Three kingdoms and one ceramide to rule them all. A comparison of the structural basis of ceramide-dependent regulation of sphingolipid biosynthesis in animals, plants, and fungi

Sphingolipids are a diverse class of lipids with essential functions as determinants of membrane physical properties and as intra- and intercellular signaling agents. Disruption of the normal biochemical processes that establish the levels of individual sphingolipids is associated with a variety of...

Full description

Saved in:
Bibliographic Details
Published inAdvances in biological regulation Vol. 91; p. 101010
Main Authors Mughram, Mohammed H. AL, Kellogg, Glen E., Wattenberg, Binks W.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.01.2024
Subjects
Online AccessGet full text
ISSN2212-4926
2212-4934
2212-4934
DOI10.1016/j.jbior.2023.101010

Cover

Abstract Sphingolipids are a diverse class of lipids with essential functions as determinants of membrane physical properties and as intra- and intercellular signaling agents. Disruption of the normal biochemical processes that establish the levels of individual sphingolipids is associated with a variety of human diseases including cancer, cardiovascular disease, metabolic disease, skin diseases, and lysosomal storage diseases. A unique aspect of this metabolic network is that there is a single enzymatic step that initiates the biosynthetic pathway for all sphingolipids. This step is catalyzed by the enzyme serine palmitoyltranserase (SPT). Under most circumstances SPT condenses serine and the 16-carbon acyl-CoA, palmitoyl-CoA to produce the precursor of all sphingolipids. SPT, a four-subunit protein complex, is subject to classic feedback regulation: when cellular sphingolipids are elevated, SPT activity is inhibited. Ceramide is the sphingolipid sensed by this system and it regulates SPT by directly binding to the complex. The ceramide binding site in the SPT complex, and how ceramide binding results in SPT inhibition, has now been determined in vertebrates, plants, and yeast using molecular modeling and cryo-electron microscopy. Here we discuss the similarities and differences revealed by these resolved structures and the surprising result that ceramide binds at almost identical positions in the SPT complex of these divergent organisms, but accomplishes SPT regulation in very different ways.
AbstractList Sphingolipids are a diverse class of lipids with essential functions as determinants of membrane physical properties and as intra- and intercellular signaling agents. Disruption of the normal biochemical processes that establish the levels of individual sphingolipids is associated with a variety of human diseases including cancer, cardiovascular disease, metabolic disease, skin diseases, and lysosomal storage diseases. A unique aspect of this metabolic network is that there is a single enzymatic step that initiates the biosynthetic pathway for all sphingolipids. This step is catalyzed by the enzyme serine palmitoyltranserase (SPT). Under most circumstances SPT condenses serine and the 16-carbon acyl-CoA, palmitoyl-CoA to produce the precursor of all sphingolipids. SPT, a four-subunit protein complex, is subject to classic feedback regulation: when cellular sphingolipids are elevated, SPT activity is inhibited. Ceramide is the sphingolipid sensed by this system and it regulates SPT by directly binding to the complex. The ceramide binding site in the SPT complex, and how ceramide binding results in SPT inhibition, has now been determined in vertebrates, plants, and yeast using molecular modeling and cryo-electron microscopy. Here we discuss the similarities and differences revealed by these resolved structures and the surprising result that ceramide binds at almost identical positions in the SPT complex of these divergent organisms, but accomplishes SPT regulation in very different ways.Sphingolipids are a diverse class of lipids with essential functions as determinants of membrane physical properties and as intra- and intercellular signaling agents. Disruption of the normal biochemical processes that establish the levels of individual sphingolipids is associated with a variety of human diseases including cancer, cardiovascular disease, metabolic disease, skin diseases, and lysosomal storage diseases. A unique aspect of this metabolic network is that there is a single enzymatic step that initiates the biosynthetic pathway for all sphingolipids. This step is catalyzed by the enzyme serine palmitoyltranserase (SPT). Under most circumstances SPT condenses serine and the 16-carbon acyl-CoA, palmitoyl-CoA to produce the precursor of all sphingolipids. SPT, a four-subunit protein complex, is subject to classic feedback regulation: when cellular sphingolipids are elevated, SPT activity is inhibited. Ceramide is the sphingolipid sensed by this system and it regulates SPT by directly binding to the complex. The ceramide binding site in the SPT complex, and how ceramide binding results in SPT inhibition, has now been determined in vertebrates, plants, and yeast using molecular modeling and cryo-electron microscopy. Here we discuss the similarities and differences revealed by these resolved structures and the surprising result that ceramide binds at almost identical positions in the SPT complex of these divergent organisms, but accomplishes SPT regulation in very different ways.
Sphingolipids are a diverse class of lipids with essential functions as determinants of membrane physical properties and as intra- and intercellular signaling agents. Disruption of the normal biochemical processes that establish the levels of individual sphingolipids is associated with a variety of human diseases including cancer, cardiovascular disease, metabolic disease, skin diseases, and lysosomal storage diseases. A unique aspect of this metabolic network is that there is a single enzymatic step that initiates the biosynthetic pathway for all sphingolipids. This step is catalyzed by the enzyme serine palmitoyltranserase (SPT). Under most circumstances SPT condenses serine and the 16-carbon acyl-CoA, palmitoyl-CoA to produce the precursor of all sphingolipids. SPT, a four-subunit protein complex, is subject to classic feedback regulation: when cellular sphingolipids are elevated, SPT activity is inhibited. Ceramide is the sphingolipid sensed by this system and it regulates SPT by directly binding to the complex. The ceramide binding site in the SPT complex, and how ceramide binding results in SPT inhibition, has now been determined in vertebrates, plants, and yeast using molecular modeling and cryo-electron microscopy. Here we discuss the similarities and differences revealed by these resolved structures and the surprising result that ceramide binds at almost identical positions in the SPT complex of these divergent organisms, but accomplishes SPT regulation in very different ways.
ArticleNumber 101010
Author Mughram, Mohammed H. AL
Wattenberg, Binks W.
Kellogg, Glen E.
AuthorAffiliation 3. Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
1. Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA
2. Current Address; King Khalid University College of Pharmacy, Abha, Saudi Arabia
AuthorAffiliation_xml – name: 1. Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA
– name: 2. Current Address; King Khalid University College of Pharmacy, Abha, Saudi Arabia
– name: 3. Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
Author_xml – sequence: 1
  givenname: Mohammed H. AL
  surname: Mughram
  fullname: Mughram, Mohammed H. AL
  organization: Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA
– sequence: 2
  givenname: Glen E.
  surname: Kellogg
  fullname: Kellogg, Glen E.
  organization: Department of Medicinal Chemistry, Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA
– sequence: 3
  givenname: Binks W.
  surname: Wattenberg
  fullname: Wattenberg, Binks W.
  email: brian.wattenberg@vcuhealth.org
  organization: Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38135565$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1v1DAQtVARLaW_AAn5yIFdEjvJrg8IVRVfUiUu5Ww59njXi2MH26nUv8UvZNK0K-AA9mGsmffezHjmOTkJMQAhL-tqXVd19_awPvQupjWrGJ89eJ-QM8ZqtmoEb06Ob9adkoucDxWeDplN-4yc8m3N27Zrz8jPm30CoN9d2Jk4ZKqCoZiJakhqcAZoiTRNHu0eBqq8X9NLquMwquRyDDTaOUJzSZMuU1Ke9iq7PPsfJVYGRggGQqEJdpNXxS3EPO4xbfRudIZiN_kuoNbMdgELcYPy-Q0dvQoF7VyZncLOvSBPLUbg4sGek28fP9xcfV5df_305eryeqVbXpXVhllr-kZz3TXQa61V04LVsNGdFY1perBby7moTdeIXsDGtGBs04qtYb0VwM_J-0V3nPoBjMYGsD85Jiws3cmonPwzEtxe7uKtrCvBGBNbVHj9oJDijwlykYPLGjx2BHHKkomqbVklNjVCX_2e7JjlcVII4AtAp5hzAnuE1JWcV0Ie5P1KyHkl5LISyBJ_sbQr9wPAip3_D_fdwgX85FsHSWbtIGgwLoEu0kT3T_4vZo_Yxw
CitedBy_id crossref_primary_10_3389_fcell_2024_1457209
Cites_doi 10.1194/jlr.M057539
10.1016/j.jbior.2018.08.002
10.1038/nrm.2017.107
10.1111/j.1432-1033.1991.tb16065.x
10.1038/nature08787
10.1002/prot.10465
10.1038/s41594-020-00553-7
10.1038/s41467-023-39274-y
10.1016/j.advenzreg.2011.09.015
10.1074/jbc.M113.451526
10.1073/pnas.1422455112
10.1073/pnas.0911617107
10.1042/BST20110769
10.1073/pnas.1116948108
10.1074/jbc.C112.404012
10.2174/156802610790232233
10.1038/s41467-023-41747-z
10.1074/jbc.RA118.007291
10.1016/j.febslet.2006.08.039
10.1038/s41594-021-00562-0
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.jbior.2023.101010
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2212-4934
EndPage 101010
ExternalDocumentID PMC10922298
38135565
10_1016_j_jbior_2023_101010
S2212492623000568
Genre Journal Article
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R21 NS120128
GroupedDBID ---
--K
--M
.~1
0R~
1~.
4.4
457
4G.
53G
7-5
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
DOVZS
EBS
EFJIC
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
K-O
KOM
M41
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPCBC
SSU
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
AGCQF
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
5PM
ID FETCH-LOGICAL-c530t-72ffdb4c3c64ebccca45efce7c6f94d4bef8f3391d649b9e7d5edf4598d2bf9e3
IEDL.DBID .~1
ISSN 2212-4926
2212-4934
IngestDate Tue Sep 30 17:06:20 EDT 2025
Wed Oct 01 14:11:44 EDT 2025
Mon Jul 21 06:01:30 EDT 2025
Wed Oct 01 02:20:59 EDT 2025
Thu Apr 24 23:09:31 EDT 2025
Sat Apr 13 16:37:41 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License Copyright © 2023 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c530t-72ffdb4c3c64ebccca45efce7c6f94d4bef8f3391d649b9e7d5edf4598d2bf9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/10922298
PMID 38135565
PQID 2905520971
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10922298
proquest_miscellaneous_2905520971
pubmed_primary_38135565
crossref_primary_10_1016_j_jbior_2023_101010
crossref_citationtrail_10_1016_j_jbior_2023_101010
elsevier_sciencedirect_doi_10_1016_j_jbior_2023_101010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Advances in biological regulation
PublicationTitleAlternate Adv Biol Regul
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Sarkar, Kellogg (bib14) 2010; 10
Aguilar, Saba (bib1) 2012; 52
Xie, Liu, Wu, Dong, Zhang, Yue, Mahawar, Farooq, Vohra, Fang, Liu, Wattenberg, Gong (bib24) 2023; 14
Roelants, Breslow, Muir, Weissman, Thorner (bib13) 2011; 108
Breslow, Collins, Bodenmiller, Aebersold, Simons, Shevchenko, Ejsing, Weissman (bib2) 2010; 463
Wang, Robinet, Smith, Gulshan (bib21) 2015; 112
Siow, Sunkara, Dunn, Morris, Wattenberg (bib18) 2015; 56
Hannun, Obeid (bib6) 2018; 19
Holleran, Takagi, Uchida (bib8) 2006; 580
Verdonk, Cole, Hartshorn, Murray, Taylor (bib20) 2003; 52
Davis, Kannan, Wattenberg (bib3) 2018
Davis, Gable, Suemitsu, Dunn, Wattenberg (bib4) 2019; 294
Harmon, Bacikova, Gable, Gupta, Han, Sengupta, Somashekarappa, Dunn (bib7) 2013
Sasset, Chowdhury, Manzo, Rubinelli, Konrad, Maschek, Manfredi, Holland, Di Lorenzo (bib16) 2022
Liu, Xie, Wu, Han, Gupta, Zhang, Yue, Dong, Gable, Niranjanakumari, Li, Wang, Liu, Yao, Cahoon, Dunn, Gong (bib10) 2023; 9
Li, Xie, Liu, Wang, Gong (bib9) 2021
Lowther, Naismith, Dunn, Campopiano (bib11) 2012; 40
Sasset, Chowdhury, Manzo, Rubinelli, Konrad, Maschek, Manfredi, Holland, Di Lorenzo (bib15) 2021
Han, Lone, Schneiter, Chang (bib5) 2010; 107
Mandon, van Echten, Birk, Schmidt, Sandhoff (bib12) 1991; 198
Siow, Wattenberg (bib19) 2012; 287
Wang, Niu, Zhang, Gable, Gupta, Somashekarappa, Han, Zhao, Myasnikov, Kalathur, Dunn, Lee (bib22) 2021
Schäfer, Körner, Esch, Limar, Parey, Walter, Januliene, Moeller, Fröhlich (bib17) 2023; 14
Wattenberg (bib23) 2021
Sarkar (10.1016/j.jbior.2023.101010_bib14) 2010; 10
Siow (10.1016/j.jbior.2023.101010_bib19) 2012; 287
Li (10.1016/j.jbior.2023.101010_bib9) 2021
Mandon (10.1016/j.jbior.2023.101010_bib12) 1991; 198
Han (10.1016/j.jbior.2023.101010_bib5) 2010; 107
Lowther (10.1016/j.jbior.2023.101010_bib11) 2012; 40
Davis (10.1016/j.jbior.2023.101010_bib3) 2018
Harmon (10.1016/j.jbior.2023.101010_bib7) 2013
Holleran (10.1016/j.jbior.2023.101010_bib8) 2006; 580
Wang (10.1016/j.jbior.2023.101010_bib22) 2021
Aguilar (10.1016/j.jbior.2023.101010_bib1) 2012; 52
Liu (10.1016/j.jbior.2023.101010_bib10) 2023; 9
Verdonk (10.1016/j.jbior.2023.101010_bib20) 2003; 52
Siow (10.1016/j.jbior.2023.101010_bib18) 2015; 56
Hannun (10.1016/j.jbior.2023.101010_bib6) 2018; 19
Wattenberg (10.1016/j.jbior.2023.101010_bib23) 2021
Roelants (10.1016/j.jbior.2023.101010_bib13) 2011; 108
Sasset (10.1016/j.jbior.2023.101010_bib15) 2021
Xie (10.1016/j.jbior.2023.101010_bib24) 2023; 14
Breslow (10.1016/j.jbior.2023.101010_bib2) 2010; 463
Wang (10.1016/j.jbior.2023.101010_bib21) 2015; 112
Schäfer (10.1016/j.jbior.2023.101010_bib17) 2023; 14
Davis (10.1016/j.jbior.2023.101010_bib4) 2019; 294
Sasset (10.1016/j.jbior.2023.101010_bib16) 2022
References_xml – volume: 463
  start-page: 1048
  year: 2010
  end-page: 1053
  ident: bib2
  article-title: Orm family proteins mediate sphingolipid homeostasis
  publication-title: Nature
– volume: 294
  start-page: 5146
  year: 2019
  end-page: 5156
  ident: bib4
  article-title: The ORMDL/Orm-serine palmitoyltransferase (SPT) complex is directly regulated by ceramide: reconstitution of SPT regulation in isolated membranes
  publication-title: J. Biol. Chem.
– volume: 108
  start-page: 19222
  year: 2011
  end-page: 19227
  ident: bib13
  article-title: Protein kinase Ypk1 phosphorylates regulatory proteins Orm1 and Orm2 to control sphingolipid homeostasis in Saccharomyces cerevisiae
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– year: 2013
  ident: bib7
  article-title: Topological and functional characterization of the ssSPTs, small activating subunits of serine palmitoyltransferase
  publication-title: J. Biol. Chem.
– year: 2021
  ident: bib9
  article-title: Structural insights into the assembly and substrate selectivity of human SPT–ORMDL3 complex
  publication-title: Nat. Struct. Mol. Biol.
– volume: 19
  start-page: 175
  year: 2018
  end-page: 191
  ident: bib6
  article-title: Sphingolipids and their metabolism in physiology and disease
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 10
  start-page: 67
  year: 2010
  end-page: 83
  ident: bib14
  article-title: Hydrophobicity--shake flasks, protein folding and drug discovery
  publication-title: Curr. Top. Med. Chem.
– volume: 112
  start-page: 3728
  year: 2015
  end-page: 3733
  ident: bib21
  article-title: ORMDL orosomucoid-like proteins are degraded by free-cholesterol-loading-induced autophagy
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 56
  start-page: 898
  year: 2015
  end-page: 908
  ident: bib18
  article-title: ORMDL/serine palmitoyltransferase stoichiometry determines effects of ORMDL3 expression on sphingolipid biosynthesis
  publication-title: J. Lipid Res.
– volume: 40
  start-page: 547
  year: 2012
  end-page: 554
  ident: bib11
  article-title: Structural, mechanistic and regulatory studies of serine palmitoyltransferase
  publication-title: Biochem. Soc. Trans.
– volume: 107
  start-page: 5851
  year: 2010
  end-page: 5856
  ident: bib5
  article-title: Orm1 and Orm2 are conserved endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein quality control
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 14
  start-page: 6196
  year: 2023
  ident: bib17
  article-title: Structure of the ceramide-bound SPOTS complex
  publication-title: Nat. Commun.
– volume: 580
  start-page: 5456
  year: 2006
  end-page: 5466
  ident: bib8
  article-title: Epidermal sphingolipids: metabolism, function, and roles in skin disorders
  publication-title: FEBS Lett.
– volume: 198
  start-page: 667
  year: 1991
  end-page: 674
  ident: bib12
  article-title: Sphingolipid biosynthesis in cultured neurons. Down-regulation of serine palmitoyltransferase by sphingoid bases
  publication-title: Eur. J. Biochem.
– volume: 52
  start-page: 609
  year: 2003
  end-page: 623
  ident: bib20
  article-title: Improved protein-ligand docking using GOLD
  publication-title: Proteins
– year: 2021
  ident: bib23
  article-title: Kicking off sphingolipid biosynthesis: structures of the serine palmitoyltransferase complex
  publication-title: Nat. Struct. Mol. Biol.
– year: 2022
  ident: bib16
  article-title: Sphingosine-1-phosphate controls endothelial sphingolipid homeostasis via ORMDL
  publication-title: EMBO Rep.
– volume: 9
  year: 2023
  ident: bib10
  article-title: Mechanism of sphingolipid homeostasis revealed by structural analysis of Arabidopsis SPT-ORM1 complex
  publication-title: Sci. Adv.
– year: 2021
  ident: bib15
  article-title: S1P Controls Endothelial Sphingolipid Homeostasis via ORMDL
– volume: 14
  start-page: 3475
  year: 2023
  ident: bib24
  article-title: Ceramide sensing by human SPT-ORMDL complex for establishing sphingolipid homeostasis
  publication-title: Nat. Commun.
– year: 2018
  ident: bib3
  article-title: Orm/ORMDL proteins: gate guardians and master regulators
  publication-title: Advances in biological regulation
– volume: 52
  start-page: 17
  year: 2012
  end-page: 30
  ident: bib1
  article-title: Truth and consequences of sphingosine-1-phosphate lyase
  publication-title: Adv. Biol. Regul.
– volume: 287
  start-page: 40198
  year: 2012
  end-page: 40204
  ident: bib19
  article-title: Mammalian ORMDL proteins mediate the feedback response in ceramide biosynthesis
  publication-title: J. Biol. Chem.
– year: 2021
  ident: bib22
  article-title: Structural insights into the regulation of human serine palmitoyltransferase complexes
  publication-title: Nat. Struct. Mol. Biol.
– volume: 56
  start-page: 898
  year: 2015
  ident: 10.1016/j.jbior.2023.101010_bib18
  article-title: ORMDL/serine palmitoyltransferase stoichiometry determines effects of ORMDL3 expression on sphingolipid biosynthesis
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M057539
– year: 2018
  ident: 10.1016/j.jbior.2023.101010_bib3
  article-title: Orm/ORMDL proteins: gate guardians and master regulators
  publication-title: Advances in biological regulation
  doi: 10.1016/j.jbior.2018.08.002
– volume: 19
  start-page: 175
  year: 2018
  ident: 10.1016/j.jbior.2023.101010_bib6
  article-title: Sphingolipids and their metabolism in physiology and disease
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2017.107
– volume: 198
  start-page: 667
  year: 1991
  ident: 10.1016/j.jbior.2023.101010_bib12
  article-title: Sphingolipid biosynthesis in cultured neurons. Down-regulation of serine palmitoyltransferase by sphingoid bases
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1991.tb16065.x
– year: 2021
  ident: 10.1016/j.jbior.2023.101010_bib22
  article-title: Structural insights into the regulation of human serine palmitoyltransferase complexes
  publication-title: Nat. Struct. Mol. Biol.
– volume: 463
  start-page: 1048
  year: 2010
  ident: 10.1016/j.jbior.2023.101010_bib2
  article-title: Orm family proteins mediate sphingolipid homeostasis
  publication-title: Nature
  doi: 10.1038/nature08787
– volume: 52
  start-page: 609
  year: 2003
  ident: 10.1016/j.jbior.2023.101010_bib20
  article-title: Improved protein-ligand docking using GOLD
  publication-title: Proteins
  doi: 10.1002/prot.10465
– year: 2021
  ident: 10.1016/j.jbior.2023.101010_bib9
  article-title: Structural insights into the assembly and substrate selectivity of human SPT–ORMDL3 complex
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-020-00553-7
– volume: 14
  start-page: 3475
  year: 2023
  ident: 10.1016/j.jbior.2023.101010_bib24
  article-title: Ceramide sensing by human SPT-ORMDL complex for establishing sphingolipid homeostasis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39274-y
– volume: 52
  start-page: 17
  year: 2012
  ident: 10.1016/j.jbior.2023.101010_bib1
  article-title: Truth and consequences of sphingosine-1-phosphate lyase
  publication-title: Adv. Biol. Regul.
  doi: 10.1016/j.advenzreg.2011.09.015
– year: 2013
  ident: 10.1016/j.jbior.2023.101010_bib7
  article-title: Topological and functional characterization of the ssSPTs, small activating subunits of serine palmitoyltransferase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.451526
– year: 2022
  ident: 10.1016/j.jbior.2023.101010_bib16
  article-title: Sphingosine-1-phosphate controls endothelial sphingolipid homeostasis via ORMDL
  publication-title: EMBO Rep.
– volume: 112
  start-page: 3728
  year: 2015
  ident: 10.1016/j.jbior.2023.101010_bib21
  article-title: ORMDL orosomucoid-like proteins are degraded by free-cholesterol-loading-induced autophagy
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1422455112
– volume: 107
  start-page: 5851
  year: 2010
  ident: 10.1016/j.jbior.2023.101010_bib5
  article-title: Orm1 and Orm2 are conserved endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein quality control
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0911617107
– volume: 40
  start-page: 547
  year: 2012
  ident: 10.1016/j.jbior.2023.101010_bib11
  article-title: Structural, mechanistic and regulatory studies of serine palmitoyltransferase
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST20110769
– volume: 108
  start-page: 19222
  year: 2011
  ident: 10.1016/j.jbior.2023.101010_bib13
  article-title: Protein kinase Ypk1 phosphorylates regulatory proteins Orm1 and Orm2 to control sphingolipid homeostasis in Saccharomyces cerevisiae
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1116948108
– volume: 287
  start-page: 40198
  year: 2012
  ident: 10.1016/j.jbior.2023.101010_bib19
  article-title: Mammalian ORMDL proteins mediate the feedback response in ceramide biosynthesis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C112.404012
– volume: 9
  year: 2023
  ident: 10.1016/j.jbior.2023.101010_bib10
  article-title: Mechanism of sphingolipid homeostasis revealed by structural analysis of Arabidopsis SPT-ORM1 complex
  publication-title: Sci. Adv.
– volume: 10
  start-page: 67
  year: 2010
  ident: 10.1016/j.jbior.2023.101010_bib14
  article-title: Hydrophobicity--shake flasks, protein folding and drug discovery
  publication-title: Curr. Top. Med. Chem.
  doi: 10.2174/156802610790232233
– volume: 14
  start-page: 6196
  year: 2023
  ident: 10.1016/j.jbior.2023.101010_bib17
  article-title: Structure of the ceramide-bound SPOTS complex
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-41747-z
– volume: 294
  start-page: 5146
  year: 2019
  ident: 10.1016/j.jbior.2023.101010_bib4
  article-title: The ORMDL/Orm-serine palmitoyltransferase (SPT) complex is directly regulated by ceramide: reconstitution of SPT regulation in isolated membranes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.007291
– volume: 580
  start-page: 5456
  year: 2006
  ident: 10.1016/j.jbior.2023.101010_bib8
  article-title: Epidermal sphingolipids: metabolism, function, and roles in skin disorders
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2006.08.039
– year: 2021
  ident: 10.1016/j.jbior.2023.101010_bib23
  article-title: Kicking off sphingolipid biosynthesis: structures of the serine palmitoyltransferase complex
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-021-00562-0
– year: 2021
  ident: 10.1016/j.jbior.2023.101010_bib15
SSID ssj0000601645
Score 2.3672786
Snippet Sphingolipids are a diverse class of lipids with essential functions as determinants of membrane physical properties and as intra- and intercellular signaling...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 101010
SubjectTerms Animals
Ceramides - genetics
Ceramides - metabolism
Cryoelectron Microscopy
Humans
Saccharomyces cerevisiae - metabolism
Serine
Serine C-Palmitoyltransferase - genetics
Serine C-Palmitoyltransferase - metabolism
Sphingolipids - metabolism
Title Three kingdoms and one ceramide to rule them all. A comparison of the structural basis of ceramide-dependent regulation of sphingolipid biosynthesis in animals, plants, and fungi
URI https://dx.doi.org/10.1016/j.jbior.2023.101010
https://www.ncbi.nlm.nih.gov/pubmed/38135565
https://www.proquest.com/docview/2905520971
https://pubmed.ncbi.nlm.nih.gov/PMC10922298
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 2212-4934
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000601645
  issn: 2212-4926
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier E-journals (Freedom Collection)
  customDbUrl:
  eissn: 2212-4934
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000601645
  issn: 2212-4926
  databaseCode: ACRLP
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 2212-4934
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000601645
  issn: 2212-4926
  databaseCode: .~1
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 2212-4934
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000601645
  issn: 2212-4926
  databaseCode: AIKHN
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2212-4934
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000601645
  issn: 2212-4926
  databaseCode: AKRWK
  dateStart: 20120101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcuGCgPJYHpWREKdNNw_HSY6rimoB0Qut1FsUv6irvLTZHnrhR_ELmbGTiAXUA6fVOp5oNvPZM5kdf0PI-5hjhU0IFmCFDBjPw6DKBQt4xaVIsLuFwfPOX8_55pJ9vkqvDsjpdBYGyyrHvd_v6W63HkdW49Nc9dauvsVx5OnuEgw8OB74RfYvwPTJj2jOszi-EderGOcHKDCRD7kyrxthO-QFjRMcCfEk7b8d1N8B6J91lL85prPH5NEYUdK1V_oJOdDtU3K0buFturmjH6ir8XTJ8yPy8wJMpymmx1XXDLRqFe1aTaXeVo1Vmu46ur2t4fNaN7Sq6xO6pnJuVUg7g1eoJ51Fwg4KXtAOOD7dIpja6u7o1ve5t15w6DHZ1dW2t4rC4xjuWrgXStsWFLENLIQl7WsszFk6zcDnfrfPyOXZx4vTTTB2bQhkmoS7IIuNUYLJRHIGOACEsFQbqTPJTcEUE9rkJkmKSHFWiEJnKtXKsLTIVSxMoZPn5LCFn_6S0CTNTKGkUJoJFoVGhCI0JuNca2GyOF-QeDJVKUdKc-ysUZdT7dpN6exbon1Lb98FWc5CvWf0uH86nzBQ7gGzBJ9zv-C7CTElLFn8H6ZqdXc7lHERplh9lEUL8sIjaNYEAiiIAHm6IPketuYJSAe-f6W1144WPAoLbM6ev_pfjV-Th_CN-QTTG3IIWNJvIeTaiWO3po7Jg_WnL5vzX9O9Mbs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbK9gAXBJTH8jQS4rRh83Cc5LiqqLa03QtbqbcoflFXeWl3e-jf4hcyEycRC6gHTpFsjzXxjD2TyfgbQj6FHDNsfJAAy6THeOp7RSqYxwsuRYTVLQzed75Y8eUl-3YVXx2Q4-EuDKZV9me_O9O707pvmferOW-tnX8Pw8DB3UXoePD0ATlkMZzJE3K4OD1brsZQSwc50pUrRhIPaQb8oS7T60bYBqFBwwhbfLxM-28b9bcP-mcq5W-26eQJedw7lXTh-H5KDnT9jBwtavigru7oZ9qleXbx8yPycw3S0xQj5KqptrSoFW1qTaXeFJVVmu4aurkt4XmtK1qU5Re6oHKsVkgbgz3U4c4iZgcFQ2i32D5M4Q2VdXd040rdW0e4bTHe1ZS2tYrCcmzvapgLqW0NjNgK9sKMtiXm5sw6zsDs_rDPyeXJ1_Xx0usLN3gyjvydl4TGKMFkJDkDVQAlYbE2UieSm4wpJrRJTRRlgeIsE5lOVKyVYXGWqlCYTEcvyKSGV39FaBQnJlNSKM0EC3wjfOEbk3CutTBJmE5JOIgqlz2qORbXKPMhfe0m7-Sbo3xzJ98pmY1ErQP1uH84H3Qg39PNHMzO_YQfB43JYdfir5ii1s3tNg8zP8YEpCSYkpdOg0ZOwIcCJ5DHU5Lu6dY4ABHB93tqe90hgwd-hvXZ09f_y_EH8nC5vjjPz09XZ2_II-hhLt70lkxAr_Q78MB24n2_w34BDcw0Zg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three+kingdoms+and+one+ceramide+to+rule+them+all.+A+comparison+of+the+structural+basis+of+ceramide-dependent+regulation+of+sphingolipid+biosynthesis+in+animals%2C+plants%2C+and+fungi&rft.jtitle=Advances+in+biological+regulation&rft.au=Mughram%2C+Mohammed+H.+AL&rft.au=Kellogg%2C+Glen+E.&rft.au=Wattenberg%2C+Binks+W.&rft.date=2024-01-01&rft.issn=2212-4926&rft.volume=91&rft.spage=101010&rft_id=info:doi/10.1016%2Fj.jbior.2023.101010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jbior_2023_101010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2212-4926&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2212-4926&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2212-4926&client=summon