Provincial carbon intensity abatement potential estimation in China: A PSO–GA-optimized multi-factor environmental learning curve method

This study aims to estimate carbon intensity abatement potential in China at the regional level by proposing a particle swarm optimization–genetic algorithm (PSO–GA) multivariate environmental learning curve estimation method. The model uses two independent variables, namely, per capita gross domest...

Full description

Saved in:
Bibliographic Details
Published inEnergy policy Vol. 77; pp. 46 - 55
Main Authors Yu, Shiwei, Zhang, Junjie, Zheng, Shuhong, Sun, Han
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.02.2015
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0301-4215
1873-6777
DOI10.1016/j.enpol.2014.11.035

Cover

Abstract This study aims to estimate carbon intensity abatement potential in China at the regional level by proposing a particle swarm optimization–genetic algorithm (PSO–GA) multivariate environmental learning curve estimation method. The model uses two independent variables, namely, per capita gross domestic product (GDP) and the proportion of the tertiary industry in GDP, to construct carbon intensity learning curves (CILCs), i.e., CO2 emissions per unit of GDP, of 30 provinces in China. Instead of the traditional ordinary least squares (OLS) method, a PSO–GA intelligent optimization algorithm is used to optimize the coefficients of a learning curve. The carbon intensity abatement potentials of the 30 Chinese provinces are estimated via PSO–GA under the business-as-usual scenario. The estimation reveals the following results. (1) For most provinces, the abatement potentials from improving a unit of the proportion of the tertiary industry in GDP are higher than the potentials from raising a unit of per capita GDP. (2) The average potential of the 30 provinces in 2020 will be 37.6% based on the emission's level of 2005. The potentials of Jiangsu, Tianjin, Shandong, Beijing, and Heilongjiang are over 60%. Ningxia is the only province without intensity abatement potential. (3) The total carbon intensity in China weighted by the GDP shares of the 30 provinces will decline by 39.4% in 2020 compared with that in 2005. This intensity cannot achieve the 40%–45% carbon intensity reduction target set by the Chinese government. Additional mitigation policies should be developed to uncover the potentials of Ningxia and Inner Mongolia. In addition, the simulation accuracy of the CILCs optimized by PSO–GA is higher than that of the CILCs optimized by the traditional OLS method. •A PSO–GA-optimized multi-factor environmental learning curve method is proposed.•The carbon intensity abatement potentials of the 30 Chinese provinces are estimated by the curve.•The average potential will be 37.6% in 2020 based on the emission's level of 2005.•China's total potentials weighted by GDP shares of the 30 provinces will be 39.4% in 2020.•The intensity cannot achieve the 40%–45% carbon intensity reduction target in BAU scenario.
AbstractList This study aims to estimate carbon intensity abatement potential in China at the regional level by proposing a particle swarm optimization–genetic algorithm (PSO–GA) multivariate environmental learning curve estimation method. The model uses two independent variables, namely, per capita gross domestic product (GDP) and the proportion of the tertiary industry in GDP, to construct carbon intensity learning curves (CILCs), i.e., CO2 emissions per unit of GDP, of 30 provinces in China. Instead of the traditional ordinary least squares (OLS) method, a PSO–GA intelligent optimization algorithm is used to optimize the coefficients of a learning curve. The carbon intensity abatement potentials of the 30 Chinese provinces are estimated via PSO–GA under the business-as-usual scenario. The estimation reveals the following results. (1) For most provinces, the abatement potentials from improving a unit of the proportion of the tertiary industry in GDP are higher than the potentials from raising a unit of per capita GDP. (2) The average potential of the 30 provinces in 2020 will be 37.6% based on the emission's level of 2005. The potentials of Jiangsu, Tianjin, Shandong, Beijing, and Heilongjiang are over 60%. Ningxia is the only province without intensity abatement potential. (3) The total carbon intensity in China weighted by the GDP shares of the 30 provinces will decline by 39.4% in 2020 compared with that in 2005. This intensity cannot achieve the 40%–45% carbon intensity reduction target set by the Chinese government. Additional mitigation policies should be developed to uncover the potentials of Ningxia and Inner Mongolia. In addition, the simulation accuracy of the CILCs optimized by PSO–GA is higher than that of the CILCs optimized by the traditional OLS method. •A PSO–GA-optimized multi-factor environmental learning curve method is proposed.•The carbon intensity abatement potentials of the 30 Chinese provinces are estimated by the curve.•The average potential will be 37.6% in 2020 based on the emission's level of 2005.•China's total potentials weighted by GDP shares of the 30 provinces will be 39.4% in 2020.•The intensity cannot achieve the 40%–45% carbon intensity reduction target in BAU scenario.
This study aims to estimate carbon intensity abatement potential in China at the regional level by proposing a particle swarm optimization–genetic algorithm (PSO–GA) multivariate environmental learning curve estimation method. The model uses two independent variables, namely, per capita gross domestic product (GDP) and the proportion of the tertiary industry in GDP, to construct carbon intensity learning curves (CILCs), i.e., CO2 emissions per unit of GDP, of 30 provinces in China. Instead of the traditional ordinary least squares (OLS) method, a PSO–GA intelligent optimization algorithm is used to optimize the coefficients of a learning curve. The carbon intensity abatement potentials of the 30 Chinese provinces are estimated via PSO–GA under the business-as-usual scenario. The estimation reveals the following results. (1) For most provinces, the abatement potentials from improving a unit of the proportion of the tertiary industry in GDP are higher than the potentials from raising a unit of per capita GDP. (2) The average potential of the 30 provinces in 2020 will be 37.6% based on the emission's level of 2005. The potentials of Jiangsu, Tianjin, Shandong, Beijing, and Heilongjiang are over 60%. Ningxia is the only province without intensity abatement potential. (3) The total carbon intensity in China weighted by the GDP shares of the 30 provinces will decline by 39.4% in 2020 compared with that in 2005. This intensity cannot achieve the 40%–45% carbon intensity reduction target set by the Chinese government. Additional mitigation policies should be developed to uncover the potentials of Ningxia and Inner Mongolia. In addition, the simulation accuracy of the CILCs optimized by PSO–GA is higher than that of the CILCs optimized by the traditional OLS method.
This study aims to estimate carbon intensity abatement potential in China at the regional level by proposing a particle swarm optimization-genetic algorithm (PSO-GA) multivariate environmental learning curve estimation method. The model uses two independent variables, namely, per capita gross domestic product (GDP) and the proportion of the tertiary industry in GDP, to construct carbon intensity learning curves (CILCs), i.e., CO2 emissions per unit of GDP, of 30 provinces in China. Instead of the traditional ordinary least squares (OLS) method, a PSO-GA intelligent optimization algorithm is used to optimize the coefficients of a learning curve. The carbon intensity abatement potentials of the 30 Chinese provinces are estimated via PSO-GA under the business-as-usual scenario. The estimation reveals the following results. (1) For most provinces, the abatement potentials from improving a unit of the proportion of the tertiary industry in GDP are higher than the potentials from raising a unit of per capita GDP. (2) The average potential of the 30 provinces in 2020 will be 37.6% based on the emission's level of 2005. The potentials of Jiangsu, Tianjin, Shandong, Beijing, and Heilongjiang are over 60%. Ningxia is the only province without intensity abatement potential. (3) The total carbon intensity in China weighted by the GDP shares of the 30 provinces will decline by 39.4% in 2020 compared with that in 2005. This intensity cannot achieve the 40%-45% carbon intensity reduction target set by the Chinese government. Additional mitigation policies should be developed to uncover the potentials of Ningxia and Inner Mongolia. In addition, the simulation accuracy of the CILCs optimized by PSO-GA is higher than that of the CILCs optimized by the traditional OLS method. [Copyright Elsevier Ltd.]
This study aims to estimate carbon intensity abatement potential in China at the regional level by proposing a particle swarm optimization-genetic algorithm (PSO-GA) multivariate environmental learning curve estimation method. The model uses two independent variables, namely, per capita gross domestic product (GDP) and the proportion of the tertiary industry in GDP, to construct carbon intensity learning curves (CILCs), i.e., CO2 emissions per unit of GDP, of 30 provinces in China. Instead of the traditional ordinary least squares (OLS) method, a PSO-GA intelligent optimization algorithm is used to optimize the coefficients of a learning curve. The carbon intensity abatement potentials of the 30 Chinese provinces are estimated via PSO-GA under the business-as-usual scenario. The estimation reveals the following results. (1) For most provinces, the abatement potentials from improving a unit of the proportion of the tertiary industry in GDP are higher than the potentials from raising a unit of per capita GDP. (2) The average potential of the 30 provinces in 2020 will be 37.6% based on the emission's level of 2005. The potentials of Jiangsu, Tianjin, Shandong, Beijing, and Heilongjiang are over 60%. Ningxia is the only province without intensity abatement potential. (3) The total carbon intensity in China weighted by the GDP shares of the 30 provinces will decline by 39.4% in 2020 compared with that in 2005. This intensity cannot achieve the 40%-45% carbon intensity reduction target set by the Chinese government. Additional mitigation policies should be developed to uncover the potentials of Ningxia and Inner Mongolia. In addition, the simulation accuracy of the CILCs optimized by PSO-GA is higher than that of the CILCs optimized by the traditional OLS method. All rights reserved, Elsevier
Author Yu, Shiwei
Zhang, Junjie
Zheng, Shuhong
Sun, Han
Author_xml – sequence: 1
  givenname: Shiwei
  surname: Yu
  fullname: Yu, Shiwei
  email: ysw81993@sina.com
– sequence: 2
  givenname: Junjie
  surname: Zhang
  fullname: Zhang, Junjie
– sequence: 3
  givenname: Shuhong
  surname: Zheng
  fullname: Zheng, Shuhong
– sequence: 4
  givenname: Han
  surname: Sun
  fullname: Sun, Han
BookMark eNqNks1u1DAUhSNUJKaFJ2BjiQ2bBDt2bAeJxWgEBalSKwFry7FvqEeJHRzPSGXFutu-IU-CM8OqC6YrS9ffObo_57w488FDUbwmuCKY8HfbCvwUhqrGhFWEVJg2z4oVkYKWXAhxVqwwxaRkNWleFOfzvMUYM9myVXF_E8PeeeP0gIyOXfDI-QR-dukO6U4nGMEnNIVcSwsEc3KjTu4Aos2t8_o9WqObr9d_fj9crssw5X_3Cywad0NyZa9NChGB37sY_GKWTQbQ0Tv_A5ld3AMaId0G-7J43uthhlf_3ovi-6eP3zafy6vryy-b9VVpmrpNpbXagBS1xLLTgtiOC4v7tmOGdx0I3jQUS20ZGGE0rrVmnHXa9rIDazuG6UXx9ug7xfBzl-dRo5sNDIP2EHazqvNyatqyRp5EiWBSNi2X7DTK25pyLiV_Asoxww3H-EkopnUrlgbePEK3YRd93mSmmKSsYe1i2B4pE8M8R-iVcelwzhS1GxTBakmU2qpDotSSKEWIyonKWvpIO8WchXh3QvXhqIJ8072DqGbjwBuwLoJJygb3X_1fNCPrCg
CODEN ENPYAC
CitedBy_id crossref_primary_10_1016_j_ccst_2023_100142
crossref_primary_10_1016_j_enpol_2018_04_025
crossref_primary_10_1016_j_cjpre_2023_03_001
crossref_primary_10_1016_j_resconrec_2019_04_029
crossref_primary_10_1080_17517575_2021_1923064
crossref_primary_10_1016_j_enpol_2016_09_004
crossref_primary_10_1016_j_resconrec_2024_107779
crossref_primary_10_1080_1331677X_2022_2142832
crossref_primary_10_3390_su12072910
crossref_primary_10_1007_s11069_015_1883_7
crossref_primary_10_1016_j_cjpre_2022_03_006
crossref_primary_10_1016_j_jclepro_2018_03_028
crossref_primary_10_1080_09535314_2015_1102714
crossref_primary_10_1016_j_techfore_2021_121047
crossref_primary_10_1016_j_jclepro_2017_05_154
crossref_primary_10_1016_j_rser_2021_111499
crossref_primary_10_1007_s11869_021_01081_z
crossref_primary_10_1016_j_apenergy_2016_04_109
crossref_primary_10_1007_s11356_023_30903_z
crossref_primary_10_1016_j_enpol_2017_05_035
crossref_primary_10_3390_en10111924
crossref_primary_10_3390_en11010091
crossref_primary_10_1016_j_rser_2017_04_044
crossref_primary_10_1016_j_esr_2023_101227
crossref_primary_10_1016_j_jclepro_2017_04_154
crossref_primary_10_3390_su71115407
crossref_primary_10_1007_s10845_017_1313_7
crossref_primary_10_1016_j_rser_2015_10_077
crossref_primary_10_1016_j_jclepro_2016_08_018
crossref_primary_10_1016_j_enpol_2015_07_004
crossref_primary_10_1016_j_cjpre_2023_06_008
crossref_primary_10_1007_s13369_018_3383_z
crossref_primary_10_1007_s11356_019_04859_y
crossref_primary_10_3390_su8090857
crossref_primary_10_1016_j_jclepro_2017_07_173
crossref_primary_10_1016_j_jclepro_2018_05_121
crossref_primary_10_1016_j_jclepro_2017_01_044
crossref_primary_10_1088_1757_899X_431_3_032009
crossref_primary_10_3390_su8070697
crossref_primary_10_1007_s11356_022_19453_y
crossref_primary_10_1016_j_buildenv_2023_110588
crossref_primary_10_1016_j_enpol_2018_07_034
crossref_primary_10_3390_ijerph20043715
crossref_primary_10_3390_en9090680
crossref_primary_10_1016_j_jclepro_2016_08_066
crossref_primary_10_1016_j_ecolind_2017_11_045
crossref_primary_10_1007_s10098_021_02050_x
crossref_primary_10_1016_j_rser_2017_04_050
crossref_primary_10_3389_fenvs_2022_946596
crossref_primary_10_3390_ijerph15081607
crossref_primary_10_1155_2020_1849240
crossref_primary_10_1016_j_techfore_2018_12_014
crossref_primary_10_1007_s11069_017_2915_2
crossref_primary_10_1016_j_renene_2019_03_011
crossref_primary_10_1016_j_jclepro_2017_07_026
crossref_primary_10_1007_s11769_021_1197_5
crossref_primary_10_1016_j_indic_2024_100390
crossref_primary_10_3390_su14105777
crossref_primary_10_1016_j_jclepro_2017_08_032
crossref_primary_10_1007_s10479_018_2955_3
crossref_primary_10_1007_s10644_021_09353_5
crossref_primary_10_1016_j_enpol_2020_111856
crossref_primary_10_3390_ijerph20032669
crossref_primary_10_1016_j_jclepro_2017_11_163
crossref_primary_10_1016_j_scitotenv_2019_04_303
crossref_primary_10_1016_j_renene_2022_08_139
crossref_primary_10_1016_j_jretconser_2024_103925
crossref_primary_10_1007_s11356_016_8360_z
crossref_primary_10_1080_24694452_2018_1484683
crossref_primary_10_1177_0958305X18813620
crossref_primary_10_3390_su8040337
crossref_primary_10_1016_j_enpol_2017_01_023
crossref_primary_10_1142_S0218213016500044
crossref_primary_10_1016_j_jclepro_2025_144754
crossref_primary_10_1108_IMDS_12_2022_0749
crossref_primary_10_3390_en11071907
crossref_primary_10_1016_j_apenergy_2015_12_064
crossref_primary_10_1177_1045389X20910272
crossref_primary_10_1016_j_enpol_2018_11_056
crossref_primary_10_1016_j_applthermaleng_2017_08_164
crossref_primary_10_1016_j_eneco_2019_104600
crossref_primary_10_1016_j_rser_2016_10_009
crossref_primary_10_3390_su10061756
crossref_primary_10_1016_j_strueco_2020_02_007
crossref_primary_10_1016_j_eneco_2020_105056
crossref_primary_10_1016_j_rser_2019_06_024
crossref_primary_10_1016_j_jclepro_2017_11_230
crossref_primary_10_1007_s11356_020_10091_w
crossref_primary_10_1016_j_resconrec_2016_09_016
crossref_primary_10_1016_j_resconrec_2021_105760
Cites_doi 10.1109/17.141275
10.1016/j.renene.2010.02.020
10.1007/s11069-013-0752-5
10.1016/j.rser.2005.06.002
10.1016/j.enpol.2014.08.006
10.1016/j.enconman.2012.03.016
10.1016/j.eneco.2006.10.012
10.1016/j.enpol.2011.11.090
10.1016/j.enpol.2013.11.025
10.1016/j.apenergy.2013.08.010
10.1016/j.apenergy.2011.12.071
10.1016/j.enpol.2009.07.024
10.1016/j.energy.2013.05.011
10.1016/j.enpol.2013.08.051
10.1016/j.eneco.2013.06.006
10.1016/j.esr.2012.05.004
10.1016/j.energy.2012.10.059
10.1016/j.jclepro.2012.04.012
10.1016/j.enpol.2011.12.018
10.1016/j.enpol.2011.06.058
10.1016/j.rser.2014.09.021
10.1016/j.enbuild.2014.02.050
10.1016/j.enpol.2007.04.020
10.1016/S0305-750X(01)00008-0
10.1016/j.apenergy.2013.09.062
10.1016/j.enpol.2011.01.055
10.1016/j.energy.2005.10.013
10.1016/j.enpol.2011.02.013
10.1023/A:1019041023520
10.1016/j.energy.2013.10.082
10.1016/j.jenvman.2013.08.049
10.1016/S0956-053X(03)00063-1
10.1016/j.rser.2012.12.007
10.1016/j.apenergy.2011.11.068
10.1016/j.enpol.2007.12.017
10.1016/j.energy.2004.03.092
10.1016/j.enpol.2007.11.030
10.1016/j.energy.2014.06.004
10.1016/j.ipl.2004.11.003
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright Elsevier Science Ltd. Feb 2015
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Feb 2015
DBID AAYXX
CITATION
7SP
7TA
7TB
7TQ
8BJ
8FD
DHY
DON
F28
FQK
FR3
H8D
JBE
JG9
KR7
L7M
7ST
7TV
C1K
SOI
7S9
L.6
DOI 10.1016/j.enpol.2014.11.035
DatabaseName CrossRef
Electronics & Communications Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
PAIS Index
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
PAIS International
PAIS International (Ovid)
ANTE: Abstracts in New Technology & Engineering
International Bibliography of the Social Sciences
Engineering Research Database
Aerospace Database
International Bibliography of the Social Sciences
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
Pollution Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Aerospace Database
Civil Engineering Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
PAIS International
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Materials Business File
Pollution Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
PAIS International
Materials Research Database
Pollution Abstracts
International Bibliography of the Social Sciences (IBSS)
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Environmental Sciences
Government
EISSN 1873-6777
EndPage 55
ExternalDocumentID 3569952021
10_1016_j_enpol_2014_11_035
S0301421514006624
Genre Feature
GeographicLocations China
China, People's Rep., Inner Mongolia
China, People's Rep., Beijing
China, People's Rep., Jiangsu
China, People's Rep., Tianjin
GeographicLocations_xml – name: China
– name: China, People's Rep., Beijing
– name: China, People's Rep., Inner Mongolia
– name: China, People's Rep., Jiangsu
– name: China, People's Rep., Tianjin
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFFL
AAFJI
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACHQT
ACIWK
ACRLP
ACROA
ADBBV
ADEZE
ADFHU
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEYQN
AFKWA
AFODL
AFRAH
AFTJW
AFXIZ
AGHFR
AGTHC
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIIAU
AIKHN
AITUG
AJBFU
AJOXV
AJWLA
AKIFW
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AXLSJ
AZFZN
BEHZQ
BELTK
BEZPJ
BGSCR
BKOJK
BKOMP
BLECG
BLXMC
BNTGB
BPUDD
BULVW
BZJEE
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
H~9
IHE
IXIXF
J1W
JARJE
KCYFY
KOM
LY6
LY9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
SAC
SCC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSB
SSF
SSJ
SSO
SSR
SSZ
T5K
TAE
TN5
U5U
WH7
WUQ
ZY4
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SP
7TA
7TB
7TQ
8BJ
8FD
AGCQF
DHY
DON
F28
FQK
FR3
H8D
JBE
JG9
KR7
L7M
7ST
7TV
C1K
SOI
7S9
L.6
ID FETCH-LOGICAL-c529t-ddace872808ba71db67d0f9b4c6bbe7655308ad4ec7ca02aa464badf8beddb403
IEDL.DBID .~1
ISSN 0301-4215
IngestDate Thu Oct 02 10:28:12 EDT 2025
Sun Sep 28 00:24:07 EDT 2025
Sun Sep 28 00:33:06 EDT 2025
Tue Oct 07 09:35:47 EDT 2025
Sat Sep 27 21:04:34 EDT 2025
Fri Sep 12 10:30:39 EDT 2025
Wed Oct 01 03:27:47 EDT 2025
Thu Apr 24 22:48:37 EDT 2025
Fri Feb 23 02:17:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Carbon emission
Abatement potential estimation
Multivariate environmental learning curve
Particle swarm optimization–genetic algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c529t-ddace872808ba71db67d0f9b4c6bbe7655308ad4ec7ca02aa464badf8beddb403
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1648345490
PQPubID 49018
PageCount 10
ParticipantIDs proquest_miscellaneous_2000239458
proquest_miscellaneous_1748859684
proquest_miscellaneous_1692366886
proquest_miscellaneous_1660405600
proquest_miscellaneous_1660032974
proquest_journals_1648345490
crossref_citationtrail_10_1016_j_enpol_2014_11_035
crossref_primary_10_1016_j_enpol_2014_11_035
elsevier_sciencedirect_doi_10_1016_j_enpol_2014_11_035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2015
2015-02-00
20150201
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: February 2015
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Energy policy
PublicationYear 2015
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Promjiraprawat, Winyuchakrit, Limmeechokchai, Masui, Hanaoka, Matsuoka (bib30) 2014; 80
Guo, Zhu, Fan, Xie (bib15) 2011; 39
Rotmans, De Vries (bib31) 1997
Badiru (bib4) 1992; 39
Shi (bib34) 2006; 10
Talukdar, Meisner (bib37) 2001; 29
Yu, Wei, Guo, Ding (bib47) 2014; 114
Kann, Weyant (bib19) 2000; 5
IEA (bib18) 2013
Shi, Liang, Lee, Lu, Wang (bib57) 2005; 93
Fehr (bib12) 2003; 23
Yu, Wei, Wang (bib50) 2014; 66
Fan, Wang (bib10) 2013; 43
Höglund-Isaksson, Winiwarter, Purohit, Rafaj, Schöpp, Klimont (bib16) 2012; 1
Sun, Li, Wei (bib36) 2011; 24
Kongnam, Nuchprayoon (bib21) 2010; 35
Li, Ma (bib23) 2013; 31
Chen, Timilsina, Landis, Florian (bib8) 2013; 130
Wang, Yin, Zhang, Zhang (bib44) 2012; 100
Wang, Zeng, Wei, Zhang (bib43) 2012; 97
Zhang, Wang, Yin, Su (bib52) 2012; 33
Kaya, Y., 1990. Impact of Carbon Dioxide Emission Control on GNP Growth: Interpretation of Proposed Scenarios. IPCC Energy and Industry Subgroup, Response Strategies Working Group, Paris.
Pradhan, Ale, Amatya (bib28) 2006; 31
Limmeechokchai, Chawana (bib24) 2007; 11
Stoppato, Cavazzini, Ardizzon, Rossetti (bib35) 2014; 76
Tsai, Chang (bib38) 2013; 20
Yu, Zhang (bib51) 2012; 3
Özer, Görgün, İncecik (bib27) 2012; 49
Price (bib29) 2008; 36
Yu, Wei, Wang (bib49) 2012; 42
Rubin, Taylor, Yeh, Hounshell (bib32) 2004; 29
Yu, Wei, Fan, Zhang, Wang (bib46) 2012; 92
Cai, Wang, Chen, Wang, Zhang, Lu (bib7) 2008; 36
NBSC (bib26) 2013
Yu, Wei, Wang (bib48) 2012; 61
Lin, Moubarak (bib25) 2014; 113
Guo, Lu (bib14) 2012; 31
Wang, Dong, Wu, Mu, Jiang (bib40) 2011; 39
Bemis (bib5) 1981; 4
Aghaei, Muttaqi, Azizivahed, Gitizadeh (bib1) 2014; 65
Yu, Wei (bib45) 2012; 42
Wang, Zhou, Zhou (bib42) 2011; 29
Shahbaz, Khan, Tahir (bib33) 2013; 40
Ang, Zhou, Tay (bib2) 2011; 39
Bian, He, Xu (bib6) 2013; 63
Zhang, Wang, Da (bib56) 2014; 74
van Vuuren, Hoogwijk, Barker, Riahi, Boeters, Chateau, Scrieciu, van Vliet, Masui, Blok (bib39) 2009; 37
Zhang, Huang, Li, Cheng (bib53) 2010; 32
Dedinec, Markovska, Taseska, Duic, Kanevce (bib9) 2013; 57
Gu, Tan, Chi, Wang (bib13) 2013; 21
Li (bib22) 2012
Wang, Yang, Yang (bib41) 2012; 24
Fan, Liang, Wei (bib11) 2008; 30
Zhang, Da (bib55) 2015; 41
Azadeh, Tarverdian (bib3) 2007; 35
Han, Liu (bib17) 2011; 31
Zhang, Da (bib54) 2013; 69
Kongnam (10.1016/j.enpol.2014.11.035_bib21) 2010; 35
Zhang (10.1016/j.enpol.2014.11.035_bib54) 2013; 69
Wang (10.1016/j.enpol.2014.11.035_bib40) 2011; 39
Zhang (10.1016/j.enpol.2014.11.035_bib52) 2012; 33
Zhang (10.1016/j.enpol.2014.11.035_bib55) 2015; 41
Ang (10.1016/j.enpol.2014.11.035_bib2) 2011; 39
Wang (10.1016/j.enpol.2014.11.035_bib42) 2011; 29
Zhang (10.1016/j.enpol.2014.11.035_bib53) 2010; 32
Wang (10.1016/j.enpol.2014.11.035_bib44) 2012; 100
Dedinec (10.1016/j.enpol.2014.11.035_bib9) 2013; 57
Özer (10.1016/j.enpol.2014.11.035_bib27) 2012; 49
Limmeechokchai (10.1016/j.enpol.2014.11.035_bib24) 2007; 11
Yu (10.1016/j.enpol.2014.11.035_bib51) 2012; 3
Stoppato (10.1016/j.enpol.2014.11.035_bib35) 2014; 76
Yu (10.1016/j.enpol.2014.11.035_bib45) 2012; 42
Han (10.1016/j.enpol.2014.11.035_bib17) 2011; 31
Talukdar (10.1016/j.enpol.2014.11.035_bib37) 2001; 29
Li (10.1016/j.enpol.2014.11.035_bib23) 2013; 31
Fehr (10.1016/j.enpol.2014.11.035_bib12) 2003; 23
IEA (10.1016/j.enpol.2014.11.035_bib18) 2013
Zhang (10.1016/j.enpol.2014.11.035_bib56) 2014; 74
Li (10.1016/j.enpol.2014.11.035_bib22) 2012
Kann (10.1016/j.enpol.2014.11.035_bib19) 2000; 5
van Vuuren (10.1016/j.enpol.2014.11.035_bib39) 2009; 37
Guo (10.1016/j.enpol.2014.11.035_bib15) 2011; 39
Azadeh (10.1016/j.enpol.2014.11.035_bib3) 2007; 35
Wang (10.1016/j.enpol.2014.11.035_bib43) 2012; 97
Shi (10.1016/j.enpol.2014.11.035_bib34) 2006; 10
Fan (10.1016/j.enpol.2014.11.035_bib11) 2008; 30
Aghaei (10.1016/j.enpol.2014.11.035_bib1) 2014; 65
Shi (10.1016/j.enpol.2014.11.035_bib57) 2005; 93
Promjiraprawat (10.1016/j.enpol.2014.11.035_bib30) 2014; 80
Fan (10.1016/j.enpol.2014.11.035_bib10) 2013; 43
Guo (10.1016/j.enpol.2014.11.035_bib14) 2012; 31
Yu (10.1016/j.enpol.2014.11.035_bib49) 2012; 42
Yu (10.1016/j.enpol.2014.11.035_bib46) 2012; 92
Chen (10.1016/j.enpol.2014.11.035_bib8) 2013; 130
Bian (10.1016/j.enpol.2014.11.035_bib6) 2013; 63
Badiru (10.1016/j.enpol.2014.11.035_bib4) 1992; 39
Bemis (10.1016/j.enpol.2014.11.035_bib5) 1981; 4
Price (10.1016/j.enpol.2014.11.035_bib29) 2008; 36
Shahbaz (10.1016/j.enpol.2014.11.035_bib33) 2013; 40
Wang (10.1016/j.enpol.2014.11.035_bib41) 2012; 24
Yu (10.1016/j.enpol.2014.11.035_bib50) 2014; 66
Cai (10.1016/j.enpol.2014.11.035_bib7) 2008; 36
Sun (10.1016/j.enpol.2014.11.035_bib36) 2011; 24
Rotmans (10.1016/j.enpol.2014.11.035_bib31) 1997
Lin (10.1016/j.enpol.2014.11.035_bib25) 2014; 113
NBSC (10.1016/j.enpol.2014.11.035_bib26) 2013
Yu (10.1016/j.enpol.2014.11.035_bib48) 2012; 61
Rubin (10.1016/j.enpol.2014.11.035_bib32) 2004; 29
Tsai (10.1016/j.enpol.2014.11.035_bib38) 2013; 20
10.1016/j.enpol.2014.11.035_bib20
Höglund-Isaksson (10.1016/j.enpol.2014.11.035_bib16) 2012; 1
Pradhan (10.1016/j.enpol.2014.11.035_bib28) 2006; 31
Yu (10.1016/j.enpol.2014.11.035_bib47) 2014; 114
Gu (10.1016/j.enpol.2014.11.035_bib13) 2013; 21
References_xml – volume: 31
  start-page: 1748
  year: 2006
  end-page: 1760
  ident: bib28
  article-title: Mitigation potential of greenhouse gas emission and implications on fuel consumption due to clean energy vehicles as public passenger transport in Kathmandu Valley of Nepal: a case study of trolley buses in ring road
  publication-title: Energy
– volume: 24
  start-page: 40
  year: 2012
  end-page: 50
  ident: bib41
  article-title: Analysis on China's energy efficiency and potentials of energy conservation and emissions reduction from the perspective of environmental impact
  publication-title: Manag. Rev.
– volume: 42
  start-page: 329
  year: 2012
  end-page: 340
  ident: bib49
  article-title: A PSO–GA optimal model to estimate primary energy demand of China
  publication-title: Energy Policy
– volume: 39
  start-page: 2482
  year: 2011
  end-page: 2489
  ident: bib2
  article-title: Potential for reducing global carbon emissions from electricity production – a benchmarking analysis
  publication-title: Energy Policy
– volume: 30
  start-page: 889
  year: 2008
  end-page: 904
  ident: bib11
  article-title: A generalized pattern matching approach for multi-step prediction of crude oil price
  publication-title: Energy Econ.
– volume: 63
  start-page: 962
  year: 2013
  end-page: 971
  ident: bib6
  article-title: Estimation of potential energy saving and carbon dioxide emission reduction in China based on an extended non-radial DEA approach
  publication-title: Energy Policy
– volume: 113
  start-page: 781
  year: 2014
  end-page: 787
  ident: bib25
  article-title: Mitigation potential of carbon dioxide emissions in the Chinese textile industry
  publication-title: Appl. Energy
– volume: 31
  start-page: 287
  year: 2011
  end-page: 298
  ident: bib17
  article-title: Analysis of energy efficiency and energy-saving and emission-reduction potential of steel industry in various regions of China based on super-efficiency DEA Model
  publication-title: J. Syst. Sci. Math. Sci.
– volume: 32
  start-page: 211
  year: 2010
  end-page: 217
  ident: bib53
  article-title: An investigation on spatial changing pattern of CO
  publication-title: Resourc. Sci.
– volume: 74
  start-page: 454
  year: 2014
  end-page: 464
  ident: bib56
  article-title: Regional allocation of carbon emission quotas in China: evidence from the Shapley value method
  publication-title: Energy Policy
– volume: 35
  start-page: 2431
  year: 2010
  end-page: 2438
  ident: bib21
  article-title: A particle swarm optimization for wind energy control problem
  publication-title: Renew. Energy
– volume: 39
  start-page: 2352
  year: 2011
  end-page: 2360
  ident: bib15
  article-title: Evaluation of potential reductions in carbon emissions in Chinese provinces based on environmental DEA
  publication-title: Energy Policy
– volume: 31
  start-page: 58
  year: 2012
  end-page: 62
  ident: bib14
  article-title: Evaluation on energy saving and emission reduction efficiency and analysis on its influential factor: based on super-efficiency-DEA and Tobit Model
  publication-title: Technol. Econ.
– volume: 80
  start-page: 631
  year: 2014
  end-page: 639
  ident: bib30
  article-title: CO
  publication-title: Energy Build.
– volume: 100
  start-page: 277
  year: 2012
  end-page: 284
  ident: bib44
  article-title: An empirical research on the influencing factors of regional CO
  publication-title: China
– volume: 93
  start-page: 255
  year: 2005
  end-page: 261
  ident: bib57
  article-title: An improved GA and a novel PSO-GA-based hybrid algorithm
  publication-title: Inform. Process. Lett.
– year: 2013
  ident: bib18
  article-title: CO
– volume: 39
  start-page: 5970
  year: 2011
  end-page: 5979
  ident: bib40
  article-title: Coal production forecast and low carbon policies in China
  publication-title: Energy Policy
– volume: 40
  start-page: 8
  year: 2013
  end-page: 21
  ident: bib33
  article-title: The dynamic links between energy consumption, economic growth, financial development and trade in China: fresh evidence from multivariate framework analysis
  publication-title: Energy Econ.
– volume: 23
  start-page: 397
  year: 2003
  end-page: 402
  ident: bib12
  article-title: Environmental management by the learning curve
  publication-title: Waste Manag.
– volume: 61
  start-page: 59
  year: 2012
  end-page: 66
  ident: bib48
  article-title: China's primary energy demands in 2020: predictions from an MPSO–RBF estimation model
  publication-title: Energy Convers. Manag.
– year: 2012
  ident: bib22
  article-title: China's Provinces Carbon Emissions and Decoupling Strategy under the Premise of economics Growth
– volume: 57
  start-page: 177
  year: 2013
  end-page: 187
  ident: bib9
  article-title: Assessment of climate change mitigation potential of the Macedonian transport sector
  publication-title: Energy
– volume: 20
  start-page: 294
  year: 2013
  end-page: 305
  ident: bib38
  article-title: Taiwan's GHG mitigation potentials and costs: an evaluation with the MARKAL model
  publication-title: Renew. Sustain. Energy Rev.
– volume: 10
  start-page: 49
  year: 2006
  end-page: 58
  ident: bib34
  article-title: Regional differences in China's energy efficiency and conservation potentials
  publication-title: China Ind. Econ.
– volume: 4
  start-page: 84
  year: 1981
  end-page: 94
  ident: bib5
  article-title: A model for examining the cost implications of production rate
  publication-title: Concepts: J. Def. Syst. Acquis. Manag.
– volume: 1
  start-page: 97
  year: 2012
  end-page: 108
  ident: bib16
  article-title: EU low carbon roadmap 2050: potentials and costs for mitigation of non-CO
  publication-title: Energy Strategy Rev.
– volume: 43
  start-page: 12
  year: 2013
  end-page: 21
  ident: bib10
  article-title: Analysis of total factor energy efficiency and potential of the energy-saving and emission-abating in regional of China – based on SBM Model of undesired output
  publication-title: Math. Pract. Theory
– volume: 49
  start-page: 395
  year: 2012
  end-page: 403
  ident: bib27
  article-title: The scenario analysis on CO
  publication-title: Energy
– volume: 29
  start-page: 868
  year: 2011
  end-page: 875
  ident: bib42
  article-title: Regional carbon dioxide emission performance and its reduction potential based on environmental production technology: the case of main industrial provinces in China
  publication-title: Stud. Sci. Sci.
– volume: 42
  start-page: 521
  year: 2012
  end-page: 529
  ident: bib45
  article-title: Prediction of China's coal production-environmental pollution based on a hybrid genetic algorithm-system dynamics model
  publication-title: Energy Policy
– volume: 92
  start-page: 552
  year: 2012
  end-page: 562
  ident: bib46
  article-title: Exploring the regional characteristics of inter-provincial CO
  publication-title: Appl. Energy
– volume: 66
  start-page: 630
  year: 2014
  end-page: 644
  ident: bib50
  article-title: Provincial allocation of carbon emission reduction targets in China: an approach based on improved fuzzy cluster and Shapley value decomposition
  publication-title: Energy Policy
– volume: 36
  start-page: 1386
  year: 2008
  end-page: 1403
  ident: bib29
  article-title: Sectoral trends in global energy use and greenhouse gas emissions
  publication-title: Energy Policy
– volume: 97
  start-page: 115
  year: 2012
  end-page: 123
  ident: bib43
  article-title: Regional total factor energy efficiency: an empirical analysis of industrial sector in China
  publication-title: Appl. Energy
– volume: 130
  start-page: 436
  year: 2013
  end-page: 446
  ident: bib8
  article-title: Economic implications of reducing carbon emissions from energy use and industrial processes in Brazil
  publication-title: J. Environ. Manag.
– volume: 24
  start-page: 1194
  year: 2011
  end-page: 1201
  ident: bib36
  article-title: Environmental learning curves and the allocation of carbon mitigation targets among different provinces in China
  publication-title: Res. Environ. Sci.
– volume: 69
  start-page: 1109
  year: 2013
  end-page: 1122
  ident: bib54
  article-title: Decomposing the changes of energy-related carbon emissions in China: evidence from the PDA approach
  publication-title: Nat. Hazards
– volume: 5
  start-page: 29
  year: 2000
  end-page: 46
  ident: bib19
  article-title: Approaches for performing uncertainty analysis in large-scale energy/economic policy models
  publication-title: Environ. Model. Assess.
– volume: 11
  start-page: 818
  year: 2007
  end-page: 837
  ident: bib24
  article-title: Sustainable energy development strategies in the rural Thailand: the case of the improved cooking stove and the small biogas digester
  publication-title: Renew. Sustain. Energy Rev.
– volume: 29
  start-page: 1551
  year: 2004
  end-page: 1559
  ident: bib32
  article-title: Learning curves for environmental technology and their importance for climate policy analysis
  publication-title: Energy
– volume: 35
  start-page: 5229
  year: 2007
  end-page: 5241
  ident: bib3
  article-title: Integration of genetic algorithm, computer simulation and design of experiments for forecasting electrical energy consumption
  publication-title: Energy Policy
– volume: 31
  start-page: 1089
  year: 2013
  end-page: 1093
  ident: bib23
  article-title: Research on CO
  publication-title: Henan Sci.
– volume: 39
  start-page: 176
  year: 1992
  end-page: 188
  ident: bib4
  article-title: Computational survey of univariate and multivariate learning curve models
  publication-title: IEEE Trans. Eng. Manag.
– year: 2013
  ident: bib26
  article-title: National Bureau of Statistics of China. China Energy Statistical Yearbook
– volume: 3
  start-page: 5
  year: 2012
  end-page: 15
  ident: bib51
  article-title: Analysis of energy efficiency and emissions reduction potential in China's industrial sector
  publication-title: Ind. Econ. Rev.
– volume: 21
  start-page: 141
  year: 2013
  end-page: 148
  ident: bib13
  article-title: A carbon dioxide reduction potential model for chemical industry
  publication-title: Chin. J. Manag. Sci.
– volume: 41
  start-page: 1255
  year: 2015
  end-page: 1266
  ident: bib55
  article-title: The decomposition of energy-related carbon emission and its decoupling with economic growth in China
  publication-title: Renew. Sustain. Energy Rev.
– volume: 33
  start-page: 167
  year: 2012
  end-page: 178
  ident: bib52
  article-title: CO
  publication-title: J. Clean. Prod.
– volume: 29
  start-page: 827
  year: 2001
  end-page: 840
  ident: bib37
  article-title: Does the private sector help or hurt the environment? Evidence from carbon dioxide pollution in developing countries
  publication-title: World Dev.
– volume: 36
  start-page: 1181
  year: 2008
  end-page: 1194
  ident: bib7
  article-title: Comparison of CO
  publication-title: Energy Policy
– volume: 114
  start-page: 290
  year: 2014
  end-page: 300
  ident: bib47
  article-title: Carbon emission coefficient measurement of the coal-to-power energy chain in China
  publication-title: Appl. Energy
– volume: 76
  start-page: 168
  year: 2014
  end-page: 174
  ident: bib35
  article-title: A PSO (particle swarm optimization)-based model for the optimal management of a small PV(Photovoltaic)-pump hydro energy storage in a rural dry area
  publication-title: Energy
– volume: 37
  start-page: 5125
  year: 2009
  end-page: 5139
  ident: bib39
  article-title: Comparison of top-down and bottom-up estimates of sectoral and regional greenhouse gas emission reduction potentials
  publication-title: Energy Policy
– reference: Kaya, Y., 1990. Impact of Carbon Dioxide Emission Control on GNP Growth: Interpretation of Proposed Scenarios. IPCC Energy and Industry Subgroup, Response Strategies Working Group, Paris.
– year: 1997
  ident: bib31
  article-title: Perspectives on Global Change: The Targets Approach
– volume: 65
  start-page: 398
  year: 2014
  end-page: 411
  ident: bib1
  article-title: Distribution expansion planning considering reliability and security of energy using modified PSO (Particle Swarm Optimization) algorithm
  publication-title: Energy
– volume: 39
  start-page: 176
  year: 1992
  ident: 10.1016/j.enpol.2014.11.035_bib4
  article-title: Computational survey of univariate and multivariate learning curve models
  publication-title: IEEE Trans. Eng. Manag.
  doi: 10.1109/17.141275
– volume: 35
  start-page: 2431
  year: 2010
  ident: 10.1016/j.enpol.2014.11.035_bib21
  article-title: A particle swarm optimization for wind energy control problem
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2010.02.020
– volume: 24
  start-page: 1194
  year: 2011
  ident: 10.1016/j.enpol.2014.11.035_bib36
  article-title: Environmental learning curves and the allocation of carbon mitigation targets among different provinces in China
  publication-title: Res. Environ. Sci.
– volume: 69
  start-page: 1109
  year: 2013
  ident: 10.1016/j.enpol.2014.11.035_bib54
  article-title: Decomposing the changes of energy-related carbon emissions in China: evidence from the PDA approach
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-013-0752-5
– volume: 11
  start-page: 818
  year: 2007
  ident: 10.1016/j.enpol.2014.11.035_bib24
  article-title: Sustainable energy development strategies in the rural Thailand: the case of the improved cooking stove and the small biogas digester
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2005.06.002
– volume: 43
  start-page: 12
  year: 2013
  ident: 10.1016/j.enpol.2014.11.035_bib10
  article-title: Analysis of total factor energy efficiency and potential of the energy-saving and emission-abating in regional of China – based on SBM Model of undesired output
  publication-title: Math. Pract. Theory
– volume: 74
  start-page: 454
  year: 2014
  ident: 10.1016/j.enpol.2014.11.035_bib56
  article-title: Regional allocation of carbon emission quotas in China: evidence from the Shapley value method
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2014.08.006
– ident: 10.1016/j.enpol.2014.11.035_bib20
– volume: 61
  start-page: 59
  year: 2012
  ident: 10.1016/j.enpol.2014.11.035_bib48
  article-title: China's primary energy demands in 2020: predictions from an MPSO–RBF estimation model
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2012.03.016
– volume: 30
  start-page: 889
  year: 2008
  ident: 10.1016/j.enpol.2014.11.035_bib11
  article-title: A generalized pattern matching approach for multi-step prediction of crude oil price
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2006.10.012
– volume: 42
  start-page: 329
  year: 2012
  ident: 10.1016/j.enpol.2014.11.035_bib49
  article-title: A PSO–GA optimal model to estimate primary energy demand of China
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2011.11.090
– volume: 66
  start-page: 630
  year: 2014
  ident: 10.1016/j.enpol.2014.11.035_bib50
  article-title: Provincial allocation of carbon emission reduction targets in China: an approach based on improved fuzzy cluster and Shapley value decomposition
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2013.11.025
– volume: 113
  start-page: 781
  year: 2014
  ident: 10.1016/j.enpol.2014.11.035_bib25
  article-title: Mitigation potential of carbon dioxide emissions in the Chinese textile industry
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.08.010
– volume: 97
  start-page: 115
  year: 2012
  ident: 10.1016/j.enpol.2014.11.035_bib43
  article-title: Regional total factor energy efficiency: an empirical analysis of industrial sector in China
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.12.071
– year: 2013
  ident: 10.1016/j.enpol.2014.11.035_bib26
– volume: 29
  start-page: 868
  year: 2011
  ident: 10.1016/j.enpol.2014.11.035_bib42
  article-title: Regional carbon dioxide emission performance and its reduction potential based on environmental production technology: the case of main industrial provinces in China
  publication-title: Stud. Sci. Sci.
– volume: 31
  start-page: 1089
  year: 2013
  ident: 10.1016/j.enpol.2014.11.035_bib23
  article-title: Research on CO2 reducing emission potential in Shandong province based on environment learning curve
  publication-title: Henan Sci.
– volume: 3
  start-page: 5
  year: 2012
  ident: 10.1016/j.enpol.2014.11.035_bib51
  article-title: Analysis of energy efficiency and emissions reduction potential in China's industrial sector
  publication-title: Ind. Econ. Rev.
– volume: 37
  start-page: 5125
  year: 2009
  ident: 10.1016/j.enpol.2014.11.035_bib39
  article-title: Comparison of top-down and bottom-up estimates of sectoral and regional greenhouse gas emission reduction potentials
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2009.07.024
– volume: 57
  start-page: 177
  year: 2013
  ident: 10.1016/j.enpol.2014.11.035_bib9
  article-title: Assessment of climate change mitigation potential of the Macedonian transport sector
  publication-title: Energy
  doi: 10.1016/j.energy.2013.05.011
– volume: 63
  start-page: 962
  year: 2013
  ident: 10.1016/j.enpol.2014.11.035_bib6
  article-title: Estimation of potential energy saving and carbon dioxide emission reduction in China based on an extended non-radial DEA approach
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2013.08.051
– volume: 40
  start-page: 8
  year: 2013
  ident: 10.1016/j.enpol.2014.11.035_bib33
  article-title: The dynamic links between energy consumption, economic growth, financial development and trade in China: fresh evidence from multivariate framework analysis
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2013.06.006
– volume: 1
  start-page: 97
  year: 2012
  ident: 10.1016/j.enpol.2014.11.035_bib16
  article-title: EU low carbon roadmap 2050: potentials and costs for mitigation of non-CO2 greenhouse gas emissions
  publication-title: Energy Strategy Rev.
  doi: 10.1016/j.esr.2012.05.004
– year: 2013
  ident: 10.1016/j.enpol.2014.11.035_bib18
– volume: 49
  start-page: 395
  year: 2012
  ident: 10.1016/j.enpol.2014.11.035_bib27
  article-title: The scenario analysis on CO2 emission mitigation potential in the Turkish electricity sector: 2006–2030
  publication-title: Energy
  doi: 10.1016/j.energy.2012.10.059
– volume: 33
  start-page: 167
  year: 2012
  ident: 10.1016/j.enpol.2014.11.035_bib52
  article-title: CO2 emission reduction within Chinese iron & steel industry: practices, determinants and performance
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2012.04.012
– volume: 42
  start-page: 521
  year: 2012
  ident: 10.1016/j.enpol.2014.11.035_bib45
  article-title: Prediction of China's coal production-environmental pollution based on a hybrid genetic algorithm-system dynamics model
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2011.12.018
– volume: 39
  start-page: 5970
  year: 2011
  ident: 10.1016/j.enpol.2014.11.035_bib40
  article-title: Coal production forecast and low carbon policies in China
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2011.06.058
– year: 1997
  ident: 10.1016/j.enpol.2014.11.035_bib31
– volume: 100
  start-page: 277
  year: 2012
  ident: 10.1016/j.enpol.2014.11.035_bib44
  article-title: An empirical research on the influencing factors of regional CO2 emissions: evidence from Beijing city
  publication-title: China
– volume: 32
  start-page: 211
  year: 2010
  ident: 10.1016/j.enpol.2014.11.035_bib53
  article-title: An investigation on spatial changing pattern of CO2 emissions in China
  publication-title: Resourc. Sci.
– volume: 41
  start-page: 1255
  year: 2015
  ident: 10.1016/j.enpol.2014.11.035_bib55
  article-title: The decomposition of energy-related carbon emission and its decoupling with economic growth in China
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.09.021
– year: 2012
  ident: 10.1016/j.enpol.2014.11.035_bib22
– volume: 80
  start-page: 631
  year: 2014
  ident: 10.1016/j.enpol.2014.11.035_bib30
  article-title: CO2 mitigation potential and marginal abatement costs in Thai residential and building sectors
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.02.050
– volume: 24
  start-page: 40
  year: 2012
  ident: 10.1016/j.enpol.2014.11.035_bib41
  article-title: Analysis on China's energy efficiency and potentials of energy conservation and emissions reduction from the perspective of environmental impact
  publication-title: Manag. Rev.
– volume: 35
  start-page: 5229
  year: 2007
  ident: 10.1016/j.enpol.2014.11.035_bib3
  article-title: Integration of genetic algorithm, computer simulation and design of experiments for forecasting electrical energy consumption
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2007.04.020
– volume: 29
  start-page: 827
  year: 2001
  ident: 10.1016/j.enpol.2014.11.035_bib37
  article-title: Does the private sector help or hurt the environment? Evidence from carbon dioxide pollution in developing countries
  publication-title: World Dev.
  doi: 10.1016/S0305-750X(01)00008-0
– volume: 10
  start-page: 49
  year: 2006
  ident: 10.1016/j.enpol.2014.11.035_bib34
  article-title: Regional differences in China's energy efficiency and conservation potentials
  publication-title: China Ind. Econ.
– volume: 114
  start-page: 290
  year: 2014
  ident: 10.1016/j.enpol.2014.11.035_bib47
  article-title: Carbon emission coefficient measurement of the coal-to-power energy chain in China
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.09.062
– volume: 4
  start-page: 84
  year: 1981
  ident: 10.1016/j.enpol.2014.11.035_bib5
  article-title: A model for examining the cost implications of production rate
  publication-title: Concepts: J. Def. Syst. Acquis. Manag.
– volume: 39
  start-page: 2352
  year: 2011
  ident: 10.1016/j.enpol.2014.11.035_bib15
  article-title: Evaluation of potential reductions in carbon emissions in Chinese provinces based on environmental DEA
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2011.01.055
– volume: 31
  start-page: 1748
  year: 2006
  ident: 10.1016/j.enpol.2014.11.035_bib28
  article-title: Mitigation potential of greenhouse gas emission and implications on fuel consumption due to clean energy vehicles as public passenger transport in Kathmandu Valley of Nepal: a case study of trolley buses in ring road
  publication-title: Energy
  doi: 10.1016/j.energy.2005.10.013
– volume: 39
  start-page: 2482
  year: 2011
  ident: 10.1016/j.enpol.2014.11.035_bib2
  article-title: Potential for reducing global carbon emissions from electricity production – a benchmarking analysis
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2011.02.013
– volume: 5
  start-page: 29
  year: 2000
  ident: 10.1016/j.enpol.2014.11.035_bib19
  article-title: Approaches for performing uncertainty analysis in large-scale energy/economic policy models
  publication-title: Environ. Model. Assess.
  doi: 10.1023/A:1019041023520
– volume: 65
  start-page: 398
  year: 2014
  ident: 10.1016/j.enpol.2014.11.035_bib1
  article-title: Distribution expansion planning considering reliability and security of energy using modified PSO (Particle Swarm Optimization) algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2013.10.082
– volume: 130
  start-page: 436
  year: 2013
  ident: 10.1016/j.enpol.2014.11.035_bib8
  article-title: Economic implications of reducing carbon emissions from energy use and industrial processes in Brazil
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2013.08.049
– volume: 23
  start-page: 397
  year: 2003
  ident: 10.1016/j.enpol.2014.11.035_bib12
  article-title: Environmental management by the learning curve
  publication-title: Waste Manag.
  doi: 10.1016/S0956-053X(03)00063-1
– volume: 21
  start-page: 141
  year: 2013
  ident: 10.1016/j.enpol.2014.11.035_bib13
  article-title: A carbon dioxide reduction potential model for chemical industry
  publication-title: Chin. J. Manag. Sci.
– volume: 31
  start-page: 58
  year: 2012
  ident: 10.1016/j.enpol.2014.11.035_bib14
  article-title: Evaluation on energy saving and emission reduction efficiency and analysis on its influential factor: based on super-efficiency-DEA and Tobit Model
  publication-title: Technol. Econ.
– volume: 20
  start-page: 294
  year: 2013
  ident: 10.1016/j.enpol.2014.11.035_bib38
  article-title: Taiwan's GHG mitigation potentials and costs: an evaluation with the MARKAL model
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.12.007
– volume: 92
  start-page: 552
  year: 2012
  ident: 10.1016/j.enpol.2014.11.035_bib46
  article-title: Exploring the regional characteristics of inter-provincial CO2 emissions in China: an improved fuzzy clustering analysis based on particle swarm optimization
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.11.068
– volume: 36
  start-page: 1386
  year: 2008
  ident: 10.1016/j.enpol.2014.11.035_bib29
  article-title: Sectoral trends in global energy use and greenhouse gas emissions
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2007.12.017
– volume: 31
  start-page: 287
  year: 2011
  ident: 10.1016/j.enpol.2014.11.035_bib17
  article-title: Analysis of energy efficiency and energy-saving and emission-reduction potential of steel industry in various regions of China based on super-efficiency DEA Model
  publication-title: J. Syst. Sci. Math. Sci.
– volume: 29
  start-page: 1551
  year: 2004
  ident: 10.1016/j.enpol.2014.11.035_bib32
  article-title: Learning curves for environmental technology and their importance for climate policy analysis
  publication-title: Energy
  doi: 10.1016/j.energy.2004.03.092
– volume: 36
  start-page: 1181
  year: 2008
  ident: 10.1016/j.enpol.2014.11.035_bib7
  article-title: Comparison of CO2 emission scenarios and mitigation opportunities in China's five sectors in 2020
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2007.11.030
– volume: 76
  start-page: 168
  year: 2014
  ident: 10.1016/j.enpol.2014.11.035_bib35
  article-title: A PSO (particle swarm optimization)-based model for the optimal management of a small PV(Photovoltaic)-pump hydro energy storage in a rural dry area
  publication-title: Energy
  doi: 10.1016/j.energy.2014.06.004
– volume: 93
  start-page: 255
  year: 2005
  ident: 10.1016/j.enpol.2014.11.035_bib57
  article-title: An improved GA and a novel PSO-GA-based hybrid algorithm
  publication-title: Inform. Process. Lett.
  doi: 10.1016/j.ipl.2004.11.003
SSID ssj0004894
Score 2.448888
Snippet This study aims to estimate carbon intensity abatement potential in China at the regional level by proposing a particle swarm optimization–genetic algorithm...
This study aims to estimate carbon intensity abatement potential in China at the regional level by proposing a particle swarm optimization-genetic algorithm...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 46
SubjectTerms Abatement
Abatement potential estimation
Algorithms
Carbon
Carbon dioxide
Carbon dioxide emissions
Carbon emission
China
China (People's Republic)
Computer simulation
Economic theory
Emissions control
Energy policy
Environmental economics
Estimating techniques
Estimation
GDP
Government
greenhouse gas emissions
Gross Domestic Product
Industry
Intelligence
issues and policy
Learning
Learning curves
least squares
Least squares method
Mitigation
Mongolia
Multivariate environmental learning curve
Optimization
Optimization algorithms
Particle swarm optimization–genetic algorithm
Policies
Pollution control
Provinces
Reduction
Simulation
Studies
Variables
Title Provincial carbon intensity abatement potential estimation in China: A PSO–GA-optimized multi-factor environmental learning curve method
URI https://dx.doi.org/10.1016/j.enpol.2014.11.035
https://www.proquest.com/docview/1648345490
https://www.proquest.com/docview/1660032974
https://www.proquest.com/docview/1660405600
https://www.proquest.com/docview/1692366886
https://www.proquest.com/docview/1748859684
https://www.proquest.com/docview/2000239458
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6777
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004894
  issn: 0301-4215
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6777
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004894
  issn: 0301-4215
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-6777
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004894
  issn: 0301-4215
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6777
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004894
  issn: 0301-4215
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6777
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004894
  issn: 0301-4215
  databaseCode: AKRWK
  dateStart: 19730101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9RAFB5KPagH0dXi2lpG8Gi62WQyM_G2lNZVoRZqobdhfkVWNFl2s0I9iGev_of-Jb43mbRWJAchlyRvSMjLvB_JN99HyPOyyrJyakWSOpFjg-ISA4k74R7yHbce-UsQbXHC5-fszUVxsUUO-7UwCKuMsb-L6SFaxyOT-DQny8Vicha6AcxYLNCYIycoYwJVDA6-XcM8mCw7Cilom9G6Zx4KGC_Ua8f_D1N2gFSeQfPtn9nprzgdks_xfXIvVo101t3YA7Ll6xG53S8qXo_I3T94BUdk5-h6-RoMi_N3_ZD8OA1fEPAzObV6ZZqaLjoMe3tJtYG6E4fQZdMiiAiMkIOjW9wIhjSIbb-kM3p69u7X95-vZkkDEefz4qt3NCATk06-h_ob14_KFB-o3ay-eNqJVj8i58dH7w_nSVRjSGyRlW3inLZeopqVNFpMneHCpVVpmOXGeMFRf0hqx7wVVqeZ1owzo10ljXfOsDTfIdt1U_vHhBqZVdDYlLBZxitT6pRVwtm8yqXNczsmWe8FZSNVOSpmfFI9Ju2jCq5T6DpoYhS4bkxeXA1adkwdw-a8d6-68cIpyCXDA_f6l0HF-b5W0HTKnEGvnY7Js6vTMFPx94uufbNBGygu8wwauGEbKKHBcMgGinLOpeQDNgICc1FyOXCtLJAdlayQT_73WeySO7BXdCj2PbLdrjb-KRRprdkPs3Cf3Jq9fjs_-Q3DPkB-
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcigcECxULBQwEkfSzSaO43BbVS0LlFKprdSb5VfQIkhW-0CCA-LMlX_IL2HGSVqKUA5IOSVjJcrE83A-fx_As6JMkmJs8yh2eUoNiosMJu5IeMx3wnriLyG0xZGYnvHX59n5Bux1e2EIVtnG_iamh2jdnhm1b3M0n81GJ6EboIzFA405vwbXeZbk1IHtfrvEeXBZNBxS2DeTeUc9FEBeJNhOPyDGfJe4PIPo2z_T01-BOmSfg9twqy0b2aR5sjuw4asBbHW7ipcDuPkHseAAtvcv96_hsHYCL-_Cj-OwhEDr5MzqhakrNmtA7KsvTBssPGkIm9crQhGhEZFwNLsb0ZAFte0XbMKOT979-v7z5SSqMeR8mn31jgVoYtTo9zB_5f6tNMV7ZteLz541qtX34Oxg_3RvGrVyDJHNkmIVOaetlyRnJY3Ox86I3MVlYbgVxvhckACR1I57m1sdJ1pzwY12pTTeOcPjdBs2q7ry94EZmZTY2RR4WC5KU-iYl7mzaZlKm6Z2CEnnBWVbrnKSzPioOlDaBxVcp8h12MUodN0Qnl8MmjdUHf3monOvuvLFKUwm_QN3uo9BtRN-qbDrlCnHZjsewtOLyzhV6f-Lrny9JhusLtMEO7h-G6yh0bDPBqtyIaQUPTY5RuasELLnXklgOyp4Jh_877t4AlvT07eH6vDV0ZuHcAOvZA2kfQc2V4u1f4QV28o8DjPyN8soQhM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Provincial+carbon+intensity+abatement+potential+estimation+in+China%3A+A+PSO-GA-optimized+multi-factor+environmental+learning+curve+method&rft.jtitle=Energy+policy&rft.au=Yu%2C+Shiwei&rft.au=Zhang%2C+Junjie&rft.au=Zheng%2C+Shuhong&rft.au=Sun%2C+Han&rft.date=2015-02-01&rft.issn=0301-4215&rft.volume=77&rft.spage=46&rft.epage=46&rft_id=info:doi/10.1016%2Fj.enpol.2014.11.035&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4215&client=summon