Radial glia require PDGFD–PDGFRβ signalling in human but not mouse neocortex

The transcriptional profiles of radial glia are compared between humans and mice during neurogenesis, implicating the growth factor PDGFD and its receptor, PDGFRβ, in human but not mouse neocortical development. A genetic link to human neocortical expansion The unique intellectual capabilities of hu...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 515; no. 7526; pp. 264 - 268
Main Authors Lui, Jan H., Nowakowski, Tomasz J., Pollen, Alex A., Javaherian, Ashkan, Kriegstein, Arnold R., Oldham, Michael C.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.11.2014
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN0028-0836
1476-4687
1476-4687
DOI10.1038/nature13973

Cover

Abstract The transcriptional profiles of radial glia are compared between humans and mice during neurogenesis, implicating the growth factor PDGFD and its receptor, PDGFRβ, in human but not mouse neocortical development. A genetic link to human neocortical expansion The unique intellectual capabilities of humans are widely attributed to the expansion of the human neocortex in comparison to primates and other mammals. Recent reports implicated the elevated proliferative potential of radial glia, a type of neuronal precursor cell than spans the developing cerebral cortex, as a driver for neocortical expansion. Arnold Kriegstein and colleagues take this concept further by identifying evolutionary changes in radial glia gene expression that may have contributed to human neocortical expansion. They find that humans and mice exhibit highly conserved gene expression patterns amongst radial glia except for a few specific signalling pathways. PDGFD and its receptor, PDGFRβ, show distinct expression patterns and profiles in human cortex development that are absent in mice. Disrupting these paths in human brain slice cultures prevents normal cell cycle progression, whereas ectopic activation of these paths in mice enhances radial glia proliferation and dispersion, revealing one critical mechanism specific to human cortical development. Evolutionary expansion of the human neocortex underlies many of our unique mental abilities. This expansion has been attributed to the increased proliferative potential 1 , 2 of radial glia (RG; neural stem cells) and their subventricular dispersion from the periventricular niche 3 , 4 , 5 during neocortical development. Such adaptations may have evolved through gene expression changes in RG. However, whether or how RG gene expression varies between humans and other species is unknown. Here we show that the transcriptional profiles of human and mouse neocortical RG are broadly conserved during neurogenesis, yet diverge for specific signalling pathways. By analysing differential gene co-expression relationships between the species, we demonstrate that the growth factor PDGFD is specifically expressed by RG in human, but not mouse, corticogenesis. We also show that the expression domain of PDGFRβ, the cognate receptor 6 , 7 for PDGFD, is evolutionarily divergent, with high expression in the germinal region of dorsal human neocortex but not in the mouse. Pharmacological inhibition of PDGFD–PDGFRβ signalling in slice culture prevents normal cell cycle progression of neocortical RG in human, but not mouse. Conversely, injection of recombinant PDGFD or ectopic expression of constitutively active PDGFRβ in developing mouse neocortex increases the proportion of RG and their subventricular dispersion. These findings highlight the requirement of PDGFD–PDGFRβ signalling for human neocortical development and suggest that local production of growth factors by RG supports the expanded germinal region and progenitor heterogeneity of species with large brains.
AbstractList Evolutionary expansion of the human neocortex underlies many of our unique mental abilities. This expansion has been attributed to the increased proliferative potential of radial glia (RG; neural stem cells) and their subventricular dispersion from the periventricular niche during neocortical development. Such adaptations may have evolved through gene expression changes in RG. However, whether or how RG gene expression varies between humans and other species is unknown. Here we show that the transcriptional profiles of human and mouse neocortical RG are broadly conserved during neurogenesis, yet diverge for specific signalling pathways. By analysing differential gene co-expression relationships between the species, we demonstrate that the growth factor PDGFD is specifically expressed by RG in human, but not mouse, corticogenesis. We also show that the expression domain of PDGFRβ, the cognate receptor for PDGFD, is evolutionarily divergent, with high expression in the germinal region of dorsal human neocortex but not in the mouse. Pharmacological inhibition of PDGFD-PDGFRβ signalling in slice culture prevents normal cell cycle progression of neocortical RG in human, but not mouse. Conversely, injection of recombinant PDGFD or ectopic expression of constitutively active PDGFRβ in developing mouse neocortex increases the proportion of RG and their subventricular dispersion. These findings highlight the requirement of PDGFD-PDGFRβ signalling for human neocortical development and suggest that local production of growth factors by RG supports the expanded germinal region and progenitor heterogeneity of species with large brains.Evolutionary expansion of the human neocortex underlies many of our unique mental abilities. This expansion has been attributed to the increased proliferative potential of radial glia (RG; neural stem cells) and their subventricular dispersion from the periventricular niche during neocortical development. Such adaptations may have evolved through gene expression changes in RG. However, whether or how RG gene expression varies between humans and other species is unknown. Here we show that the transcriptional profiles of human and mouse neocortical RG are broadly conserved during neurogenesis, yet diverge for specific signalling pathways. By analysing differential gene co-expression relationships between the species, we demonstrate that the growth factor PDGFD is specifically expressed by RG in human, but not mouse, corticogenesis. We also show that the expression domain of PDGFRβ, the cognate receptor for PDGFD, is evolutionarily divergent, with high expression in the germinal region of dorsal human neocortex but not in the mouse. Pharmacological inhibition of PDGFD-PDGFRβ signalling in slice culture prevents normal cell cycle progression of neocortical RG in human, but not mouse. Conversely, injection of recombinant PDGFD or ectopic expression of constitutively active PDGFRβ in developing mouse neocortex increases the proportion of RG and their subventricular dispersion. These findings highlight the requirement of PDGFD-PDGFRβ signalling for human neocortical development and suggest that local production of growth factors by RG supports the expanded germinal region and progenitor heterogeneity of species with large brains.
Evolutionary expansion of the human neocortex underlies many of our unique mental abilities. This expansion has been attributed to the increased proliferative potential of radial glia (RG; neural stem cells) and their subventricular dispersion from the periventricular niche during neocortical development. Such adaptations may have evolved through gene expression changes in RG. However, whether or how RG gene expression varies between humans and other species is unknown. Here we show that the transcriptional profiles of human and mouse neocortical RG are broadly conserved during neurogenesis, yet diverge for specific signalling pathways. By analysing differential gene co-expression relationships between the species, we demonstrate that the growth factor PDGFD is specifically expressed by RG in human, but not mouse, corticogenesis. We also show that the expression domain of PDGFRβ, the cognate receptor for PDGFD, is evolutionarily divergent, with high expression in the germinal region of dorsal human neocortex but not in the mouse. Pharmacological inhibition of PDGFD-PDGFRβ signalling in slice culture prevents normal cell cycle progression of neocortical RG in human, but not mouse. Conversely, injection of recombinant PDGFD or ectopic expression of constitutively active PDGFRβ in developing mouse neocortex increases the proportion of RG and their subventricular dispersion. These findings highlight the requirement of PDGFD-PDGFRβ signalling for human neocortical development and suggest that local production of growth factors by RG supports the expanded germinal region and progenitor heterogeneity of species with large brains.
The transcriptional profiles of radial glia are compared between humans and mice during neurogenesis, implicating the growth factor PDGFD and its receptor, PDGFRβ, in human but not mouse neocortical development. A genetic link to human neocortical expansion The unique intellectual capabilities of humans are widely attributed to the expansion of the human neocortex in comparison to primates and other mammals. Recent reports implicated the elevated proliferative potential of radial glia, a type of neuronal precursor cell than spans the developing cerebral cortex, as a driver for neocortical expansion. Arnold Kriegstein and colleagues take this concept further by identifying evolutionary changes in radial glia gene expression that may have contributed to human neocortical expansion. They find that humans and mice exhibit highly conserved gene expression patterns amongst radial glia except for a few specific signalling pathways. PDGFD and its receptor, PDGFRβ, show distinct expression patterns and profiles in human cortex development that are absent in mice. Disrupting these paths in human brain slice cultures prevents normal cell cycle progression, whereas ectopic activation of these paths in mice enhances radial glia proliferation and dispersion, revealing one critical mechanism specific to human cortical development. Evolutionary expansion of the human neocortex underlies many of our unique mental abilities. This expansion has been attributed to the increased proliferative potential 1 , 2 of radial glia (RG; neural stem cells) and their subventricular dispersion from the periventricular niche 3 , 4 , 5 during neocortical development. Such adaptations may have evolved through gene expression changes in RG. However, whether or how RG gene expression varies between humans and other species is unknown. Here we show that the transcriptional profiles of human and mouse neocortical RG are broadly conserved during neurogenesis, yet diverge for specific signalling pathways. By analysing differential gene co-expression relationships between the species, we demonstrate that the growth factor PDGFD is specifically expressed by RG in human, but not mouse, corticogenesis. We also show that the expression domain of PDGFRβ, the cognate receptor 6 , 7 for PDGFD, is evolutionarily divergent, with high expression in the germinal region of dorsal human neocortex but not in the mouse. Pharmacological inhibition of PDGFD–PDGFRβ signalling in slice culture prevents normal cell cycle progression of neocortical RG in human, but not mouse. Conversely, injection of recombinant PDGFD or ectopic expression of constitutively active PDGFRβ in developing mouse neocortex increases the proportion of RG and their subventricular dispersion. These findings highlight the requirement of PDGFD–PDGFRβ signalling for human neocortical development and suggest that local production of growth factors by RG supports the expanded germinal region and progenitor heterogeneity of species with large brains.
Audience Academic
Author Lui, Jan H.
Javaherian, Ashkan
Kriegstein, Arnold R.
Nowakowski, Tomasz J.
Pollen, Alex A.
Oldham, Michael C.
Author_xml – sequence: 1
  givenname: Jan H.
  surname: Lui
  fullname: Lui, Jan H.
  organization: Department of Neurology and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California 94143, USA, Present addresses: Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA (J.H.L.); Gladstone Institute of Neurological Disease, San Francisco, California 94158, USA (A.J.)
– sequence: 2
  givenname: Tomasz J.
  surname: Nowakowski
  fullname: Nowakowski, Tomasz J.
  organization: Department of Neurology and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California 94143, USA
– sequence: 3
  givenname: Alex A.
  surname: Pollen
  fullname: Pollen, Alex A.
  organization: Department of Neurology and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California 94143, USA
– sequence: 4
  givenname: Ashkan
  surname: Javaherian
  fullname: Javaherian, Ashkan
  organization: Department of Neurology and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California 94143, USA, Present addresses: Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA (J.H.L.); Gladstone Institute of Neurological Disease, San Francisco, California 94158, USA (A.J.)
– sequence: 5
  givenname: Arnold R.
  surname: Kriegstein
  fullname: Kriegstein, Arnold R.
  email: kriegsteina@stemcell.ucsf.edu
  organization: Department of Neurology and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California 94143, USA
– sequence: 6
  givenname: Michael C.
  surname: Oldham
  fullname: Oldham, Michael C.
  email: oldhamm@stemcell.ucsf.edu
  organization: Department of Neurology and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California 94143, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25391964$$D View this record in MEDLINE/PubMed
BookMark eNp10s1u1DAQAGALFdFt4cQdWfRSBCl2nDjOsWppqVSpaIGz5XUmwZXj7PpHglvfgTfhQXgIngSvtqAuWuSDJfub0Xg8B2jPTQ4Qek7JCSVMvHUqJg-UtQ17hGa0anhRcdHsoRkhpSiIYHwfHYRwSwipaVM9QftlzVra8mqGbuaqM8riwRqFPayS8YA_nF9enP-6-77e5z9_4GAGp6w1bsDG4S9pVA4vUsRuinicUgDsYNKTj_D1KXrcKxvg2f1-iD5fvPt09r64vrm8Oju9LnRdtrHoFde0q0rNc6ltU9WNaGit2gVQ0eZLSjtCBJQNIX2nGc9XwIQAsdBKN3XFDtHxJu_ST6sEIcrRBA3WqlxKCpLy_MaK5QZlerShg7Igjeun6JVec3lacSZo2xKeVbFDDeDAK5sb3pt8vOVf7vB6aVbyITrZgfLqYDR6Z9ZXWwHZ5KbGQaUQ5NXH-bZ9cd-CtBihk0tvRuW_yT-fm8HrDdB-CsFD_5dQItejIx-MTtb0H61NVNHkCrwy9j8xbzYxIWd2A3h5OyWfZyXs5L8BWl_TPQ
CitedBy_id crossref_primary_10_4103_1673_5374_369100
crossref_primary_10_1523_ENEURO_0246_23_2024
crossref_primary_10_1016_j_devcel_2023_11_004
crossref_primary_10_1126_science_abk2346
crossref_primary_10_1111_joa_13055
crossref_primary_10_3389_fcell_2020_604448
crossref_primary_10_1152_physrev_00016_2021
crossref_primary_10_1002_cne_23909
crossref_primary_10_1002_wdev_256
crossref_primary_10_1016_j_taap_2018_05_009
crossref_primary_10_1007_s10072_018_3329_y
crossref_primary_10_3390_cancers16132429
crossref_primary_10_1002_bies_201500108
crossref_primary_10_1016_j_neures_2018_09_011
crossref_primary_10_1016_j_semcdb_2019_07_002
crossref_primary_10_1016_j_celrep_2014_11_026
crossref_primary_10_1093_cercor_bhy013
crossref_primary_10_1126_science_aap8809
crossref_primary_10_1093_cercor_bhw194
crossref_primary_10_3389_fcell_2020_578341
crossref_primary_10_1002_1873_3468_12846
crossref_primary_10_7554_eLife_23253
crossref_primary_10_1016_j_stem_2016_09_011
crossref_primary_10_1016_j_semcdb_2017_08_045
crossref_primary_10_1038_s41380_019_0500_7
crossref_primary_10_1016_j_cub_2015_01_041
crossref_primary_10_1038_s41591_019_0436_0
crossref_primary_10_1038_s41422_022_00635_9
crossref_primary_10_1093_hmg_ddaa117
crossref_primary_10_3389_fnins_2024_1522652
crossref_primary_10_1038_nrn4021
crossref_primary_10_1007_s00018_021_04063_7
crossref_primary_10_1038_srep25180
crossref_primary_10_1111_jnc_14338
crossref_primary_10_1101_gad_302679_117
crossref_primary_10_15252_embj_201591176
crossref_primary_10_1242_dev_120568
crossref_primary_10_1038_s41596_023_00929_1
crossref_primary_10_1177_10738584211069060
crossref_primary_10_1007_s12264_024_01259_2
crossref_primary_10_1038_s41593_019_0497_x
crossref_primary_10_1016_j_ccell_2016_03_009
crossref_primary_10_7554_eLife_18197
crossref_primary_10_1126_scitranslmed_aah6904
crossref_primary_10_1016_j_stemcr_2020_01_007
crossref_primary_10_7554_eLife_24712
crossref_primary_10_12677_MA_2015_33005
crossref_primary_10_1016_j_gde_2020_05_043
crossref_primary_10_7554_eLife_32332
crossref_primary_10_1038_s42003_018_0042_6
crossref_primary_10_3389_fncel_2019_00381
crossref_primary_10_1093_gbe_evy054
crossref_primary_10_1093_cercor_bhx101
crossref_primary_10_1016_j_neuron_2014_12_060
crossref_primary_10_1038_s41576_023_00626_5
crossref_primary_10_3389_fnins_2018_00226
crossref_primary_10_1242_dev_199723
crossref_primary_10_15252_embr_201947880
crossref_primary_10_1093_oons_kvae001
crossref_primary_10_1038_s43587_021_00122_7
crossref_primary_10_1186_s13059_016_1062_5
crossref_primary_10_1002_glia_22827
crossref_primary_10_1016_j_isci_2018_05_014
crossref_primary_10_1093_brain_awad138
crossref_primary_10_1038_s42003_019_0411_9
crossref_primary_10_1016_j_stem_2016_11_017
crossref_primary_10_1016_j_conb_2016_11_009
crossref_primary_10_1177_1073858417691009
crossref_primary_10_1016_j_stem_2016_05_022
crossref_primary_10_1016_j_ceb_2021_04_008
crossref_primary_10_1016_j_cell_2015_09_004
crossref_primary_10_1016_j_conb_2016_11_004
crossref_primary_10_1007_s12264_021_00759_9
crossref_primary_10_1038_s41582_022_00723_9
crossref_primary_10_1016_j_neuron_2015_12_008
crossref_primary_10_1186_s12987_022_00316_0
crossref_primary_10_1002_advs_202204140
crossref_primary_10_1089_scd_2015_0044
crossref_primary_10_1002_stem_3156
crossref_primary_10_1146_annurev_genet_071719_020705
crossref_primary_10_1016_j_molmed_2019_09_010
crossref_primary_10_1038_s41586_021_03910_8
crossref_primary_10_1083_jcb_202310157
crossref_primary_10_1523_JNEUROSCI_0740_18_2018
crossref_primary_10_1038_nm_4071
crossref_primary_10_1126_sciadv_abl7263
crossref_primary_10_1177_0963689717737074
crossref_primary_10_1016_j_stem_2016_03_003
crossref_primary_10_1093_hmg_ddv166
crossref_primary_10_1016_j_cell_2017_06_036
crossref_primary_10_1016_j_cub_2019_05_026
crossref_primary_10_1016_j_mcn_2016_11_001
crossref_primary_10_3389_fnins_2022_824802
crossref_primary_10_1038_515206a
crossref_primary_10_1038_nature22330
crossref_primary_10_1038_s41583_023_00675_z
crossref_primary_10_1007_s12311_017_0904_3
crossref_primary_10_1016_j_cell_2018_03_067
crossref_primary_10_1016_j_neuron_2019_01_027
crossref_primary_10_1016_j_devcel_2021_08_005
crossref_primary_10_1080_15384101_2019_1609818
crossref_primary_10_1093_hmg_ddab295
crossref_primary_10_1038_nmeth_3629
crossref_primary_10_3389_fcell_2021_649538
crossref_primary_10_1016_j_cell_2021_10_003
crossref_primary_10_1016_j_devcel_2015_01_035
crossref_primary_10_1016_j_neures_2019_05_007
crossref_primary_10_1093_procel_pwad036
crossref_primary_10_1038_nn_4307
crossref_primary_10_1038_nn_3980
crossref_primary_10_1038_s41593_018_0216_z
crossref_primary_10_1371_journal_pbio_1002217
crossref_primary_10_1126_science_adh7688
crossref_primary_10_1016_j_conb_2016_05_004
crossref_primary_10_1016_j_tins_2020_07_009
crossref_primary_10_1038_s41567_018_0046_7
crossref_primary_10_1126_science_aaa1975
crossref_primary_10_1016_j_devcel_2024_10_005
crossref_primary_10_1016_j_jid_2019_06_126
crossref_primary_10_1016_j_neuron_2018_04_033
crossref_primary_10_1101_gad_305813_117
crossref_primary_10_1016_j_stem_2017_08_013
crossref_primary_10_1016_j_brainresbull_2016_08_012
crossref_primary_10_1038_s41556_024_01393_z
Cites_doi 10.1038/35074588
10.1523/JNEUROSCI.5746-12.2013
10.1038/nature13185
10.1016/j.neuron.2009.03.027
10.1038/nature10523
10.2202/1544-6115.1128
10.1016/j.mcn.2008.01.012
10.1371/journal.pbio.1000582
10.1073/pnas.0605938103
10.1126/science.3291116
10.1038/35074593
10.1038/nn.2553
10.1242/dev.022616
10.1016/j.cell.2011.06.030
10.1371/journal.pcbi.1000117
10.1111/j.1460-9568.2005.04544.x
10.1161/01.ATV.0000282198.60701.94
10.1016/j.neuron.2013.10.045
10.1126/science.1244392
10.1093/cercor/12.1.37
10.1038/nn.2207
10.1016/0092-8674(94)90322-0
10.1073/pnas.1209647109
10.1038/nature09774
10.1038/nature11405
10.1038/nrn2719
10.1158/0008-5472.957.65.3
10.1038/nature08845
ContentType Journal Article
Copyright Springer Nature Limited 2014
COPYRIGHT 2014 Nature Publishing Group
Copyright_xml – notice: Springer Nature Limited 2014
– notice: COPYRIGHT 2014 Nature Publishing Group
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1038/nature13973
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 268
ExternalDocumentID A463819906
25391964
10_1038_nature13973
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS021223
– fundername: NINDS NIH HHS
  grantid: R01 NS075998
– fundername: NINDS NIH HHS
  grantid: R01 NS072630
– fundername: Howard Hughes Medical Institute
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
00M
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3V.
4.4
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
A8Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAKAS
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABAWZ
ABDBF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACUHS
ACWUS
ADBBV
ADFRT
ADUKH
ADYSU
ADZCM
AENEX
AEUYN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
APEBS
ARAPS
ARMCB
ARTTT
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BCU
BDKGC
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DO4
DU5
DWQXO
E.-
E.L
EAD
EAP
EAS
EAZ
EBC
EBD
EBO
EBS
ECC
EE.
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
EPS
ESE
ESN
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PM3
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TH9
TN5
TSG
TUS
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
ZKB
~02
~7V
~88
~8M
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADGHP
ADXHL
AETEA
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
AEIIB
PMFND
7X8
ESTFP
PUEGO
ID FETCH-LOGICAL-c529t-fa6c1d42c6468974578715a9be189fa611d008e2700fdc365a9e388e8bcac7543
ISSN 0028-0836
1476-4687
IngestDate Mon Sep 08 03:38:17 EDT 2025
Tue Jun 17 21:18:31 EDT 2025
Thu Jun 12 22:36:34 EDT 2025
Tue Jun 10 15:33:05 EDT 2025
Tue Jun 10 20:28:31 EDT 2025
Fri Jun 27 03:57:59 EDT 2025
Mon Jul 21 05:39:05 EDT 2025
Tue Jul 01 03:21:26 EDT 2025
Thu Apr 24 23:00:52 EDT 2025
Fri Feb 21 02:39:58 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7526
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c529t-fa6c1d42c6468974578715a9be189fa611d008e2700fdc365a9e388e8bcac7543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1038/nature13973
PMID 25391964
PQID 1625343103
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_1625343103
gale_infotracmisc_A463819906
gale_infotracgeneralonefile_A463819906
gale_infotraccpiq_463819906
gale_infotracacademiconefile_A463819906
gale_incontextgauss_ISR_A463819906
pubmed_primary_25391964
crossref_primary_10_1038_nature13973
crossref_citationtrail_10_1038_nature13973
springer_journals_10_1038_nature13973
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-11-13
PublicationDateYYYYMMDD 2014-11-13
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-13
  day: 13
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2014
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Zhang, Horvath (CR16) 2005; 4
Magnusson (CR22) 2007; 27
Hansen, Lui, Parker, Kriegstein (CR4) 2010; 464
Bae (CR25) 2014; 343
Smart (CR3) 2002; 12
Workman (CR11) 2013; 33
Oldham, Horvath, Geschwind (CR15) 2006; 103
Lui, Hansen, Kriegstein (CR2) 2011; 146
McLean (CR24) 2011; 471
Horvath, Dong (CR14) 2008; 4
Pinto (CR18) 2008; 38
Roberts (CR21) 2005; 65
Ajioka, Maeda, Nakajima (CR30) 2006; 23
Oldham, Coppola (CR9) 2014
Oldham (CR10) 2008; 11
Rakic (CR1) 2009; 10
Diez-Roux (CR20) 2011; 9
Johnson (CR27) 2009; 62
Fietz (CR12) 2012; 109
Geschwind, Rakic (CR26) 2013; 80
Golub, Barker, Lovett, Gilliland (CR23) 1994; 77
Miller (CR13) 2014; 508
Hawrylycz (CR29) 2012; 489
Fietz (CR5) 2010; 13
Kang (CR28) 2011; 478
Bergsten (CR6) 2001; 3
LaRochelle (CR7) 2001; 3
Wang (CR19) 2010; 1806
Rakic (CR8) 1988; 241
Kawaguchi (CR17) 2008; 135
P Rakic (BFnature13973_CR1) 2009; 10
P Rakic (BFnature13973_CR8) 1988; 241
TR Golub (BFnature13973_CR23) 1994; 77
WG Roberts (BFnature13973_CR21) 2005; 65
E Bergsten (BFnature13973_CR6) 2001; 3
A Kawaguchi (BFnature13973_CR17) 2008; 135
SA Fietz (BFnature13973_CR12) 2012; 109
I Ajioka (BFnature13973_CR30) 2006; 23
IH Smart (BFnature13973_CR3) 2002; 12
DH Geschwind (BFnature13973_CR26) 2013; 80
MC Oldham (BFnature13973_CR15) 2006; 103
G Diez-Roux (BFnature13973_CR20) 2011; 9
S Horvath (BFnature13973_CR14) 2008; 4
MC Oldham (BFnature13973_CR9) 2014
AD Workman (BFnature13973_CR11) 2013; 33
JA Miller (BFnature13973_CR13) 2014; 508
JH Lui (BFnature13973_CR2) 2011; 146
DV Hansen (BFnature13973_CR4) 2010; 464
HJ Kang (BFnature13973_CR28) 2011; 478
SA Fietz (BFnature13973_CR5) 2010; 13
PU Magnusson (BFnature13973_CR22) 2007; 27
MJ Hawrylycz (BFnature13973_CR29) 2012; 489
MC Oldham (BFnature13973_CR10) 2008; 11
MB Johnson (BFnature13973_CR27) 2009; 62
L Pinto (BFnature13973_CR18) 2008; 38
B Zhang (BFnature13973_CR16) 2005; 4
CY McLean (BFnature13973_CR24) 2011; 471
Z Wang (BFnature13973_CR19) 2010; 1806
BI Bae (BFnature13973_CR25) 2014; 343
WJ LaRochelle (BFnature13973_CR7) 2001; 3
25391958 - Nature. 2014 Nov 13;515(7526):206-7
References_xml – volume: 3
  start-page: 512
  year: 2001
  end-page: 516
  ident: CR6
  article-title: PDGF-D is a specific, protease-activated ligand for the PDGF β-receptor
  publication-title: Nature Cell Biol.
  doi: 10.1038/35074588
– volume: 33
  start-page: 7368
  year: 2013
  end-page: 7383
  ident: CR11
  article-title: Modeling transformations of neurodevelopmental sequences across mammalian species
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5746-12.2013
– volume: 508
  start-page: 199
  year: 2014
  end-page: 206
  ident: CR13
  article-title: Transcriptional landscape of the prenatal human brain
  publication-title: Nature
  doi: 10.1038/nature13185
– volume: 62
  start-page: 494
  year: 2009
  end-page: 509
  ident: CR27
  article-title: Functional and evolutionary insights into human brain development through global transcriptome analysis
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.03.027
– volume: 478
  start-page: 483
  year: 2011
  end-page: 489
  ident: CR28
  article-title: Spatio-temporal transcriptome of the human brain
  publication-title: Nature
  doi: 10.1038/nature10523
– volume: 4
  start-page: Article17
  year: 2005
  ident: CR16
  article-title: A general framework for weighted gene co-expression network analysis
  publication-title: Stat. Appl. Genet. Mol. Biol.
  doi: 10.2202/1544-6115.1128
– volume: 38
  start-page: 15
  year: 2008
  end-page: 42
  ident: CR18
  article-title: Prospective isolation of functionally distinct radial glial subtypes–lineage and transcriptome analysis
  publication-title: Mol. Cell. Neurosci.
  doi: 10.1016/j.mcn.2008.01.012
– volume: 9
  start-page: e1000582
  year: 2011
  ident: CR20
  article-title: A high-resolution anatomical atlas of the transcriptome in the mouse embryo
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000582
– volume: 103
  start-page: 17973
  year: 2006
  end-page: 17978
  ident: CR15
  article-title: Conservation and evolution of gene coexpression networks in human and chimpanzee brains
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0605938103
– volume: 241
  start-page: 170
  year: 1988
  end-page: 176
  ident: CR8
  article-title: Specification of cerebral cortical areas
  publication-title: Science
  doi: 10.1126/science.3291116
– volume: 3
  start-page: 517
  year: 2001
  end-page: 521
  ident: CR7
  article-title: PDGF-D, a new protease-activated growth factor
  publication-title: Nature Cell Biol.
  doi: 10.1038/35074593
– volume: 464
  start-page: 554
  year: 2010
  end-page: 561
  ident: CR4
  article-title: Neurogenic radial glia in the outer subventricular zone of human neocortex
  publication-title: Nature
– volume: 13
  start-page: 690
  year: 2010
  end-page: 699
  ident: CR5
  article-title: OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling
  publication-title: Nature Neurosci.
  doi: 10.1038/nn.2553
– volume: 135
  start-page: 3113
  year: 2008
  end-page: 3124
  ident: CR17
  article-title: Single-cell gene profiling defines differential progenitor subclasses in mammalian neurogenesis
  publication-title: Development
  doi: 10.1242/dev.022616
– volume: 146
  start-page: 18
  year: 2011
  end-page: 36
  ident: CR2
  article-title: Development and evolution of the human neocortex
  publication-title: Cell
  doi: 10.1016/j.cell.2011.06.030
– volume: 1806
  start-page: 122
  year: 2010
  end-page: 130
  ident: CR19
  article-title: Emerging roles of PDGF-D signaling pathway in tumor development and progression
  publication-title: Biochim. Biophys. Acta
– volume: 4
  start-page: e1000117
  year: 2008
  ident: CR14
  article-title: Geometric interpretation of gene coexpression network analysis
  publication-title: PLOS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000117
– volume: 65
  start-page: 957
  year: 2005
  end-page: 966
  ident: CR21
  article-title: Antiangiogenic and antitumor activity of a selective PDGFR tyrosine kinase inhibitor, CP-673,451
  publication-title: Cancer Res.
– volume: 23
  start-page: 296
  year: 2006
  end-page: 308
  ident: CR30
  article-title: Identification of ventricular-side-enriched molecules regulated in a stage-dependent manner during cerebral cortical development
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2005.04544.x
– volume: 27
  start-page: 2142
  year: 2007
  end-page: 2149
  ident: CR22
  article-title: Platelet-derived growth factor receptor-β constitutive activity promotes angiogenesis and
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/01.ATV.0000282198.60701.94
– volume: 80
  start-page: 633
  year: 2013
  end-page: 647
  ident: CR26
  article-title: Cortical evolution: judge the brain by its cover
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.10.045
– volume: 343
  start-page: 764
  year: 2014
  end-page: 768
  ident: CR25
  article-title: Evolutionarily dynamic alternative splicing of GPR56 regulates regional cerebral cortical patterning
  publication-title: Science
  doi: 10.1126/science.1244392
– volume: 12
  start-page: 37
  year: 2002
  end-page: 53
  ident: CR3
  article-title: Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/12.1.37
– volume: 11
  start-page: 1271
  year: 2008
  end-page: 1282
  ident: CR10
  article-title: Functional organization of the transcriptome in human brain
  publication-title: Nature Neurosci.
  doi: 10.1038/nn.2207
– volume: 77
  start-page: 307
  year: 1994
  end-page: 316
  ident: CR23
  article-title: Fusion of PDGF receptor β to a novel -like gene, , in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90322-0
– volume: 109
  start-page: 11836
  year: 2012
  end-page: 11841
  ident: CR12
  article-title: Transcriptomes of germinal zones of human and mouse fetal neocortex suggest a role of extracellular matrix in progenitor self-renewal
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1209647109
– volume: 471
  start-page: 216
  year: 2011
  end-page: 219
  ident: CR24
  article-title: Human-specific loss of regulatory DNA and the evolution of human-specific traits
  publication-title: Nature
  doi: 10.1038/nature09774
– volume: 489
  start-page: 391
  year: 2012
  end-page: 399
  ident: CR29
  article-title: An anatomically comprehensive atlas of the adult human brain transcriptome
  publication-title: Nature
  doi: 10.1038/nature11405
– start-page: 85
  year: 2014
  end-page: 113
  ident: CR9
  publication-title: The OMICs: Applications in Neuroscience
– volume: 10
  start-page: 724
  year: 2009
  end-page: 735
  ident: CR1
  article-title: Evolution of the neocortex: a perspective from developmental biology
  publication-title: Nature Rev. Neurosci.
  doi: 10.1038/nrn2719
– volume: 11
  start-page: 1271
  year: 2008
  ident: BFnature13973_CR10
  publication-title: Nature Neurosci.
  doi: 10.1038/nn.2207
– volume: 103
  start-page: 17973
  year: 2006
  ident: BFnature13973_CR15
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0605938103
– volume: 241
  start-page: 170
  year: 1988
  ident: BFnature13973_CR8
  publication-title: Science
  doi: 10.1126/science.3291116
– volume: 135
  start-page: 3113
  year: 2008
  ident: BFnature13973_CR17
  publication-title: Development
  doi: 10.1242/dev.022616
– volume: 80
  start-page: 633
  year: 2013
  ident: BFnature13973_CR26
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.10.045
– volume: 10
  start-page: 724
  year: 2009
  ident: BFnature13973_CR1
  publication-title: Nature Rev. Neurosci.
  doi: 10.1038/nrn2719
– volume: 13
  start-page: 690
  year: 2010
  ident: BFnature13973_CR5
  publication-title: Nature Neurosci.
  doi: 10.1038/nn.2553
– volume: 471
  start-page: 216
  year: 2011
  ident: BFnature13973_CR24
  publication-title: Nature
  doi: 10.1038/nature09774
– volume: 62
  start-page: 494
  year: 2009
  ident: BFnature13973_CR27
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.03.027
– volume: 27
  start-page: 2142
  year: 2007
  ident: BFnature13973_CR22
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/01.ATV.0000282198.60701.94
– start-page: 85
  volume-title: The OMICs: Applications in Neuroscience
  year: 2014
  ident: BFnature13973_CR9
– volume: 12
  start-page: 37
  year: 2002
  ident: BFnature13973_CR3
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/12.1.37
– volume: 478
  start-page: 483
  year: 2011
  ident: BFnature13973_CR28
  publication-title: Nature
  doi: 10.1038/nature10523
– volume: 4
  start-page: e1000117
  year: 2008
  ident: BFnature13973_CR14
  publication-title: PLOS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000117
– volume: 77
  start-page: 307
  year: 1994
  ident: BFnature13973_CR23
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90322-0
– volume: 65
  start-page: 957
  year: 2005
  ident: BFnature13973_CR21
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.957.65.3
– volume: 146
  start-page: 18
  year: 2011
  ident: BFnature13973_CR2
  publication-title: Cell
  doi: 10.1016/j.cell.2011.06.030
– volume: 3
  start-page: 517
  year: 2001
  ident: BFnature13973_CR7
  publication-title: Nature Cell Biol.
  doi: 10.1038/35074593
– volume: 489
  start-page: 391
  year: 2012
  ident: BFnature13973_CR29
  publication-title: Nature
  doi: 10.1038/nature11405
– volume: 109
  start-page: 11836
  year: 2012
  ident: BFnature13973_CR12
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1209647109
– volume: 4
  start-page: Article17
  year: 2005
  ident: BFnature13973_CR16
  publication-title: Stat. Appl. Genet. Mol. Biol.
  doi: 10.2202/1544-6115.1128
– volume: 508
  start-page: 199
  year: 2014
  ident: BFnature13973_CR13
  publication-title: Nature
  doi: 10.1038/nature13185
– volume: 464
  start-page: 554
  year: 2010
  ident: BFnature13973_CR4
  publication-title: Nature
  doi: 10.1038/nature08845
– volume: 3
  start-page: 512
  year: 2001
  ident: BFnature13973_CR6
  publication-title: Nature Cell Biol.
  doi: 10.1038/35074588
– volume: 343
  start-page: 764
  year: 2014
  ident: BFnature13973_CR25
  publication-title: Science
  doi: 10.1126/science.1244392
– volume: 33
  start-page: 7368
  year: 2013
  ident: BFnature13973_CR11
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5746-12.2013
– volume: 9
  start-page: e1000582
  year: 2011
  ident: BFnature13973_CR20
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000582
– volume: 38
  start-page: 15
  year: 2008
  ident: BFnature13973_CR18
  publication-title: Mol. Cell. Neurosci.
  doi: 10.1016/j.mcn.2008.01.012
– volume: 1806
  start-page: 122
  year: 2010
  ident: BFnature13973_CR19
  publication-title: Biochim. Biophys. Acta
– volume: 23
  start-page: 296
  year: 2006
  ident: BFnature13973_CR30
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2005.04544.x
– reference: 25391958 - Nature. 2014 Nov 13;515(7526):206-7
SSID ssj0005174
Score 2.5044582
Snippet The transcriptional profiles of radial glia are compared between humans and mice during neurogenesis, implicating the growth factor PDGFD and its receptor,...
Evolutionary expansion of the human neocortex underlies many of our unique mental abilities. This expansion has been attributed to the increased proliferative...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 264
SubjectTerms 13/1
13/51
14/19
14/34
14/63
38
45/61
45/90
45/91
631/378/2571/2579
64/60
Analysis
Animals
Cell Cycle
Cell Proliferation
Gene expression
Gene Expression Profiling
Humanities and Social Sciences
Humans
letter
Lymphokines - genetics
Lymphokines - metabolism
Mice
multidisciplinary
Neocortex
Neocortex - cytology
Neocortex - growth & development
Neocortex - metabolism
Neuroglia
Neuroglia - cytology
Neuroglia - metabolism
Platelet-derived growth factor
Platelet-Derived Growth Factor - genetics
Platelet-Derived Growth Factor - metabolism
Receptor, Platelet-Derived Growth Factor beta - metabolism
Science
Signal Transduction - genetics
Transcription, Genetic
Title Radial glia require PDGFD–PDGFRβ signalling in human but not mouse neocortex
URI https://link.springer.com/article/10.1038/nature13973
https://www.ncbi.nlm.nih.gov/pubmed/25391964
https://www.proquest.com/docview/1625343103
Volume 515
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF1BKiReEC230FItqOFSyyDf14-5tlQ0ikIr5c1ab9YhauWUOqGon8WH8E3MeDexHfJQeNlEntXG9pyMZ8YzZwk5CBIGWpaxCRFPaLqJYGYMWDKlZQvu2pZI8jzkad8_PndPRt6oqJ_Pu0vm8Udxu7Gv5H-0CsdAr9gl-w-aXS0KB-A76BdG0DCMd9LxkOdtH5PLKTeuJdb0SmPQOep1TByHjXa30bINLNHginp7mupN-eLF3EhncwMDf2mkciaw6PZn2VXt55Sf5S0_VjmDL4upqrBNi96G_uyGX8xu9DbYZ1h2dFu8cxpgfiJddtQUCdQT_oNjB6JKwzazbxcarToRYbnYkaf6SJc83nhWG7Nny8YBRYZdNr6eaubUKAs8u2JNFcH5X1Zecbor5lP0YJ3iYbYqMWy6PgajIdKxb9kBOFY1stVsdVq9ogJojaRbt2_C6p9Ka1cclvXHdslvWXuRnvsnZ4_JIx1Y0KZCyTa5J9Md8iAv8BXZDtnWRjyj7zXT-Icn5FQBiCKAqAYQLQHo9y9agIdOU5qDhwJ4KICH5uChK_A8Jee97ln72NT7a5jCs8O5mXBfWGPXFr7rM4gr0XhbHg9jabEQhJY1Bg9RYmlCMhaODyLpMCZZLLgIPNd5RmrpLJUvCIUonTHLGYdenLicxRwDcRHa4BjFImDjOjlc3sRIaPJ53APlMsqLIBwWle54nRysJl8pzpXN096gNiJkMUmxTGrCF1kWff46jArl18k7PSmZwQ_CiauuEzhtJD6rzNytzBRX0-9RSfq2Ip0oVW1aZq8yEay1qIhfL7EToQhLHEFPiyyyfNtzXNz2r06eK1Ctrh4kITLn1UljibJI26Fs0615eeer3iUPi__yHqnNrxfyFbjZ83if3A9GAYysbeHYO9rXfyD4bHX7g-EfOQnU2w
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radial+glia+require+PDGFD-PDGFR%CE%B2+signalling+in+human+but+not+mouse+neocortex&rft.jtitle=Nature+%28London%29&rft.au=Lui%2C+Jan+H&rft.au=Nowakowski%2C+Tomasz+J&rft.au=Pollen%2C+Alex+A&rft.au=Javaherian%2C+Ashkan&rft.date=2014-11-13&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=515&rft.issue=7526&rft.spage=264&rft_id=info:doi/10.1038%2Fnature13973&rft.externalDocID=A463819906
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon