Three kingdoms and one ceramide to rule them all. A comparison of the structural basis of ceramide-dependent regulation of sphingolipid biosynthesis in animals, plants, and fungi
Sphingolipids are a diverse class of lipids with essential functions as determinants of membrane physical properties and as intra- and intercellular signaling agents. Disruption of the normal biochemical processes that establish the levels of individual sphingolipids is associated with a variety of...
Saved in:
Published in | Advances in biological regulation Vol. 91; p. 101010 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.01.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2212-4926 2212-4934 2212-4934 |
DOI | 10.1016/j.jbior.2023.101010 |
Cover
Abstract | Sphingolipids are a diverse class of lipids with essential functions as determinants of membrane physical properties and as intra- and intercellular signaling agents. Disruption of the normal biochemical processes that establish the levels of individual sphingolipids is associated with a variety of human diseases including cancer, cardiovascular disease, metabolic disease, skin diseases, and lysosomal storage diseases. A unique aspect of this metabolic network is that there is a single enzymatic step that initiates the biosynthetic pathway for all sphingolipids. This step is catalyzed by the enzyme serine palmitoyltranserase (SPT). Under most circumstances SPT condenses serine and the 16-carbon acyl-CoA, palmitoyl-CoA to produce the precursor of all sphingolipids. SPT, a four-subunit protein complex, is subject to classic feedback regulation: when cellular sphingolipids are elevated, SPT activity is inhibited. Ceramide is the sphingolipid sensed by this system and it regulates SPT by directly binding to the complex. The ceramide binding site in the SPT complex, and how ceramide binding results in SPT inhibition, has now been determined in vertebrates, plants, and yeast using molecular modeling and cryo-electron microscopy. Here we discuss the similarities and differences revealed by these resolved structures and the surprising result that ceramide binds at almost identical positions in the SPT complex of these divergent organisms, but accomplishes SPT regulation in very different ways. |
---|---|
AbstractList | Sphingolipids are a diverse class of lipids with essential functions as determinants of membrane physical properties and as intra- and intercellular signaling agents. Disruption of the normal biochemical processes that establish the levels of individual sphingolipids is associated with a variety of human diseases including cancer, cardiovascular disease, metabolic disease, skin diseases, and lysosomal storage diseases. A unique aspect of this metabolic network is that there is a single enzymatic step that initiates the biosynthetic pathway for all sphingolipids. This step is catalyzed by the enzyme serine palmitoyltranserase (SPT). Under most circumstances SPT condenses serine and the 16-carbon acyl-CoA, palmitoyl-CoA to produce the precursor of all sphingolipids. SPT, a four-subunit protein complex, is subject to classic feedback regulation: when cellular sphingolipids are elevated, SPT activity is inhibited. Ceramide is the sphingolipid sensed by this system and it regulates SPT by directly binding to the complex. The ceramide binding site in the SPT complex, and how ceramide binding results in SPT inhibition, has now been determined in vertebrates, plants, and yeast using molecular modeling and cryo-electron microscopy. Here we discuss the similarities and differences revealed by these resolved structures and the surprising result that ceramide binds at almost identical positions in the SPT complex of these divergent organisms, but accomplishes SPT regulation in very different ways.Sphingolipids are a diverse class of lipids with essential functions as determinants of membrane physical properties and as intra- and intercellular signaling agents. Disruption of the normal biochemical processes that establish the levels of individual sphingolipids is associated with a variety of human diseases including cancer, cardiovascular disease, metabolic disease, skin diseases, and lysosomal storage diseases. A unique aspect of this metabolic network is that there is a single enzymatic step that initiates the biosynthetic pathway for all sphingolipids. This step is catalyzed by the enzyme serine palmitoyltranserase (SPT). Under most circumstances SPT condenses serine and the 16-carbon acyl-CoA, palmitoyl-CoA to produce the precursor of all sphingolipids. SPT, a four-subunit protein complex, is subject to classic feedback regulation: when cellular sphingolipids are elevated, SPT activity is inhibited. Ceramide is the sphingolipid sensed by this system and it regulates SPT by directly binding to the complex. The ceramide binding site in the SPT complex, and how ceramide binding results in SPT inhibition, has now been determined in vertebrates, plants, and yeast using molecular modeling and cryo-electron microscopy. Here we discuss the similarities and differences revealed by these resolved structures and the surprising result that ceramide binds at almost identical positions in the SPT complex of these divergent organisms, but accomplishes SPT regulation in very different ways. Sphingolipids are a diverse class of lipids with essential functions as determinants of membrane physical properties and as intra- and intercellular signaling agents. Disruption of the normal biochemical processes that establish the levels of individual sphingolipids is associated with a variety of human diseases including cancer, cardiovascular disease, metabolic disease, skin diseases, and lysosomal storage diseases. A unique aspect of this metabolic network is that there is a single enzymatic step that initiates the biosynthetic pathway for all sphingolipids. This step is catalyzed by the enzyme serine palmitoyltranserase (SPT). Under most circumstances SPT condenses serine and the 16-carbon acyl-CoA, palmitoyl-CoA to produce the precursor of all sphingolipids. SPT, a four-subunit protein complex, is subject to classic feedback regulation: when cellular sphingolipids are elevated, SPT activity is inhibited. Ceramide is the sphingolipid sensed by this system and it regulates SPT by directly binding to the complex. The ceramide binding site in the SPT complex, and how ceramide binding results in SPT inhibition, has now been determined in vertebrates, plants, and yeast using molecular modeling and cryo-electron microscopy. Here we discuss the similarities and differences revealed by these resolved structures and the surprising result that ceramide binds at almost identical positions in the SPT complex of these divergent organisms, but accomplishes SPT regulation in very different ways. |
ArticleNumber | 101010 |
Author | Mughram, Mohammed H. AL Wattenberg, Binks W. Kellogg, Glen E. |
AuthorAffiliation | 3. Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA 1. Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA 2. Current Address; King Khalid University College of Pharmacy, Abha, Saudi Arabia |
AuthorAffiliation_xml | – name: 1. Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA – name: 2. Current Address; King Khalid University College of Pharmacy, Abha, Saudi Arabia – name: 3. Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA |
Author_xml | – sequence: 1 givenname: Mohammed H. AL surname: Mughram fullname: Mughram, Mohammed H. AL organization: Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA – sequence: 2 givenname: Glen E. surname: Kellogg fullname: Kellogg, Glen E. organization: Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA – sequence: 3 givenname: Binks W. surname: Wattenberg fullname: Wattenberg, Binks W. email: brian.wattenberg@vcuhealth.org organization: Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38135565$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1v1DAQtVARLaW_AAn5yIFdEjvJrg8IVRVfUiUu5Ww59njXi2MH26nUv8UvZNK0K-AA9mGsmffezHjmOTkJMQAhL-tqXVd19_awPvQupjWrGJ89eJ-QM8ZqtmoEb06Ob9adkoucDxWeDplN-4yc8m3N27Zrz8jPm30CoN9d2Jk4ZKqCoZiJakhqcAZoiTRNHu0eBqq8X9NLquMwquRyDDTaOUJzSZMuU1Ke9iq7PPsfJVYGRggGQqEJdpNXxS3EPO4xbfRudIZiN_kuoNbMdgELcYPy-Q0dvQoF7VyZncLOvSBPLUbg4sGek28fP9xcfV5df_305eryeqVbXpXVhllr-kZz3TXQa61V04LVsNGdFY1perBby7moTdeIXsDGtGBs04qtYb0VwM_J-0V3nPoBjMYGsD85Jiws3cmonPwzEtxe7uKtrCvBGBNbVHj9oJDijwlykYPLGjx2BHHKkomqbVklNjVCX_2e7JjlcVII4AtAp5hzAnuE1JWcV0Ie5P1KyHkl5LISyBJ_sbQr9wPAip3_D_fdwgX85FsHSWbtIGgwLoEu0kT3T_4vZo_Yxw |
CitedBy_id | crossref_primary_10_3389_fcell_2024_1457209 |
Cites_doi | 10.1194/jlr.M057539 10.1016/j.jbior.2018.08.002 10.1038/nrm.2017.107 10.1111/j.1432-1033.1991.tb16065.x 10.1038/nature08787 10.1002/prot.10465 10.1038/s41594-020-00553-7 10.1038/s41467-023-39274-y 10.1016/j.advenzreg.2011.09.015 10.1074/jbc.M113.451526 10.1073/pnas.1422455112 10.1073/pnas.0911617107 10.1042/BST20110769 10.1073/pnas.1116948108 10.1074/jbc.C112.404012 10.2174/156802610790232233 10.1038/s41467-023-41747-z 10.1074/jbc.RA118.007291 10.1016/j.febslet.2006.08.039 10.1038/s41594-021-00562-0 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd Copyright © 2023 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Copyright © 2023 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.jbior.2023.101010 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2212-4934 |
EndPage | 101010 |
ExternalDocumentID | PMC10922298 38135565 10_1016_j_jbior_2023_101010 S2212492623000568 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R21 NS120128 |
GroupedDBID | --- --K --M .~1 0R~ 1~. 4.4 457 4G. 53G 7-5 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACPRK ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC DOVZS EBS EFJIC EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ K-O KOM M41 MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPCBC SSU SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD AGCQF AGRNS BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 5PM |
ID | FETCH-LOGICAL-c530t-72ffdb4c3c64ebccca45efce7c6f94d4bef8f3391d649b9e7d5edf4598d2bf9e3 |
IEDL.DBID | .~1 |
ISSN | 2212-4926 2212-4934 |
IngestDate | Tue Sep 30 17:06:20 EDT 2025 Wed Oct 01 14:11:44 EDT 2025 Mon Jul 21 06:01:30 EDT 2025 Wed Oct 01 02:20:59 EDT 2025 Thu Apr 24 23:09:31 EDT 2025 Sat Apr 13 16:37:41 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | Copyright © 2023 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c530t-72ffdb4c3c64ebccca45efce7c6f94d4bef8f3391d649b9e7d5edf4598d2bf9e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/10922298 |
PMID | 38135565 |
PQID | 2905520971 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10922298 proquest_miscellaneous_2905520971 pubmed_primary_38135565 crossref_primary_10_1016_j_jbior_2023_101010 crossref_citationtrail_10_1016_j_jbior_2023_101010 elsevier_sciencedirect_doi_10_1016_j_jbior_2023_101010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Advances in biological regulation |
PublicationTitleAlternate | Adv Biol Regul |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Sarkar, Kellogg (bib14) 2010; 10 Aguilar, Saba (bib1) 2012; 52 Xie, Liu, Wu, Dong, Zhang, Yue, Mahawar, Farooq, Vohra, Fang, Liu, Wattenberg, Gong (bib24) 2023; 14 Roelants, Breslow, Muir, Weissman, Thorner (bib13) 2011; 108 Breslow, Collins, Bodenmiller, Aebersold, Simons, Shevchenko, Ejsing, Weissman (bib2) 2010; 463 Wang, Robinet, Smith, Gulshan (bib21) 2015; 112 Siow, Sunkara, Dunn, Morris, Wattenberg (bib18) 2015; 56 Hannun, Obeid (bib6) 2018; 19 Holleran, Takagi, Uchida (bib8) 2006; 580 Verdonk, Cole, Hartshorn, Murray, Taylor (bib20) 2003; 52 Davis, Kannan, Wattenberg (bib3) 2018 Davis, Gable, Suemitsu, Dunn, Wattenberg (bib4) 2019; 294 Harmon, Bacikova, Gable, Gupta, Han, Sengupta, Somashekarappa, Dunn (bib7) 2013 Sasset, Chowdhury, Manzo, Rubinelli, Konrad, Maschek, Manfredi, Holland, Di Lorenzo (bib16) 2022 Liu, Xie, Wu, Han, Gupta, Zhang, Yue, Dong, Gable, Niranjanakumari, Li, Wang, Liu, Yao, Cahoon, Dunn, Gong (bib10) 2023; 9 Li, Xie, Liu, Wang, Gong (bib9) 2021 Lowther, Naismith, Dunn, Campopiano (bib11) 2012; 40 Sasset, Chowdhury, Manzo, Rubinelli, Konrad, Maschek, Manfredi, Holland, Di Lorenzo (bib15) 2021 Han, Lone, Schneiter, Chang (bib5) 2010; 107 Mandon, van Echten, Birk, Schmidt, Sandhoff (bib12) 1991; 198 Siow, Wattenberg (bib19) 2012; 287 Wang, Niu, Zhang, Gable, Gupta, Somashekarappa, Han, Zhao, Myasnikov, Kalathur, Dunn, Lee (bib22) 2021 Schäfer, Körner, Esch, Limar, Parey, Walter, Januliene, Moeller, Fröhlich (bib17) 2023; 14 Wattenberg (bib23) 2021 Sarkar (10.1016/j.jbior.2023.101010_bib14) 2010; 10 Siow (10.1016/j.jbior.2023.101010_bib19) 2012; 287 Li (10.1016/j.jbior.2023.101010_bib9) 2021 Mandon (10.1016/j.jbior.2023.101010_bib12) 1991; 198 Han (10.1016/j.jbior.2023.101010_bib5) 2010; 107 Lowther (10.1016/j.jbior.2023.101010_bib11) 2012; 40 Davis (10.1016/j.jbior.2023.101010_bib3) 2018 Harmon (10.1016/j.jbior.2023.101010_bib7) 2013 Holleran (10.1016/j.jbior.2023.101010_bib8) 2006; 580 Wang (10.1016/j.jbior.2023.101010_bib22) 2021 Aguilar (10.1016/j.jbior.2023.101010_bib1) 2012; 52 Liu (10.1016/j.jbior.2023.101010_bib10) 2023; 9 Verdonk (10.1016/j.jbior.2023.101010_bib20) 2003; 52 Siow (10.1016/j.jbior.2023.101010_bib18) 2015; 56 Hannun (10.1016/j.jbior.2023.101010_bib6) 2018; 19 Wattenberg (10.1016/j.jbior.2023.101010_bib23) 2021 Roelants (10.1016/j.jbior.2023.101010_bib13) 2011; 108 Sasset (10.1016/j.jbior.2023.101010_bib15) 2021 Xie (10.1016/j.jbior.2023.101010_bib24) 2023; 14 Breslow (10.1016/j.jbior.2023.101010_bib2) 2010; 463 Wang (10.1016/j.jbior.2023.101010_bib21) 2015; 112 Schäfer (10.1016/j.jbior.2023.101010_bib17) 2023; 14 Davis (10.1016/j.jbior.2023.101010_bib4) 2019; 294 Sasset (10.1016/j.jbior.2023.101010_bib16) 2022 |
References_xml | – volume: 463 start-page: 1048 year: 2010 end-page: 1053 ident: bib2 article-title: Orm family proteins mediate sphingolipid homeostasis publication-title: Nature – volume: 294 start-page: 5146 year: 2019 end-page: 5156 ident: bib4 article-title: The ORMDL/Orm-serine palmitoyltransferase (SPT) complex is directly regulated by ceramide: reconstitution of SPT regulation in isolated membranes publication-title: J. Biol. Chem. – volume: 108 start-page: 19222 year: 2011 end-page: 19227 ident: bib13 article-title: Protein kinase Ypk1 phosphorylates regulatory proteins Orm1 and Orm2 to control sphingolipid homeostasis in Saccharomyces cerevisiae publication-title: Proc. Natl. Acad. Sci. U. S. A. – year: 2013 ident: bib7 article-title: Topological and functional characterization of the ssSPTs, small activating subunits of serine palmitoyltransferase publication-title: J. Biol. Chem. – year: 2021 ident: bib9 article-title: Structural insights into the assembly and substrate selectivity of human SPT–ORMDL3 complex publication-title: Nat. Struct. Mol. Biol. – volume: 19 start-page: 175 year: 2018 end-page: 191 ident: bib6 article-title: Sphingolipids and their metabolism in physiology and disease publication-title: Nat. Rev. Mol. Cell Biol. – volume: 10 start-page: 67 year: 2010 end-page: 83 ident: bib14 article-title: Hydrophobicity--shake flasks, protein folding and drug discovery publication-title: Curr. Top. Med. Chem. – volume: 112 start-page: 3728 year: 2015 end-page: 3733 ident: bib21 article-title: ORMDL orosomucoid-like proteins are degraded by free-cholesterol-loading-induced autophagy publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 56 start-page: 898 year: 2015 end-page: 908 ident: bib18 article-title: ORMDL/serine palmitoyltransferase stoichiometry determines effects of ORMDL3 expression on sphingolipid biosynthesis publication-title: J. Lipid Res. – volume: 40 start-page: 547 year: 2012 end-page: 554 ident: bib11 article-title: Structural, mechanistic and regulatory studies of serine palmitoyltransferase publication-title: Biochem. Soc. Trans. – volume: 107 start-page: 5851 year: 2010 end-page: 5856 ident: bib5 article-title: Orm1 and Orm2 are conserved endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein quality control publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 14 start-page: 6196 year: 2023 ident: bib17 article-title: Structure of the ceramide-bound SPOTS complex publication-title: Nat. Commun. – volume: 580 start-page: 5456 year: 2006 end-page: 5466 ident: bib8 article-title: Epidermal sphingolipids: metabolism, function, and roles in skin disorders publication-title: FEBS Lett. – volume: 198 start-page: 667 year: 1991 end-page: 674 ident: bib12 article-title: Sphingolipid biosynthesis in cultured neurons. Down-regulation of serine palmitoyltransferase by sphingoid bases publication-title: Eur. J. Biochem. – volume: 52 start-page: 609 year: 2003 end-page: 623 ident: bib20 article-title: Improved protein-ligand docking using GOLD publication-title: Proteins – year: 2021 ident: bib23 article-title: Kicking off sphingolipid biosynthesis: structures of the serine palmitoyltransferase complex publication-title: Nat. Struct. Mol. Biol. – year: 2022 ident: bib16 article-title: Sphingosine-1-phosphate controls endothelial sphingolipid homeostasis via ORMDL publication-title: EMBO Rep. – volume: 9 year: 2023 ident: bib10 article-title: Mechanism of sphingolipid homeostasis revealed by structural analysis of Arabidopsis SPT-ORM1 complex publication-title: Sci. Adv. – year: 2021 ident: bib15 article-title: S1P Controls Endothelial Sphingolipid Homeostasis via ORMDL – volume: 14 start-page: 3475 year: 2023 ident: bib24 article-title: Ceramide sensing by human SPT-ORMDL complex for establishing sphingolipid homeostasis publication-title: Nat. Commun. – year: 2018 ident: bib3 article-title: Orm/ORMDL proteins: gate guardians and master regulators publication-title: Advances in biological regulation – volume: 52 start-page: 17 year: 2012 end-page: 30 ident: bib1 article-title: Truth and consequences of sphingosine-1-phosphate lyase publication-title: Adv. Biol. Regul. – volume: 287 start-page: 40198 year: 2012 end-page: 40204 ident: bib19 article-title: Mammalian ORMDL proteins mediate the feedback response in ceramide biosynthesis publication-title: J. Biol. Chem. – year: 2021 ident: bib22 article-title: Structural insights into the regulation of human serine palmitoyltransferase complexes publication-title: Nat. Struct. Mol. Biol. – volume: 56 start-page: 898 year: 2015 ident: 10.1016/j.jbior.2023.101010_bib18 article-title: ORMDL/serine palmitoyltransferase stoichiometry determines effects of ORMDL3 expression on sphingolipid biosynthesis publication-title: J. Lipid Res. doi: 10.1194/jlr.M057539 – year: 2018 ident: 10.1016/j.jbior.2023.101010_bib3 article-title: Orm/ORMDL proteins: gate guardians and master regulators publication-title: Advances in biological regulation doi: 10.1016/j.jbior.2018.08.002 – volume: 19 start-page: 175 year: 2018 ident: 10.1016/j.jbior.2023.101010_bib6 article-title: Sphingolipids and their metabolism in physiology and disease publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.107 – volume: 198 start-page: 667 year: 1991 ident: 10.1016/j.jbior.2023.101010_bib12 article-title: Sphingolipid biosynthesis in cultured neurons. Down-regulation of serine palmitoyltransferase by sphingoid bases publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1991.tb16065.x – year: 2021 ident: 10.1016/j.jbior.2023.101010_bib22 article-title: Structural insights into the regulation of human serine palmitoyltransferase complexes publication-title: Nat. Struct. Mol. Biol. – volume: 463 start-page: 1048 year: 2010 ident: 10.1016/j.jbior.2023.101010_bib2 article-title: Orm family proteins mediate sphingolipid homeostasis publication-title: Nature doi: 10.1038/nature08787 – volume: 52 start-page: 609 year: 2003 ident: 10.1016/j.jbior.2023.101010_bib20 article-title: Improved protein-ligand docking using GOLD publication-title: Proteins doi: 10.1002/prot.10465 – year: 2021 ident: 10.1016/j.jbior.2023.101010_bib9 article-title: Structural insights into the assembly and substrate selectivity of human SPT–ORMDL3 complex publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-020-00553-7 – volume: 14 start-page: 3475 year: 2023 ident: 10.1016/j.jbior.2023.101010_bib24 article-title: Ceramide sensing by human SPT-ORMDL complex for establishing sphingolipid homeostasis publication-title: Nat. Commun. doi: 10.1038/s41467-023-39274-y – volume: 52 start-page: 17 year: 2012 ident: 10.1016/j.jbior.2023.101010_bib1 article-title: Truth and consequences of sphingosine-1-phosphate lyase publication-title: Adv. Biol. Regul. doi: 10.1016/j.advenzreg.2011.09.015 – year: 2013 ident: 10.1016/j.jbior.2023.101010_bib7 article-title: Topological and functional characterization of the ssSPTs, small activating subunits of serine palmitoyltransferase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.451526 – year: 2022 ident: 10.1016/j.jbior.2023.101010_bib16 article-title: Sphingosine-1-phosphate controls endothelial sphingolipid homeostasis via ORMDL publication-title: EMBO Rep. – volume: 112 start-page: 3728 year: 2015 ident: 10.1016/j.jbior.2023.101010_bib21 article-title: ORMDL orosomucoid-like proteins are degraded by free-cholesterol-loading-induced autophagy publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1422455112 – volume: 107 start-page: 5851 year: 2010 ident: 10.1016/j.jbior.2023.101010_bib5 article-title: Orm1 and Orm2 are conserved endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein quality control publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0911617107 – volume: 40 start-page: 547 year: 2012 ident: 10.1016/j.jbior.2023.101010_bib11 article-title: Structural, mechanistic and regulatory studies of serine palmitoyltransferase publication-title: Biochem. Soc. Trans. doi: 10.1042/BST20110769 – volume: 108 start-page: 19222 year: 2011 ident: 10.1016/j.jbior.2023.101010_bib13 article-title: Protein kinase Ypk1 phosphorylates regulatory proteins Orm1 and Orm2 to control sphingolipid homeostasis in Saccharomyces cerevisiae publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1116948108 – volume: 287 start-page: 40198 year: 2012 ident: 10.1016/j.jbior.2023.101010_bib19 article-title: Mammalian ORMDL proteins mediate the feedback response in ceramide biosynthesis publication-title: J. Biol. Chem. doi: 10.1074/jbc.C112.404012 – volume: 9 year: 2023 ident: 10.1016/j.jbior.2023.101010_bib10 article-title: Mechanism of sphingolipid homeostasis revealed by structural analysis of Arabidopsis SPT-ORM1 complex publication-title: Sci. Adv. – volume: 10 start-page: 67 year: 2010 ident: 10.1016/j.jbior.2023.101010_bib14 article-title: Hydrophobicity--shake flasks, protein folding and drug discovery publication-title: Curr. Top. Med. Chem. doi: 10.2174/156802610790232233 – volume: 14 start-page: 6196 year: 2023 ident: 10.1016/j.jbior.2023.101010_bib17 article-title: Structure of the ceramide-bound SPOTS complex publication-title: Nat. Commun. doi: 10.1038/s41467-023-41747-z – volume: 294 start-page: 5146 year: 2019 ident: 10.1016/j.jbior.2023.101010_bib4 article-title: The ORMDL/Orm-serine palmitoyltransferase (SPT) complex is directly regulated by ceramide: reconstitution of SPT regulation in isolated membranes publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.007291 – volume: 580 start-page: 5456 year: 2006 ident: 10.1016/j.jbior.2023.101010_bib8 article-title: Epidermal sphingolipids: metabolism, function, and roles in skin disorders publication-title: FEBS Lett. doi: 10.1016/j.febslet.2006.08.039 – year: 2021 ident: 10.1016/j.jbior.2023.101010_bib23 article-title: Kicking off sphingolipid biosynthesis: structures of the serine palmitoyltransferase complex publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-021-00562-0 – year: 2021 ident: 10.1016/j.jbior.2023.101010_bib15 |
SSID | ssj0000601645 |
Score | 2.3672786 |
Snippet | Sphingolipids are a diverse class of lipids with essential functions as determinants of membrane physical properties and as intra- and intercellular signaling... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 101010 |
SubjectTerms | Animals Ceramides - genetics Ceramides - metabolism Cryoelectron Microscopy Humans Saccharomyces cerevisiae - metabolism Serine Serine C-Palmitoyltransferase - genetics Serine C-Palmitoyltransferase - metabolism Sphingolipids - metabolism |
Title | Three kingdoms and one ceramide to rule them all. A comparison of the structural basis of ceramide-dependent regulation of sphingolipid biosynthesis in animals, plants, and fungi |
URI | https://dx.doi.org/10.1016/j.jbior.2023.101010 https://www.ncbi.nlm.nih.gov/pubmed/38135565 https://www.proquest.com/docview/2905520971 https://pubmed.ncbi.nlm.nih.gov/PMC10922298 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 2212-4934 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000601645 issn: 2212-4926 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier E-journals (Freedom Collection) customDbUrl: eissn: 2212-4934 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000601645 issn: 2212-4926 databaseCode: ACRLP dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 2212-4934 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000601645 issn: 2212-4926 databaseCode: .~1 dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 2212-4934 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000601645 issn: 2212-4926 databaseCode: AIKHN dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2212-4934 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000601645 issn: 2212-4926 databaseCode: AKRWK dateStart: 20120101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcuGCgPJYHpWREKdNNw_HSY6rimoB0Qut1FsUv6irvLTZHnrhR_ELmbGTiAXUA6fVOp5oNvPZM5kdf0PI-5hjhU0IFmCFDBjPw6DKBQt4xaVIsLuFwfPOX8_55pJ9vkqvDsjpdBYGyyrHvd_v6W63HkdW49Nc9dauvsVx5OnuEgw8OB74RfYvwPTJj2jOszi-EderGOcHKDCRD7kyrxthO-QFjRMcCfEk7b8d1N8B6J91lL85prPH5NEYUdK1V_oJOdDtU3K0buFturmjH6ir8XTJ8yPy8wJMpymmx1XXDLRqFe1aTaXeVo1Vmu46ur2t4fNaN7Sq6xO6pnJuVUg7g1eoJ51Fwg4KXtAOOD7dIpja6u7o1ve5t15w6DHZ1dW2t4rC4xjuWrgXStsWFLENLIQl7WsszFk6zcDnfrfPyOXZx4vTTTB2bQhkmoS7IIuNUYLJRHIGOACEsFQbqTPJTcEUE9rkJkmKSHFWiEJnKtXKsLTIVSxMoZPn5LCFn_6S0CTNTKGkUJoJFoVGhCI0JuNca2GyOF-QeDJVKUdKc-ysUZdT7dpN6exbon1Lb98FWc5CvWf0uH86nzBQ7gGzBJ9zv-C7CTElLFn8H6ZqdXc7lHERplh9lEUL8sIjaNYEAiiIAHm6IPketuYJSAe-f6W1144WPAoLbM6ev_pfjV-Th_CN-QTTG3IIWNJvIeTaiWO3po7Jg_WnL5vzX9O9Mbs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbK9gAXBJTH8jQS4rRh83Cc5LiqqLa03QtbqbcoflFXeWl3e-jf4hcyEycRC6gHTpFsjzXxjD2TyfgbQj6FHDNsfJAAy6THeOp7RSqYxwsuRYTVLQzed75Y8eUl-3YVXx2Q4-EuDKZV9me_O9O707pvmferOW-tnX8Pw8DB3UXoePD0ATlkMZzJE3K4OD1brsZQSwc50pUrRhIPaQb8oS7T60bYBqFBwwhbfLxM-28b9bcP-mcq5W-26eQJedw7lXTh-H5KDnT9jBwtavigru7oZ9qleXbx8yPycw3S0xQj5KqptrSoFW1qTaXeFJVVmu4aurkt4XmtK1qU5Re6oHKsVkgbgz3U4c4iZgcFQ2i32D5M4Q2VdXd040rdW0e4bTHe1ZS2tYrCcmzvapgLqW0NjNgK9sKMtiXm5sw6zsDs_rDPyeXJ1_Xx0usLN3gyjvydl4TGKMFkJDkDVQAlYbE2UieSm4wpJrRJTRRlgeIsE5lOVKyVYXGWqlCYTEcvyKSGV39FaBQnJlNSKM0EC3wjfOEbk3CutTBJmE5JOIgqlz2qORbXKPMhfe0m7-Sbo3xzJ98pmY1ErQP1uH84H3Qg39PNHMzO_YQfB43JYdfir5ii1s3tNg8zP8YEpCSYkpdOg0ZOwIcCJ5DHU5Lu6dY4ABHB93tqe90hgwd-hvXZ09f_y_EH8nC5vjjPz09XZ2_II-hhLt70lkxAr_Q78MB24n2_w34BDcw0Zg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three+kingdoms+and+one+ceramide+to+rule+them+all.+A+comparison+of+the+structural+basis+of+ceramide-dependent+regulation+of+sphingolipid+biosynthesis+in+animals%2C+plants%2C+and+fungi&rft.jtitle=Advances+in+biological+regulation&rft.au=Mughram%2C+Mohammed+H.+AL&rft.au=Kellogg%2C+Glen+E.&rft.au=Wattenberg%2C+Binks+W.&rft.date=2024-01-01&rft.issn=2212-4926&rft.volume=91&rft.spage=101010&rft_id=info:doi/10.1016%2Fj.jbior.2023.101010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jbior_2023_101010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2212-4926&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2212-4926&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2212-4926&client=summon |