Replication of Nonautonomous Retroelements in Soybean Appears to Be Both Recent and Common
Retrotransposons and their remnants often constitute more than 50% of higher plant genomes. Although extensively studied in monocot crops such as maize (Zea mays) and rice (Oryza sativa), the impact of retrotransposons on dicot crop genomes is not well documented. Here, we present an analysis of ret...
Saved in:
Published in | Plant physiology (Bethesda) Vol. 148; no. 4; pp. 1760 - 1771 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Rockville, MD
American Society of Plant Biologists
01.12.2008
|
Subjects | |
Online Access | Get full text |
ISSN | 0032-0889 1532-2548 1532-2548 |
DOI | 10.1104/pp.108.127910 |
Cover
Abstract | Retrotransposons and their remnants often constitute more than 50% of higher plant genomes. Although extensively studied in monocot crops such as maize (Zea mays) and rice (Oryza sativa), the impact of retrotransposons on dicot crop genomes is not well documented. Here, we present an analysis of retrotransposons in soybean (Glycine max). Analysis of approximately 3.7 megabases (Mb) of genomic sequence, including 0.87 Mb of pericentromeric sequence, uncovered 45 intact long terminal repeat (LTR)-retrotransposons. The ratio of intact elements to solo LTRs was 8:1, one of the highest reported to date in plants, suggesting that removal of retrotransposons by homologous recombination between LTRs is occurring more slowly in soybean than in previously characterized plant species. Analysis of paired LTR sequences uncovered a low frequency of deletions relative to base substitutions, indicating that removal of retrotransposon sequences by illegitimate recombination is also operating more slowly. Significantly, we identified three subfamilies of nonautonomous elements that have replicated in the recent past, suggesting that retrotransposition can be catalyzed in trans by autonomous elements elsewhere in the genome. Analysis of 1.6 Mb of sequence from Glycine tomentella, a wild perennial relative of soybean, uncovered 23 intact retroelements, two of which had accumulated no mutations in their LTRs, indicating very recent insertion. A similar pattern was found in 0.94 Mb of sequence from Phaseolus vulgaris (common bean). Thus, autonomous and nonautonomous retrotransposons appear to be both abundant and active in Glycine and PHASEOLUS: The impact of nonautonomous retrotransposon replication on genome size appears to be much greater than previously appreciated. |
---|---|
AbstractList | Retrotransposons and their remnants often constitute more than 50% of higher plant genomes. Although extensively studied in monocot crops such as maize (Zea mays) and rice (Oryza sativa), the impact of retrotransposons on dicot crop genomes is not well documented. Here, we present an analysis of retrotransposons in soybean (Glycine max). Analysis of approximately 3.7 megabases (Mb) of genomic sequence, including 0.87 Mb of pericentromeric sequence, uncovered 45 intact long terminal repeat (LTR)-retrotransposons. The ratio of intact elements to solo LTRs was 8:1, one of the highest reported to date in plants, suggesting that removal of retrotransposons by homologous recombination between LTRs is occurring more slowly in soybean than in previously characterized plant species. Analysis of paired LTR sequences uncovered a low frequency of deletions relative to base substitutions, indicating that removal of retrotransposon sequences by illegitimate recombination is also operating more slowly. Significantly, we identified three subfamilies of nonautonomous elements that have replicated in the recent past, suggesting that retrotransposition can be catalyzed in trans by autonomous elements elsewhere in the genome. Analysis of 1.6 Mb of sequence from Glycine tomentella, a wild perennial relative of soybean, uncovered 23 intact retroelements, two of which had accumulated no mutations in their LTRs, indicating very recent insertion. A similar pattern was found in 0.94 Mb of sequence from Phaseolus vulgaris (common bean). Thus, autonomous and nonautonomous retrotransposons appear to be both abundant and active in Glycine and PHASEOLUS: The impact of nonautonomous retrotransposon replication on genome size appears to be much greater than previously appreciated. Retrotransposons and their remnants often constitute more than 50% of higher plant genomes. Although extensively studied in monocot crops such as maize ( Zea mays ) and rice ( Oryza sativa ), the impact of retrotransposons on dicot crop genomes is not well documented. Here, we present an analysis of retrotransposons in soybean ( Glycine max ). Analysis of approximately 3.7 megabases (Mb) of genomic sequence, including 0.87 Mb of pericentromeric sequence, uncovered 45 intact long terminal repeat (LTR)-retrotransposons. The ratio of intact elements to solo LTRs was 8:1, one of the highest reported to date in plants, suggesting that removal of retrotransposons by homologous recombination between LTRs is occurring more slowly in soybean than in previously characterized plant species. Analysis of paired LTR sequences uncovered a low frequency of deletions relative to base substitutions, indicating that removal of retrotransposon sequences by illegitimate recombination is also operating more slowly. Significantly, we identified three subfamilies of nonautonomous elements that have replicated in the recent past, suggesting that retrotransposition can be catalyzed in trans by autonomous elements elsewhere in the genome. Analysis of 1.6 Mb of sequence from Glycine tomentella , a wild perennial relative of soybean, uncovered 23 intact retroelements, two of which had accumulated no mutations in their LTRs, indicating very recent insertion. A similar pattern was found in 0.94 Mb of sequence from Phaseolus vulgaris (common bean). Thus, autonomous and nonautonomous retrotransposons appear to be both abundant and active in Glycine and Phaseolus . The impact of nonautonomous retrotransposon replication on genome size appears to be much greater than previously appreciated. Retrotransposons and their remnants often constitute more than 50% of higher plant genomes. Although extensively studied in monocot crops such as maize (Zea mays) and rice (Oryza sativa), the impact of retrotransposons on dicot crop genomes is not well documented. Here, we present an analysis of retrotransposons in soybean (Glycine max). Analysis of approximately 3.7 megabases (Mb) of genomic sequence, including 0.87 Mb of pericentromeric sequence, uncovered 45 intact long terminal repeat (LTR)-retrotransposons. The ratio of intact elements to solo LTRs was 8:1, one of the highest reported to date in plants, suggesting that removal of retrotransposons by homologous recombination between LTRs is occurring more slowly in soybean than in previously characterized plant species. Analysis of paired LTR sequences uncovered a low frequency of deletions relative to base substitutions, indicating that removal of retrotransposon sequences by illegitimate recombination is also operating more slowly. Significantly, we identified three subfamilies of nonautonomous elements that have replicated in the recent past, suggesting that retrotransposition can be catalyzed in trans by autonomous elements elsewhere in the genome. Analysis of 1.6 Mb of sequence from Glycine tomentella, a wild perennial relative of soybean, uncovered 23 intact retroelements, two of which had accumulated no mutations in their LTRs, indicating very recent insertion. A similar pattern was found in 0.94 Mb of sequence from Phaseolus vulgaris (common bean). Thus, autonomous and nonautonomous retrotransposons appear to be both abundant and active in Glycine and Phaseolus. The impact of nonautonomous retrotransposon replication on genome size appears to be much greater than previously appreciated.Retrotransposons and their remnants often constitute more than 50% of higher plant genomes. Although extensively studied in monocot crops such as maize (Zea mays) and rice (Oryza sativa), the impact of retrotransposons on dicot crop genomes is not well documented. Here, we present an analysis of retrotransposons in soybean (Glycine max). Analysis of approximately 3.7 megabases (Mb) of genomic sequence, including 0.87 Mb of pericentromeric sequence, uncovered 45 intact long terminal repeat (LTR)-retrotransposons. The ratio of intact elements to solo LTRs was 8:1, one of the highest reported to date in plants, suggesting that removal of retrotransposons by homologous recombination between LTRs is occurring more slowly in soybean than in previously characterized plant species. Analysis of paired LTR sequences uncovered a low frequency of deletions relative to base substitutions, indicating that removal of retrotransposon sequences by illegitimate recombination is also operating more slowly. Significantly, we identified three subfamilies of nonautonomous elements that have replicated in the recent past, suggesting that retrotransposition can be catalyzed in trans by autonomous elements elsewhere in the genome. Analysis of 1.6 Mb of sequence from Glycine tomentella, a wild perennial relative of soybean, uncovered 23 intact retroelements, two of which had accumulated no mutations in their LTRs, indicating very recent insertion. A similar pattern was found in 0.94 Mb of sequence from Phaseolus vulgaris (common bean). Thus, autonomous and nonautonomous retrotransposons appear to be both abundant and active in Glycine and Phaseolus. The impact of nonautonomous retrotransposon replication on genome size appears to be much greater than previously appreciated. |
Author | Nguyen, Ashley Innes, Roger W Ségurens, Béatrice Doyle, Jeff J Lai, Hongshing Geffroy, Valérie Cannon, Ethalinda Glover, Natasha Yi, Jing Couloux, Arnaud Howell, Stacy Roe, Bruce A Young, Nevin D Dalwani, Anita Samain, Sylvie Chacko, Ben Thareau, Vincent O'Bleness, Majesta del Campo, Sara Martin Pfeil, Bernard E Chen, Nicolas W.G Tucker, Dominic M Maroof, M.A. Saghai Egan, Ashley N Ratnaparkhe, Milind B Podicheti, Ram Cannon, Steven B Wawrzynski, Adam Ilut, Dan Metcalf, Michelle Ameline-Torregrosa, Carine Denny, Roxanne Deshpande, Shweta Sanders, Iryna Sévignac, Mireille Ashfield, Tom Sherman-Broyles, Sue Mammadov, Jafar |
AuthorAffiliation | Department of Biology, Indiana University, Bloomington, Indiana 47405 (A.W., T.A., R.P., A.D., S.H., S.M.d.C., M.M., R.W.I.); Institut de Biotechnologie des Plantes, UMR CNRS 8618, INRA, Université Paris Sud, 91 405 Orsay, France (N.W.G.C., V.T., M.S., V.G.); Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061 (J.M., A.N., N.G., M.B.R., D.M.T., M.A.S.M.); Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108 (S.B.C., C.A.-T., E.C., B.C., R.D., N.D.Y.); U.S. Department of Agriculture-Agricultural Research Service and Department of Agronomy (S.B.C.), and Virtual Reality Application Center (E.C.), Iowa State University, Ames, Iowa 50011; Genoscope/CEA-Centre National de Séquençage, 91 057 Evry, France (A.C., S.S., B.S.); Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019 (S.D., H.L., M.O., I.S., J.Y., B.A.R.); L.H. Bailey Hortorium, Department of Plant Biology, Cornell University, I |
AuthorAffiliation_xml | – name: Department of Biology, Indiana University, Bloomington, Indiana 47405 (A.W., T.A., R.P., A.D., S.H., S.M.d.C., M.M., R.W.I.); Institut de Biotechnologie des Plantes, UMR CNRS 8618, INRA, Université Paris Sud, 91 405 Orsay, France (N.W.G.C., V.T., M.S., V.G.); Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061 (J.M., A.N., N.G., M.B.R., D.M.T., M.A.S.M.); Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108 (S.B.C., C.A.-T., E.C., B.C., R.D., N.D.Y.); U.S. Department of Agriculture-Agricultural Research Service and Department of Agronomy (S.B.C.), and Virtual Reality Application Center (E.C.), Iowa State University, Ames, Iowa 50011; Genoscope/CEA-Centre National de Séquençage, 91 057 Evry, France (A.C., S.S., B.S.); Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019 (S.D., H.L., M.O., I.S., J.Y., B.A.R.); L.H. Bailey Hortorium, Department of Plant Biology, Cornell University, Ithaca, New York 14853 (A.N.E., D.I., B.E.P., S.S.-B., J.J.D.); CSIRO Plant Industry, Canberra, Australian Capital Territory 2601, Australia (B.E.P.); and Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211 (M.B.R.) |
Author_xml | – sequence: 1 fullname: Wawrzynski, Adam – sequence: 2 fullname: Ashfield, Tom – sequence: 3 fullname: Chen, Nicolas W.G – sequence: 4 fullname: Mammadov, Jafar – sequence: 5 fullname: Nguyen, Ashley – sequence: 6 fullname: Podicheti, Ram – sequence: 7 fullname: Cannon, Steven B – sequence: 8 fullname: Thareau, Vincent – sequence: 9 fullname: Ameline-Torregrosa, Carine – sequence: 10 fullname: Cannon, Ethalinda – sequence: 11 fullname: Chacko, Ben – sequence: 12 fullname: Couloux, Arnaud – sequence: 13 fullname: Dalwani, Anita – sequence: 14 fullname: Denny, Roxanne – sequence: 15 fullname: Deshpande, Shweta – sequence: 16 fullname: Egan, Ashley N – sequence: 17 fullname: Glover, Natasha – sequence: 18 fullname: Howell, Stacy – sequence: 19 fullname: Ilut, Dan – sequence: 20 fullname: Lai, Hongshing – sequence: 21 fullname: del Campo, Sara Martin – sequence: 22 fullname: Metcalf, Michelle – sequence: 23 fullname: O'Bleness, Majesta – sequence: 24 fullname: Pfeil, Bernard E – sequence: 25 fullname: Ratnaparkhe, Milind B – sequence: 26 fullname: Samain, Sylvie – sequence: 27 fullname: Sanders, Iryna – sequence: 28 fullname: Ségurens, Béatrice – sequence: 29 fullname: Sévignac, Mireille – sequence: 30 fullname: Sherman-Broyles, Sue – sequence: 31 fullname: Tucker, Dominic M – sequence: 32 fullname: Yi, Jing – sequence: 33 fullname: Doyle, Jeff J – sequence: 34 fullname: Geffroy, Valérie – sequence: 35 fullname: Roe, Bruce A – sequence: 36 fullname: Maroof, M.A. Saghai – sequence: 37 fullname: Young, Nevin D – sequence: 38 fullname: Innes, Roger W |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20980257$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18952860$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1v1DAQxS1URLeFI0fAF7hlGdux41yQ2hVfUgVSSy9cLMeZtKkSO9hZpP73eMmyAiTEySPNb56eZ94JOfLBIyFPGawZg_L1NK0Z6DXjVc3gAVkxKXjBZamPyAog16B1fUxOUroDACZY-YgcM11LrhWsyNdLnIbe2bkPnoaOfgrebufgwxi2iV7iHAMOOKKfE-09vQr3DVpPz6YJbUx0DvQc6XmYbzPrMkWtb-kmjGPwj8nDzg4Jn-zfU3L97u2XzYfi4vP7j5uzi8JJXs-FE1Byi1pw15Si07pV0HHOmrZWqDjWDC1XDjh3utHYWnSisS0wWZe2KlGckjeL7rRtRmx3LqIdzBT70cZ7E2xv_uz4_tbchO-Gy1ooybPAq71ADN-2mGYz9snhMFiPeQtG1bpiWsv_gqVmimtdZvD575YOXn7tPQMv94BNzg5dtN716cBxqDVwWWVOLJyLIaWInXH9_PNY-Sf9YBiYXQrMNOVSmyUFear4a-pg4B_8s4W_S3OIB7gEUErAzsWLpd_ZYOxNzE6vr3gOUz6CqjhI8QOukMbr |
CODEN | PPHYA5 |
CitedBy_id | crossref_primary_10_1007_s00606_010_0285_2 crossref_primary_10_1186_1471_2164_13_644 crossref_primary_10_1104_pp_108_127902 crossref_primary_10_1007_s00299_013_1500_8 crossref_primary_10_21323_2414_438X_2019_4_4_23_27 crossref_primary_10_3389_fpls_2018_01185 crossref_primary_10_1007_s00122_014_2293_z crossref_primary_10_1007_s42994_022_00072_7 crossref_primary_10_1007_s00438_009_0509_8 crossref_primary_10_1111_j_1365_313X_2010_04263_x crossref_primary_10_1104_pp_112_194605 crossref_primary_10_1111_j_1469_8137_2010_03337_x crossref_primary_10_1186_1756_0500_4_52 crossref_primary_10_1016_j_gene_2009_06_011 crossref_primary_10_1007_s10577_010_9119_x crossref_primary_10_3389_fpls_2014_00339 crossref_primary_10_1371_journal_pone_0176728 crossref_primary_10_1104_pp_112_195040 crossref_primary_10_1093_aob_mct128 crossref_primary_10_3390_ijms130810316 crossref_primary_10_3732_ajb_1400121 crossref_primary_10_1002_pld3_164 crossref_primary_10_3835_plantgenome2010_11_0024 crossref_primary_10_1007_s00122_013_2079_8 crossref_primary_10_1105_tpc_110_074229 crossref_primary_10_1111_tpj_13521 crossref_primary_10_1007_s10709_010_9450_3 crossref_primary_10_1007_s11295_011_0421_3 crossref_primary_10_1534_g3_116_037572 crossref_primary_10_1371_journal_pone_0099427 crossref_primary_10_1007_s00438_011_0656_6 crossref_primary_10_1186_1471_2164_11_113 crossref_primary_10_1534_genetics_110_120790 crossref_primary_10_1111_j_1469_8137_2011_03800_x |
Cites_doi | 10.1002/j.1460-2075.1987.tb02727.x 10.1104/pp.015412 10.1073/pnas.95.12.6897 10.1093/molbev/msg142 10.1007/BF00484384 10.1016/j.gene.2006.09.009 10.1038/nrg2165 10.1007/s10709-006-7725-5 10.1186/1471-2164-5-18 10.1093/aob/mci008 10.1534/genetics.166.3.1437 10.1534/genetics.105.055020 10.1186/1471-2164-8-427 10.1093/oxfordjournals.molbev.a026385 10.1093/molbev/msn085 10.1101/gr.132102 10.1101/gr.6214107 10.1002/j.1460-2075.1990.tb07536.x 10.1186/1471-2164-9-382 10.1093/bib/5.2.150 10.1016/j.pbi.2006.01.007 10.1038/nature02953 10.1016/S0169-5347(99)01638-9 10.1105/tpc.106.041905 10.1104/pp.108.127902 10.1016/j.gde.2005.09.010 10.1038/nature722 10.1007/BF00710014 10.1534/genetics.106.060756 10.1104/pp.104.057034 10.1023/A:1014469830680 10.1080/10635150590945359 10.1038/1695 10.1016/j.pbi.2004.09.003 10.1093/bioinformatics/btf878 10.1002/j.1460-2075.1995.tb07265.x 10.1186/1471-2164-8-132 10.1016/j.gene.2004.12.017 10.1046/j.1365-313X.2001.01141.x 10.1073/pnas.0605618103 10.1016/0092-8674(83)90226-X 10.1073/pnas.241341898 10.1186/1471-2148-5-30 10.1093/nar/29.22.4633 10.1101/gr.196001 10.1105/tpc.105.033506 10.1111/j.1365-313X.2007.03242.x 10.1093/jhered/esg053 10.1139/g04-047 10.1038/ng1615 10.1016/j.ympev.2005.11.018 10.1534/genetics.106.056259 10.1534/genetics.106.062752 10.1093/genetics/142.2.569 10.1093/nar/25.17.3389 10.1073/pnas.36.6.344 10.1093/bioinformatics/btg180 10.1016/0005-2787(79)90500-8 10.1007/BF01731581 10.1101/gr.1466204 10.1016/S0968-0004(98)01285-7 |
ContentType | Journal Article |
Copyright | Copyright 2008 American Society of Plant Biologists 2009 INIST-CNRS Copyright © 2008, American Society of Plant Biologists |
Copyright_xml | – notice: Copyright 2008 American Society of Plant Biologists – notice: 2009 INIST-CNRS – notice: Copyright © 2008, American Society of Plant Biologists |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 5PM |
DOI | 10.1104/pp.108.127910 |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany Chemistry |
EISSN | 1532-2548 |
EndPage | 1771 |
ExternalDocumentID | PMC2593652 18952860 20980257 10_1104_pp_108_127910 40066307 US201301567205 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X 0R~ 123 29O 2AX 2WC 2~F 4.4 53G 5VS 5WD 7X2 7X7 85S 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW 8G5 8R4 8R5 AAHBH AAHKG AAPXW AARHZ AAUAY AAVAP AAWDT AAXTN AAYJJ ABBHK ABDFA ABEJV ABGNP ABIME ABJNI ABMNT ABPIB ABPLY ABPPZ ABPTD ABTLG ABUWG ABVGC ABXSQ ABXVV ABXZS ABZEO ACBTR ACFRR ACGOD ACHIC ACIPB ACNCT ACPRK ACUFI ACUTJ ACVCV ACZBC ADBBV ADGKP ADIPN ADIYS ADQBN ADULT ADVEK ADYHW ADYWZ AEEJZ AENEX AEUPB AEUYN AFAZZ AFFDN AFFZL AFGWE AFKRA AFRAH AFYAG AGMDO AGUYK AHMBA AHXOZ AICQM AIDAL AIDBO AJDVS AJEEA AJNCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALXQX ANFBD APJGH AQDSO AQVQM AS~ ATCPS ATGXG AZQEC BAWUL BBNVY BCRHZ BENPR BEYMZ BHPHI BPHCQ BTFSW BVXVI C1A CBGCD CCPQU CS3 D1J DATOO DIK DU5 DWQXO E3Z EBS ECGQY EJD F5P FBQ FLUFQ FOEOM FYUFA GNUQQ GTFYD GUQSH H13 HCIFZ HMCUK HTVGU IPSME JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JST JXSIZ KOP KQ8 KSI KSN LK8 LU7 M0K M1P M2O M2P M2Q M7P MV1 MVM NOMLY NU- OBOKY OJZSN OK1 OWPYF P0- P2P PHGZT PQQKQ PROAC PSQYO Q2X QZG RHI ROX RPB RWL RXW S0X SA0 TAE TCN TN5 TR2 UBC UKHRP UKR W8F WH7 WHG WOQ XOL XSW Y6R YBU YKV YNT YSK YZZ ZCA ZCG ZCN ~02 ~KM ADXHL AGORE AJBYB PHGZM AAYXX CITATION AHGBF IQODW PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7S9 L.6 PUEGO 7X8 5PM |
ID | FETCH-LOGICAL-c529t-c3042ae832cb43f88d60f221bd96e62e91ea26c022c8b8edaec3bad01594a74e3 |
ISSN | 0032-0889 1532-2548 |
IngestDate | Thu Aug 21 18:04:43 EDT 2025 Sun Sep 28 02:37:12 EDT 2025 Sun Sep 28 07:24:29 EDT 2025 Mon Jul 21 05:51:51 EDT 2025 Mon Jul 21 09:14:42 EDT 2025 Thu Apr 24 23:00:36 EDT 2025 Tue Jul 01 02:53:57 EDT 2025 Fri Jun 20 02:19:13 EDT 2025 Thu Apr 03 09:44:31 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Grain legume Leguminosae Plant physiology Dicotyledones Angiospermae Replication Spermatophyta Soybean Glycine max |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c529t-c3042ae832cb43f88d60f221bd96e62e91ea26c022c8b8edaec3bad01594a74e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Open access articles can be viewed online without a subscription. The online version of this article contains Web-only data. This work was supported by the National Science Foundation (Plant Genome Research Program grant no. DBI–0321664 to R.W.I., M.A.S.M., N.D.Y., B.A.R., and J.J.D. and Systematics award no. DEB–0516673 to A.N.E.) and by Genoscope/CEA-Centre National de Séquençage (grant to V.G.). www.plantphysiol.org/cgi/doi/10.1104/pp.108.127910 The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) is: Roger W. Innes (rinnes@indiana.edu). Present address: Trait Genetics and Technology, Dow AgroSciences LLC, Indianapolis, IN 46268. Corresponding author; e-mail rinnes@indiana.edu. |
OpenAccessLink | https://doi.org/10.1104/pp.108.127910 |
PMID | 18952860 |
PQID | 48162884 |
PQPubID | 24069 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2593652 proquest_miscellaneous_69871885 proquest_miscellaneous_48162884 pubmed_primary_18952860 pascalfrancis_primary_20980257 crossref_citationtrail_10_1104_pp_108_127910 crossref_primary_10_1104_pp_108_127910 jstor_primary_40066307 fao_agris_US201301567205 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-12-01 |
PublicationDateYYYYMMDD | 2008-12-01 |
PublicationDate_xml | – month: 12 year: 2008 text: 2008-12-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Rockville, MD |
PublicationPlace_xml | – name: Rockville, MD – name: United States |
PublicationTitle | Plant physiology (Bethesda) |
PublicationTitleAlternate | Plant Physiol |
PublicationYear | 2008 |
Publisher | American Society of Plant Biologists |
Publisher_xml | – name: American Society of Plant Biologists |
References | (2021041706041730500_b51) 2006; 39 (2021041706041730500_b7) 2002; 12 (2021041706041730500_b48) 2006; 9 (2021041706041730500_b62) 2002; 12 (2021041706041730500_b38) 2003; 94 (2021041706041730500_b24) 2005; 347 (2021041706041730500_b22) 2004; 166 (2021041706041730500_b18) 1998; 23 (2021041706041730500_b25) 2004; 5 (2021041706041730500_b45) 2006; 174 (2021041706041730500_b47) 1987; 6 (2021041706041730500_b8) 1985; 40 (2021041706041730500_b65) 2005; 137 (2021041706041730500_b32) 2003; 19 (2021041706041730500_b26) 2001; 29 (2021041706041730500_b41) 2006; 97 (2021041706041730500_b55) 2006; 103 (2021041706041730500_b57) 2006; 18 (2021041706041730500_b21) 1994; 6 (2021041706041730500_b59) 2007; 8 (2021041706041730500_b10) 1983; 35 (2021041706041730500_b44) 2004; 47 (2021041706041730500_b35) 2005; 37 (2021041706041730500_b36) 2006; 173 (2021041706041730500_b5) 2005; 95 (2021041706041730500_b16) 2006; 174 (2021041706041730500_b46) 1995; 3 (2021041706041730500_b56) 2008; 9 (2021041706041730500_b33) 1950; 36 (2021041706041730500_b52) 2007; 8 (2021041706041730500_b66) 2005; 17 (2021041706041730500_b13) 2008; 25 (2021041706041730500_b23) 1980; 16 (2021041706041730500_b58) 2007; 17 (2021041706041730500_b14) 2006; 174 (2021041706041730500_b61) 1996; 142 (2021041706041730500_b15) 1979; 561 (2021041706041730500_b63) 1990; 9 (2021041706041730500_b29) 2004; 14 (2021041706041730500_b30) 2007; 8 (2021041706041730500_b17) 2008; 148 (2021041706041730500_b42) 2006; 128 (2021041706041730500_b11) 2004; 5 (2021041706041730500_b60) 2001; 98 (2021041706041730500_b34) 2001; 28 (2021041706041730500_b53) 2007; 390 (2021041706041730500_b1) 1997; 25 (2021041706041730500_b27) 2003; 20 (2021041706041730500_b19) 2004; 431 (2021041706041730500_b40) 2003; 19 (2021041706041730500_b12) 1978; 16 (2021041706041730500_b6) 1995; 14 (2021041706041730500_b9) 1992; 4 (2021041706041730500_b50) 1999; 14 (2021041706041730500_b54) 2002; 49 (2021041706041730500_b67) 1996–2008 (2021041706041730500_b4) 2004; 7 (2021041706041730500_b3) 2005; 15 (2021041706041730500_b31) 2000; 17 (2021041706041730500_b39) 2005; 54 (2021041706041730500_b20) 2002; 130 (2021041706041730500_b37) 2002; 416 (2021041706041730500_b2) 2007; 52 (2021041706041730500_b43) 1998; 20 (2021041706041730500_b28) 1998; 95 (2021041706041730500_b64) 2005; 5 |
References_xml | – volume: 6 start-page: 3873 year: 1987 ident: 2021041706041730500_b47 publication-title: EMBO J doi: 10.1002/j.1460-2075.1987.tb02727.x – volume: 130 start-page: 1697 year: 2002 ident: 2021041706041730500_b20 publication-title: Plant Physiol doi: 10.1104/pp.015412 – volume: 95 start-page: 6897 year: 1998 ident: 2021041706041730500_b28 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.12.6897 – volume: 20 start-page: 1222 year: 2003 ident: 2021041706041730500_b27 publication-title: Mol Biol Evol doi: 10.1093/molbev/msg142 – volume: 16 start-page: 45 year: 1978 ident: 2021041706041730500_b12 publication-title: Biochem Genet doi: 10.1007/BF00484384 – volume: 390 start-page: 166 year: 2007 ident: 2021041706041730500_b53 publication-title: Gene doi: 10.1016/j.gene.2006.09.009 – volume: 8 start-page: 973 year: 2007 ident: 2021041706041730500_b59 publication-title: Nat Rev Genet doi: 10.1038/nrg2165 – volume: 128 start-page: 439 year: 2006 ident: 2021041706041730500_b42 publication-title: Genetica doi: 10.1007/s10709-006-7725-5 – volume: 5 start-page: 18 year: 2004 ident: 2021041706041730500_b11 publication-title: BMC Genomics doi: 10.1186/1471-2164-5-18 – volume: 95 start-page: 127 year: 2005 ident: 2021041706041730500_b5 publication-title: Ann Bot (Lond) doi: 10.1093/aob/mci008 – volume: 166 start-page: 1437 year: 2004 ident: 2021041706041730500_b22 publication-title: Genetics doi: 10.1534/genetics.166.3.1437 – volume: 174 start-page: 1017 year: 2006 ident: 2021041706041730500_b45 publication-title: Genetics doi: 10.1534/genetics.105.055020 – volume: 8 start-page: 427 year: 2007 ident: 2021041706041730500_b30 publication-title: BMC Genomics doi: 10.1186/1471-2164-8-427 – volume: 17 start-page: 1040 year: 2000 ident: 2021041706041730500_b31 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a026385 – volume: 25 start-page: 1415 year: 2008 ident: 2021041706041730500_b13 publication-title: Mol Biol Evol doi: 10.1093/molbev/msn085 – volume: 12 start-page: 1075 year: 2002 ident: 2021041706041730500_b7 publication-title: Genome Res doi: 10.1101/gr.132102 – volume: 17 start-page: 1072 year: 2007 ident: 2021041706041730500_b58 publication-title: Genome Res doi: 10.1101/gr.6214107 – volume: 9 start-page: 3353 year: 1990 ident: 2021041706041730500_b63 publication-title: EMBO J doi: 10.1002/j.1460-2075.1990.tb07536.x – year: 1996–2008 ident: 2021041706041730500_b67 – volume: 9 start-page: 382 year: 2008 ident: 2021041706041730500_b56 publication-title: BMC Genomics doi: 10.1186/1471-2164-9-382 – volume: 5 start-page: 150 year: 2004 ident: 2021041706041730500_b25 publication-title: Brief Bioinform doi: 10.1093/bib/5.2.150 – volume: 9 start-page: 104 year: 2006 ident: 2021041706041730500_b48 publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2006.01.007 – volume: 431 start-page: 569 year: 2004 ident: 2021041706041730500_b19 publication-title: Nature doi: 10.1038/nature02953 – volume: 14 start-page: 348 year: 1999 ident: 2021041706041730500_b50 publication-title: Trends Ecol Evol doi: 10.1016/S0169-5347(99)01638-9 – volume: 18 start-page: 1791 year: 2006 ident: 2021041706041730500_b57 publication-title: Plant Cell doi: 10.1105/tpc.106.041905 – volume: 148 start-page: 1740 year: 2008 ident: 2021041706041730500_b17 publication-title: Plant Physiol doi: 10.1104/pp.108.127902 – volume: 15 start-page: 621 year: 2005 ident: 2021041706041730500_b3 publication-title: Curr Opin Genet Dev doi: 10.1016/j.gde.2005.09.010 – volume: 416 start-page: 103 year: 2002 ident: 2021041706041730500_b37 publication-title: Nature doi: 10.1038/nature722 – volume: 3 start-page: 335 year: 1995 ident: 2021041706041730500_b46 publication-title: Chromosome Res doi: 10.1007/BF00710014 – volume: 174 start-page: 1493 year: 2006 ident: 2021041706041730500_b14 publication-title: Genetics doi: 10.1534/genetics.106.060756 – volume: 137 start-page: 1174 year: 2005 ident: 2021041706041730500_b65 publication-title: Plant Physiol doi: 10.1104/pp.104.057034 – volume: 49 start-page: 1 year: 2002 ident: 2021041706041730500_b54 publication-title: Plant Mol Biol doi: 10.1023/A:1014469830680 – volume: 54 start-page: 441 year: 2005 ident: 2021041706041730500_b39 publication-title: Syst Biol doi: 10.1080/10635150590945359 – volume: 40 start-page: 1 year: 1985 ident: 2021041706041730500_b8 publication-title: Gene – volume: 20 start-page: 43 year: 1998 ident: 2021041706041730500_b43 publication-title: Nat Genet doi: 10.1038/1695 – volume: 7 start-page: 732 year: 2004 ident: 2021041706041730500_b4 publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2004.09.003 – volume: 19 start-page: 362 year: 2003 ident: 2021041706041730500_b32 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btf878 – volume: 14 start-page: 2670 year: 1995 ident: 2021041706041730500_b6 publication-title: EMBO J doi: 10.1002/j.1460-2075.1995.tb07265.x – volume: 4 start-page: 430 year: 1992 ident: 2021041706041730500_b9 publication-title: New Biol – volume: 8 start-page: 132 year: 2007 ident: 2021041706041730500_b52 publication-title: BMC Genomics doi: 10.1186/1471-2164-8-132 – volume: 347 start-page: 161 year: 2005 ident: 2021041706041730500_b24 publication-title: Gene doi: 10.1016/j.gene.2004.12.017 – volume: 28 start-page: 159 year: 2001 ident: 2021041706041730500_b34 publication-title: Plant J doi: 10.1046/j.1365-313X.2001.01141.x – volume: 103 start-page: 17638 year: 2006 ident: 2021041706041730500_b55 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0605618103 – volume: 35 start-page: 235 year: 1983 ident: 2021041706041730500_b10 publication-title: Cell doi: 10.1016/0092-8674(83)90226-X – volume: 98 start-page: 13778 year: 2001 ident: 2021041706041730500_b60 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.241341898 – volume: 5 start-page: 30 year: 2005 ident: 2021041706041730500_b64 publication-title: BMC Evol Biol doi: 10.1186/1471-2148-5-30 – volume: 29 start-page: 4633 year: 2001 ident: 2021041706041730500_b26 publication-title: Nucleic Acids Res doi: 10.1093/nar/29.22.4633 – volume: 12 start-page: 122 year: 2002 ident: 2021041706041730500_b62 publication-title: Genome Res doi: 10.1101/gr.196001 – volume: 17 start-page: 2619 year: 2005 ident: 2021041706041730500_b66 publication-title: Plant Cell doi: 10.1105/tpc.105.033506 – volume: 52 start-page: 342 year: 2007 ident: 2021041706041730500_b2 publication-title: Plant J doi: 10.1111/j.1365-313X.2007.03242.x – volume: 6 start-page: 1177 year: 1994 ident: 2021041706041730500_b21 publication-title: Plant Cell – volume: 94 start-page: 260 year: 2003 ident: 2021041706041730500_b38 publication-title: J Hered doi: 10.1093/jhered/esg053 – volume: 47 start-page: 868 year: 2004 ident: 2021041706041730500_b44 publication-title: Genome doi: 10.1139/g04-047 – volume: 37 start-page: 997 year: 2005 ident: 2021041706041730500_b35 publication-title: Nat Genet doi: 10.1038/ng1615 – volume: 39 start-page: 580 year: 2006 ident: 2021041706041730500_b51 publication-title: Mol Phylogenet Evol doi: 10.1016/j.ympev.2005.11.018 – volume: 173 start-page: 1047 year: 2006 ident: 2021041706041730500_b36 publication-title: Genetics doi: 10.1534/genetics.106.056259 – volume: 174 start-page: 2215 year: 2006 ident: 2021041706041730500_b16 publication-title: Genetics doi: 10.1534/genetics.106.062752 – volume: 142 start-page: 569 year: 1996 ident: 2021041706041730500_b61 publication-title: Genetics doi: 10.1093/genetics/142.2.569 – volume: 25 start-page: 3389 year: 1997 ident: 2021041706041730500_b1 publication-title: Nucleic Acids Res doi: 10.1093/nar/25.17.3389 – volume: 36 start-page: 344 year: 1950 ident: 2021041706041730500_b33 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.36.6.344 – volume: 19 start-page: 1572 year: 2003 ident: 2021041706041730500_b40 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg180 – volume: 561 start-page: 167 year: 1979 ident: 2021041706041730500_b15 publication-title: Biochim Biophys Acta doi: 10.1016/0005-2787(79)90500-8 – volume: 16 start-page: 111 year: 1980 ident: 2021041706041730500_b23 publication-title: J Mol Evol doi: 10.1007/BF01731581 – volume: 14 start-page: 860 year: 2004 ident: 2021041706041730500_b29 publication-title: Genome Res doi: 10.1101/gr.1466204 – volume: 23 start-page: 403 year: 1998 ident: 2021041706041730500_b18 publication-title: Trends Biochem Sci doi: 10.1016/S0968-0004(98)01285-7 – volume: 97 start-page: 381 year: 2006 ident: 2021041706041730500_b41 publication-title: Heredity |
SSID | ssj0001314 |
Score | 2.1276608 |
Snippet | Retrotransposons and their remnants often constitute more than 50% of higher plant genomes. Although extensively studied in monocot crops such as maize (Zea... Retrotransposons and their remnants often constitute more than 50% of higher plant genomes. Although extensively studied in monocot crops such as maize ( Zea... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1760 |
SubjectTerms | Base Sequence beans Biological and medical sciences chemistry Corn crops DNA, Plant DNA, Plant - chemistry Evolution Evolution, Molecular Fundamental and applied biological sciences. Psychology Gene Deletion genetics Genome Analysis Genome, Plant Genomes Genomics Genomics - methods Glycine max Glycine max - genetics Glycine tomentella homologous recombination Long Interspersed Nucleotide Elements methods Methylation Mutagenesis, Insertional mutation Neonotonia wightii Oryza sativa Phaseolus Phaseolus - genetics Phaseolus vulgaris Phylogeny Plant physiology and development planting date Plants Retroelements Retrotransposons Rice Sequence Alignment Sequence Analysis, DNA Soybeans Terminal Repeat Sequences Transposons wild relatives Zea mays |
Title | Replication of Nonautonomous Retroelements in Soybean Appears to Be Both Recent and Common |
URI | https://www.jstor.org/stable/40066307 https://www.ncbi.nlm.nih.gov/pubmed/18952860 https://www.proquest.com/docview/48162884 https://www.proquest.com/docview/69871885 https://pubmed.ncbi.nlm.nih.gov/PMC2593652 |
Volume | 148 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db5swFLWSdg97mfbVNfvI_DDtpSMDxxjz2FTduk2rpjZRo70gg01baYEoIZva_7H_u2sMDnSp1O0FIeMA4Rzscy_X9yL0xk9jIbyAOcRjiUOlx51Y7w0Vk1wGMUvKlPlfj9nRhH6e-tNO53cjamlVxIPkeuO6kv9BFdoAV71K9h-QtSeFBtgHfGELCMP2ThiDeq59bqXlD6p6VehVCjqu9UQVi1yZ6PAy6PU0v4q13x2EJ9C7zOwwUnsjgEqLxzrWXK8YqaCqNKuua1QYF4hJ2ASidKTXCS-laDgSzsSvxfVVXQd7X4qZJdPywlbCHue2-aBaGFKSUSz3zgYfB2sH-WwmZP7TBPKmYtHyTvBGpEc9oBIHjFAzxqoNbfUoTHmDbrQxpgKT3Mb87AWmZsvfY79LdcHiuQ6bHHgkCKt42VaO7Rtzn41ILG0hl0bzuU6ZGpmfd9E2CUCSaa396Yud4L1hmTLe_g2bupW-b129JXW6qcjrmFcdgCuW8A6mpnjKJuvmZpBuQ_WMH6IHlbmC9w33HqGOyh6je8AZmEOeoO8NAuI8xS0C4hYB8WWGKwLiioC4yPFIYU1AbAiIgYDYEPApmnw4HB8cOVWxDifxSVg4ifaLCQUTRBLTYcq5ZG5KiBfLkClGVOgpQVgCkjHhMVdSqGQYCwlqNKQioGq4g7ayPFO7CA-JhFOQRPq-ooKnPJW-q8DyACnLYqV66F39XKOkymSvC6r8iDai2ENvbfe5SeFyW8ddACkS5zC9RpNToj_qez4LiOv30E6JnD0BLbW6G_RQvwWl7UDckIM9AR1e19hGMHLrz3EiU4BCRLmna33T23uwkIN05HD1Z4YL6_vnoU84g1sOWiyxHXTW-PaR7PKizB5PdA1Pnzy_61N5ge6vX-yXaKtYrNQrEOJF3EfdYBr00fbo8PjbSb98Sf4A3yjeEQ |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Replication+of+Nonautonomous+Retroelements+in+Soybean+Appears+to+Be+Both+Recent+and+Common&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Wawrzynski%2C+Adam&rft.au=Ashfield%2C+Tom&rft.au=Chen%2C+Nicolas+W.G.&rft.au=Mammadov%2C+Jafar&rft.date=2008-12-01&rft.issn=1532-2548&rft.eissn=1532-2548&rft.volume=148&rft.issue=4&rft.spage=1760&rft.epage=1771&rft_id=info:doi/10.1104%2Fpp.108.127910&rft.externalDBID=n%2Fa&rft.externalDocID=10_1104_pp_108_127910 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon |