A role of jasmonate in pathogen defense of Arabidopsis

To investigate the role of jasmonate in the defense of plants against fungal pathogens, we have studied a mutant of Arabidopsis, fad3-2 fad7-2 fad8, that cannot accumulate jasmonate. Mutant plants were extremely susceptible to root rot caused by the fungal root pathogen Pythium mastophorum (Drechs.)...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 95; no. 12; pp. 7209 - 7214
Main Authors Vijayan, P. (Washington State University, Pullman, WA.), Shockey, J, Levesque, C.A, Cook, R.J, Browse, J
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences of the United States of America 09.06.1998
National Acad Sciences
National Academy of Sciences
The National Academy of Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
DOI10.1073/pnas.95.12.7209

Cover

Abstract To investigate the role of jasmonate in the defense of plants against fungal pathogens, we have studied a mutant of Arabidopsis, fad3-2 fad7-2 fad8, that cannot accumulate jasmonate. Mutant plants were extremely susceptible to root rot caused by the fungal root pathogen Pythium mastophorum (Drechs.), even though neighboring wild-type plants were largely unaffected by this fungus. Application of exogenous methyl jasmonate substantially protected mutant plants, reducing the incidence of disease to a level close to that of wild-type controls. A similar treatment with methyl jasmonate did not protect the jasmonate-insensitive mutant coil1 from infection, showing that protective action of applied jasmonate against P. mastophorum was mediated by the induction of plant defense mechanisms rather than by a direct antifungal action. Transcripts of three jasmonate-responsive defense genes are induced by Pythium challenge in the wild-type but not in the jasmonate-deficient mutant. Pythium species are ubiquitous in soil and root habitats world-wide, but most (including P. mastophorum) are considered to be minor pathogens. Our results indicate that jasmonate is essential for plant defense against Pythium and, because of the high exposure of plant roots to Pythium inoculum in soil, may well be fundamental to survival of plants in nature. Our results further indicate that the fad3-2 fad7-2 fad8 mutant is an appropriate genetic model for studying the role of this important signaling molecule in pathogen defense
AbstractList To investigate the role of jasmonate in the defense of plants against fungal pathogens, we have studied a mutant of Arabidopsis, fad3-2 fad7-2 fad8, that cannot accumulate jasmonate. Mutant plants were extremely susceptible to root rot caused by the fungal root pathogen Pythium mastophorum (Drechs.), even though neighboring wild-type plants were largely unaffected by this fungus. Application of exogenous methyl jasmonate substantially protected mutant plants, reducing the incidence of disease to a level close to that of wild-type controls. A similar treatment with methyl jasmonate did not protect the jasmonate-insensitive mutant coil1 from infection, showing that protective action of applied jasmonate against P. mastophorum was mediated by the induction of plant defense mechanisms rather than by a direct antifungal action. Transcripts of three jasmonate-responsive defense genes are induced by Pythium challenge in the wild-type but not in the jasmonate-deficient mutant. Pythium species are ubiquitous in soil and root habitats world-wide, but most (including P. mastophorum) are considered to be minor pathogens. Our results indicate that jasmonate is essential for plant defense against Pythium and, because of the high exposure of plant roots to Pythium inoculum in soil, may well be fundamental to survival of plants in nature. Our results further indicate that the fad3-2 fad7-2 fad8 mutant is an appropriate genetic model for studying the role of this important signaling molecule in pathogen defense
To investigate the role of jasmonate in the defense of plants against fungal pathogens, we have studied a mutant of Arabidopsis , fad3–2 fad7–2 fad8 , that cannot accumulate jasmonate. Mutant plants were extremely susceptible to root rot caused by the fungal root pathogen Pythium mastophorum (Drechs.), even though neighboring wild-type plants were largely unaffected by this fungus. Application of exogenous methyl jasmonate substantially protected mutant plants, reducing the incidence of disease to a level close to that of wild-type controls. A similar treatment with methyl jasmonate did not protect the jasmonate-insensitive mutant coi1 from infection, showing that protective action of applied jasmonate against P. mastophorum was mediated by the induction of plant defense mechanisms rather than by a direct antifungal action. Transcripts of three jasmonate-responsive defense genes are induced by Pythium challenge in the wild-type but not in the jasmonate-deficient mutant. Pythium species are ubiquitous in soil and root habitats world-wide, but most (including P. mastophorum ) are considered to be minor pathogens. Our results indicate that jasmonate is essential for plant defense against Pythium and, because of the high exposure of plant roots to Pythium inoculum in soil, may well be fundamental to survival of plants in nature. Our results further indicate that the fad3–2 fad7–2 fad8 mutant is an appropriate genetic model for studying the role of this important signaling molecule in pathogen defense. jasmonic acid root rot defense signaling Pythium
To investigate the role of jasmonate in the defense of plants against fungal pathogens, we have studied a mutant of Arabidopsis , fad3–2 fad7–2 fad8 , that cannot accumulate jasmonate. Mutant plants were extremely susceptible to root rot caused by the fungal root pathogen Pythium mastophorum (Drechs.), even though neighboring wild-type plants were largely unaffected by this fungus. Application of exogenous methyl jasmonate substantially protected mutant plants, reducing the incidence of disease to a level close to that of wild-type controls. A similar treatment with methyl jasmonate did not protect the jasmonate-insensitive mutant coi1 from infection, showing that protective action of applied jasmonate against P. mastophorum was mediated by the induction of plant defense mechanisms rather than by a direct antifungal action. Transcripts of three jasmonate-responsive defense genes are induced by Pythium challenge in the wild-type but not in the jasmonate-deficient mutant. Pythium species are ubiquitous in soil and root habitats world-wide, but most (including P. mastophorum ) are considered to be minor pathogens. Our results indicate that jasmonate is essential for plant defense against Pythium and, because of the high exposure of plant roots to Pythium inoculum in soil, may well be fundamental to survival of plants in nature. Our results further indicate that the fad3–2 fad7–2 fad8 mutant is an appropriate genetic model for studying the role of this important signaling molecule in pathogen defense.
To investigate the role of jasmonate in the defense of plants against fungal pathogens, we have studied a mutant of Arabidopsis, fad3-2 fad7-2 fad8, that cannot accumulate jasmonate. Mutant plants were extremely susceptible to root rot caused by the fungal root pathogen Pythium mastophorum (Drechs.), even though neighboring wild-type plants were largely unaffected by this fungus. Application of exogenous methyl jasmonate substantially protected mutant plants, reducing the incidence of disease to a level close to that of wild-type controls. A similar treatment with methyl jasmonate did not protect the jasmonate-insensitive mutant coil1 from infection, showing that protective action of applied jasmonate against P. mastophorum was mediated by the induction of plant defense mechanisms rather than by a direct antifungal action. Transcripts of three jasmonate-responsive defense genes are induced by Pythium challenge in the wild-type but not in the jasmonate-deficient mutant. Pythium species are ubiquitous in soil and root habitats world-wide, but most (including P. mastophorum) are considered to be minor pathogens. Our results indicate that jasmonate is essential for plant defense against Pythium and, because of the high exposure of plant roots to Pythium inoculum in soil, may well be fundamental to survival of plants in nature. Our results further indicate that the fad3-2 fad7-2 fad8 mutant is an appropriate genetic model for studying the role of this important signaling molecule in pathogen defense.
To investigate the role of jasmonate in the defense of plants against fungal pathogens, we have studied a mutant of Arabidopsis, fad3-2 fad7-2 fad8, that cannot accumulate jasmonate. Mutant plants were extremely susceptible to root rot caused by the fungal root pathogen Pythium mastophorum (Drechs.), even though neighboring wild-type plants were largely unaffected by this fungus. Application of exogenous methyl jasmonate substantially protected mutant plants, reducing the incidence of disease to a level close to that of wild-type controls. A similar treatment with methyl jasmonate did not protect the jasmonate-insensitive mutant coi1 from infection, showing that protective action of applied jasmonate against P. mastophorum was mediated by the induction of plant defense mechanisms rather than by a direct antifungal action. Transcripts of three jasmonate-responsive defense genes are induced by Pythium challenge in the wild-type but not in the jasmonate-deficient mutant. Pythium species are ubiquitous in soil and root habitats world-wide, but most (including P. mastophorum) are considered to be minor pathogens. Our results indicate that jasmonate is essential for plant defense against Pythium and, because of the high exposure of plant roots to Pythium inoculum in soil, may well be fundamental to survival of plants in nature. Our results further indicate that the fad3-2 fad7-2 fad8 mutant is an appropriate genetic model for studying the role of this important signaling molecule in pathogen defense.To investigate the role of jasmonate in the defense of plants against fungal pathogens, we have studied a mutant of Arabidopsis, fad3-2 fad7-2 fad8, that cannot accumulate jasmonate. Mutant plants were extremely susceptible to root rot caused by the fungal root pathogen Pythium mastophorum (Drechs.), even though neighboring wild-type plants were largely unaffected by this fungus. Application of exogenous methyl jasmonate substantially protected mutant plants, reducing the incidence of disease to a level close to that of wild-type controls. A similar treatment with methyl jasmonate did not protect the jasmonate-insensitive mutant coi1 from infection, showing that protective action of applied jasmonate against P. mastophorum was mediated by the induction of plant defense mechanisms rather than by a direct antifungal action. Transcripts of three jasmonate-responsive defense genes are induced by Pythium challenge in the wild-type but not in the jasmonate-deficient mutant. Pythium species are ubiquitous in soil and root habitats world-wide, but most (including P. mastophorum) are considered to be minor pathogens. Our results indicate that jasmonate is essential for plant defense against Pythium and, because of the high exposure of plant roots to Pythium inoculum in soil, may well be fundamental to survival of plants in nature. Our results further indicate that the fad3-2 fad7-2 fad8 mutant is an appropriate genetic model for studying the role of this important signaling molecule in pathogen defense.
To investigate the role of jasmonate in the defense of plants against fungal pathogens, we have studied a mutant of Arabidopsis, fad3-2 fad7-2 fad8, that cannot accumulate jasmonate. Mutant plants were extremely susceptible to root rot caused by the fungal root pathogen Pythium mastophorum (Drechs.), even though neighboring wild-type plants were largely unaffected by this fungus. Application of exogenous methyl jasmonate substantially protected mutant plants, reducing the incidence of disease to a level close to that of wild-type controls. A similar treatment with methyl jasmonate did not protect the jasmonate-insensitive mutant coi1 from infection, showing that protective action of applied jasmonate against P. super( ) mastophorum was mediated by the induction of plant defense mechanisms rather than by a direct antifungal action. Transcripts of three jasmonate-responsive defense genes are induced by Pythium challenge in the wild-type but not in the jasmonate-deficient mutant. Pythium species are ubiquitous in soil and root habitats world-wide, but most (including P. mastophorum) are considered to be minor pathogens. Our results indicate that jasmonate is essential for plant defense against Pythium and, because of the high exposure of plant roots to Pythium inoculum in soil, may well be fundamental to survival of plants in nature. Our results further indicate that the fad3-2 super( ) fad7- 2 fad8 mutant is an appropriate genetic model for studying the role of this important signaling molecule in pathogen defense.
To investigate the role of jasmonate in the defense of plants against fungal pathogens, we have studied a mutant of Arabidopsis, fad3–2 fad7–2 fad8, that cannot accumulate jasmonate. Mutant plants were extremely susceptible to root rot caused by the fungal root pathogen Pythium mastophorum (Drechs.), even though neighboring wild-type plants were largely unaffected by this fungus. Application of exogenous methyl jasmonate substantially protected mutant plants, reducing the incidence of disease to a level close to that of wild-type controls. A similar treatment with methyl jasmonate did not protect the jasmonate-insensitive mutant coi1 from infection, showing that protective action of applied jasmonate against P. mastophorum was mediated by the induction of plant defense mechanisms rather than by a direct antifungal action. Transcripts of three jasmonate-responsive defense genes are induced by Pythium challenge in the wild-type but not in the jasmonate-deficient mutant. Pythium species are ubiquitous in soil and root habitats world-wide, but most (including P. mastophorum) are considered to be minor pathogens. Our results indicate that jasmonate is essential for plant defense against Pythium and, because of the high exposure of plant roots to Pythium inoculum in soil, may well be fundamental to survival of plants in nature. Our results further indicate that the fad3–2 fad7–2 fad8 mutant is an appropriate genetic model for studying the role of this important signaling molecule in pathogen defense.
To investigate the role of jasmonate in the defense of plants against fungal pathogens, we have studied a mutant of Arabidopsis, fad3-2 fad7-2 fad8, that cannot accumulate jasmonate. Mutant plants were extremely susceptible to root rot caused by the fungal root pathogen Pythium mastophorum (Drechs.), even though neighboring wild-type plants were largely unaffected by this fungus.
Author Vijayan, P. (Washington State University, Pullman, WA.)
Cook, R.J
Shockey, J
Levesque, C.A
Browse, J
AuthorAffiliation Institute of Biological Chemistry, Washington State University, P.O. Box 646340, Pullman, WA 99164-6340; † Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, BC V0H 1Z0, Canada; and ‡ United States Department of Agriculture–Agricultural Research Service, Root Disease and Biological Control Research Unit, 367 Johnson Hall, Washington State University, Pullman, WA 99164-6430
AuthorAffiliation_xml – name: Institute of Biological Chemistry, Washington State University, P.O. Box 646340, Pullman, WA 99164-6340; † Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, BC V0H 1Z0, Canada; and ‡ United States Department of Agriculture–Agricultural Research Service, Root Disease and Biological Control Research Unit, 367 Johnson Hall, Washington State University, Pullman, WA 99164-6430
Author_xml – sequence: 1
  fullname: Vijayan, P. (Washington State University, Pullman, WA.)
– sequence: 2
  fullname: Shockey, J
– sequence: 3
  fullname: Levesque, C.A
– sequence: 4
  fullname: Cook, R.J
– sequence: 5
  fullname: Browse, J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/9618564$$D View this record in MEDLINE/PubMed
BookMark eNqFks1rFDEYxoNU6rZ6FgRl8KCn2eb7A7wsxS8oeNCeQ3Ym2WaZTcYkU_S_N-Ouqxa0pxye3_PmfZLnDJyEGCwATxFcIijIxRhMXiq2RHgpMFQPwAJBhVpOFTwBCwixaCXF9BE4y3kLIVRMwlNwqjiSjNMF4KsmxcE20TVbk3cxmGIbH5rRlJu4saHprbMh_wRWyax9H8fs82Pw0Jkh2yeH8xxcv3v75fJDe_Xp_cfL1VXbMQJLKxHEnaHE9Z2sNyor11hKw4V1ne2VYr0SXKyNIz3spDOQUGiF40g5J0yHyTl4s587Tuud7TsbSjKDHpPfmfRdR-P130rwN3oTbzXGQpJqf3Wwp_h1srnonc-dHQYTbJyy5gpzDpW6F6ScCEbR_SDihAlO581f3gG3cUqhPpbGEBFO670Vev5nvGOuw_dUne31LsWck3W688UUH-ewftAI6rkFem6BVkwjrOcWVN_FHd-vyf92vD5sMgvHPY6AdtMwFPutVPLFf8kKPNsD21xiOhKU1WL-TuxM1GaTfNbXn5FSqnYTK0Z-AJQr3kM
CitedBy_id crossref_primary_10_1016_j_pmpp_2019_101444
crossref_primary_10_1016_j_plaphy_2016_02_027
crossref_primary_10_1016_S0952_7915_00_00183_7
crossref_primary_10_1016_S1360_1385_02_02290_2
crossref_primary_10_1111_j_1365_313X_2006_02712_x
crossref_primary_10_1007_s11103_007_9278_0
crossref_primary_10_1016_j_pmpp_2018_11_002
crossref_primary_10_1371_journal_pone_0180523
crossref_primary_10_1016_S0014_5793_01_03019_8
crossref_primary_10_1111_tpj_13131
crossref_primary_10_1094_MPMI_1999_12_7_640
crossref_primary_10_1094_MPMI_2001_14_4_527
crossref_primary_10_3389_fmicb_2020_00034
crossref_primary_10_1105_tpc_106_046052
crossref_primary_10_1046_j_1365_313X_1998_00265_x
crossref_primary_10_1002_pmic_200600470
crossref_primary_10_1134_S1021443708050026
crossref_primary_10_1007_s00468_018_1745_5
crossref_primary_10_1371_journal_pone_0190341
crossref_primary_10_1007_s11101_018_9595_8
crossref_primary_10_1006_abbi_2000_1961
crossref_primary_10_1111_j_1399_3054_2007_00907_x
crossref_primary_10_1111_tpj_12058
crossref_primary_10_1093_pcp_pcz236
crossref_primary_10_1105_tpc_113_121731
crossref_primary_10_1073_pnas_151258398
crossref_primary_10_3923_pjbs_2001_508_510
crossref_primary_10_1111_ppa_12190
crossref_primary_10_1038_srep24778
crossref_primary_10_1094_MPMI_20_2_0146
crossref_primary_10_3389_fpls_2022_1050216
crossref_primary_10_1006_jmbi_1999_2992
crossref_primary_10_1007_s13353_014_0227_8
crossref_primary_10_1016_j_plantsci_2023_111972
crossref_primary_10_3390_ijms22168859
crossref_primary_10_1111_j_1469_8137_2010_03622_x
crossref_primary_10_1007_s00122_009_1038_x
crossref_primary_10_1111_plb_12726
crossref_primary_10_1016_j_biocontrol_2010_07_009
crossref_primary_10_1094_MPMI_19_1127
crossref_primary_10_1093_pcp_pcad163
crossref_primary_10_1007_s00344_024_11620_4
crossref_primary_10_1186_s13007_023_01025_x
crossref_primary_10_1093_jxb_erab418
crossref_primary_10_1016_S1369_5266_02_00275_3
crossref_primary_10_1007_s00299_013_1441_2
crossref_primary_10_1139_B10_067
crossref_primary_10_1007_s10059_010_0059_2
crossref_primary_10_1186_s12870_016_0856_7
crossref_primary_10_3389_fpls_2021_609870
crossref_primary_10_1111_j_1744_7909_2012_01098_x
crossref_primary_10_1016_j_plipres_2019_100990
crossref_primary_10_1016_j_envexpbot_2016_09_004
crossref_primary_10_1046_j_1365_313x_2000_00692_x
crossref_primary_10_1038_s41467_024_52761_0
crossref_primary_10_1603_0046_225X_32_1_220
crossref_primary_10_1007_s10886_005_6070_y
crossref_primary_10_1111_pbi_12417
crossref_primary_10_1094_MPMI_2003_16_2_141
crossref_primary_10_1073_pnas_231480898
crossref_primary_10_1146_annurev_phyto_41_052002_095505
crossref_primary_10_1094_MPMI_34_6
crossref_primary_10_3390_ijms12063473
crossref_primary_10_1007_s00344_004_0031_5
crossref_primary_10_1016_S0168_9452_00_00210_7
crossref_primary_10_1007_s12892_019_0352_0
crossref_primary_10_1074_jbc_M207234200
crossref_primary_10_1007_BF02637262
crossref_primary_10_1111_j_1365_3040_2012_02495_x
crossref_primary_10_1007_BF02637265
crossref_primary_10_1104_pp_010843
crossref_primary_10_1104_pp_005272
crossref_primary_10_1080_00380768_2017_1403842
crossref_primary_10_1093_plcell_koae161
crossref_primary_10_1105_tpc_006999
crossref_primary_10_1186_s12864_020_07286_3
crossref_primary_10_1006_bbrc_2002_6637
crossref_primary_10_1111_febs_12920
crossref_primary_10_1021_jf062339w
crossref_primary_10_1093_treephys_tpt018
crossref_primary_10_1371_journal_pone_0091741
crossref_primary_10_1007_s00344_021_10362_x
crossref_primary_10_1016_S0168_9452_99_00046_1
crossref_primary_10_1094_MPMI_2004_17_7_763
crossref_primary_10_1094_MPMI_2004_17_12_1394
crossref_primary_10_3390_ijms22095001
crossref_primary_10_1006_abbi_2000_1810
crossref_primary_10_5458_jag_jag_JAG_2010_013
crossref_primary_10_1111_1744_7917_12010
crossref_primary_10_1104_pp_126_4_1678
crossref_primary_10_1016_j_fcr_2023_109066
crossref_primary_10_1155_2018_8517018
crossref_primary_10_3389_fpls_2016_00570
crossref_primary_10_1371_journal_pone_0050089
crossref_primary_10_1016_j_rsci_2019_03_001
crossref_primary_10_1111_nph_17477
crossref_primary_10_1111_j_1445_6664_2008_00280_x
crossref_primary_10_1016_j_plantsci_2004_01_008
crossref_primary_10_1104_pp_111_174169
crossref_primary_10_1104_pp_105_069625
crossref_primary_10_1046_j_1365_313x_2000_00802_x
crossref_primary_10_1093_aob_mcl034
crossref_primary_10_1016_j_pmpp_2004_07_003
crossref_primary_10_1111_pbi_13709
crossref_primary_10_3390_plants8080285
crossref_primary_10_1111_j_1744_7909_2006_00416_x
crossref_primary_10_1038_hortres_2014_53
crossref_primary_10_1007_s13369_017_2603_2
crossref_primary_10_1016_j_phytochem_2009_07_018
crossref_primary_10_1007_s10142_015_0468_6
crossref_primary_10_1271_bbb_120889
crossref_primary_10_1093_pcp_pcf144
crossref_primary_10_1094_MPMI_2000_13_4_430
crossref_primary_10_1163_15685411_00003205
crossref_primary_10_1046_j_1365_313x_2002_01199_x
crossref_primary_10_1007_s00425_012_1698_7
crossref_primary_10_1016_j_plaphy_2007_12_007
crossref_primary_10_1007_s10142_014_0379_y
crossref_primary_10_1104_pp_125_2_652
crossref_primary_10_1111_j_1399_3054_2007_00975_x
crossref_primary_10_3390_pathogens11101136
crossref_primary_10_4161_psb_5_8_12231
crossref_primary_10_1007_s10327_019_00891_5
crossref_primary_10_1046_j_1365_313X_2002_01453_x
crossref_primary_10_1199_tab_0136
crossref_primary_10_1038_hortres_2014_43
crossref_primary_10_1080_07060661_2012_662176
crossref_primary_10_1126_science_1071547
crossref_primary_10_1199_tab_0012
crossref_primary_10_1104_pp_113_214544
crossref_primary_10_1016_j_molp_2022_08_011
crossref_primary_10_1016_j_pmpp_2003_10_003
crossref_primary_10_1081_PLN_200055532
crossref_primary_10_1093_mp_ssn095
crossref_primary_10_1111_tpj_14871
crossref_primary_10_1016_j_plantsci_2004_09_006
crossref_primary_10_3390_genes16010026
crossref_primary_10_3390_ijms20215359
crossref_primary_10_1006_pmpp_1999_0215
crossref_primary_10_1016_j_micpath_2018_08_034
crossref_primary_10_1111_pce_13721
crossref_primary_10_1146_annurev_phyto_081211_172955
crossref_primary_10_1111_ppl_14307
crossref_primary_10_1002_ps_8407
crossref_primary_10_1007_s00425_009_0969_4
crossref_primary_10_1094_MPMI_2003_16_7_588
crossref_primary_10_1007_s00344_004_0030_6
crossref_primary_10_1007_s00425_009_0890_x
crossref_primary_10_1034_j_1399_3054_2003_00124_x
crossref_primary_10_1007_s00425_013_1840_1
crossref_primary_10_1006_pmpp_1999_0205
crossref_primary_10_1007_s11427_013_4590_1
crossref_primary_10_1104_pp_104_057794
crossref_primary_10_1007_s11103_011_9810_0
crossref_primary_10_1111_tpj_12556
crossref_primary_10_1007_BF03030621
crossref_primary_10_1038_s41598_020_76210_2
crossref_primary_10_1038_nchembio_1575
crossref_primary_10_3390_plants12102050
crossref_primary_10_1007_BF02708414
crossref_primary_10_3390_agronomy12081785
crossref_primary_10_1038_s41598_018_33113_7
crossref_primary_10_1146_annurev_phyto_080508_081820
crossref_primary_10_1016_S0168_9452_99_00131_4
crossref_primary_10_1139_b03_151
crossref_primary_10_1046_j_1365_313X_2001_01148_x
crossref_primary_10_1074_jbc_M008606200
crossref_primary_10_1126_stke_3222006cm3
crossref_primary_10_1007_BF03183717
crossref_primary_10_1007_s00299_011_1221_9
crossref_primary_10_1371_journal_pone_0028810
crossref_primary_10_1371_journal_pgen_1000273
crossref_primary_10_3389_fpls_2018_00002
crossref_primary_10_1080_17429145_2018_1550217
crossref_primary_10_1016_j_compbiolchem_2016_07_002
crossref_primary_10_1023_B_BIOP_0000033456_27521_e5
crossref_primary_10_1093_jxb_erv190
crossref_primary_10_1094_MPMI_07_14_0194_R
crossref_primary_10_1111_j_1439_0434_2006_01191_x
crossref_primary_10_1094_MPMI_2002_15_10_1078
crossref_primary_10_1111_j_1469_8137_2010_03272_x
crossref_primary_10_1094_MPMI_12_20_0345_R
crossref_primary_10_1104_pp_109_148106
crossref_primary_10_1016_S1360_1385_99_01404_1
crossref_primary_10_3390_ijms18040712
crossref_primary_10_1104_pp_109_139550
crossref_primary_10_1016_S1388_1981_02_00268_8
crossref_primary_10_1094_MPMI_18_0819
crossref_primary_10_1016_S0981_9428_00_00756_7
crossref_primary_10_1177_1934578X0800300803
crossref_primary_10_1007_s11105_014_0822_1
crossref_primary_10_1016_j_micres_2018_04_008
crossref_primary_10_5423_PPJ_OA_08_2023_0112
crossref_primary_10_1094_MPMI_1999_12_1_74
crossref_primary_10_1111_ppl_12320
crossref_primary_10_1016_j_jprot_2009_07_005
crossref_primary_10_1046_j_1364_3703_2001_00063_x
crossref_primary_10_1111_j_1744_7909_2006_00405_x
crossref_primary_10_1007_s11515_011_1171_1
crossref_primary_10_1007_s10658_014_0453_2
crossref_primary_10_1111_pce_12952
crossref_primary_10_1016_j_devcel_2010_10_024
crossref_primary_10_1074_jbc_M008872200
crossref_primary_10_3390_ijms26051930
crossref_primary_10_1016_j_phytochem_2009_05_018
crossref_primary_10_1038_sj_cr_7310053
crossref_primary_10_1016_j_tplants_2014_09_007
crossref_primary_10_1104_pp_107_115683
crossref_primary_10_1111_j_1364_3703_2011_00727_x
crossref_primary_10_1016_S0014_5793_01_02331_6
crossref_primary_10_15252_embj_2018100972
crossref_primary_10_1093_pcp_pch165
crossref_primary_10_1016_j_micres_2016_08_007
crossref_primary_10_1016_j_plantsci_2008_11_003
crossref_primary_10_1073_pnas_96_6_3292
crossref_primary_10_1094_MPMI_18_1285
crossref_primary_10_1094_MPMI_2002_15_10_1025
crossref_primary_10_1111_j_1364_3703_2004_00242_x
crossref_primary_10_1146_annurev_nutr_24_121803_063211
crossref_primary_10_1111_tpj_12728
crossref_primary_10_6090_jarq_44_391
crossref_primary_10_1126_scisignal_259pe9
crossref_primary_10_1073_pnas_211311098
crossref_primary_10_7717_peerj_7536
crossref_primary_10_1016_j_phytochem_2009_08_004
crossref_primary_10_1007_s00344_018_9863_2
crossref_primary_10_1093_jexbot_51_348_1267
crossref_primary_10_1038_s41598_023_47456_3
crossref_primary_10_1111_j_1364_3703_2010_00675_x
crossref_primary_10_1016_j_pmpp_2005_12_007
crossref_primary_10_1016_S1360_1385_98_01364_8
crossref_primary_10_1016_j_pmpp_2005_12_002
crossref_primary_10_1093_jxb_erae006
crossref_primary_10_1007_s10658_012_9972_x
crossref_primary_10_1007_s11103_018_0702_4
crossref_primary_10_1073_pnas_130425197
crossref_primary_10_1105_tpc_007468
crossref_primary_10_1007_s00049_009_0032_8
crossref_primary_10_1104_pp_102_017814
crossref_primary_10_1016_j_pestbp_2019_03_020
crossref_primary_10_1186_1471_2164_13_9
crossref_primary_10_3390_ijms21062042
crossref_primary_10_1080_07060660109506935
crossref_primary_10_3390_genes9070339
crossref_primary_10_1016_j_phytochem_2010_04_025
crossref_primary_10_1046_j_1365_313x_1999_00595_x
crossref_primary_10_1093_pcp_pcr156
crossref_primary_10_1007_s11104_004_7328_9
crossref_primary_10_1104_pp_120_1_227
crossref_primary_10_1105_tpc_113_120394
crossref_primary_10_1007_s11103_009_9539_1
crossref_primary_10_1016_S1360_1385_02_02250_1
crossref_primary_10_1007_BF03175019
crossref_primary_10_1111_j_1742_4658_2009_07195_x
crossref_primary_10_1016_j_molp_2018_07_007
crossref_primary_10_1006_pmpp_2000_0291
crossref_primary_10_1073_pnas_0605946103
crossref_primary_10_1080_10715760500072115
crossref_primary_10_1111_j_1365_3040_2011_02412_x
crossref_primary_10_3390_plants13081129
crossref_primary_10_1007_s10340_025_01872_8
crossref_primary_10_1371_journal_pgen_1000545
crossref_primary_10_1111_j_0105_2896_2004_0129_x
crossref_primary_10_1016_S0981_9428_03_00142_6
crossref_primary_10_1016_j_plantsci_2020_110682
crossref_primary_10_1073_pnas_95_25_15107
crossref_primary_10_1016_j_hpj_2022_11_014
crossref_primary_10_1007_s00425_019_03334_9
crossref_primary_10_1105_tpc_111_083261
crossref_primary_10_1016_j_febslet_2012_06_046
crossref_primary_10_1046_j_1365_313X_2003_01619_x
crossref_primary_10_1007_s11738_002_0051_3
crossref_primary_10_1007_s00299_011_1180_1
crossref_primary_10_1016_j_pmpp_2016_09_002
crossref_primary_10_1007_s10886_014_0468_3
crossref_primary_10_1094_MPMI_2002_15_1_27
crossref_primary_10_1074_jbc_M807114200
crossref_primary_10_1016_S0168_9452_99_00119_3
crossref_primary_10_1002_ps_1026
crossref_primary_10_1094_MPMI_2003_16_5_447
crossref_primary_10_1104_pp_121_4_1093
crossref_primary_10_1038_s41598_019_42177_y
crossref_primary_10_1111_j_1365_3059_2007_01699_x
crossref_primary_10_1146_annurev_arplant_043008_092007
crossref_primary_10_1093_jxb_erq240
crossref_primary_10_3390_ijms22115473
crossref_primary_10_1071_CP15314
crossref_primary_10_1093_jxb_err335
crossref_primary_10_1007_s13313_025_01032_7
crossref_primary_10_1104_pp_104_041566
crossref_primary_10_1007_s11745_008_3245_7
crossref_primary_10_1094_PDIS_03_14_0285_RE
crossref_primary_10_1016_S0167_4838_99_00269_1
crossref_primary_10_1093_treephys_tpad121
crossref_primary_10_1016_j_jplph_2015_01_018
crossref_primary_10_1146_annurev_phyto_44_070505_143425
crossref_primary_10_1016_j_plaphy_2009_12_003
crossref_primary_10_1111_j_1365_313X_2004_02142_x
crossref_primary_10_5423_RPD_2015_21_3_161
crossref_primary_10_1105_tpc_111_083089
crossref_primary_10_1046_j_1365_313x_2002_01190_x
crossref_primary_10_1038_srep37674
crossref_primary_10_1146_annurev_genet_102209_163500
crossref_primary_10_1093_pcp_pcm107
crossref_primary_10_1111_j_1365_313X_2001_00952_x
crossref_primary_10_1104_pp_103_030379
crossref_primary_10_1094_PHYTO_11_18_0427_R
crossref_primary_10_1105_tpc_106_048041
crossref_primary_10_1111_tpj_15372
crossref_primary_10_1186_s12864_015_1363_1
crossref_primary_10_1093_jxb_erac116
crossref_primary_10_1074_jbc_M107763200
crossref_primary_10_3724_SP_J_1006_2011_02152
crossref_primary_10_1105_tpc_113_112631
crossref_primary_10_1111_j_1439_0434_2004_00885_x
crossref_primary_10_1128_EC_2_2_191_199_2003
crossref_primary_10_1007_s10482_018_1017_9
crossref_primary_10_1163_15685411_00002818
crossref_primary_10_1007_s00572_013_0513_z
crossref_primary_10_1046_j_1365_313x_2002_01191_x
crossref_primary_10_1007_s40415_016_0276_9
crossref_primary_10_1079_IVP2005711
crossref_primary_10_1111_pbi_14149
crossref_primary_10_1016_j_pbi_2005_07_003
crossref_primary_10_1073_pnas_190264497
crossref_primary_10_1111_j_1744_7909_2008_00715_x
crossref_primary_10_1016_S0960_9822_99_80140_7
crossref_primary_10_4161_psb_22098
crossref_primary_10_1126_scisignal_3109cm3
crossref_primary_10_1111_j_1744_7909_2006_00335_x
crossref_primary_10_1046_j_1365_313x_2001_01050_x
crossref_primary_10_1051_e3sconf_202346701013
crossref_primary_10_1093_pcp_pcx112
crossref_primary_10_1186_1471_2229_9_68
crossref_primary_10_1073_pnas_0603727103
crossref_primary_10_1111_j_1365_313X_2009_03831_x
crossref_primary_10_1016_S0031_9422_98_00596_2
crossref_primary_10_1534_genetics_118_300478
crossref_primary_10_1016_j_envpol_2023_122435
crossref_primary_10_1007_s00344_016_9630_1
crossref_primary_10_1073_pnas_092064799
crossref_primary_10_1007_s00425_004_1347_x
crossref_primary_10_1111_j_1365_313X_2006_02756_x
crossref_primary_10_1111_ppa_13867
crossref_primary_10_1016_j_plaphy_2019_05_032
crossref_primary_10_3390_plants8090321
crossref_primary_10_1016_j_bbalip_2005_03_001
crossref_primary_10_1094_PHYTO_2000_90_8_801
crossref_primary_10_1111_nph_17549
crossref_primary_10_1007_s00344_004_0035_1
crossref_primary_10_1080_07352689_2001_10131828
crossref_primary_10_1093_jxb_err381
crossref_primary_10_1371_journal_ppat_1011340
crossref_primary_10_1073_pnas_0308555101
crossref_primary_10_1038_nature05960
crossref_primary_10_1016_j_plantsci_2004_10_006
crossref_primary_10_1093_jxb_51_348_1267
crossref_primary_10_3389_fsufs_2022_916795
crossref_primary_10_1016_S0981_9428_01_01282_7
crossref_primary_10_3390_plants5010006
crossref_primary_10_1016_S1016_8478_23_15032_1
crossref_primary_10_1111_j_1469_8137_2008_02735_x
crossref_primary_10_1007_s00299_013_1508_0
crossref_primary_10_1016_j_bcab_2019_101337
crossref_primary_10_1007_s11103_006_9086_y
crossref_primary_10_1046_j_1365_3040_1999_00499_x
crossref_primary_10_1094_MPMI_18_1107
crossref_primary_10_1007_s11099_008_0030_z
crossref_primary_10_3389_fpls_2018_01916
crossref_primary_10_1104_pp_109_142158
crossref_primary_10_1046_j_1439_0434_2003_00798_x
crossref_primary_10_1016_j_plantsci_2014_02_001
crossref_primary_10_1046_j_1469_8137_2003_00883_x
crossref_primary_10_1094_MPMI_22_4_0469
crossref_primary_10_1016_j_plantsci_2008_01_008
crossref_primary_10_1016_j_pmpp_2009_09_005
crossref_primary_10_1111_nph_13395
crossref_primary_10_1007_s10658_010_9729_3
crossref_primary_10_1016_j_celrep_2017_04_057
crossref_primary_10_1016_j_plantsci_2010_10_002
crossref_primary_10_5423_PPJ_2008_24_2_101
crossref_primary_10_1055_s_2006_924025
crossref_primary_10_1007_s00425_018_3001_z
crossref_primary_10_1016_S0163_7827_01_00027_3
crossref_primary_10_1111_j_1364_3703_2006_00349_x
crossref_primary_10_1111_pce_13131
crossref_primary_10_1016_j_bbrc_2011_05_055
crossref_primary_10_1016_S0168_9452_00_00285_5
crossref_primary_10_1104_pp_105_071662
crossref_primary_10_1146_annurev_micro_020518_120022
Cites_doi 10.2307/3870321
10.1073/pnas.95.4.1933
10.1073/pnas.92.10.4099
10.1073/pnas.89.11.4938
10.1104/pp.102.2.503
10.2307/3870230
10.1080/07060669209500908
10.1007/BF01874788
10.2307/3869877
10.1146/annurev.pp.40.060189.002023
10.1104/pp.101.2.441
10.2307/3869886
10.1104/pp.109.3.813
10.1104/pp.103.4.1133
10.1126/science.273.5283.1853
10.1104/pp.101.1.13
10.1126/science.266.5188.1247
10.1073/pnas.92.10.4095
10.1073/pnas.94.10.5473
10.1016/S0014-5793(96)01378-6
10.1007/BF00232985
10.1094/Phyto-77-1192
10.1073/pnas.92.10.4202
10.1126/science.276.5313.726
10.2307/3870231
10.1016/0962-8924(92)90311-A
10.1073/pnas.92.10.4197
10.1094/PHYTO.1998.88.3.213
ContentType Journal Article
Copyright Copyright 1993-1998 National Academy of Sciences
Copyright National Academy of Sciences Jun 9, 1998
Copyright © 1998, The National Academy of Sciences 1998
Copyright_xml – notice: Copyright 1993-1998 National Academy of Sciences
– notice: Copyright National Academy of Sciences Jun 9, 1998
– notice: Copyright © 1998, The National Academy of Sciences 1998
DBID FBQ
AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.95.12.7209
DatabaseName AGRIS
CrossRef
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList

CrossRef
AGRICOLA
MEDLINE - Academic
Genetics Abstracts

Virology and AIDS Abstracts

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Botany
EISSN 1091-6490
EndPage 7214
ExternalDocumentID PMC22783
34032088
9618564
10_1073_pnas_95_12_7209
95_12_7209
45091
US1999000295
Genre Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACKIV
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FBQ
FRP
GX1
H13
HGD
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
ZCG
~02
~KM
ADXHL
-
02
08R
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AFDAS
AJYGW
AS
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
GJ
JSODD
KM
OHM
PQEST
RHF
VQA
X
XFK
XHC
ZA5
AAYXX
CITATION
NPM
VXZ
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c530t-8102ca43fdc86189e8b288a67efced995d9767baf3d0c8fa0340e7f619ff7ac23
ISSN 0027-8424
IngestDate Tue Sep 30 16:02:31 EDT 2025
Fri Sep 05 05:32:30 EDT 2025
Fri Sep 05 12:40:46 EDT 2025
Fri Sep 05 10:25:36 EDT 2025
Mon Jun 30 08:31:29 EDT 2025
Wed Feb 19 02:33:55 EST 2025
Wed Oct 01 01:20:53 EDT 2025
Thu Apr 24 23:03:16 EDT 2025
Thu May 30 08:52:09 EDT 2019
Wed Nov 11 00:29:20 EST 2020
Thu May 29 08:40:56 EDT 2025
Thu Apr 03 09:44:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c530t-8102ca43fdc86189e8b288a67efced995d9767baf3d0c8fa0340e7f619ff7ac23
Notes F30
1999000295
H20
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
To whom reprint requests should be addressed. e-mail: jab@wsu.edu.
Contributed by R. James Cook
PMID 9618564
PQID 201364609
PQPubID 42026
PageCount 6
ParticipantIDs proquest_miscellaneous_46375419
pubmedcentral_primary_oai_pubmedcentral_nih_gov_22783
pnas_primary_95_12_7209
proquest_miscellaneous_69266099
proquest_journals_201364609
crossref_primary_10_1073_pnas_95_12_7209
crossref_citationtrail_10_1073_pnas_95_12_7209
jstor_primary_45091
pubmed_primary_9618564
proquest_miscellaneous_16357642
fao_agris_US1999000295
pnas_primary_95_12_7209_fulltext
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 1900
PublicationDate (9 Jun 1998)
19980609
1998-06-09
1998-Jun-09
PublicationDateYYYYMMDD 1998-06-09
PublicationDate_xml – month: 06
  year: 1998
  text: (9 Jun 1998)
  day: 09
PublicationDecade 1990
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 1998
Publisher National Academy of Sciences of the United States of America
National Acad Sciences
National Academy of Sciences
The National Academy of Sciences
Publisher_xml – name: National Academy of Sciences of the United States of America
– name: National Acad Sciences
– name: National Academy of Sciences
– name: The National Academy of Sciences
References Hammond-Kosack K E (e_1_3_3_4_2) 1986; 8
Howe G A (e_1_3_3_10_2) 1996; 8
e_1_3_3_17_2
e_1_3_3_16_2
Wilhelm S (e_1_3_3_33_2) 1965; 55
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_32_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_31_2
Penninckx I A M A (e_1_3_3_13_2) 1996; 8
Van der Plaats-Niterink A J (e_1_3_3_20_2) 1981
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
Salt G A (e_1_3_3_29_2) 1979
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_1_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_19_2
  doi: 10.2307/3870321
– ident: e_1_3_3_30_2
  doi: 10.1073/pnas.95.4.1933
– ident: e_1_3_3_12_2
  doi: 10.1073/pnas.92.10.4099
– ident: e_1_3_3_22_2
  doi: 10.1073/pnas.89.11.4938
– volume: 8
  start-page: 2067
  year: 1996
  ident: e_1_3_3_10_2
  publication-title: Plant Cell
– ident: e_1_3_3_26_2
  doi: 10.1104/pp.102.2.503
– ident: e_1_3_3_2_2
  doi: 10.2307/3870230
– ident: e_1_3_3_32_2
  doi: 10.1080/07060669209500908
– ident: e_1_3_3_17_2
  doi: 10.1007/BF01874788
– ident: e_1_3_3_18_2
  doi: 10.2307/3869877
– ident: e_1_3_3_28_2
  doi: 10.1146/annurev.pp.40.060189.002023
– ident: e_1_3_3_23_2
  doi: 10.1104/pp.101.2.441
– ident: e_1_3_3_16_2
  doi: 10.2307/3869886
– ident: e_1_3_3_14_2
  doi: 10.1104/pp.109.3.813
– ident: e_1_3_3_24_2
  doi: 10.1104/pp.103.4.1133
– ident: e_1_3_3_7_2
  doi: 10.1126/science.273.5283.1853
– ident: e_1_3_3_27_2
  doi: 10.1104/pp.101.1.13
– volume: 8
  start-page: 1773
  year: 1986
  ident: e_1_3_3_4_2
  publication-title: Plant Cell
– ident: e_1_3_3_6_2
  doi: 10.1126/science.266.5188.1247
– ident: e_1_3_3_8_2
  doi: 10.1073/pnas.92.10.4095
– ident: e_1_3_3_11_2
  doi: 10.1073/pnas.94.10.5473
– ident: e_1_3_3_15_2
  doi: 10.1016/S0014-5793(96)01378-6
– ident: e_1_3_3_21_2
  doi: 10.1007/BF00232985
– start-page: 289
  volume-title: Soil-Borne Plant Pathogens
  year: 1979
  ident: e_1_3_3_29_2
– ident: e_1_3_3_31_2
  doi: 10.1094/Phyto-77-1192
– ident: e_1_3_3_5_2
  doi: 10.1073/pnas.92.10.4202
– ident: e_1_3_3_1_2
  doi: 10.1126/science.276.5313.726
– ident: e_1_3_3_3_2
  doi: 10.2307/3870231
– ident: e_1_3_3_9_2
  doi: 10.1016/0962-8924(92)90311-A
– ident: e_1_3_3_34_2
  doi: 10.1073/pnas.92.10.4197
– volume: 8
  start-page: 2309
  year: 1996
  ident: e_1_3_3_13_2
  publication-title: Plant Cell
– volume: 55
  start-page: 1016
  year: 1965
  ident: e_1_3_3_33_2
  publication-title: Phytopathology
– ident: e_1_3_3_25_2
  doi: 10.1094/PHYTO.1998.88.3.213
– start-page: 1
  volume-title: Studies in Mycology No. 21
  year: 1981
  ident: e_1_3_3_20_2
SSID ssj0009580
Score 2.1550794
Snippet To investigate the role of jasmonate in the defense of plants against fungal pathogens, we have studied a mutant of Arabidopsis, fad3-2 fad7-2 fad8, that...
To investigate the role of jasmonate in the defense of plants against fungal pathogens, we have studied a mutant of Arabidopsis , fad3–2 fad7–2 fad8 , that...
To investigate the role of jasmonate in the defense of plants against fungal pathogens, we have studied a mutant of Arabidopsis , fad3–2 fad7–2 fad8 , that...
To investigate the role of jasmonate in the defense of plants against fungal pathogens, we have studied a mutant of Arabidopsis, fad3–2 fad7–2 fad8, that...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7209
SubjectTerms ACIDE JASMONIQUE
ACIDO JASMONICO
ARABIDOPSIS THALIANA
ARN MENSAJERO
ARN MESSAGER
Biological Sciences
BIOSINTESIS
BIOSYNTHESE
BIOSYNTHESIS
Botany
DEFENCE MECHANISMS
defense mechanisms
DERIVATIVES
DISEASE RESISTANCE
ENFERMEDADES FUNGOSAS
ESPORAS FUNGICAS
ESPORULACION
EXPRESION GENICA
EXPRESSION DES GENES
Flowers & plants
FUNGAL DISEASES
fungal diseases of plants
FUNGAL SPORES
Fungi
GENE EXPRESSION
Genes
Genetics
GROWTH RATE
HYPHAE
INDICE DE CRECIMIENTO
Infections
Inoculation
JASMONIC ACID
MALADIE FONGIQUE
MECANISME DE DEFENSE
MECANISMOS DE DEFENSA
MESSENGER RNA
METHYL JASMONATE
MICELIO
MUTANT
MUTANTES
MUTANTS
Mutation
MYCELIUM
OOSPORES
Pathogens
Plant cells
Plant growth
Plant roots
Plants
PODREDUMBRE DE LA RAIZ
POURRITURE DES RACINES
PYTHIUM
PYTHIUM MASTOPHORUM
RESISTANCE AUX MALADIES
RESISTENCIA A LA ENFERMEDAD
root rot
ROOT ROTS
Rooting
SPORE FONGIQUE
SPORULATION
SUSCEPTIBILITY
TAUX DE CROISSANCE
Title A role of jasmonate in pathogen defense of Arabidopsis
URI https://www.jstor.org/stable/45091
http://www.pnas.org/content/95/12/7209.abstract
https://www.ncbi.nlm.nih.gov/pubmed/9618564
https://www.proquest.com/docview/201364609
https://www.proquest.com/docview/16357642
https://www.proquest.com/docview/46375419
https://www.proquest.com/docview/69266099
https://pubmed.ncbi.nlm.nih.gov/PMC22783
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250401
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: HH5
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150115
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: DIK
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250401
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: RPM
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe68cILYoNBGB9-4GGoSsmHYyePFQKmCaqKrahvkZPYrIglU9Miwb_BP8xdnK-OdgJeotROTo7vej6f735HyMtAJGB2a2YjkorNdOrYId45jnJZEHmBjjAb-eOEn87Y2TyYDwa_elFL61UySn9uzSv5H65CG_AVs2T_gbMtUWiAe-AvXIHDcP0rHo-HnzA4ECMFz2R5hY7wCgNkCmZdAW-BNtGwTa3cAuOlTBZZcV0uyr5BOm0XsLIJF5g0_sFxl21Sq4ByaA-nk6528efFV_nDuFCnarm-km28xvllgfrBBOK2bvsP6rsqYSWq3LMjE03ZnoKAuV8xfGRCdzt_hEnQ47bTab1bx1h_x4Y5XU2BOZ3qK2oPFk9m0qsbRW2qcTYC6fXUrvDqEaj6p0lM_WN5AH2GNY1zWY6iAN3A3YsbmNsMzag9cscTnGNZjPdzt4fkHJq8pnqEDV6U8F_fILxh6uxpWTQxrwikC49u29TcjM3tGTsX98m9epdCx0bkDshA5YfkoJlgelKDlb96QMSYogxSkEHayiBd5LSRQVrLIC007cngQzJ79_bizaldF-Ow08B3VnYIlmgqma-zNORuGKkw8cJQcqF0qrIoCjIwbEUitZ85aail4zNHCQ37c62FTD3_iOznRa4eE-pwnQRZIiI3cRGfLxHClR6LdCJDLrS0yKiZtzitkeqxYMq3uIqYEH6MsxdHQex6MU60RU7aF64NSMvuR4-AEbH8AktoPDtHEA40CqLAIocVb1oClQxY5FFFoGnsE6I7emJdh21Z5Ljhb1xrjTL2ECSRcSTwou0FlY7ndDJXxbqMXcSI5Mzb_QTjWLnavYUGj8Dyht0ffK-Rp26gwL2AM4sEG4LW9iPe_GZPvriscOcxa95_snWejsndThc8Jfur5Vo9A2t9lTyv_j2_AZEm6Rk
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Role+for+Jasmonate+in+Pathogen+Defense+of+Arabidopsis&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Vijayan%2C+Perumal&rft.au=Shockey%2C+Jay&rft.au=Levesque%2C+C.+Andre&rft.au=Cook%2C+R.+James&rft.date=1998-06-09&rft.pub=National+Academy+of+Sciences+of+the+United+States+of+America&rft.issn=0027-8424&rft.volume=95&rft.issue=12&rft.spage=7209&rft.epage=7214&rft_id=info:doi/10.1073%2Fpnas.95.12.7209&rft.externalDocID=45091
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F95%2F12.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F95%2F12.cover.gif