Radial glia require PDGFD–PDGFRβ signalling in human but not mouse neocortex
The transcriptional profiles of radial glia are compared between humans and mice during neurogenesis, implicating the growth factor PDGFD and its receptor, PDGFRβ, in human but not mouse neocortical development. A genetic link to human neocortical expansion The unique intellectual capabilities of hu...
Saved in:
Published in | Nature (London) Vol. 515; no. 7526; pp. 264 - 268 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
13.11.2014
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 0028-0836 1476-4687 1476-4687 |
DOI | 10.1038/nature13973 |
Cover
Abstract | The transcriptional profiles of radial glia are compared between humans and mice during neurogenesis, implicating the growth factor PDGFD and its receptor, PDGFRβ, in human but not mouse neocortical development.
A genetic link to human neocortical expansion
The unique intellectual capabilities of humans are widely attributed to the expansion of the human neocortex in comparison to primates and other mammals. Recent reports implicated the elevated proliferative potential of radial glia, a type of neuronal precursor cell than spans the developing cerebral cortex, as a driver for neocortical expansion. Arnold Kriegstein and colleagues take this concept further by identifying evolutionary changes in radial glia gene expression that may have contributed to human neocortical expansion. They find that humans and mice exhibit highly conserved gene expression patterns amongst radial glia except for a few specific signalling pathways. PDGFD and its receptor, PDGFRβ, show distinct expression patterns and profiles in human cortex development that are absent in mice. Disrupting these paths in human brain slice cultures prevents normal cell cycle progression, whereas ectopic activation of these paths in mice enhances radial glia proliferation and dispersion, revealing one critical mechanism specific to human cortical development.
Evolutionary expansion of the human neocortex underlies many of our unique mental abilities. This expansion has been attributed to the increased proliferative potential
1
,
2
of radial glia (RG; neural stem cells) and their subventricular dispersion from the periventricular niche
3
,
4
,
5
during neocortical development. Such adaptations may have evolved through gene expression changes in RG. However, whether or how RG gene expression varies between humans and other species is unknown. Here we show that the transcriptional profiles of human and mouse neocortical RG are broadly conserved during neurogenesis, yet diverge for specific signalling pathways. By analysing differential gene co-expression relationships between the species, we demonstrate that the growth factor
PDGFD
is specifically expressed by RG in human, but not mouse, corticogenesis. We also show that the expression domain of PDGFRβ, the cognate receptor
6
,
7
for PDGFD, is evolutionarily divergent, with high expression in the germinal region of dorsal human neocortex but not in the mouse. Pharmacological inhibition of PDGFD–PDGFRβ signalling in slice culture prevents normal cell cycle progression of neocortical RG in human, but not mouse. Conversely, injection of recombinant PDGFD or ectopic expression of constitutively active PDGFRβ in developing mouse neocortex increases the proportion of RG and their subventricular dispersion. These findings highlight the requirement of PDGFD–PDGFRβ signalling for human neocortical development and suggest that local production of growth factors by RG supports the expanded germinal region and progenitor heterogeneity of species with large brains. |
---|---|
AbstractList | Evolutionary expansion of the human neocortex underlies many of our unique mental abilities. This expansion has been attributed to the increased proliferative potential of radial glia (RG; neural stem cells) and their subventricular dispersion from the periventricular niche during neocortical development. Such adaptations may have evolved through gene expression changes in RG. However, whether or how RG gene expression varies between humans and other species is unknown. Here we show that the transcriptional profiles of human and mouse neocortical RG are broadly conserved during neurogenesis, yet diverge for specific signalling pathways. By analysing differential gene co-expression relationships between the species, we demonstrate that the growth factor PDGFD is specifically expressed by RG in human, but not mouse, corticogenesis. We also show that the expression domain of PDGFRβ, the cognate receptor for PDGFD, is evolutionarily divergent, with high expression in the germinal region of dorsal human neocortex but not in the mouse. Pharmacological inhibition of PDGFD-PDGFRβ signalling in slice culture prevents normal cell cycle progression of neocortical RG in human, but not mouse. Conversely, injection of recombinant PDGFD or ectopic expression of constitutively active PDGFRβ in developing mouse neocortex increases the proportion of RG and their subventricular dispersion. These findings highlight the requirement of PDGFD-PDGFRβ signalling for human neocortical development and suggest that local production of growth factors by RG supports the expanded germinal region and progenitor heterogeneity of species with large brains.Evolutionary expansion of the human neocortex underlies many of our unique mental abilities. This expansion has been attributed to the increased proliferative potential of radial glia (RG; neural stem cells) and their subventricular dispersion from the periventricular niche during neocortical development. Such adaptations may have evolved through gene expression changes in RG. However, whether or how RG gene expression varies between humans and other species is unknown. Here we show that the transcriptional profiles of human and mouse neocortical RG are broadly conserved during neurogenesis, yet diverge for specific signalling pathways. By analysing differential gene co-expression relationships between the species, we demonstrate that the growth factor PDGFD is specifically expressed by RG in human, but not mouse, corticogenesis. We also show that the expression domain of PDGFRβ, the cognate receptor for PDGFD, is evolutionarily divergent, with high expression in the germinal region of dorsal human neocortex but not in the mouse. Pharmacological inhibition of PDGFD-PDGFRβ signalling in slice culture prevents normal cell cycle progression of neocortical RG in human, but not mouse. Conversely, injection of recombinant PDGFD or ectopic expression of constitutively active PDGFRβ in developing mouse neocortex increases the proportion of RG and their subventricular dispersion. These findings highlight the requirement of PDGFD-PDGFRβ signalling for human neocortical development and suggest that local production of growth factors by RG supports the expanded germinal region and progenitor heterogeneity of species with large brains. Evolutionary expansion of the human neocortex underlies many of our unique mental abilities. This expansion has been attributed to the increased proliferative potential of radial glia (RG; neural stem cells) and their subventricular dispersion from the periventricular niche during neocortical development. Such adaptations may have evolved through gene expression changes in RG. However, whether or how RG gene expression varies between humans and other species is unknown. Here we show that the transcriptional profiles of human and mouse neocortical RG are broadly conserved during neurogenesis, yet diverge for specific signalling pathways. By analysing differential gene co-expression relationships between the species, we demonstrate that the growth factor PDGFD is specifically expressed by RG in human, but not mouse, corticogenesis. We also show that the expression domain of PDGFRβ, the cognate receptor for PDGFD, is evolutionarily divergent, with high expression in the germinal region of dorsal human neocortex but not in the mouse. Pharmacological inhibition of PDGFD-PDGFRβ signalling in slice culture prevents normal cell cycle progression of neocortical RG in human, but not mouse. Conversely, injection of recombinant PDGFD or ectopic expression of constitutively active PDGFRβ in developing mouse neocortex increases the proportion of RG and their subventricular dispersion. These findings highlight the requirement of PDGFD-PDGFRβ signalling for human neocortical development and suggest that local production of growth factors by RG supports the expanded germinal region and progenitor heterogeneity of species with large brains. The transcriptional profiles of radial glia are compared between humans and mice during neurogenesis, implicating the growth factor PDGFD and its receptor, PDGFRβ, in human but not mouse neocortical development. A genetic link to human neocortical expansion The unique intellectual capabilities of humans are widely attributed to the expansion of the human neocortex in comparison to primates and other mammals. Recent reports implicated the elevated proliferative potential of radial glia, a type of neuronal precursor cell than spans the developing cerebral cortex, as a driver for neocortical expansion. Arnold Kriegstein and colleagues take this concept further by identifying evolutionary changes in radial glia gene expression that may have contributed to human neocortical expansion. They find that humans and mice exhibit highly conserved gene expression patterns amongst radial glia except for a few specific signalling pathways. PDGFD and its receptor, PDGFRβ, show distinct expression patterns and profiles in human cortex development that are absent in mice. Disrupting these paths in human brain slice cultures prevents normal cell cycle progression, whereas ectopic activation of these paths in mice enhances radial glia proliferation and dispersion, revealing one critical mechanism specific to human cortical development. Evolutionary expansion of the human neocortex underlies many of our unique mental abilities. This expansion has been attributed to the increased proliferative potential 1 , 2 of radial glia (RG; neural stem cells) and their subventricular dispersion from the periventricular niche 3 , 4 , 5 during neocortical development. Such adaptations may have evolved through gene expression changes in RG. However, whether or how RG gene expression varies between humans and other species is unknown. Here we show that the transcriptional profiles of human and mouse neocortical RG are broadly conserved during neurogenesis, yet diverge for specific signalling pathways. By analysing differential gene co-expression relationships between the species, we demonstrate that the growth factor PDGFD is specifically expressed by RG in human, but not mouse, corticogenesis. We also show that the expression domain of PDGFRβ, the cognate receptor 6 , 7 for PDGFD, is evolutionarily divergent, with high expression in the germinal region of dorsal human neocortex but not in the mouse. Pharmacological inhibition of PDGFD–PDGFRβ signalling in slice culture prevents normal cell cycle progression of neocortical RG in human, but not mouse. Conversely, injection of recombinant PDGFD or ectopic expression of constitutively active PDGFRβ in developing mouse neocortex increases the proportion of RG and their subventricular dispersion. These findings highlight the requirement of PDGFD–PDGFRβ signalling for human neocortical development and suggest that local production of growth factors by RG supports the expanded germinal region and progenitor heterogeneity of species with large brains. |
Audience | Academic |
Author | Lui, Jan H. Javaherian, Ashkan Kriegstein, Arnold R. Nowakowski, Tomasz J. Pollen, Alex A. Oldham, Michael C. |
Author_xml | – sequence: 1 givenname: Jan H. surname: Lui fullname: Lui, Jan H. organization: Department of Neurology and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California 94143, USA, Present addresses: Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA (J.H.L.); Gladstone Institute of Neurological Disease, San Francisco, California 94158, USA (A.J.) – sequence: 2 givenname: Tomasz J. surname: Nowakowski fullname: Nowakowski, Tomasz J. organization: Department of Neurology and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California 94143, USA – sequence: 3 givenname: Alex A. surname: Pollen fullname: Pollen, Alex A. organization: Department of Neurology and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California 94143, USA – sequence: 4 givenname: Ashkan surname: Javaherian fullname: Javaherian, Ashkan organization: Department of Neurology and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California 94143, USA, Present addresses: Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA (J.H.L.); Gladstone Institute of Neurological Disease, San Francisco, California 94158, USA (A.J.) – sequence: 5 givenname: Arnold R. surname: Kriegstein fullname: Kriegstein, Arnold R. email: kriegsteina@stemcell.ucsf.edu organization: Department of Neurology and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California 94143, USA – sequence: 6 givenname: Michael C. surname: Oldham fullname: Oldham, Michael C. email: oldhamm@stemcell.ucsf.edu organization: Department of Neurology and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California 94143, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25391964$$D View this record in MEDLINE/PubMed |
BookMark | eNp10s1u1DAQAGALFdFt4cQdWfRSBCl2nDjOsWppqVSpaIGz5XUmwZXj7PpHglvfgTfhQXgIngSvtqAuWuSDJfub0Xg8B2jPTQ4Qek7JCSVMvHUqJg-UtQ17hGa0anhRcdHsoRkhpSiIYHwfHYRwSwipaVM9QftlzVra8mqGbuaqM8riwRqFPayS8YA_nF9enP-6-77e5z9_4GAGp6w1bsDG4S9pVA4vUsRuinicUgDsYNKTj_D1KXrcKxvg2f1-iD5fvPt09r64vrm8Oju9LnRdtrHoFde0q0rNc6ltU9WNaGit2gVQ0eZLSjtCBJQNIX2nGc9XwIQAsdBKN3XFDtHxJu_ST6sEIcrRBA3WqlxKCpLy_MaK5QZlerShg7Igjeun6JVec3lacSZo2xKeVbFDDeDAK5sb3pt8vOVf7vB6aVbyITrZgfLqYDR6Z9ZXWwHZ5KbGQaUQ5NXH-bZ9cd-CtBihk0tvRuW_yT-fm8HrDdB-CsFD_5dQItejIx-MTtb0H61NVNHkCrwy9j8xbzYxIWd2A3h5OyWfZyXs5L8BWl_TPQ |
CitedBy_id | crossref_primary_10_4103_1673_5374_369100 crossref_primary_10_1523_ENEURO_0246_23_2024 crossref_primary_10_1016_j_devcel_2023_11_004 crossref_primary_10_1126_science_abk2346 crossref_primary_10_1111_joa_13055 crossref_primary_10_3389_fcell_2020_604448 crossref_primary_10_1152_physrev_00016_2021 crossref_primary_10_1002_cne_23909 crossref_primary_10_1002_wdev_256 crossref_primary_10_1016_j_taap_2018_05_009 crossref_primary_10_1007_s10072_018_3329_y crossref_primary_10_3390_cancers16132429 crossref_primary_10_1002_bies_201500108 crossref_primary_10_1016_j_neures_2018_09_011 crossref_primary_10_1016_j_semcdb_2019_07_002 crossref_primary_10_1016_j_celrep_2014_11_026 crossref_primary_10_1093_cercor_bhy013 crossref_primary_10_1126_science_aap8809 crossref_primary_10_1093_cercor_bhw194 crossref_primary_10_3389_fcell_2020_578341 crossref_primary_10_1002_1873_3468_12846 crossref_primary_10_7554_eLife_23253 crossref_primary_10_1016_j_stem_2016_09_011 crossref_primary_10_1016_j_semcdb_2017_08_045 crossref_primary_10_1038_s41380_019_0500_7 crossref_primary_10_1016_j_cub_2015_01_041 crossref_primary_10_1038_s41591_019_0436_0 crossref_primary_10_1038_s41422_022_00635_9 crossref_primary_10_1093_hmg_ddaa117 crossref_primary_10_3389_fnins_2024_1522652 crossref_primary_10_1038_nrn4021 crossref_primary_10_1007_s00018_021_04063_7 crossref_primary_10_1038_srep25180 crossref_primary_10_1111_jnc_14338 crossref_primary_10_1101_gad_302679_117 crossref_primary_10_15252_embj_201591176 crossref_primary_10_1242_dev_120568 crossref_primary_10_1038_s41596_023_00929_1 crossref_primary_10_1177_10738584211069060 crossref_primary_10_1007_s12264_024_01259_2 crossref_primary_10_1038_s41593_019_0497_x crossref_primary_10_1016_j_ccell_2016_03_009 crossref_primary_10_7554_eLife_18197 crossref_primary_10_1126_scitranslmed_aah6904 crossref_primary_10_1016_j_stemcr_2020_01_007 crossref_primary_10_7554_eLife_24712 crossref_primary_10_12677_MA_2015_33005 crossref_primary_10_1016_j_gde_2020_05_043 crossref_primary_10_7554_eLife_32332 crossref_primary_10_1038_s42003_018_0042_6 crossref_primary_10_3389_fncel_2019_00381 crossref_primary_10_1093_gbe_evy054 crossref_primary_10_1093_cercor_bhx101 crossref_primary_10_1016_j_neuron_2014_12_060 crossref_primary_10_1038_s41576_023_00626_5 crossref_primary_10_3389_fnins_2018_00226 crossref_primary_10_1242_dev_199723 crossref_primary_10_15252_embr_201947880 crossref_primary_10_1093_oons_kvae001 crossref_primary_10_1038_s43587_021_00122_7 crossref_primary_10_1186_s13059_016_1062_5 crossref_primary_10_1002_glia_22827 crossref_primary_10_1016_j_isci_2018_05_014 crossref_primary_10_1093_brain_awad138 crossref_primary_10_1038_s42003_019_0411_9 crossref_primary_10_1016_j_stem_2016_11_017 crossref_primary_10_1016_j_conb_2016_11_009 crossref_primary_10_1177_1073858417691009 crossref_primary_10_1016_j_stem_2016_05_022 crossref_primary_10_1016_j_ceb_2021_04_008 crossref_primary_10_1016_j_cell_2015_09_004 crossref_primary_10_1016_j_conb_2016_11_004 crossref_primary_10_1007_s12264_021_00759_9 crossref_primary_10_1038_s41582_022_00723_9 crossref_primary_10_1016_j_neuron_2015_12_008 crossref_primary_10_1186_s12987_022_00316_0 crossref_primary_10_1002_advs_202204140 crossref_primary_10_1089_scd_2015_0044 crossref_primary_10_1002_stem_3156 crossref_primary_10_1146_annurev_genet_071719_020705 crossref_primary_10_1016_j_molmed_2019_09_010 crossref_primary_10_1038_s41586_021_03910_8 crossref_primary_10_1083_jcb_202310157 crossref_primary_10_1523_JNEUROSCI_0740_18_2018 crossref_primary_10_1038_nm_4071 crossref_primary_10_1126_sciadv_abl7263 crossref_primary_10_1177_0963689717737074 crossref_primary_10_1016_j_stem_2016_03_003 crossref_primary_10_1093_hmg_ddv166 crossref_primary_10_1016_j_cell_2017_06_036 crossref_primary_10_1016_j_cub_2019_05_026 crossref_primary_10_1016_j_mcn_2016_11_001 crossref_primary_10_3389_fnins_2022_824802 crossref_primary_10_1038_515206a crossref_primary_10_1038_nature22330 crossref_primary_10_1038_s41583_023_00675_z crossref_primary_10_1007_s12311_017_0904_3 crossref_primary_10_1016_j_cell_2018_03_067 crossref_primary_10_1016_j_neuron_2019_01_027 crossref_primary_10_1016_j_devcel_2021_08_005 crossref_primary_10_1080_15384101_2019_1609818 crossref_primary_10_1093_hmg_ddab295 crossref_primary_10_1038_nmeth_3629 crossref_primary_10_3389_fcell_2021_649538 crossref_primary_10_1016_j_cell_2021_10_003 crossref_primary_10_1016_j_devcel_2015_01_035 crossref_primary_10_1016_j_neures_2019_05_007 crossref_primary_10_1093_procel_pwad036 crossref_primary_10_1038_nn_4307 crossref_primary_10_1038_nn_3980 crossref_primary_10_1038_s41593_018_0216_z crossref_primary_10_1371_journal_pbio_1002217 crossref_primary_10_1126_science_adh7688 crossref_primary_10_1016_j_conb_2016_05_004 crossref_primary_10_1016_j_tins_2020_07_009 crossref_primary_10_1038_s41567_018_0046_7 crossref_primary_10_1126_science_aaa1975 crossref_primary_10_1016_j_devcel_2024_10_005 crossref_primary_10_1016_j_jid_2019_06_126 crossref_primary_10_1016_j_neuron_2018_04_033 crossref_primary_10_1101_gad_305813_117 crossref_primary_10_1016_j_stem_2017_08_013 crossref_primary_10_1016_j_brainresbull_2016_08_012 crossref_primary_10_1038_s41556_024_01393_z |
Cites_doi | 10.1038/35074588 10.1523/JNEUROSCI.5746-12.2013 10.1038/nature13185 10.1016/j.neuron.2009.03.027 10.1038/nature10523 10.2202/1544-6115.1128 10.1016/j.mcn.2008.01.012 10.1371/journal.pbio.1000582 10.1073/pnas.0605938103 10.1126/science.3291116 10.1038/35074593 10.1038/nn.2553 10.1242/dev.022616 10.1016/j.cell.2011.06.030 10.1371/journal.pcbi.1000117 10.1111/j.1460-9568.2005.04544.x 10.1161/01.ATV.0000282198.60701.94 10.1016/j.neuron.2013.10.045 10.1126/science.1244392 10.1093/cercor/12.1.37 10.1038/nn.2207 10.1016/0092-8674(94)90322-0 10.1073/pnas.1209647109 10.1038/nature09774 10.1038/nature11405 10.1038/nrn2719 10.1158/0008-5472.957.65.3 10.1038/nature08845 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2014 COPYRIGHT 2014 Nature Publishing Group |
Copyright_xml | – notice: Springer Nature Limited 2014 – notice: COPYRIGHT 2014 Nature Publishing Group |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1038/nature13973 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 268 |
ExternalDocumentID | A463819906 25391964 10_1038_nature13973 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS021223 – fundername: NINDS NIH HHS grantid: R01 NS075998 – fundername: NINDS NIH HHS grantid: R01 NS072630 – fundername: Howard Hughes Medical Institute |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 00M 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 3V. 4.4 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z A8Z AAEEF AAHBH AAHTB AAIKC AAKAB AAKAS AAMNW AASDW AAYEP AAYZH AAZLF ABAWZ ABDBF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACUHS ACWUS ADBBV ADFRT ADUKH ADYSU ADZCM AENEX AEUYN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH APEBS ARAPS ARMCB ARTTT ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC B0M BBNVY BCU BDKGC BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BLC BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DO4 DU5 DWQXO E.- E.L EAD EAP EAS EAZ EBC EBD EBO EBS ECC EE. EJD EMB EMF EMH EMK EMOBN EPL EPS ESE ESN ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PKN PM3 PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TH9 TN5 TSG TUS TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ZKB ~02 ~7V ~88 ~8M ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADGHP ADXHL AETEA AFANA ALPWD ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB AEIIB PMFND 7X8 ESTFP PUEGO |
ID | FETCH-LOGICAL-c529t-fa6c1d42c6468974578715a9be189fa611d008e2700fdc365a9e388e8bcac7543 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Mon Sep 08 03:38:17 EDT 2025 Tue Jun 17 21:18:31 EDT 2025 Thu Jun 12 22:36:34 EDT 2025 Tue Jun 10 15:33:05 EDT 2025 Tue Jun 10 20:28:31 EDT 2025 Fri Jun 27 03:57:59 EDT 2025 Mon Jul 21 05:39:05 EDT 2025 Tue Jul 01 03:21:26 EDT 2025 Thu Apr 24 23:00:52 EDT 2025 Fri Feb 21 02:39:58 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7526 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c529t-fa6c1d42c6468974578715a9be189fa611d008e2700fdc365a9e388e8bcac7543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://doi.org/10.1038/nature13973 |
PMID | 25391964 |
PQID | 1625343103 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1625343103 gale_infotracmisc_A463819906 gale_infotracgeneralonefile_A463819906 gale_infotraccpiq_463819906 gale_infotracacademiconefile_A463819906 gale_incontextgauss_ISR_A463819906 pubmed_primary_25391964 crossref_primary_10_1038_nature13973 crossref_citationtrail_10_1038_nature13973 springer_journals_10_1038_nature13973 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-11-13 |
PublicationDateYYYYMMDD | 2014-11-13 |
PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2014 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Zhang, Horvath (CR16) 2005; 4 Magnusson (CR22) 2007; 27 Hansen, Lui, Parker, Kriegstein (CR4) 2010; 464 Bae (CR25) 2014; 343 Smart (CR3) 2002; 12 Workman (CR11) 2013; 33 Oldham, Horvath, Geschwind (CR15) 2006; 103 Lui, Hansen, Kriegstein (CR2) 2011; 146 McLean (CR24) 2011; 471 Horvath, Dong (CR14) 2008; 4 Pinto (CR18) 2008; 38 Roberts (CR21) 2005; 65 Ajioka, Maeda, Nakajima (CR30) 2006; 23 Oldham, Coppola (CR9) 2014 Oldham (CR10) 2008; 11 Rakic (CR1) 2009; 10 Diez-Roux (CR20) 2011; 9 Johnson (CR27) 2009; 62 Fietz (CR12) 2012; 109 Geschwind, Rakic (CR26) 2013; 80 Golub, Barker, Lovett, Gilliland (CR23) 1994; 77 Miller (CR13) 2014; 508 Hawrylycz (CR29) 2012; 489 Fietz (CR5) 2010; 13 Kang (CR28) 2011; 478 Bergsten (CR6) 2001; 3 LaRochelle (CR7) 2001; 3 Wang (CR19) 2010; 1806 Rakic (CR8) 1988; 241 Kawaguchi (CR17) 2008; 135 P Rakic (BFnature13973_CR1) 2009; 10 P Rakic (BFnature13973_CR8) 1988; 241 TR Golub (BFnature13973_CR23) 1994; 77 WG Roberts (BFnature13973_CR21) 2005; 65 E Bergsten (BFnature13973_CR6) 2001; 3 A Kawaguchi (BFnature13973_CR17) 2008; 135 SA Fietz (BFnature13973_CR12) 2012; 109 I Ajioka (BFnature13973_CR30) 2006; 23 IH Smart (BFnature13973_CR3) 2002; 12 DH Geschwind (BFnature13973_CR26) 2013; 80 MC Oldham (BFnature13973_CR15) 2006; 103 G Diez-Roux (BFnature13973_CR20) 2011; 9 S Horvath (BFnature13973_CR14) 2008; 4 MC Oldham (BFnature13973_CR9) 2014 AD Workman (BFnature13973_CR11) 2013; 33 JA Miller (BFnature13973_CR13) 2014; 508 JH Lui (BFnature13973_CR2) 2011; 146 DV Hansen (BFnature13973_CR4) 2010; 464 HJ Kang (BFnature13973_CR28) 2011; 478 SA Fietz (BFnature13973_CR5) 2010; 13 PU Magnusson (BFnature13973_CR22) 2007; 27 MJ Hawrylycz (BFnature13973_CR29) 2012; 489 MC Oldham (BFnature13973_CR10) 2008; 11 MB Johnson (BFnature13973_CR27) 2009; 62 L Pinto (BFnature13973_CR18) 2008; 38 B Zhang (BFnature13973_CR16) 2005; 4 CY McLean (BFnature13973_CR24) 2011; 471 Z Wang (BFnature13973_CR19) 2010; 1806 BI Bae (BFnature13973_CR25) 2014; 343 WJ LaRochelle (BFnature13973_CR7) 2001; 3 25391958 - Nature. 2014 Nov 13;515(7526):206-7 |
References_xml | – volume: 3 start-page: 512 year: 2001 end-page: 516 ident: CR6 article-title: PDGF-D is a specific, protease-activated ligand for the PDGF β-receptor publication-title: Nature Cell Biol. doi: 10.1038/35074588 – volume: 33 start-page: 7368 year: 2013 end-page: 7383 ident: CR11 article-title: Modeling transformations of neurodevelopmental sequences across mammalian species publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5746-12.2013 – volume: 508 start-page: 199 year: 2014 end-page: 206 ident: CR13 article-title: Transcriptional landscape of the prenatal human brain publication-title: Nature doi: 10.1038/nature13185 – volume: 62 start-page: 494 year: 2009 end-page: 509 ident: CR27 article-title: Functional and evolutionary insights into human brain development through global transcriptome analysis publication-title: Neuron doi: 10.1016/j.neuron.2009.03.027 – volume: 478 start-page: 483 year: 2011 end-page: 489 ident: CR28 article-title: Spatio-temporal transcriptome of the human brain publication-title: Nature doi: 10.1038/nature10523 – volume: 4 start-page: Article17 year: 2005 ident: CR16 article-title: A general framework for weighted gene co-expression network analysis publication-title: Stat. Appl. Genet. Mol. Biol. doi: 10.2202/1544-6115.1128 – volume: 38 start-page: 15 year: 2008 end-page: 42 ident: CR18 article-title: Prospective isolation of functionally distinct radial glial subtypes–lineage and transcriptome analysis publication-title: Mol. Cell. Neurosci. doi: 10.1016/j.mcn.2008.01.012 – volume: 9 start-page: e1000582 year: 2011 ident: CR20 article-title: A high-resolution anatomical atlas of the transcriptome in the mouse embryo publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000582 – volume: 103 start-page: 17973 year: 2006 end-page: 17978 ident: CR15 article-title: Conservation and evolution of gene coexpression networks in human and chimpanzee brains publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0605938103 – volume: 241 start-page: 170 year: 1988 end-page: 176 ident: CR8 article-title: Specification of cerebral cortical areas publication-title: Science doi: 10.1126/science.3291116 – volume: 3 start-page: 517 year: 2001 end-page: 521 ident: CR7 article-title: PDGF-D, a new protease-activated growth factor publication-title: Nature Cell Biol. doi: 10.1038/35074593 – volume: 464 start-page: 554 year: 2010 end-page: 561 ident: CR4 article-title: Neurogenic radial glia in the outer subventricular zone of human neocortex publication-title: Nature – volume: 13 start-page: 690 year: 2010 end-page: 699 ident: CR5 article-title: OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling publication-title: Nature Neurosci. doi: 10.1038/nn.2553 – volume: 135 start-page: 3113 year: 2008 end-page: 3124 ident: CR17 article-title: Single-cell gene profiling defines differential progenitor subclasses in mammalian neurogenesis publication-title: Development doi: 10.1242/dev.022616 – volume: 146 start-page: 18 year: 2011 end-page: 36 ident: CR2 article-title: Development and evolution of the human neocortex publication-title: Cell doi: 10.1016/j.cell.2011.06.030 – volume: 1806 start-page: 122 year: 2010 end-page: 130 ident: CR19 article-title: Emerging roles of PDGF-D signaling pathway in tumor development and progression publication-title: Biochim. Biophys. Acta – volume: 4 start-page: e1000117 year: 2008 ident: CR14 article-title: Geometric interpretation of gene coexpression network analysis publication-title: PLOS Comput. Biol. doi: 10.1371/journal.pcbi.1000117 – volume: 65 start-page: 957 year: 2005 end-page: 966 ident: CR21 article-title: Antiangiogenic and antitumor activity of a selective PDGFR tyrosine kinase inhibitor, CP-673,451 publication-title: Cancer Res. – volume: 23 start-page: 296 year: 2006 end-page: 308 ident: CR30 article-title: Identification of ventricular-side-enriched molecules regulated in a stage-dependent manner during cerebral cortical development publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2005.04544.x – volume: 27 start-page: 2142 year: 2007 end-page: 2149 ident: CR22 article-title: Platelet-derived growth factor receptor-β constitutive activity promotes angiogenesis and publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/01.ATV.0000282198.60701.94 – volume: 80 start-page: 633 year: 2013 end-page: 647 ident: CR26 article-title: Cortical evolution: judge the brain by its cover publication-title: Neuron doi: 10.1016/j.neuron.2013.10.045 – volume: 343 start-page: 764 year: 2014 end-page: 768 ident: CR25 article-title: Evolutionarily dynamic alternative splicing of GPR56 regulates regional cerebral cortical patterning publication-title: Science doi: 10.1126/science.1244392 – volume: 12 start-page: 37 year: 2002 end-page: 53 ident: CR3 article-title: Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey publication-title: Cereb. Cortex doi: 10.1093/cercor/12.1.37 – volume: 11 start-page: 1271 year: 2008 end-page: 1282 ident: CR10 article-title: Functional organization of the transcriptome in human brain publication-title: Nature Neurosci. doi: 10.1038/nn.2207 – volume: 77 start-page: 307 year: 1994 end-page: 316 ident: CR23 article-title: Fusion of PDGF receptor β to a novel -like gene, , in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation publication-title: Cell doi: 10.1016/0092-8674(94)90322-0 – volume: 109 start-page: 11836 year: 2012 end-page: 11841 ident: CR12 article-title: Transcriptomes of germinal zones of human and mouse fetal neocortex suggest a role of extracellular matrix in progenitor self-renewal publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1209647109 – volume: 471 start-page: 216 year: 2011 end-page: 219 ident: CR24 article-title: Human-specific loss of regulatory DNA and the evolution of human-specific traits publication-title: Nature doi: 10.1038/nature09774 – volume: 489 start-page: 391 year: 2012 end-page: 399 ident: CR29 article-title: An anatomically comprehensive atlas of the adult human brain transcriptome publication-title: Nature doi: 10.1038/nature11405 – start-page: 85 year: 2014 end-page: 113 ident: CR9 publication-title: The OMICs: Applications in Neuroscience – volume: 10 start-page: 724 year: 2009 end-page: 735 ident: CR1 article-title: Evolution of the neocortex: a perspective from developmental biology publication-title: Nature Rev. Neurosci. doi: 10.1038/nrn2719 – volume: 11 start-page: 1271 year: 2008 ident: BFnature13973_CR10 publication-title: Nature Neurosci. doi: 10.1038/nn.2207 – volume: 103 start-page: 17973 year: 2006 ident: BFnature13973_CR15 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0605938103 – volume: 241 start-page: 170 year: 1988 ident: BFnature13973_CR8 publication-title: Science doi: 10.1126/science.3291116 – volume: 135 start-page: 3113 year: 2008 ident: BFnature13973_CR17 publication-title: Development doi: 10.1242/dev.022616 – volume: 80 start-page: 633 year: 2013 ident: BFnature13973_CR26 publication-title: Neuron doi: 10.1016/j.neuron.2013.10.045 – volume: 10 start-page: 724 year: 2009 ident: BFnature13973_CR1 publication-title: Nature Rev. Neurosci. doi: 10.1038/nrn2719 – volume: 13 start-page: 690 year: 2010 ident: BFnature13973_CR5 publication-title: Nature Neurosci. doi: 10.1038/nn.2553 – volume: 471 start-page: 216 year: 2011 ident: BFnature13973_CR24 publication-title: Nature doi: 10.1038/nature09774 – volume: 62 start-page: 494 year: 2009 ident: BFnature13973_CR27 publication-title: Neuron doi: 10.1016/j.neuron.2009.03.027 – volume: 27 start-page: 2142 year: 2007 ident: BFnature13973_CR22 publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/01.ATV.0000282198.60701.94 – start-page: 85 volume-title: The OMICs: Applications in Neuroscience year: 2014 ident: BFnature13973_CR9 – volume: 12 start-page: 37 year: 2002 ident: BFnature13973_CR3 publication-title: Cereb. Cortex doi: 10.1093/cercor/12.1.37 – volume: 478 start-page: 483 year: 2011 ident: BFnature13973_CR28 publication-title: Nature doi: 10.1038/nature10523 – volume: 4 start-page: e1000117 year: 2008 ident: BFnature13973_CR14 publication-title: PLOS Comput. Biol. doi: 10.1371/journal.pcbi.1000117 – volume: 77 start-page: 307 year: 1994 ident: BFnature13973_CR23 publication-title: Cell doi: 10.1016/0092-8674(94)90322-0 – volume: 65 start-page: 957 year: 2005 ident: BFnature13973_CR21 publication-title: Cancer Res. doi: 10.1158/0008-5472.957.65.3 – volume: 146 start-page: 18 year: 2011 ident: BFnature13973_CR2 publication-title: Cell doi: 10.1016/j.cell.2011.06.030 – volume: 3 start-page: 517 year: 2001 ident: BFnature13973_CR7 publication-title: Nature Cell Biol. doi: 10.1038/35074593 – volume: 489 start-page: 391 year: 2012 ident: BFnature13973_CR29 publication-title: Nature doi: 10.1038/nature11405 – volume: 109 start-page: 11836 year: 2012 ident: BFnature13973_CR12 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1209647109 – volume: 4 start-page: Article17 year: 2005 ident: BFnature13973_CR16 publication-title: Stat. Appl. Genet. Mol. Biol. doi: 10.2202/1544-6115.1128 – volume: 508 start-page: 199 year: 2014 ident: BFnature13973_CR13 publication-title: Nature doi: 10.1038/nature13185 – volume: 464 start-page: 554 year: 2010 ident: BFnature13973_CR4 publication-title: Nature doi: 10.1038/nature08845 – volume: 3 start-page: 512 year: 2001 ident: BFnature13973_CR6 publication-title: Nature Cell Biol. doi: 10.1038/35074588 – volume: 343 start-page: 764 year: 2014 ident: BFnature13973_CR25 publication-title: Science doi: 10.1126/science.1244392 – volume: 33 start-page: 7368 year: 2013 ident: BFnature13973_CR11 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5746-12.2013 – volume: 9 start-page: e1000582 year: 2011 ident: BFnature13973_CR20 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000582 – volume: 38 start-page: 15 year: 2008 ident: BFnature13973_CR18 publication-title: Mol. Cell. Neurosci. doi: 10.1016/j.mcn.2008.01.012 – volume: 1806 start-page: 122 year: 2010 ident: BFnature13973_CR19 publication-title: Biochim. Biophys. Acta – volume: 23 start-page: 296 year: 2006 ident: BFnature13973_CR30 publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2005.04544.x – reference: 25391958 - Nature. 2014 Nov 13;515(7526):206-7 |
SSID | ssj0005174 |
Score | 2.5044582 |
Snippet | The transcriptional profiles of radial glia are compared between humans and mice during neurogenesis, implicating the growth factor PDGFD and its receptor,... Evolutionary expansion of the human neocortex underlies many of our unique mental abilities. This expansion has been attributed to the increased proliferative... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 264 |
SubjectTerms | 13/1 13/51 14/19 14/34 14/63 38 45/61 45/90 45/91 631/378/2571/2579 64/60 Analysis Animals Cell Cycle Cell Proliferation Gene expression Gene Expression Profiling Humanities and Social Sciences Humans letter Lymphokines - genetics Lymphokines - metabolism Mice multidisciplinary Neocortex Neocortex - cytology Neocortex - growth & development Neocortex - metabolism Neuroglia Neuroglia - cytology Neuroglia - metabolism Platelet-derived growth factor Platelet-Derived Growth Factor - genetics Platelet-Derived Growth Factor - metabolism Receptor, Platelet-Derived Growth Factor beta - metabolism Science Signal Transduction - genetics Transcription, Genetic |
Title | Radial glia require PDGFD–PDGFRβ signalling in human but not mouse neocortex |
URI | https://link.springer.com/article/10.1038/nature13973 https://www.ncbi.nlm.nih.gov/pubmed/25391964 https://www.proquest.com/docview/1625343103 |
Volume | 515 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEF1BKiReEC230FItqOFSyyDf14-5tlQ0ikIr5c1ab9YhauWUOqGon8WH8E3MeDexHfJQeNlEntXG9pyMZ8YzZwk5CBIGWpaxCRFPaLqJYGYMWDKlZQvu2pZI8jzkad8_PndPRt6oqJ_Pu0vm8Udxu7Gv5H-0CsdAr9gl-w-aXS0KB-A76BdG0DCMd9LxkOdtH5PLKTeuJdb0SmPQOep1TByHjXa30bINLNHginp7mupN-eLF3EhncwMDf2mkciaw6PZn2VXt55Sf5S0_VjmDL4upqrBNi96G_uyGX8xu9DbYZ1h2dFu8cxpgfiJddtQUCdQT_oNjB6JKwzazbxcarToRYbnYkaf6SJc83nhWG7Nny8YBRYZdNr6eaubUKAs8u2JNFcH5X1Zecbor5lP0YJ3iYbYqMWy6PgajIdKxb9kBOFY1stVsdVq9ogJojaRbt2_C6p9Ka1cclvXHdslvWXuRnvsnZ4_JIx1Y0KZCyTa5J9Md8iAv8BXZDtnWRjyj7zXT-Icn5FQBiCKAqAYQLQHo9y9agIdOU5qDhwJ4KICH5uChK_A8Jee97ln72NT7a5jCs8O5mXBfWGPXFr7rM4gr0XhbHg9jabEQhJY1Bg9RYmlCMhaODyLpMCZZLLgIPNd5RmrpLJUvCIUonTHLGYdenLicxRwDcRHa4BjFImDjOjlc3sRIaPJ53APlMsqLIBwWle54nRysJl8pzpXN096gNiJkMUmxTGrCF1kWff46jArl18k7PSmZwQ_CiauuEzhtJD6rzNytzBRX0-9RSfq2Ip0oVW1aZq8yEay1qIhfL7EToQhLHEFPiyyyfNtzXNz2r06eK1Ctrh4kITLn1UljibJI26Fs0615eeer3iUPi__yHqnNrxfyFbjZ83if3A9GAYysbeHYO9rXfyD4bHX7g-EfOQnU2w |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radial+glia+require+PDGFD-PDGFR%CE%B2+signalling+in+human+but+not+mouse+neocortex&rft.jtitle=Nature+%28London%29&rft.au=Lui%2C+Jan+H&rft.au=Nowakowski%2C+Tomasz+J&rft.au=Pollen%2C+Alex+A&rft.au=Javaherian%2C+Ashkan&rft.date=2014-11-13&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=515&rft.issue=7526&rft.spage=264&rft_id=info:doi/10.1038%2Fnature13973&rft.externalDocID=A463819906 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |