Provincial carbon intensity abatement potential estimation in China: A PSO–GA-optimized multi-factor environmental learning curve method
This study aims to estimate carbon intensity abatement potential in China at the regional level by proposing a particle swarm optimization–genetic algorithm (PSO–GA) multivariate environmental learning curve estimation method. The model uses two independent variables, namely, per capita gross domest...
Saved in:
| Published in | Energy policy Vol. 77; pp. 46 - 55 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Kidlington
Elsevier Ltd
01.02.2015
Elsevier Science Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0301-4215 1873-6777 |
| DOI | 10.1016/j.enpol.2014.11.035 |
Cover
| Abstract | This study aims to estimate carbon intensity abatement potential in China at the regional level by proposing a particle swarm optimization–genetic algorithm (PSO–GA) multivariate environmental learning curve estimation method. The model uses two independent variables, namely, per capita gross domestic product (GDP) and the proportion of the tertiary industry in GDP, to construct carbon intensity learning curves (CILCs), i.e., CO2 emissions per unit of GDP, of 30 provinces in China. Instead of the traditional ordinary least squares (OLS) method, a PSO–GA intelligent optimization algorithm is used to optimize the coefficients of a learning curve. The carbon intensity abatement potentials of the 30 Chinese provinces are estimated via PSO–GA under the business-as-usual scenario. The estimation reveals the following results. (1) For most provinces, the abatement potentials from improving a unit of the proportion of the tertiary industry in GDP are higher than the potentials from raising a unit of per capita GDP. (2) The average potential of the 30 provinces in 2020 will be 37.6% based on the emission's level of 2005. The potentials of Jiangsu, Tianjin, Shandong, Beijing, and Heilongjiang are over 60%. Ningxia is the only province without intensity abatement potential. (3) The total carbon intensity in China weighted by the GDP shares of the 30 provinces will decline by 39.4% in 2020 compared with that in 2005. This intensity cannot achieve the 40%–45% carbon intensity reduction target set by the Chinese government. Additional mitigation policies should be developed to uncover the potentials of Ningxia and Inner Mongolia. In addition, the simulation accuracy of the CILCs optimized by PSO–GA is higher than that of the CILCs optimized by the traditional OLS method.
•A PSO–GA-optimized multi-factor environmental learning curve method is proposed.•The carbon intensity abatement potentials of the 30 Chinese provinces are estimated by the curve.•The average potential will be 37.6% in 2020 based on the emission's level of 2005.•China's total potentials weighted by GDP shares of the 30 provinces will be 39.4% in 2020.•The intensity cannot achieve the 40%–45% carbon intensity reduction target in BAU scenario. |
|---|---|
| AbstractList | This study aims to estimate carbon intensity abatement potential in China at the regional level by proposing a particle swarm optimization–genetic algorithm (PSO–GA) multivariate environmental learning curve estimation method. The model uses two independent variables, namely, per capita gross domestic product (GDP) and the proportion of the tertiary industry in GDP, to construct carbon intensity learning curves (CILCs), i.e., CO2 emissions per unit of GDP, of 30 provinces in China. Instead of the traditional ordinary least squares (OLS) method, a PSO–GA intelligent optimization algorithm is used to optimize the coefficients of a learning curve. The carbon intensity abatement potentials of the 30 Chinese provinces are estimated via PSO–GA under the business-as-usual scenario. The estimation reveals the following results. (1) For most provinces, the abatement potentials from improving a unit of the proportion of the tertiary industry in GDP are higher than the potentials from raising a unit of per capita GDP. (2) The average potential of the 30 provinces in 2020 will be 37.6% based on the emission's level of 2005. The potentials of Jiangsu, Tianjin, Shandong, Beijing, and Heilongjiang are over 60%. Ningxia is the only province without intensity abatement potential. (3) The total carbon intensity in China weighted by the GDP shares of the 30 provinces will decline by 39.4% in 2020 compared with that in 2005. This intensity cannot achieve the 40%–45% carbon intensity reduction target set by the Chinese government. Additional mitigation policies should be developed to uncover the potentials of Ningxia and Inner Mongolia. In addition, the simulation accuracy of the CILCs optimized by PSO–GA is higher than that of the CILCs optimized by the traditional OLS method.
•A PSO–GA-optimized multi-factor environmental learning curve method is proposed.•The carbon intensity abatement potentials of the 30 Chinese provinces are estimated by the curve.•The average potential will be 37.6% in 2020 based on the emission's level of 2005.•China's total potentials weighted by GDP shares of the 30 provinces will be 39.4% in 2020.•The intensity cannot achieve the 40%–45% carbon intensity reduction target in BAU scenario. This study aims to estimate carbon intensity abatement potential in China at the regional level by proposing a particle swarm optimization–genetic algorithm (PSO–GA) multivariate environmental learning curve estimation method. The model uses two independent variables, namely, per capita gross domestic product (GDP) and the proportion of the tertiary industry in GDP, to construct carbon intensity learning curves (CILCs), i.e., CO2 emissions per unit of GDP, of 30 provinces in China. Instead of the traditional ordinary least squares (OLS) method, a PSO–GA intelligent optimization algorithm is used to optimize the coefficients of a learning curve. The carbon intensity abatement potentials of the 30 Chinese provinces are estimated via PSO–GA under the business-as-usual scenario. The estimation reveals the following results. (1) For most provinces, the abatement potentials from improving a unit of the proportion of the tertiary industry in GDP are higher than the potentials from raising a unit of per capita GDP. (2) The average potential of the 30 provinces in 2020 will be 37.6% based on the emission's level of 2005. The potentials of Jiangsu, Tianjin, Shandong, Beijing, and Heilongjiang are over 60%. Ningxia is the only province without intensity abatement potential. (3) The total carbon intensity in China weighted by the GDP shares of the 30 provinces will decline by 39.4% in 2020 compared with that in 2005. This intensity cannot achieve the 40%–45% carbon intensity reduction target set by the Chinese government. Additional mitigation policies should be developed to uncover the potentials of Ningxia and Inner Mongolia. In addition, the simulation accuracy of the CILCs optimized by PSO–GA is higher than that of the CILCs optimized by the traditional OLS method. This study aims to estimate carbon intensity abatement potential in China at the regional level by proposing a particle swarm optimization-genetic algorithm (PSO-GA) multivariate environmental learning curve estimation method. The model uses two independent variables, namely, per capita gross domestic product (GDP) and the proportion of the tertiary industry in GDP, to construct carbon intensity learning curves (CILCs), i.e., CO2 emissions per unit of GDP, of 30 provinces in China. Instead of the traditional ordinary least squares (OLS) method, a PSO-GA intelligent optimization algorithm is used to optimize the coefficients of a learning curve. The carbon intensity abatement potentials of the 30 Chinese provinces are estimated via PSO-GA under the business-as-usual scenario. The estimation reveals the following results. (1) For most provinces, the abatement potentials from improving a unit of the proportion of the tertiary industry in GDP are higher than the potentials from raising a unit of per capita GDP. (2) The average potential of the 30 provinces in 2020 will be 37.6% based on the emission's level of 2005. The potentials of Jiangsu, Tianjin, Shandong, Beijing, and Heilongjiang are over 60%. Ningxia is the only province without intensity abatement potential. (3) The total carbon intensity in China weighted by the GDP shares of the 30 provinces will decline by 39.4% in 2020 compared with that in 2005. This intensity cannot achieve the 40%-45% carbon intensity reduction target set by the Chinese government. Additional mitigation policies should be developed to uncover the potentials of Ningxia and Inner Mongolia. In addition, the simulation accuracy of the CILCs optimized by PSO-GA is higher than that of the CILCs optimized by the traditional OLS method. [Copyright Elsevier Ltd.] This study aims to estimate carbon intensity abatement potential in China at the regional level by proposing a particle swarm optimization-genetic algorithm (PSO-GA) multivariate environmental learning curve estimation method. The model uses two independent variables, namely, per capita gross domestic product (GDP) and the proportion of the tertiary industry in GDP, to construct carbon intensity learning curves (CILCs), i.e., CO2 emissions per unit of GDP, of 30 provinces in China. Instead of the traditional ordinary least squares (OLS) method, a PSO-GA intelligent optimization algorithm is used to optimize the coefficients of a learning curve. The carbon intensity abatement potentials of the 30 Chinese provinces are estimated via PSO-GA under the business-as-usual scenario. The estimation reveals the following results. (1) For most provinces, the abatement potentials from improving a unit of the proportion of the tertiary industry in GDP are higher than the potentials from raising a unit of per capita GDP. (2) The average potential of the 30 provinces in 2020 will be 37.6% based on the emission's level of 2005. The potentials of Jiangsu, Tianjin, Shandong, Beijing, and Heilongjiang are over 60%. Ningxia is the only province without intensity abatement potential. (3) The total carbon intensity in China weighted by the GDP shares of the 30 provinces will decline by 39.4% in 2020 compared with that in 2005. This intensity cannot achieve the 40%-45% carbon intensity reduction target set by the Chinese government. Additional mitigation policies should be developed to uncover the potentials of Ningxia and Inner Mongolia. In addition, the simulation accuracy of the CILCs optimized by PSO-GA is higher than that of the CILCs optimized by the traditional OLS method. All rights reserved, Elsevier |
| Author | Yu, Shiwei Zhang, Junjie Zheng, Shuhong Sun, Han |
| Author_xml | – sequence: 1 givenname: Shiwei surname: Yu fullname: Yu, Shiwei email: ysw81993@sina.com – sequence: 2 givenname: Junjie surname: Zhang fullname: Zhang, Junjie – sequence: 3 givenname: Shuhong surname: Zheng fullname: Zheng, Shuhong – sequence: 4 givenname: Han surname: Sun fullname: Sun, Han |
| BookMark | eNqNks1u1DAUhSNUJKaFJ2BjiQ2bBDt2bAeJxWgEBalSKwFry7FvqEeJHRzPSGXFutu-IU-CM8OqC6YrS9ffObo_57w488FDUbwmuCKY8HfbCvwUhqrGhFWEVJg2z4oVkYKWXAhxVqwwxaRkNWleFOfzvMUYM9myVXF_E8PeeeP0gIyOXfDI-QR-dukO6U4nGMEnNIVcSwsEc3KjTu4Aos2t8_o9WqObr9d_fj9crssw5X_3Cywad0NyZa9NChGB37sY_GKWTQbQ0Tv_A5ld3AMaId0G-7J43uthhlf_3ovi-6eP3zafy6vryy-b9VVpmrpNpbXagBS1xLLTgtiOC4v7tmOGdx0I3jQUS20ZGGE0rrVmnHXa9rIDazuG6UXx9ug7xfBzl-dRo5sNDIP2EHazqvNyatqyRp5EiWBSNi2X7DTK25pyLiV_Asoxww3H-EkopnUrlgbePEK3YRd93mSmmKSsYe1i2B4pE8M8R-iVcelwzhS1GxTBakmU2qpDotSSKEWIyonKWvpIO8WchXh3QvXhqIJ8072DqGbjwBuwLoJJygb3X_1fNCPrCg |
| CODEN | ENPYAC |
| CitedBy_id | crossref_primary_10_1016_j_ccst_2023_100142 crossref_primary_10_1016_j_enpol_2018_04_025 crossref_primary_10_1016_j_cjpre_2023_03_001 crossref_primary_10_1016_j_resconrec_2019_04_029 crossref_primary_10_1080_17517575_2021_1923064 crossref_primary_10_1016_j_enpol_2016_09_004 crossref_primary_10_1016_j_resconrec_2024_107779 crossref_primary_10_1080_1331677X_2022_2142832 crossref_primary_10_3390_su12072910 crossref_primary_10_1007_s11069_015_1883_7 crossref_primary_10_1016_j_cjpre_2022_03_006 crossref_primary_10_1016_j_jclepro_2018_03_028 crossref_primary_10_1080_09535314_2015_1102714 crossref_primary_10_1016_j_techfore_2021_121047 crossref_primary_10_1016_j_jclepro_2017_05_154 crossref_primary_10_1016_j_rser_2021_111499 crossref_primary_10_1007_s11869_021_01081_z crossref_primary_10_1016_j_apenergy_2016_04_109 crossref_primary_10_1007_s11356_023_30903_z crossref_primary_10_1016_j_enpol_2017_05_035 crossref_primary_10_3390_en10111924 crossref_primary_10_3390_en11010091 crossref_primary_10_1016_j_rser_2017_04_044 crossref_primary_10_1016_j_esr_2023_101227 crossref_primary_10_1016_j_jclepro_2017_04_154 crossref_primary_10_3390_su71115407 crossref_primary_10_1007_s10845_017_1313_7 crossref_primary_10_1016_j_rser_2015_10_077 crossref_primary_10_1016_j_jclepro_2016_08_018 crossref_primary_10_1016_j_enpol_2015_07_004 crossref_primary_10_1016_j_cjpre_2023_06_008 crossref_primary_10_1007_s13369_018_3383_z crossref_primary_10_1007_s11356_019_04859_y crossref_primary_10_3390_su8090857 crossref_primary_10_1016_j_jclepro_2017_07_173 crossref_primary_10_1016_j_jclepro_2018_05_121 crossref_primary_10_1016_j_jclepro_2017_01_044 crossref_primary_10_1088_1757_899X_431_3_032009 crossref_primary_10_3390_su8070697 crossref_primary_10_1007_s11356_022_19453_y crossref_primary_10_1016_j_buildenv_2023_110588 crossref_primary_10_1016_j_enpol_2018_07_034 crossref_primary_10_3390_ijerph20043715 crossref_primary_10_3390_en9090680 crossref_primary_10_1016_j_jclepro_2016_08_066 crossref_primary_10_1016_j_ecolind_2017_11_045 crossref_primary_10_1007_s10098_021_02050_x crossref_primary_10_1016_j_rser_2017_04_050 crossref_primary_10_3389_fenvs_2022_946596 crossref_primary_10_3390_ijerph15081607 crossref_primary_10_1155_2020_1849240 crossref_primary_10_1016_j_techfore_2018_12_014 crossref_primary_10_1007_s11069_017_2915_2 crossref_primary_10_1016_j_renene_2019_03_011 crossref_primary_10_1016_j_jclepro_2017_07_026 crossref_primary_10_1007_s11769_021_1197_5 crossref_primary_10_1016_j_indic_2024_100390 crossref_primary_10_3390_su14105777 crossref_primary_10_1016_j_jclepro_2017_08_032 crossref_primary_10_1007_s10479_018_2955_3 crossref_primary_10_1007_s10644_021_09353_5 crossref_primary_10_1016_j_enpol_2020_111856 crossref_primary_10_3390_ijerph20032669 crossref_primary_10_1016_j_jclepro_2017_11_163 crossref_primary_10_1016_j_scitotenv_2019_04_303 crossref_primary_10_1016_j_renene_2022_08_139 crossref_primary_10_1016_j_jretconser_2024_103925 crossref_primary_10_1007_s11356_016_8360_z crossref_primary_10_1080_24694452_2018_1484683 crossref_primary_10_1177_0958305X18813620 crossref_primary_10_3390_su8040337 crossref_primary_10_1016_j_enpol_2017_01_023 crossref_primary_10_1142_S0218213016500044 crossref_primary_10_1016_j_jclepro_2025_144754 crossref_primary_10_1108_IMDS_12_2022_0749 crossref_primary_10_3390_en11071907 crossref_primary_10_1016_j_apenergy_2015_12_064 crossref_primary_10_1177_1045389X20910272 crossref_primary_10_1016_j_enpol_2018_11_056 crossref_primary_10_1016_j_applthermaleng_2017_08_164 crossref_primary_10_1016_j_eneco_2019_104600 crossref_primary_10_1016_j_rser_2016_10_009 crossref_primary_10_3390_su10061756 crossref_primary_10_1016_j_strueco_2020_02_007 crossref_primary_10_1016_j_eneco_2020_105056 crossref_primary_10_1016_j_rser_2019_06_024 crossref_primary_10_1016_j_jclepro_2017_11_230 crossref_primary_10_1007_s11356_020_10091_w crossref_primary_10_1016_j_resconrec_2016_09_016 crossref_primary_10_1016_j_resconrec_2021_105760 |
| Cites_doi | 10.1109/17.141275 10.1016/j.renene.2010.02.020 10.1007/s11069-013-0752-5 10.1016/j.rser.2005.06.002 10.1016/j.enpol.2014.08.006 10.1016/j.enconman.2012.03.016 10.1016/j.eneco.2006.10.012 10.1016/j.enpol.2011.11.090 10.1016/j.enpol.2013.11.025 10.1016/j.apenergy.2013.08.010 10.1016/j.apenergy.2011.12.071 10.1016/j.enpol.2009.07.024 10.1016/j.energy.2013.05.011 10.1016/j.enpol.2013.08.051 10.1016/j.eneco.2013.06.006 10.1016/j.esr.2012.05.004 10.1016/j.energy.2012.10.059 10.1016/j.jclepro.2012.04.012 10.1016/j.enpol.2011.12.018 10.1016/j.enpol.2011.06.058 10.1016/j.rser.2014.09.021 10.1016/j.enbuild.2014.02.050 10.1016/j.enpol.2007.04.020 10.1016/S0305-750X(01)00008-0 10.1016/j.apenergy.2013.09.062 10.1016/j.enpol.2011.01.055 10.1016/j.energy.2005.10.013 10.1016/j.enpol.2011.02.013 10.1023/A:1019041023520 10.1016/j.energy.2013.10.082 10.1016/j.jenvman.2013.08.049 10.1016/S0956-053X(03)00063-1 10.1016/j.rser.2012.12.007 10.1016/j.apenergy.2011.11.068 10.1016/j.enpol.2007.12.017 10.1016/j.energy.2004.03.092 10.1016/j.enpol.2007.11.030 10.1016/j.energy.2014.06.004 10.1016/j.ipl.2004.11.003 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Ltd Copyright Elsevier Science Ltd. Feb 2015 |
| Copyright_xml | – notice: 2014 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Feb 2015 |
| DBID | AAYXX CITATION 7SP 7TA 7TB 7TQ 8BJ 8FD DHY DON F28 FQK FR3 H8D JBE JG9 KR7 L7M 7ST 7TV C1K SOI 7S9 L.6 |
| DOI | 10.1016/j.enpol.2014.11.035 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts PAIS Index International Bibliography of the Social Sciences (IBSS) Technology Research Database PAIS International PAIS International (Ovid) ANTE: Abstracts in New Technology & Engineering International Bibliography of the Social Sciences Engineering Research Database Aerospace Database International Bibliography of the Social Sciences Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts Pollution Abstracts Environmental Sciences and Pollution Management Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Materials Research Database Aerospace Database Civil Engineering Abstracts International Bibliography of the Social Sciences (IBSS) Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts PAIS International Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Materials Business File Pollution Abstracts Environment Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA PAIS International Materials Research Database Pollution Abstracts International Bibliography of the Social Sciences (IBSS) Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering Environmental Sciences Government |
| EISSN | 1873-6777 |
| EndPage | 55 |
| ExternalDocumentID | 3569952021 10_1016_j_enpol_2014_11_035 S0301421514006624 |
| Genre | Feature |
| GeographicLocations | China China, People's Rep., Inner Mongolia China, People's Rep., Beijing China, People's Rep., Jiangsu China, People's Rep., Tianjin |
| GeographicLocations_xml | – name: China – name: China, People's Rep., Beijing – name: China, People's Rep., Inner Mongolia – name: China, People's Rep., Jiangsu – name: China, People's Rep., Tianjin |
| GroupedDBID | --K --M --Z -~X .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN 9JO AABNK AACTN AAEDT AAEDW AAFFL AAFJI AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABMMH ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACHQT ACIWK ACRLP ACROA ADBBV ADEZE ADFHU ADIYS ADMUD AEBSH AEFWE AEKER AENEX AEYQN AFKWA AFODL AFRAH AFTJW AFXIZ AGHFR AGTHC AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIIAU AIKHN AITUG AJBFU AJOXV AJWLA AKIFW AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AXLSJ AZFZN BEHZQ BELTK BEZPJ BGSCR BKOJK BKOMP BLECG BLXMC BNTGB BPUDD BULVW BZJEE CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ H~9 IHE IXIXF J1W JARJE KCYFY KOM LY6 LY9 M41 MO0 MS~ N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 R2- RIG ROL RPZ SAC SCC SDF SDG SDP SEN SES SEW SPC SPCBC SSB SSF SSJ SSO SSR SSZ T5K TAE TN5 U5U WH7 WUQ ZY4 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SP 7TA 7TB 7TQ 8BJ 8FD AGCQF DHY DON F28 FQK FR3 H8D JBE JG9 KR7 L7M 7ST 7TV C1K SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c529t-ddace872808ba71db67d0f9b4c6bbe7655308ad4ec7ca02aa464badf8beddb403 |
| IEDL.DBID | .~1 |
| ISSN | 0301-4215 |
| IngestDate | Thu Oct 02 10:28:12 EDT 2025 Sun Sep 28 00:24:07 EDT 2025 Sun Sep 28 00:33:06 EDT 2025 Tue Oct 07 09:35:47 EDT 2025 Sat Sep 27 21:04:34 EDT 2025 Fri Sep 12 10:30:39 EDT 2025 Wed Oct 01 03:27:47 EDT 2025 Thu Apr 24 22:48:37 EDT 2025 Fri Feb 23 02:17:21 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Carbon emission Abatement potential estimation Multivariate environmental learning curve Particle swarm optimization–genetic algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c529t-ddace872808ba71db67d0f9b4c6bbe7655308ad4ec7ca02aa464badf8beddb403 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1648345490 |
| PQPubID | 49018 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2000239458 proquest_miscellaneous_1748859684 proquest_miscellaneous_1692366886 proquest_miscellaneous_1660405600 proquest_miscellaneous_1660032974 proquest_journals_1648345490 crossref_citationtrail_10_1016_j_enpol_2014_11_035 crossref_primary_10_1016_j_enpol_2014_11_035 elsevier_sciencedirect_doi_10_1016_j_enpol_2014_11_035 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | February 2015 2015-02-00 20150201 |
| PublicationDateYYYYMMDD | 2015-02-01 |
| PublicationDate_xml | – month: 02 year: 2015 text: February 2015 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Energy policy |
| PublicationYear | 2015 |
| Publisher | Elsevier Ltd Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
| References | Promjiraprawat, Winyuchakrit, Limmeechokchai, Masui, Hanaoka, Matsuoka (bib30) 2014; 80 Guo, Zhu, Fan, Xie (bib15) 2011; 39 Rotmans, De Vries (bib31) 1997 Badiru (bib4) 1992; 39 Shi (bib34) 2006; 10 Talukdar, Meisner (bib37) 2001; 29 Yu, Wei, Guo, Ding (bib47) 2014; 114 Kann, Weyant (bib19) 2000; 5 IEA (bib18) 2013 Shi, Liang, Lee, Lu, Wang (bib57) 2005; 93 Fehr (bib12) 2003; 23 Yu, Wei, Wang (bib50) 2014; 66 Fan, Wang (bib10) 2013; 43 Höglund-Isaksson, Winiwarter, Purohit, Rafaj, Schöpp, Klimont (bib16) 2012; 1 Sun, Li, Wei (bib36) 2011; 24 Kongnam, Nuchprayoon (bib21) 2010; 35 Li, Ma (bib23) 2013; 31 Chen, Timilsina, Landis, Florian (bib8) 2013; 130 Wang, Yin, Zhang, Zhang (bib44) 2012; 100 Wang, Zeng, Wei, Zhang (bib43) 2012; 97 Zhang, Wang, Yin, Su (bib52) 2012; 33 Kaya, Y., 1990. Impact of Carbon Dioxide Emission Control on GNP Growth: Interpretation of Proposed Scenarios. IPCC Energy and Industry Subgroup, Response Strategies Working Group, Paris. Pradhan, Ale, Amatya (bib28) 2006; 31 Limmeechokchai, Chawana (bib24) 2007; 11 Stoppato, Cavazzini, Ardizzon, Rossetti (bib35) 2014; 76 Tsai, Chang (bib38) 2013; 20 Yu, Zhang (bib51) 2012; 3 Özer, Görgün, İncecik (bib27) 2012; 49 Price (bib29) 2008; 36 Yu, Wei, Wang (bib49) 2012; 42 Rubin, Taylor, Yeh, Hounshell (bib32) 2004; 29 Yu, Wei, Fan, Zhang, Wang (bib46) 2012; 92 Cai, Wang, Chen, Wang, Zhang, Lu (bib7) 2008; 36 NBSC (bib26) 2013 Yu, Wei, Wang (bib48) 2012; 61 Lin, Moubarak (bib25) 2014; 113 Guo, Lu (bib14) 2012; 31 Wang, Dong, Wu, Mu, Jiang (bib40) 2011; 39 Bemis (bib5) 1981; 4 Aghaei, Muttaqi, Azizivahed, Gitizadeh (bib1) 2014; 65 Yu, Wei (bib45) 2012; 42 Wang, Zhou, Zhou (bib42) 2011; 29 Shahbaz, Khan, Tahir (bib33) 2013; 40 Ang, Zhou, Tay (bib2) 2011; 39 Bian, He, Xu (bib6) 2013; 63 Zhang, Wang, Da (bib56) 2014; 74 van Vuuren, Hoogwijk, Barker, Riahi, Boeters, Chateau, Scrieciu, van Vliet, Masui, Blok (bib39) 2009; 37 Zhang, Huang, Li, Cheng (bib53) 2010; 32 Dedinec, Markovska, Taseska, Duic, Kanevce (bib9) 2013; 57 Gu, Tan, Chi, Wang (bib13) 2013; 21 Li (bib22) 2012 Wang, Yang, Yang (bib41) 2012; 24 Fan, Liang, Wei (bib11) 2008; 30 Zhang, Da (bib55) 2015; 41 Azadeh, Tarverdian (bib3) 2007; 35 Han, Liu (bib17) 2011; 31 Zhang, Da (bib54) 2013; 69 Kongnam (10.1016/j.enpol.2014.11.035_bib21) 2010; 35 Zhang (10.1016/j.enpol.2014.11.035_bib54) 2013; 69 Wang (10.1016/j.enpol.2014.11.035_bib40) 2011; 39 Zhang (10.1016/j.enpol.2014.11.035_bib52) 2012; 33 Zhang (10.1016/j.enpol.2014.11.035_bib55) 2015; 41 Ang (10.1016/j.enpol.2014.11.035_bib2) 2011; 39 Wang (10.1016/j.enpol.2014.11.035_bib42) 2011; 29 Zhang (10.1016/j.enpol.2014.11.035_bib53) 2010; 32 Wang (10.1016/j.enpol.2014.11.035_bib44) 2012; 100 Dedinec (10.1016/j.enpol.2014.11.035_bib9) 2013; 57 Özer (10.1016/j.enpol.2014.11.035_bib27) 2012; 49 Limmeechokchai (10.1016/j.enpol.2014.11.035_bib24) 2007; 11 Yu (10.1016/j.enpol.2014.11.035_bib51) 2012; 3 Stoppato (10.1016/j.enpol.2014.11.035_bib35) 2014; 76 Yu (10.1016/j.enpol.2014.11.035_bib45) 2012; 42 Han (10.1016/j.enpol.2014.11.035_bib17) 2011; 31 Talukdar (10.1016/j.enpol.2014.11.035_bib37) 2001; 29 Li (10.1016/j.enpol.2014.11.035_bib23) 2013; 31 Fehr (10.1016/j.enpol.2014.11.035_bib12) 2003; 23 IEA (10.1016/j.enpol.2014.11.035_bib18) 2013 Zhang (10.1016/j.enpol.2014.11.035_bib56) 2014; 74 Li (10.1016/j.enpol.2014.11.035_bib22) 2012 Kann (10.1016/j.enpol.2014.11.035_bib19) 2000; 5 van Vuuren (10.1016/j.enpol.2014.11.035_bib39) 2009; 37 Guo (10.1016/j.enpol.2014.11.035_bib15) 2011; 39 Azadeh (10.1016/j.enpol.2014.11.035_bib3) 2007; 35 Wang (10.1016/j.enpol.2014.11.035_bib43) 2012; 97 Shi (10.1016/j.enpol.2014.11.035_bib34) 2006; 10 Fan (10.1016/j.enpol.2014.11.035_bib11) 2008; 30 Aghaei (10.1016/j.enpol.2014.11.035_bib1) 2014; 65 Shi (10.1016/j.enpol.2014.11.035_bib57) 2005; 93 Promjiraprawat (10.1016/j.enpol.2014.11.035_bib30) 2014; 80 Fan (10.1016/j.enpol.2014.11.035_bib10) 2013; 43 Guo (10.1016/j.enpol.2014.11.035_bib14) 2012; 31 Yu (10.1016/j.enpol.2014.11.035_bib49) 2012; 42 Yu (10.1016/j.enpol.2014.11.035_bib46) 2012; 92 Chen (10.1016/j.enpol.2014.11.035_bib8) 2013; 130 Bian (10.1016/j.enpol.2014.11.035_bib6) 2013; 63 Badiru (10.1016/j.enpol.2014.11.035_bib4) 1992; 39 Bemis (10.1016/j.enpol.2014.11.035_bib5) 1981; 4 Price (10.1016/j.enpol.2014.11.035_bib29) 2008; 36 Shahbaz (10.1016/j.enpol.2014.11.035_bib33) 2013; 40 Wang (10.1016/j.enpol.2014.11.035_bib41) 2012; 24 Yu (10.1016/j.enpol.2014.11.035_bib50) 2014; 66 Cai (10.1016/j.enpol.2014.11.035_bib7) 2008; 36 Sun (10.1016/j.enpol.2014.11.035_bib36) 2011; 24 Rotmans (10.1016/j.enpol.2014.11.035_bib31) 1997 Lin (10.1016/j.enpol.2014.11.035_bib25) 2014; 113 NBSC (10.1016/j.enpol.2014.11.035_bib26) 2013 Yu (10.1016/j.enpol.2014.11.035_bib48) 2012; 61 Rubin (10.1016/j.enpol.2014.11.035_bib32) 2004; 29 Tsai (10.1016/j.enpol.2014.11.035_bib38) 2013; 20 10.1016/j.enpol.2014.11.035_bib20 Höglund-Isaksson (10.1016/j.enpol.2014.11.035_bib16) 2012; 1 Pradhan (10.1016/j.enpol.2014.11.035_bib28) 2006; 31 Yu (10.1016/j.enpol.2014.11.035_bib47) 2014; 114 Gu (10.1016/j.enpol.2014.11.035_bib13) 2013; 21 |
| References_xml | – volume: 31 start-page: 1748 year: 2006 end-page: 1760 ident: bib28 article-title: Mitigation potential of greenhouse gas emission and implications on fuel consumption due to clean energy vehicles as public passenger transport in Kathmandu Valley of Nepal: a case study of trolley buses in ring road publication-title: Energy – volume: 24 start-page: 40 year: 2012 end-page: 50 ident: bib41 article-title: Analysis on China's energy efficiency and potentials of energy conservation and emissions reduction from the perspective of environmental impact publication-title: Manag. Rev. – volume: 42 start-page: 329 year: 2012 end-page: 340 ident: bib49 article-title: A PSO–GA optimal model to estimate primary energy demand of China publication-title: Energy Policy – volume: 39 start-page: 2482 year: 2011 end-page: 2489 ident: bib2 article-title: Potential for reducing global carbon emissions from electricity production – a benchmarking analysis publication-title: Energy Policy – volume: 30 start-page: 889 year: 2008 end-page: 904 ident: bib11 article-title: A generalized pattern matching approach for multi-step prediction of crude oil price publication-title: Energy Econ. – volume: 63 start-page: 962 year: 2013 end-page: 971 ident: bib6 article-title: Estimation of potential energy saving and carbon dioxide emission reduction in China based on an extended non-radial DEA approach publication-title: Energy Policy – volume: 113 start-page: 781 year: 2014 end-page: 787 ident: bib25 article-title: Mitigation potential of carbon dioxide emissions in the Chinese textile industry publication-title: Appl. Energy – volume: 31 start-page: 287 year: 2011 end-page: 298 ident: bib17 article-title: Analysis of energy efficiency and energy-saving and emission-reduction potential of steel industry in various regions of China based on super-efficiency DEA Model publication-title: J. Syst. Sci. Math. Sci. – volume: 32 start-page: 211 year: 2010 end-page: 217 ident: bib53 article-title: An investigation on spatial changing pattern of CO publication-title: Resourc. Sci. – volume: 74 start-page: 454 year: 2014 end-page: 464 ident: bib56 article-title: Regional allocation of carbon emission quotas in China: evidence from the Shapley value method publication-title: Energy Policy – volume: 35 start-page: 2431 year: 2010 end-page: 2438 ident: bib21 article-title: A particle swarm optimization for wind energy control problem publication-title: Renew. Energy – volume: 39 start-page: 2352 year: 2011 end-page: 2360 ident: bib15 article-title: Evaluation of potential reductions in carbon emissions in Chinese provinces based on environmental DEA publication-title: Energy Policy – volume: 31 start-page: 58 year: 2012 end-page: 62 ident: bib14 article-title: Evaluation on energy saving and emission reduction efficiency and analysis on its influential factor: based on super-efficiency-DEA and Tobit Model publication-title: Technol. Econ. – volume: 80 start-page: 631 year: 2014 end-page: 639 ident: bib30 article-title: CO publication-title: Energy Build. – volume: 100 start-page: 277 year: 2012 end-page: 284 ident: bib44 article-title: An empirical research on the influencing factors of regional CO publication-title: China – volume: 93 start-page: 255 year: 2005 end-page: 261 ident: bib57 article-title: An improved GA and a novel PSO-GA-based hybrid algorithm publication-title: Inform. Process. Lett. – year: 2013 ident: bib18 article-title: CO – volume: 39 start-page: 5970 year: 2011 end-page: 5979 ident: bib40 article-title: Coal production forecast and low carbon policies in China publication-title: Energy Policy – volume: 40 start-page: 8 year: 2013 end-page: 21 ident: bib33 article-title: The dynamic links between energy consumption, economic growth, financial development and trade in China: fresh evidence from multivariate framework analysis publication-title: Energy Econ. – volume: 23 start-page: 397 year: 2003 end-page: 402 ident: bib12 article-title: Environmental management by the learning curve publication-title: Waste Manag. – volume: 61 start-page: 59 year: 2012 end-page: 66 ident: bib48 article-title: China's primary energy demands in 2020: predictions from an MPSO–RBF estimation model publication-title: Energy Convers. Manag. – year: 2012 ident: bib22 article-title: China's Provinces Carbon Emissions and Decoupling Strategy under the Premise of economics Growth – volume: 57 start-page: 177 year: 2013 end-page: 187 ident: bib9 article-title: Assessment of climate change mitigation potential of the Macedonian transport sector publication-title: Energy – volume: 20 start-page: 294 year: 2013 end-page: 305 ident: bib38 article-title: Taiwan's GHG mitigation potentials and costs: an evaluation with the MARKAL model publication-title: Renew. Sustain. Energy Rev. – volume: 10 start-page: 49 year: 2006 end-page: 58 ident: bib34 article-title: Regional differences in China's energy efficiency and conservation potentials publication-title: China Ind. Econ. – volume: 4 start-page: 84 year: 1981 end-page: 94 ident: bib5 article-title: A model for examining the cost implications of production rate publication-title: Concepts: J. Def. Syst. Acquis. Manag. – volume: 1 start-page: 97 year: 2012 end-page: 108 ident: bib16 article-title: EU low carbon roadmap 2050: potentials and costs for mitigation of non-CO publication-title: Energy Strategy Rev. – volume: 43 start-page: 12 year: 2013 end-page: 21 ident: bib10 article-title: Analysis of total factor energy efficiency and potential of the energy-saving and emission-abating in regional of China – based on SBM Model of undesired output publication-title: Math. Pract. Theory – volume: 49 start-page: 395 year: 2012 end-page: 403 ident: bib27 article-title: The scenario analysis on CO publication-title: Energy – volume: 29 start-page: 868 year: 2011 end-page: 875 ident: bib42 article-title: Regional carbon dioxide emission performance and its reduction potential based on environmental production technology: the case of main industrial provinces in China publication-title: Stud. Sci. Sci. – volume: 42 start-page: 521 year: 2012 end-page: 529 ident: bib45 article-title: Prediction of China's coal production-environmental pollution based on a hybrid genetic algorithm-system dynamics model publication-title: Energy Policy – volume: 92 start-page: 552 year: 2012 end-page: 562 ident: bib46 article-title: Exploring the regional characteristics of inter-provincial CO publication-title: Appl. Energy – volume: 66 start-page: 630 year: 2014 end-page: 644 ident: bib50 article-title: Provincial allocation of carbon emission reduction targets in China: an approach based on improved fuzzy cluster and Shapley value decomposition publication-title: Energy Policy – volume: 36 start-page: 1386 year: 2008 end-page: 1403 ident: bib29 article-title: Sectoral trends in global energy use and greenhouse gas emissions publication-title: Energy Policy – volume: 97 start-page: 115 year: 2012 end-page: 123 ident: bib43 article-title: Regional total factor energy efficiency: an empirical analysis of industrial sector in China publication-title: Appl. Energy – volume: 130 start-page: 436 year: 2013 end-page: 446 ident: bib8 article-title: Economic implications of reducing carbon emissions from energy use and industrial processes in Brazil publication-title: J. Environ. Manag. – volume: 24 start-page: 1194 year: 2011 end-page: 1201 ident: bib36 article-title: Environmental learning curves and the allocation of carbon mitigation targets among different provinces in China publication-title: Res. Environ. Sci. – volume: 69 start-page: 1109 year: 2013 end-page: 1122 ident: bib54 article-title: Decomposing the changes of energy-related carbon emissions in China: evidence from the PDA approach publication-title: Nat. Hazards – volume: 5 start-page: 29 year: 2000 end-page: 46 ident: bib19 article-title: Approaches for performing uncertainty analysis in large-scale energy/economic policy models publication-title: Environ. Model. Assess. – volume: 11 start-page: 818 year: 2007 end-page: 837 ident: bib24 article-title: Sustainable energy development strategies in the rural Thailand: the case of the improved cooking stove and the small biogas digester publication-title: Renew. Sustain. Energy Rev. – volume: 29 start-page: 1551 year: 2004 end-page: 1559 ident: bib32 article-title: Learning curves for environmental technology and their importance for climate policy analysis publication-title: Energy – volume: 35 start-page: 5229 year: 2007 end-page: 5241 ident: bib3 article-title: Integration of genetic algorithm, computer simulation and design of experiments for forecasting electrical energy consumption publication-title: Energy Policy – volume: 31 start-page: 1089 year: 2013 end-page: 1093 ident: bib23 article-title: Research on CO publication-title: Henan Sci. – volume: 39 start-page: 176 year: 1992 end-page: 188 ident: bib4 article-title: Computational survey of univariate and multivariate learning curve models publication-title: IEEE Trans. Eng. Manag. – year: 2013 ident: bib26 article-title: National Bureau of Statistics of China. China Energy Statistical Yearbook – volume: 3 start-page: 5 year: 2012 end-page: 15 ident: bib51 article-title: Analysis of energy efficiency and emissions reduction potential in China's industrial sector publication-title: Ind. Econ. Rev. – volume: 21 start-page: 141 year: 2013 end-page: 148 ident: bib13 article-title: A carbon dioxide reduction potential model for chemical industry publication-title: Chin. J. Manag. Sci. – volume: 41 start-page: 1255 year: 2015 end-page: 1266 ident: bib55 article-title: The decomposition of energy-related carbon emission and its decoupling with economic growth in China publication-title: Renew. Sustain. Energy Rev. – volume: 33 start-page: 167 year: 2012 end-page: 178 ident: bib52 article-title: CO publication-title: J. Clean. Prod. – volume: 29 start-page: 827 year: 2001 end-page: 840 ident: bib37 article-title: Does the private sector help or hurt the environment? Evidence from carbon dioxide pollution in developing countries publication-title: World Dev. – volume: 36 start-page: 1181 year: 2008 end-page: 1194 ident: bib7 article-title: Comparison of CO publication-title: Energy Policy – volume: 114 start-page: 290 year: 2014 end-page: 300 ident: bib47 article-title: Carbon emission coefficient measurement of the coal-to-power energy chain in China publication-title: Appl. Energy – volume: 76 start-page: 168 year: 2014 end-page: 174 ident: bib35 article-title: A PSO (particle swarm optimization)-based model for the optimal management of a small PV(Photovoltaic)-pump hydro energy storage in a rural dry area publication-title: Energy – volume: 37 start-page: 5125 year: 2009 end-page: 5139 ident: bib39 article-title: Comparison of top-down and bottom-up estimates of sectoral and regional greenhouse gas emission reduction potentials publication-title: Energy Policy – reference: Kaya, Y., 1990. Impact of Carbon Dioxide Emission Control on GNP Growth: Interpretation of Proposed Scenarios. IPCC Energy and Industry Subgroup, Response Strategies Working Group, Paris. – year: 1997 ident: bib31 article-title: Perspectives on Global Change: The Targets Approach – volume: 65 start-page: 398 year: 2014 end-page: 411 ident: bib1 article-title: Distribution expansion planning considering reliability and security of energy using modified PSO (Particle Swarm Optimization) algorithm publication-title: Energy – volume: 39 start-page: 176 year: 1992 ident: 10.1016/j.enpol.2014.11.035_bib4 article-title: Computational survey of univariate and multivariate learning curve models publication-title: IEEE Trans. Eng. Manag. doi: 10.1109/17.141275 – volume: 35 start-page: 2431 year: 2010 ident: 10.1016/j.enpol.2014.11.035_bib21 article-title: A particle swarm optimization for wind energy control problem publication-title: Renew. Energy doi: 10.1016/j.renene.2010.02.020 – volume: 24 start-page: 1194 year: 2011 ident: 10.1016/j.enpol.2014.11.035_bib36 article-title: Environmental learning curves and the allocation of carbon mitigation targets among different provinces in China publication-title: Res. Environ. Sci. – volume: 69 start-page: 1109 year: 2013 ident: 10.1016/j.enpol.2014.11.035_bib54 article-title: Decomposing the changes of energy-related carbon emissions in China: evidence from the PDA approach publication-title: Nat. Hazards doi: 10.1007/s11069-013-0752-5 – volume: 11 start-page: 818 year: 2007 ident: 10.1016/j.enpol.2014.11.035_bib24 article-title: Sustainable energy development strategies in the rural Thailand: the case of the improved cooking stove and the small biogas digester publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2005.06.002 – volume: 43 start-page: 12 year: 2013 ident: 10.1016/j.enpol.2014.11.035_bib10 article-title: Analysis of total factor energy efficiency and potential of the energy-saving and emission-abating in regional of China – based on SBM Model of undesired output publication-title: Math. Pract. Theory – volume: 74 start-page: 454 year: 2014 ident: 10.1016/j.enpol.2014.11.035_bib56 article-title: Regional allocation of carbon emission quotas in China: evidence from the Shapley value method publication-title: Energy Policy doi: 10.1016/j.enpol.2014.08.006 – ident: 10.1016/j.enpol.2014.11.035_bib20 – volume: 61 start-page: 59 year: 2012 ident: 10.1016/j.enpol.2014.11.035_bib48 article-title: China's primary energy demands in 2020: predictions from an MPSO–RBF estimation model publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2012.03.016 – volume: 30 start-page: 889 year: 2008 ident: 10.1016/j.enpol.2014.11.035_bib11 article-title: A generalized pattern matching approach for multi-step prediction of crude oil price publication-title: Energy Econ. doi: 10.1016/j.eneco.2006.10.012 – volume: 42 start-page: 329 year: 2012 ident: 10.1016/j.enpol.2014.11.035_bib49 article-title: A PSO–GA optimal model to estimate primary energy demand of China publication-title: Energy Policy doi: 10.1016/j.enpol.2011.11.090 – volume: 66 start-page: 630 year: 2014 ident: 10.1016/j.enpol.2014.11.035_bib50 article-title: Provincial allocation of carbon emission reduction targets in China: an approach based on improved fuzzy cluster and Shapley value decomposition publication-title: Energy Policy doi: 10.1016/j.enpol.2013.11.025 – volume: 113 start-page: 781 year: 2014 ident: 10.1016/j.enpol.2014.11.035_bib25 article-title: Mitigation potential of carbon dioxide emissions in the Chinese textile industry publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.08.010 – volume: 97 start-page: 115 year: 2012 ident: 10.1016/j.enpol.2014.11.035_bib43 article-title: Regional total factor energy efficiency: an empirical analysis of industrial sector in China publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.12.071 – year: 2013 ident: 10.1016/j.enpol.2014.11.035_bib26 – volume: 29 start-page: 868 year: 2011 ident: 10.1016/j.enpol.2014.11.035_bib42 article-title: Regional carbon dioxide emission performance and its reduction potential based on environmental production technology: the case of main industrial provinces in China publication-title: Stud. Sci. Sci. – volume: 31 start-page: 1089 year: 2013 ident: 10.1016/j.enpol.2014.11.035_bib23 article-title: Research on CO2 reducing emission potential in Shandong province based on environment learning curve publication-title: Henan Sci. – volume: 3 start-page: 5 year: 2012 ident: 10.1016/j.enpol.2014.11.035_bib51 article-title: Analysis of energy efficiency and emissions reduction potential in China's industrial sector publication-title: Ind. Econ. Rev. – volume: 37 start-page: 5125 year: 2009 ident: 10.1016/j.enpol.2014.11.035_bib39 article-title: Comparison of top-down and bottom-up estimates of sectoral and regional greenhouse gas emission reduction potentials publication-title: Energy Policy doi: 10.1016/j.enpol.2009.07.024 – volume: 57 start-page: 177 year: 2013 ident: 10.1016/j.enpol.2014.11.035_bib9 article-title: Assessment of climate change mitigation potential of the Macedonian transport sector publication-title: Energy doi: 10.1016/j.energy.2013.05.011 – volume: 63 start-page: 962 year: 2013 ident: 10.1016/j.enpol.2014.11.035_bib6 article-title: Estimation of potential energy saving and carbon dioxide emission reduction in China based on an extended non-radial DEA approach publication-title: Energy Policy doi: 10.1016/j.enpol.2013.08.051 – volume: 40 start-page: 8 year: 2013 ident: 10.1016/j.enpol.2014.11.035_bib33 article-title: The dynamic links between energy consumption, economic growth, financial development and trade in China: fresh evidence from multivariate framework analysis publication-title: Energy Econ. doi: 10.1016/j.eneco.2013.06.006 – volume: 1 start-page: 97 year: 2012 ident: 10.1016/j.enpol.2014.11.035_bib16 article-title: EU low carbon roadmap 2050: potentials and costs for mitigation of non-CO2 greenhouse gas emissions publication-title: Energy Strategy Rev. doi: 10.1016/j.esr.2012.05.004 – year: 2013 ident: 10.1016/j.enpol.2014.11.035_bib18 – volume: 49 start-page: 395 year: 2012 ident: 10.1016/j.enpol.2014.11.035_bib27 article-title: The scenario analysis on CO2 emission mitigation potential in the Turkish electricity sector: 2006–2030 publication-title: Energy doi: 10.1016/j.energy.2012.10.059 – volume: 33 start-page: 167 year: 2012 ident: 10.1016/j.enpol.2014.11.035_bib52 article-title: CO2 emission reduction within Chinese iron & steel industry: practices, determinants and performance publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2012.04.012 – volume: 42 start-page: 521 year: 2012 ident: 10.1016/j.enpol.2014.11.035_bib45 article-title: Prediction of China's coal production-environmental pollution based on a hybrid genetic algorithm-system dynamics model publication-title: Energy Policy doi: 10.1016/j.enpol.2011.12.018 – volume: 39 start-page: 5970 year: 2011 ident: 10.1016/j.enpol.2014.11.035_bib40 article-title: Coal production forecast and low carbon policies in China publication-title: Energy Policy doi: 10.1016/j.enpol.2011.06.058 – year: 1997 ident: 10.1016/j.enpol.2014.11.035_bib31 – volume: 100 start-page: 277 year: 2012 ident: 10.1016/j.enpol.2014.11.035_bib44 article-title: An empirical research on the influencing factors of regional CO2 emissions: evidence from Beijing city publication-title: China – volume: 32 start-page: 211 year: 2010 ident: 10.1016/j.enpol.2014.11.035_bib53 article-title: An investigation on spatial changing pattern of CO2 emissions in China publication-title: Resourc. Sci. – volume: 41 start-page: 1255 year: 2015 ident: 10.1016/j.enpol.2014.11.035_bib55 article-title: The decomposition of energy-related carbon emission and its decoupling with economic growth in China publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.09.021 – year: 2012 ident: 10.1016/j.enpol.2014.11.035_bib22 – volume: 80 start-page: 631 year: 2014 ident: 10.1016/j.enpol.2014.11.035_bib30 article-title: CO2 mitigation potential and marginal abatement costs in Thai residential and building sectors publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.02.050 – volume: 24 start-page: 40 year: 2012 ident: 10.1016/j.enpol.2014.11.035_bib41 article-title: Analysis on China's energy efficiency and potentials of energy conservation and emissions reduction from the perspective of environmental impact publication-title: Manag. Rev. – volume: 35 start-page: 5229 year: 2007 ident: 10.1016/j.enpol.2014.11.035_bib3 article-title: Integration of genetic algorithm, computer simulation and design of experiments for forecasting electrical energy consumption publication-title: Energy Policy doi: 10.1016/j.enpol.2007.04.020 – volume: 29 start-page: 827 year: 2001 ident: 10.1016/j.enpol.2014.11.035_bib37 article-title: Does the private sector help or hurt the environment? Evidence from carbon dioxide pollution in developing countries publication-title: World Dev. doi: 10.1016/S0305-750X(01)00008-0 – volume: 10 start-page: 49 year: 2006 ident: 10.1016/j.enpol.2014.11.035_bib34 article-title: Regional differences in China's energy efficiency and conservation potentials publication-title: China Ind. Econ. – volume: 114 start-page: 290 year: 2014 ident: 10.1016/j.enpol.2014.11.035_bib47 article-title: Carbon emission coefficient measurement of the coal-to-power energy chain in China publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.09.062 – volume: 4 start-page: 84 year: 1981 ident: 10.1016/j.enpol.2014.11.035_bib5 article-title: A model for examining the cost implications of production rate publication-title: Concepts: J. Def. Syst. Acquis. Manag. – volume: 39 start-page: 2352 year: 2011 ident: 10.1016/j.enpol.2014.11.035_bib15 article-title: Evaluation of potential reductions in carbon emissions in Chinese provinces based on environmental DEA publication-title: Energy Policy doi: 10.1016/j.enpol.2011.01.055 – volume: 31 start-page: 1748 year: 2006 ident: 10.1016/j.enpol.2014.11.035_bib28 article-title: Mitigation potential of greenhouse gas emission and implications on fuel consumption due to clean energy vehicles as public passenger transport in Kathmandu Valley of Nepal: a case study of trolley buses in ring road publication-title: Energy doi: 10.1016/j.energy.2005.10.013 – volume: 39 start-page: 2482 year: 2011 ident: 10.1016/j.enpol.2014.11.035_bib2 article-title: Potential for reducing global carbon emissions from electricity production – a benchmarking analysis publication-title: Energy Policy doi: 10.1016/j.enpol.2011.02.013 – volume: 5 start-page: 29 year: 2000 ident: 10.1016/j.enpol.2014.11.035_bib19 article-title: Approaches for performing uncertainty analysis in large-scale energy/economic policy models publication-title: Environ. Model. Assess. doi: 10.1023/A:1019041023520 – volume: 65 start-page: 398 year: 2014 ident: 10.1016/j.enpol.2014.11.035_bib1 article-title: Distribution expansion planning considering reliability and security of energy using modified PSO (Particle Swarm Optimization) algorithm publication-title: Energy doi: 10.1016/j.energy.2013.10.082 – volume: 130 start-page: 436 year: 2013 ident: 10.1016/j.enpol.2014.11.035_bib8 article-title: Economic implications of reducing carbon emissions from energy use and industrial processes in Brazil publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2013.08.049 – volume: 23 start-page: 397 year: 2003 ident: 10.1016/j.enpol.2014.11.035_bib12 article-title: Environmental management by the learning curve publication-title: Waste Manag. doi: 10.1016/S0956-053X(03)00063-1 – volume: 21 start-page: 141 year: 2013 ident: 10.1016/j.enpol.2014.11.035_bib13 article-title: A carbon dioxide reduction potential model for chemical industry publication-title: Chin. J. Manag. Sci. – volume: 31 start-page: 58 year: 2012 ident: 10.1016/j.enpol.2014.11.035_bib14 article-title: Evaluation on energy saving and emission reduction efficiency and analysis on its influential factor: based on super-efficiency-DEA and Tobit Model publication-title: Technol. Econ. – volume: 20 start-page: 294 year: 2013 ident: 10.1016/j.enpol.2014.11.035_bib38 article-title: Taiwan's GHG mitigation potentials and costs: an evaluation with the MARKAL model publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2012.12.007 – volume: 92 start-page: 552 year: 2012 ident: 10.1016/j.enpol.2014.11.035_bib46 article-title: Exploring the regional characteristics of inter-provincial CO2 emissions in China: an improved fuzzy clustering analysis based on particle swarm optimization publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.11.068 – volume: 36 start-page: 1386 year: 2008 ident: 10.1016/j.enpol.2014.11.035_bib29 article-title: Sectoral trends in global energy use and greenhouse gas emissions publication-title: Energy Policy doi: 10.1016/j.enpol.2007.12.017 – volume: 31 start-page: 287 year: 2011 ident: 10.1016/j.enpol.2014.11.035_bib17 article-title: Analysis of energy efficiency and energy-saving and emission-reduction potential of steel industry in various regions of China based on super-efficiency DEA Model publication-title: J. Syst. Sci. Math. Sci. – volume: 29 start-page: 1551 year: 2004 ident: 10.1016/j.enpol.2014.11.035_bib32 article-title: Learning curves for environmental technology and their importance for climate policy analysis publication-title: Energy doi: 10.1016/j.energy.2004.03.092 – volume: 36 start-page: 1181 year: 2008 ident: 10.1016/j.enpol.2014.11.035_bib7 article-title: Comparison of CO2 emission scenarios and mitigation opportunities in China's five sectors in 2020 publication-title: Energy Policy doi: 10.1016/j.enpol.2007.11.030 – volume: 76 start-page: 168 year: 2014 ident: 10.1016/j.enpol.2014.11.035_bib35 article-title: A PSO (particle swarm optimization)-based model for the optimal management of a small PV(Photovoltaic)-pump hydro energy storage in a rural dry area publication-title: Energy doi: 10.1016/j.energy.2014.06.004 – volume: 93 start-page: 255 year: 2005 ident: 10.1016/j.enpol.2014.11.035_bib57 article-title: An improved GA and a novel PSO-GA-based hybrid algorithm publication-title: Inform. Process. Lett. doi: 10.1016/j.ipl.2004.11.003 |
| SSID | ssj0004894 |
| Score | 2.448888 |
| Snippet | This study aims to estimate carbon intensity abatement potential in China at the regional level by proposing a particle swarm optimization–genetic algorithm... This study aims to estimate carbon intensity abatement potential in China at the regional level by proposing a particle swarm optimization-genetic algorithm... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 46 |
| SubjectTerms | Abatement Abatement potential estimation Algorithms Carbon Carbon dioxide Carbon dioxide emissions Carbon emission China China (People's Republic) Computer simulation Economic theory Emissions control Energy policy Environmental economics Estimating techniques Estimation GDP Government greenhouse gas emissions Gross Domestic Product Industry Intelligence issues and policy Learning Learning curves least squares Least squares method Mitigation Mongolia Multivariate environmental learning curve Optimization Optimization algorithms Particle swarm optimization–genetic algorithm Policies Pollution control Provinces Reduction Simulation Studies Variables |
| Title | Provincial carbon intensity abatement potential estimation in China: A PSO–GA-optimized multi-factor environmental learning curve method |
| URI | https://dx.doi.org/10.1016/j.enpol.2014.11.035 https://www.proquest.com/docview/1648345490 https://www.proquest.com/docview/1660032974 https://www.proquest.com/docview/1660405600 https://www.proquest.com/docview/1692366886 https://www.proquest.com/docview/1748859684 https://www.proquest.com/docview/2000239458 |
| Volume | 77 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6777 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004894 issn: 0301-4215 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6777 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004894 issn: 0301-4215 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-6777 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004894 issn: 0301-4215 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6777 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004894 issn: 0301-4215 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6777 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004894 issn: 0301-4215 databaseCode: AKRWK dateStart: 19730101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9RAFB5KPagH0dXi2lpG8Gi62WQyM_G2lNZVoRZqobdhfkVWNFl2s0I9iGev_of-Jb43mbRWJAchlyRvSMjLvB_JN99HyPOyyrJyakWSOpFjg-ISA4k74R7yHbce-UsQbXHC5-fszUVxsUUO-7UwCKuMsb-L6SFaxyOT-DQny8Vicha6AcxYLNCYIycoYwJVDA6-XcM8mCw7Cilom9G6Zx4KGC_Ua8f_D1N2gFSeQfPtn9nprzgdks_xfXIvVo101t3YA7Ll6xG53S8qXo_I3T94BUdk5-h6-RoMi_N3_ZD8OA1fEPAzObV6ZZqaLjoMe3tJtYG6E4fQZdMiiAiMkIOjW9wIhjSIbb-kM3p69u7X95-vZkkDEefz4qt3NCATk06-h_ob14_KFB-o3ay-eNqJVj8i58dH7w_nSVRjSGyRlW3inLZeopqVNFpMneHCpVVpmOXGeMFRf0hqx7wVVqeZ1owzo10ljXfOsDTfIdt1U_vHhBqZVdDYlLBZxitT6pRVwtm8yqXNczsmWe8FZSNVOSpmfFI9Ju2jCq5T6DpoYhS4bkxeXA1adkwdw-a8d6-68cIpyCXDA_f6l0HF-b5W0HTKnEGvnY7Js6vTMFPx94uufbNBGygu8wwauGEbKKHBcMgGinLOpeQDNgICc1FyOXCtLJAdlayQT_73WeySO7BXdCj2PbLdrjb-KRRprdkPs3Cf3Jq9fjs_-Q3DPkB- |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcigcECxULBQwEkfSzSaO43BbVS0LlFKprdSb5VfQIkhW-0CCA-LMlX_IL2HGSVqKUA5IOSVjJcrE83A-fx_As6JMkmJs8yh2eUoNiosMJu5IeMx3wnriLyG0xZGYnvHX59n5Bux1e2EIVtnG_iamh2jdnhm1b3M0n81GJ6EboIzFA405vwbXeZbk1IHtfrvEeXBZNBxS2DeTeUc9FEBeJNhOPyDGfJe4PIPo2z_T01-BOmSfg9twqy0b2aR5sjuw4asBbHW7ipcDuPkHseAAtvcv96_hsHYCL-_Cj-OwhEDr5MzqhakrNmtA7KsvTBssPGkIm9crQhGhEZFwNLsb0ZAFte0XbMKOT979-v7z5SSqMeR8mn31jgVoYtTo9zB_5f6tNMV7ZteLz541qtX34Oxg_3RvGrVyDJHNkmIVOaetlyRnJY3Ox86I3MVlYbgVxvhckACR1I57m1sdJ1pzwY12pTTeOcPjdBs2q7ry94EZmZTY2RR4WC5KU-iYl7mzaZlKm6Z2CEnnBWVbrnKSzPioOlDaBxVcp8h12MUodN0Qnl8MmjdUHf3monOvuvLFKUwm_QN3uo9BtRN-qbDrlCnHZjsewtOLyzhV6f-Lrny9JhusLtMEO7h-G6yh0bDPBqtyIaQUPTY5RuasELLnXklgOyp4Jh_877t4AlvT07eH6vDV0ZuHcAOvZA2kfQc2V4u1f4QV28o8DjPyN8soQhM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Provincial+carbon+intensity+abatement+potential+estimation+in+China%3A+A+PSO-GA-optimized+multi-factor+environmental+learning+curve+method&rft.jtitle=Energy+policy&rft.au=Yu%2C+Shiwei&rft.au=Zhang%2C+Junjie&rft.au=Zheng%2C+Shuhong&rft.au=Sun%2C+Han&rft.date=2015-02-01&rft.issn=0301-4215&rft.volume=77&rft.spage=46&rft.epage=46&rft_id=info:doi/10.1016%2Fj.enpol.2014.11.035&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4215&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4215&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4215&client=summon |