_s10658_012_9972_x crossref_primary_10_1007_s11103_018_0702_4 crossref_primary_10_1073_pnas_130425197 crossref_primary_10_1105_tpc_007468 crossref_primary_10_1007_s00049_009_0032_8 crossref_primary_10_1104_pp_102_017814 crossref_primary_10_1016_j_pestbp_2019_03_020 crossref_primary_10_1186_1471_2164_13_9 crossref_primary_10_3390_ijms21062042 crossref_primary_10_1080_07060660109506935 crossref_primary_10_3390_genes9070339 crossref_primary_10_1016_j_phytochem_2010_04_025 crossref_primary_10_1046_j_1365_313x_1999_00595_x crossref_primary_10_1093_pcp_pcr156 crossref_primary_10_1007_s11104_004_7328_9 crossref_primary_10_1104_pp_120_1_227 crossref_primary_10_1105_tpc_113_120394 crossref_primary_10_1007_s11103_009_9539_1 crossref_primary_10_1016_S1360_1385_02_02250_1 crossref_primary_10_1007_BF03175019 crossref_primary_10_1111_j_1742_4658_2009_07195_x crossref_primary_10_1016_j_molp_2018_07_007 crossref_primary_10_1006_pmpp_2000_0291 crossref_primary_10_1073_pnas_0605946103 crossref_primary_10_1080_10715760500072115 crossref_primary_10_1111_j_1365_3040_2011_02412_x crossref_primary_10_3390_plants13081129 crossref_primary_10_1007_s10340_025_01872_8 crossref_primary_10_1371_journal_pgen_1000545 crossref_primary_10_1111_j_0105_2896_2004_0129_x crossref_primary_10_1016_S0981_9428_03_00142_6 crossref_primary_10_1016_j_plantsci_2020_110682 crossref_primary_10_1073_pnas_95_25_15107 crossref_primary_10_1016_j_hpj_2022_11_014 crossref_primary_10_1007_s00425_019_03334_9 crossref_primary_10_1105_tpc_111_083261 crossref_primary_10_1016_j_febslet_2012_06_046 crossref_primary_10_1046_j_1365_313X_2003_01619_x crossref_primary_10_1007_s11738_002_0051_3 crossref_primary_10_1007_s00299_011_1180_1 crossref_primary_10_1016_j_pmpp_2016_09_002 crossref_primary_10_1007_s10886_014_0468_3 crossref_primary_10_1094_MPMI_2002_15_1_27 crossref_primary_10_1074_jbc_M807114200 crossref_primary_10_1016_S0168_9452_99_00119_3 crossref_primary_10_1002_ps_1026 crossref_primary_10_1094_MPMI_2003_16_5_447 crossref_primary_10_1104_pp_121_4_1093 crossref_primary_10_1038_s41598_019_42177_y crossref_primary_10_1111_j_1365_3059_2007_01699_x crossref_primary_10_1146_annurev_arplant_043008_092007 crossref_primary_10_1093_jxb_erq240 crossref_primary_10_3390_ijms22115473 crossref_primary_10_1071_CP15314 crossref_primary_10_1093_jxb_err335 crossref_primary_10_1007_s13313_025_01032_7 crossref_primary_10_1104_pp_104_041566 crossref_primary_10_1007_s11745_008_3245_7 crossref_primary_10_1094_PDIS_03_14_0285_RE crossref_primary_10_1016_S0167_4838_99_00269_1 crossref_primary_10_1093_treephys_tpad121 crossref_primary_10_1016_j_jplph_2015_01_018 crossref_primary_10_1146_annurev_phyto_44_070505_143425 crossref_primary_10_1016_j_plaphy_2009_12_003 crossref_primary_10_1111_j_1365_313X_2004_02142_x crossref_primary_10_5423_RPD_2015_21_3_161 crossref_primary_10_1105_tpc_111_083089 crossref_primary_10_1046_j_1365_313x_2002_01190_x crossref_primary_10_1038_srep37674 crossref_primary_10_1146_annurev_genet_102209_163500 crossref_primary_10_1093_pcp_pcm107 crossref_primary_10_1111_j_1365_313X_2001_00952_x crossref_primary_10_1104_pp_103_030379 crossref_primary_10_1094_PHYTO_11_18_0427_R crossref_primary_10_1105_tpc_106_048041 crossref_primary_10_1111_tpj_15372 crossref_primary_10_1186_s12864_015_1363_1 crossref_primary_10_1093_jxb_erac116 crossref_primary_10_1074_jbc_M107763200 crossref_primary_10_3724_SP_J_1006_2011_02152 crossref_primary_10_1105_tpc_113_112631 crossref_primary_10_1111_j_1439_0434_2004_00885_x crossref_primary_10_1128_EC_2_2_191_199_2003 crossref_primary_10_1007_s10482_018_1017_9 crossref_primary_10_1163_15685411_00002818 crossref_primary_10_1007_s00572_013_0513_z crossref_primary_10_1046_j_1365_313x_2002_01191_x crossref_primary_10_1007_s40415_016_0276_9 crossref_primary_10_1079_IVP2005711 crossref_primary_10_1111_pbi_14149 crossref_primary_10_1016_j_pbi_2005_07_003 crossref_primary_10_1073_pnas_190264497 crossref_primary_10_1111_j_1744_7909_2008_00715_x crossref_primary_10_1016_S0960_9822_99_80140_7 crossref_primary_10_4161_psb_22098 crossref_primary_10_1126_scisignal_3109cm3 crossref_primary_10_1111_j_1744_7909_2006_00335_x crossref_primary_10_1046_j_1365_313x_2001_01050_x crossref_primary_10_1051_e3sconf_202346701013 crossref_primary_10_1093_pcp_pcx112 crossref_primary_10_1186_1471_2229_9_68 crossref_primary_10_1073_pnas_0603727103 crossref_primary_10_1111_j_1365_313X_2009_03831_x crossref_primary_10_1016_S0031_9422_98_00596_2 crossref_primary_10_1534_genetics_118_300478 crossref_primary_10_1016_j_envpol_2023_122435 crossref_primary_10_1007_s00344_016_9630_1 crossref_primary_10_1073_pnas_092064799 crossref_primary_10_1007_s00425_004_1347_x crossref_primary_10_1111_j_1365_313X_2006_02756_x crossref_primary_10_1111_ppa_13867 crossref_primary_10_1016_j_plaphy_2019_05_032 crossref_primary_10_3390_plants8090321 crossref_primary_10_1016_j_bbalip_2005_03_001 crossref_primary_10_1094_PHYTO_2000_90_8_801 crossref_primary_10_1111_nph_17549 crossref_primary_10_1007_s00344_004_0035_1 crossref_primary_10_1080_07352689_2001_10131828 crossref_primary_10_1093_jxb_err381 crossref_primary_10_1371_journal_ppat_1011340 crossref_primary_10_1073_pnas_0308555101 crossref_primary_10_1038_nature05960 crossref_primary_10_1016_j_plantsci_2004_10_006 crossref_primary_10_1093_jxb_51_348_1267 crossref_primary_10_3389_fsufs_2022_916795 crossref_primary_10_1016_S0981_9428_01_01282_7 crossref_primary_10_3390_plants5010006 crossref_primary_10_1016_S1016_8478_23_15032_1 crossref_primary_10_1111_j_1469_8137_2008_02735_x crossref_primary_10_1007_s00299_013_1508_0 crossref_primary_10_1016_j_bcab_2019_101337 crossref_primary_10_1007_s11103_006_9086_y crossref_primary_10_1046_j_1365_3040_1999_00499_x crossref_primary_10_1094_MPMI_18_1107 crossref_primary_10_1007_s11099_008_0030_z crossref_primary_10_3389_fpls_2018_01916 crossref_primary_10_1104_pp_109_142158 crossref_primary_10_1046_j_1439_0434_2003_00798_x crossref_primary_10_1016_j_plantsci_2014_02_001 crossref_primary_10_1046_j_1469_8137_2003_00883_x crossref_primary_10_1094_MPMI_22_4_0469 crossref_primary_10_1016_j_plantsci_2008_01_008 crossref_primary_10_1016_j_pmpp_2009_09_005 crossref_primary_10_1111_nph_13395 crossref_primary_10_1007_s10658_010_9729_3 crossref_primary_10_1016_j_celrep_2017_04_057 crossref_primary_10_1016_j_plantsci_2010_10_002 crossref_primary_10_5423_PPJ_2008_24_2_101 crossref_primary_10_1055_s_2006_924025 crossref_primary_10_1007_s00425_018_3001_z crossref_primary_10_1016_S0163_7827_01_00027_3 crossref_primary_10_1111_j_1364_3703_2006_00349_x crossref_primary_10_1111_pce_13131 crossref_primary_10_1016_j_bbrc_2011_05_055 crossref_primary_10_1016_S0168_9452_00_00285_5 crossref_primary_10_1104_pp_105_071662 crossref_primary_10_1146_annurev_micro_020518_120022 |
Cites_doi | 10.2307/3870321 10.1073/pnas.95.4.1933 10.1073/pnas.92.10.4099 10.1073/pnas.89.11.4938 10.1104/pp.102.2.503 10.2307/3870230 10.1080/07060669209500908 10.1007/BF01874788 10.2307/3869877 10.1146/annurev.pp.40.060189.002023 10.1104/pp.101.2.441 10.2307/3869886 10.1104/pp.109.3.813 10.1104/pp.103.4.1133 10.1126/science.273.5283.1853 10.1104/pp.101.1.13 10.1126/science.266.5188.1247 10.1073/pnas.92.10.4095 10.1073/pnas.94.10.5473 10.1016/S0014-5793(96)01378-6 10.1007/BF00232985 10.1094/Phyto-77-1192 10.1073/pnas.92.10.4202 10.1126/science.276.5313.726 10.2307/3870231 10.1016/0962-8924(92)90311-A 10.1073/pnas.92.10.4197 10.1094/PHYTO.1998.88.3.213 |
ContentType | Journal Article |
Copyright | Copyright 1993-1998 National Academy of Sciences Copyright National Academy of Sciences Jun 9, 1998 Copyright © 1998, The National Academy of Sciences 1998 |
Copyright_xml | – notice: Copyright 1993-1998 National Academy of Sciences – notice: Copyright National Academy of Sciences Jun 9, 1998 – notice: Copyright © 1998, The National Academy of Sciences 1998 |
DBID | FBQ AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.95.12.7209 |
DatabaseName | AGRIS CrossRef PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | CrossRef AGRICOLA MEDLINE - Academic Genetics Abstracts Virology and AIDS Abstracts PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Botany |
EISSN | 1091-6490 |
EndPage | 7214 |
ExternalDocumentID | PMC22783 34032088 9618564 10_1073_pnas_95_12_7209 95_12_7209 45091 US1999000295 |
Genre | Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACKIV ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FBQ FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM ADXHL - 02 08R 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AFDAS AJYGW AS ASUFR DNJUQ DOOOF DWIUU DZ F20 GJ JSODD KM OHM PQEST RHF VQA X XFK XHC ZA5 AAYXX CITATION NPM VXZ YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c530t-8102ca43fdc86189e8b288a67efced995d9767baf3d0c8fa0340e7f619ff7ac23 |
ISSN | 0027-8424 |
IngestDate | Tue Sep 30 16:02:31 EDT 2025 Fri Sep 05 05:32:30 EDT 2025 Fri Sep 05 12:40:46 EDT 2025 Fri Sep 05 10:25:36 EDT 2025 Mon Jun 30 08:31:29 EDT 2025 Wed Feb 19 02:33:55 EST 2025 Wed Oct 01 01:20:53 EDT 2025 Thu Apr 24 23:03:16 EDT 2025 Thu May 30 08:52:09 EDT 2019 Wed Nov 11 00:29:20 EST 2020 Thu May 29 08:40:56 EDT 2025 Thu Apr 03 09:44:45 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c530t-8102ca43fdc86189e8b288a67efced995d9767baf3d0c8fa0340e7f619ff7ac23 |
Notes | F30 1999000295 H20 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 To whom reprint requests should be addressed. e-mail: jab@wsu.edu. Contributed by R. James Cook |
PMID | 9618564 |
PQID | 201364609 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_46375419 pubmedcentral_primary_oai_pubmedcentral_nih_gov_22783 pnas_primary_95_12_7209 proquest_miscellaneous_69266099 proquest_journals_201364609 crossref_primary_10_1073_pnas_95_12_7209 crossref_citationtrail_10_1073_pnas_95_12_7209 jstor_primary_45091 pubmed_primary_9618564 proquest_miscellaneous_16357642 fao_agris_US1999000295 pnas_primary_95_12_7209_fulltext |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | (9 Jun 1998) 19980609 1998-06-09 1998-Jun-09 |
PublicationDateYYYYMMDD | 1998-06-09 |
PublicationDate_xml | – month: 06 year: 1998 text: (9 Jun 1998) day: 09 |
PublicationDecade | 1990 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 1998 |
Publisher | National Academy of Sciences of the United States of America National Acad Sciences National Academy of Sciences The National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences of the United States of America – name: National Acad Sciences – name: National Academy of Sciences – name: The National Academy of Sciences |
References | Hammond-Kosack K E (e_1_3_3_4_2) 1986; 8 Howe G A (e_1_3_3_10_2) 1996; 8 e_1_3_3_17_2 e_1_3_3_16_2 Wilhelm S (e_1_3_3_33_2) 1965; 55 e_1_3_3_19_2 e_1_3_3_18_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_32_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_31_2 Penninckx I A M A (e_1_3_3_13_2) 1996; 8 Van der Plaats-Niterink A J (e_1_3_3_20_2) 1981 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 Salt G A (e_1_3_3_29_2) 1979 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_1_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 |
References_xml | – ident: e_1_3_3_19_2 doi: 10.2307/3870321 – ident: e_1_3_3_30_2 doi: 10.1073/pnas.95.4.1933 – ident: e_1_3_3_12_2 doi: 10.1073/pnas.92.10.4099 – ident: e_1_3_3_22_2 doi: 10.1073/pnas.89.11.4938 – volume: 8 start-page: 2067 year: 1996 ident: e_1_3_3_10_2 publication-title: Plant Cell – ident: e_1_3_3_26_2 doi: 10.1104/pp.102.2.503 – ident: e_1_3_3_2_2 doi: 10.2307/3870230 – ident: e_1_3_3_32_2 doi: 10.1080/07060669209500908 – ident: e_1_3_3_17_2 doi: 10.1007/BF01874788 – ident: e_1_3_3_18_2 doi: 10.2307/3869877 – ident: e_1_3_3_28_2 doi: 10.1146/annurev.pp.40.060189.002023 – ident: e_1_3_3_23_2 doi: 10.1104/pp.101.2.441 – ident: e_1_3_3_16_2 doi: 10.2307/3869886 – ident: e_1_3_3_14_2 doi: 10.1104/pp.109.3.813 – ident: e_1_3_3_24_2 doi: 10.1104/pp.103.4.1133 – ident: e_1_3_3_7_2 doi: 10.1126/science.273.5283.1853 – ident: e_1_3_3_27_2 doi: 10.1104/pp.101.1.13 – volume: 8 start-page: 1773 year: 1986 ident: e_1_3_3_4_2 publication-title: Plant Cell – ident: e_1_3_3_6_2 doi: 10.1126/science.266.5188.1247 – ident: e_1_3_3_8_2 doi: 10.1073/pnas.92.10.4095 – ident: e_1_3_3_11_2 doi: 10.1073/pnas.94.10.5473 – ident: e_1_3_3_15_2 doi: 10.1016/S0014-5793(96)01378-6 – ident: e_1_3_3_21_2 doi: 10.1007/BF00232985 – start-page: 289 volume-title: Soil-Borne Plant Pathogens year: 1979 ident: e_1_3_3_29_2 – ident: e_1_3_3_31_2 doi: 10.1094/Phyto-77-1192 – ident: e_1_3_3_5_2 doi: 10.1073/pnas.92.10.4202 – ident: e_1_3_3_1_2 doi: 10.1126/science.276.5313.726 – ident: e_1_3_3_3_2 doi: 10.2307/3870231 – ident: e_1_3_3_9_2 doi: 10.1016/0962-8924(92)90311-A – ident: e_1_3_3_34_2 doi: 10.1073/pnas.92.10.4197 – volume: 8 start-page: 2309 year: 1996 ident: e_1_3_3_13_2 publication-title: Plant Cell – volume: 55 start-page: 1016 year: 1965 ident: e_1_3_3_33_2 publication-title: Phytopathology – ident: e_1_3_3_25_2 doi: 10.1094/PHYTO.1998.88.3.213 – start-page: 1 volume-title: Studies in Mycology No. 21 year: 1981 ident: e_1_3_3_20_2 |
SSID | ssj0009580 |
Score | 2.1550794 |
Snippet | To investigate the role of jasmonate in the defense of plants against fungal pathogens, we have studied a mutant of Arabidopsis, fad3-2 fad7-2 fad8, that... To investigate the role of jasmonate in the defense of plants against fungal pathogens, we have studied a mutant of Arabidopsis , fad3–2 fad7–2 fad8 , that... To investigate the role of jasmonate in the defense of plants against fungal pathogens, we have studied a mutant of Arabidopsis , fad3–2 fad7–2 fad8 , that... To investigate the role of jasmonate in the defense of plants against fungal pathogens, we have studied a mutant of Arabidopsis, fad3–2 fad7–2 fad8, that... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7209 |
SubjectTerms | ACIDE JASMONIQUE ACIDO JASMONICO ARABIDOPSIS THALIANA ARN MENSAJERO ARN MESSAGER Biological Sciences BIOSINTESIS BIOSYNTHESE BIOSYNTHESIS Botany DEFENCE MECHANISMS defense mechanisms DERIVATIVES DISEASE RESISTANCE ENFERMEDADES FUNGOSAS ESPORAS FUNGICAS ESPORULACION EXPRESION GENICA EXPRESSION DES GENES Flowers & plants FUNGAL DISEASES fungal diseases of plants FUNGAL SPORES Fungi GENE EXPRESSION Genes Genetics GROWTH RATE HYPHAE INDICE DE CRECIMIENTO Infections Inoculation JASMONIC ACID MALADIE FONGIQUE MECANISME DE DEFENSE MECANISMOS DE DEFENSA MESSENGER RNA METHYL JASMONATE MICELIO MUTANT MUTANTES MUTANTS Mutation MYCELIUM OOSPORES Pathogens Plant cells Plant growth Plant roots Plants PODREDUMBRE DE LA RAIZ POURRITURE DES RACINES PYTHIUM PYTHIUM MASTOPHORUM RESISTANCE AUX MALADIES RESISTENCIA A LA ENFERMEDAD root rot ROOT ROTS Rooting SPORE FONGIQUE SPORULATION SUSCEPTIBILITY TAUX DE CROISSANCE |
Title | A role of jasmonate in pathogen defense of Arabidopsis |
URI | https://www.jstor.org/stable/45091 http://www.pnas.org/content/95/12/7209.abstract https://www.ncbi.nlm.nih.gov/pubmed/9618564 https://www.proquest.com/docview/201364609 https://www.proquest.com/docview/16357642 https://www.proquest.com/docview/46375419 https://www.proquest.com/docview/69266099 https://pubmed.ncbi.nlm.nih.gov/PMC22783 |
Volume | 95 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1091-6490 dateEnd: 20250401 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: HH5 dateStart: 19150101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: KQ8 dateStart: 19150115 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: KQ8 dateStart: 19150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: DIK dateStart: 19150101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1091-6490 dateEnd: 20250401 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: RPM dateStart: 19150101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe68cILYoNBGB9-4GGoSsmHYyePFQKmCaqKrahvkZPYrIglU9Miwb_BP8xdnK-OdgJeotROTo7vej6f735HyMtAJGB2a2YjkorNdOrYId45jnJZEHmBjjAb-eOEn87Y2TyYDwa_elFL61UySn9uzSv5H65CG_AVs2T_gbMtUWiAe-AvXIHDcP0rHo-HnzA4ECMFz2R5hY7wCgNkCmZdAW-BNtGwTa3cAuOlTBZZcV0uyr5BOm0XsLIJF5g0_sFxl21Sq4ByaA-nk6528efFV_nDuFCnarm-km28xvllgfrBBOK2bvsP6rsqYSWq3LMjE03ZnoKAuV8xfGRCdzt_hEnQ47bTab1bx1h_x4Y5XU2BOZ3qK2oPFk9m0qsbRW2qcTYC6fXUrvDqEaj6p0lM_WN5AH2GNY1zWY6iAN3A3YsbmNsMzag9cscTnGNZjPdzt4fkHJq8pnqEDV6U8F_fILxh6uxpWTQxrwikC49u29TcjM3tGTsX98m9epdCx0bkDshA5YfkoJlgelKDlb96QMSYogxSkEHayiBd5LSRQVrLIC007cngQzJ79_bizaldF-Ow08B3VnYIlmgqma-zNORuGKkw8cJQcqF0qrIoCjIwbEUitZ85aail4zNHCQ37c62FTD3_iOznRa4eE-pwnQRZIiI3cRGfLxHClR6LdCJDLrS0yKiZtzitkeqxYMq3uIqYEH6MsxdHQex6MU60RU7aF64NSMvuR4-AEbH8AktoPDtHEA40CqLAIocVb1oClQxY5FFFoGnsE6I7emJdh21Z5Ljhb1xrjTL2ECSRcSTwou0FlY7ndDJXxbqMXcSI5Mzb_QTjWLnavYUGj8Dyht0ffK-Rp26gwL2AM4sEG4LW9iPe_GZPvriscOcxa95_snWejsndThc8Jfur5Vo9A2t9lTyv_j2_AZEm6Rk |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Role+for+Jasmonate+in+Pathogen+Defense+of+Arabidopsis&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Vijayan%2C+Perumal&rft.au=Shockey%2C+Jay&rft.au=Levesque%2C+C.+Andre&rft.au=Cook%2C+R.+James&rft.date=1998-06-09&rft.pub=National+Academy+of+Sciences+of+the+United+States+of+America&rft.issn=0027-8424&rft.volume=95&rft.issue=12&rft.spage=7209&rft.epage=7214&rft_id=info:doi/10.1073%2Fpnas.95.12.7209&rft.externalDocID=45091 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F95%2F12.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F95%2F12.cover.gif |