Replication of Nonautonomous Retroelements in Soybean Appears to Be Both Recent and Common

Retrotransposons and their remnants often constitute more than 50% of higher plant genomes. Although extensively studied in monocot crops such as maize (Zea mays) and rice (Oryza sativa), the impact of retrotransposons on dicot crop genomes is not well documented. Here, we present an analysis of ret...

Full description

Saved in:
Bibliographic Details
Published inPlant physiology (Bethesda) Vol. 148; no. 4; pp. 1760 - 1771
Main Authors Wawrzynski, Adam, Ashfield, Tom, Chen, Nicolas W.G, Mammadov, Jafar, Nguyen, Ashley, Podicheti, Ram, Cannon, Steven B, Thareau, Vincent, Ameline-Torregrosa, Carine, Cannon, Ethalinda, Chacko, Ben, Couloux, Arnaud, Dalwani, Anita, Denny, Roxanne, Deshpande, Shweta, Egan, Ashley N, Glover, Natasha, Howell, Stacy, Ilut, Dan, Lai, Hongshing, del Campo, Sara Martin, Metcalf, Michelle, O'Bleness, Majesta, Pfeil, Bernard E, Ratnaparkhe, Milind B, Samain, Sylvie, Sanders, Iryna, Ségurens, Béatrice, Sévignac, Mireille, Sherman-Broyles, Sue, Tucker, Dominic M, Yi, Jing, Doyle, Jeff J, Geffroy, Valérie, Roe, Bruce A, Maroof, M.A. Saghai, Young, Nevin D, Innes, Roger W
Format Journal Article
LanguageEnglish
Published Rockville, MD American Society of Plant Biologists 01.12.2008
Subjects
Online AccessGet full text
ISSN0032-0889
1532-2548
1532-2548
DOI10.1104/pp.108.127910

Cover

Abstract Retrotransposons and their remnants often constitute more than 50% of higher plant genomes. Although extensively studied in monocot crops such as maize (Zea mays) and rice (Oryza sativa), the impact of retrotransposons on dicot crop genomes is not well documented. Here, we present an analysis of retrotransposons in soybean (Glycine max). Analysis of approximately 3.7 megabases (Mb) of genomic sequence, including 0.87 Mb of pericentromeric sequence, uncovered 45 intact long terminal repeat (LTR)-retrotransposons. The ratio of intact elements to solo LTRs was 8:1, one of the highest reported to date in plants, suggesting that removal of retrotransposons by homologous recombination between LTRs is occurring more slowly in soybean than in previously characterized plant species. Analysis of paired LTR sequences uncovered a low frequency of deletions relative to base substitutions, indicating that removal of retrotransposon sequences by illegitimate recombination is also operating more slowly. Significantly, we identified three subfamilies of nonautonomous elements that have replicated in the recent past, suggesting that retrotransposition can be catalyzed in trans by autonomous elements elsewhere in the genome. Analysis of 1.6 Mb of sequence from Glycine tomentella, a wild perennial relative of soybean, uncovered 23 intact retroelements, two of which had accumulated no mutations in their LTRs, indicating very recent insertion. A similar pattern was found in 0.94 Mb of sequence from Phaseolus vulgaris (common bean). Thus, autonomous and nonautonomous retrotransposons appear to be both abundant and active in Glycine and PHASEOLUS: The impact of nonautonomous retrotransposon replication on genome size appears to be much greater than previously appreciated.
AbstractList Retrotransposons and their remnants often constitute more than 50% of higher plant genomes. Although extensively studied in monocot crops such as maize (Zea mays) and rice (Oryza sativa), the impact of retrotransposons on dicot crop genomes is not well documented. Here, we present an analysis of retrotransposons in soybean (Glycine max). Analysis of approximately 3.7 megabases (Mb) of genomic sequence, including 0.87 Mb of pericentromeric sequence, uncovered 45 intact long terminal repeat (LTR)-retrotransposons. The ratio of intact elements to solo LTRs was 8:1, one of the highest reported to date in plants, suggesting that removal of retrotransposons by homologous recombination between LTRs is occurring more slowly in soybean than in previously characterized plant species. Analysis of paired LTR sequences uncovered a low frequency of deletions relative to base substitutions, indicating that removal of retrotransposon sequences by illegitimate recombination is also operating more slowly. Significantly, we identified three subfamilies of nonautonomous elements that have replicated in the recent past, suggesting that retrotransposition can be catalyzed in trans by autonomous elements elsewhere in the genome. Analysis of 1.6 Mb of sequence from Glycine tomentella, a wild perennial relative of soybean, uncovered 23 intact retroelements, two of which had accumulated no mutations in their LTRs, indicating very recent insertion. A similar pattern was found in 0.94 Mb of sequence from Phaseolus vulgaris (common bean). Thus, autonomous and nonautonomous retrotransposons appear to be both abundant and active in Glycine and PHASEOLUS: The impact of nonautonomous retrotransposon replication on genome size appears to be much greater than previously appreciated.
Retrotransposons and their remnants often constitute more than 50% of higher plant genomes. Although extensively studied in monocot crops such as maize ( Zea mays ) and rice ( Oryza sativa ), the impact of retrotransposons on dicot crop genomes is not well documented. Here, we present an analysis of retrotransposons in soybean ( Glycine max ). Analysis of approximately 3.7 megabases (Mb) of genomic sequence, including 0.87 Mb of pericentromeric sequence, uncovered 45 intact long terminal repeat (LTR)-retrotransposons. The ratio of intact elements to solo LTRs was 8:1, one of the highest reported to date in plants, suggesting that removal of retrotransposons by homologous recombination between LTRs is occurring more slowly in soybean than in previously characterized plant species. Analysis of paired LTR sequences uncovered a low frequency of deletions relative to base substitutions, indicating that removal of retrotransposon sequences by illegitimate recombination is also operating more slowly. Significantly, we identified three subfamilies of nonautonomous elements that have replicated in the recent past, suggesting that retrotransposition can be catalyzed in trans by autonomous elements elsewhere in the genome. Analysis of 1.6 Mb of sequence from Glycine tomentella , a wild perennial relative of soybean, uncovered 23 intact retroelements, two of which had accumulated no mutations in their LTRs, indicating very recent insertion. A similar pattern was found in 0.94 Mb of sequence from Phaseolus vulgaris (common bean). Thus, autonomous and nonautonomous retrotransposons appear to be both abundant and active in Glycine and Phaseolus . The impact of nonautonomous retrotransposon replication on genome size appears to be much greater than previously appreciated.
Retrotransposons and their remnants often constitute more than 50% of higher plant genomes. Although extensively studied in monocot crops such as maize (Zea mays) and rice (Oryza sativa), the impact of retrotransposons on dicot crop genomes is not well documented. Here, we present an analysis of retrotransposons in soybean (Glycine max). Analysis of approximately 3.7 megabases (Mb) of genomic sequence, including 0.87 Mb of pericentromeric sequence, uncovered 45 intact long terminal repeat (LTR)-retrotransposons. The ratio of intact elements to solo LTRs was 8:1, one of the highest reported to date in plants, suggesting that removal of retrotransposons by homologous recombination between LTRs is occurring more slowly in soybean than in previously characterized plant species. Analysis of paired LTR sequences uncovered a low frequency of deletions relative to base substitutions, indicating that removal of retrotransposon sequences by illegitimate recombination is also operating more slowly. Significantly, we identified three subfamilies of nonautonomous elements that have replicated in the recent past, suggesting that retrotransposition can be catalyzed in trans by autonomous elements elsewhere in the genome. Analysis of 1.6 Mb of sequence from Glycine tomentella, a wild perennial relative of soybean, uncovered 23 intact retroelements, two of which had accumulated no mutations in their LTRs, indicating very recent insertion. A similar pattern was found in 0.94 Mb of sequence from Phaseolus vulgaris (common bean). Thus, autonomous and nonautonomous retrotransposons appear to be both abundant and active in Glycine and Phaseolus. The impact of nonautonomous retrotransposon replication on genome size appears to be much greater than previously appreciated.Retrotransposons and their remnants often constitute more than 50% of higher plant genomes. Although extensively studied in monocot crops such as maize (Zea mays) and rice (Oryza sativa), the impact of retrotransposons on dicot crop genomes is not well documented. Here, we present an analysis of retrotransposons in soybean (Glycine max). Analysis of approximately 3.7 megabases (Mb) of genomic sequence, including 0.87 Mb of pericentromeric sequence, uncovered 45 intact long terminal repeat (LTR)-retrotransposons. The ratio of intact elements to solo LTRs was 8:1, one of the highest reported to date in plants, suggesting that removal of retrotransposons by homologous recombination between LTRs is occurring more slowly in soybean than in previously characterized plant species. Analysis of paired LTR sequences uncovered a low frequency of deletions relative to base substitutions, indicating that removal of retrotransposon sequences by illegitimate recombination is also operating more slowly. Significantly, we identified three subfamilies of nonautonomous elements that have replicated in the recent past, suggesting that retrotransposition can be catalyzed in trans by autonomous elements elsewhere in the genome. Analysis of 1.6 Mb of sequence from Glycine tomentella, a wild perennial relative of soybean, uncovered 23 intact retroelements, two of which had accumulated no mutations in their LTRs, indicating very recent insertion. A similar pattern was found in 0.94 Mb of sequence from Phaseolus vulgaris (common bean). Thus, autonomous and nonautonomous retrotransposons appear to be both abundant and active in Glycine and Phaseolus. The impact of nonautonomous retrotransposon replication on genome size appears to be much greater than previously appreciated.
Author Nguyen, Ashley
Innes, Roger W
Ségurens, Béatrice
Doyle, Jeff J
Lai, Hongshing
Geffroy, Valérie
Cannon, Ethalinda
Glover, Natasha
Yi, Jing
Couloux, Arnaud
Howell, Stacy
Roe, Bruce A
Young, Nevin D
Dalwani, Anita
Samain, Sylvie
Chacko, Ben
Thareau, Vincent
O'Bleness, Majesta
del Campo, Sara Martin
Pfeil, Bernard E
Chen, Nicolas W.G
Tucker, Dominic M
Maroof, M.A. Saghai
Egan, Ashley N
Ratnaparkhe, Milind B
Podicheti, Ram
Cannon, Steven B
Wawrzynski, Adam
Ilut, Dan
Metcalf, Michelle
Ameline-Torregrosa, Carine
Denny, Roxanne
Deshpande, Shweta
Sanders, Iryna
Sévignac, Mireille
Ashfield, Tom
Sherman-Broyles, Sue
Mammadov, Jafar
AuthorAffiliation Department of Biology, Indiana University, Bloomington, Indiana 47405 (A.W., T.A., R.P., A.D., S.H., S.M.d.C., M.M., R.W.I.); Institut de Biotechnologie des Plantes, UMR CNRS 8618, INRA, Université Paris Sud, 91 405 Orsay, France (N.W.G.C., V.T., M.S., V.G.); Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061 (J.M., A.N., N.G., M.B.R., D.M.T., M.A.S.M.); Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108 (S.B.C., C.A.-T., E.C., B.C., R.D., N.D.Y.); U.S. Department of Agriculture-Agricultural Research Service and Department of Agronomy (S.B.C.), and Virtual Reality Application Center (E.C.), Iowa State University, Ames, Iowa 50011; Genoscope/CEA-Centre National de Séquençage, 91 057 Evry, France (A.C., S.S., B.S.); Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019 (S.D., H.L., M.O., I.S., J.Y., B.A.R.); L.H. Bailey Hortorium, Department of Plant Biology, Cornell University, I
AuthorAffiliation_xml – name: Department of Biology, Indiana University, Bloomington, Indiana 47405 (A.W., T.A., R.P., A.D., S.H., S.M.d.C., M.M., R.W.I.); Institut de Biotechnologie des Plantes, UMR CNRS 8618, INRA, Université Paris Sud, 91 405 Orsay, France (N.W.G.C., V.T., M.S., V.G.); Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061 (J.M., A.N., N.G., M.B.R., D.M.T., M.A.S.M.); Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108 (S.B.C., C.A.-T., E.C., B.C., R.D., N.D.Y.); U.S. Department of Agriculture-Agricultural Research Service and Department of Agronomy (S.B.C.), and Virtual Reality Application Center (E.C.), Iowa State University, Ames, Iowa 50011; Genoscope/CEA-Centre National de Séquençage, 91 057 Evry, France (A.C., S.S., B.S.); Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019 (S.D., H.L., M.O., I.S., J.Y., B.A.R.); L.H. Bailey Hortorium, Department of Plant Biology, Cornell University, Ithaca, New York 14853 (A.N.E., D.I., B.E.P., S.S.-B., J.J.D.); CSIRO Plant Industry, Canberra, Australian Capital Territory 2601, Australia (B.E.P.); and Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211 (M.B.R.)
Author_xml – sequence: 1
  fullname: Wawrzynski, Adam
– sequence: 2
  fullname: Ashfield, Tom
– sequence: 3
  fullname: Chen, Nicolas W.G
– sequence: 4
  fullname: Mammadov, Jafar
– sequence: 5
  fullname: Nguyen, Ashley
– sequence: 6
  fullname: Podicheti, Ram
– sequence: 7
  fullname: Cannon, Steven B
– sequence: 8
  fullname: Thareau, Vincent
– sequence: 9
  fullname: Ameline-Torregrosa, Carine
– sequence: 10
  fullname: Cannon, Ethalinda
– sequence: 11
  fullname: Chacko, Ben
– sequence: 12
  fullname: Couloux, Arnaud
– sequence: 13
  fullname: Dalwani, Anita
– sequence: 14
  fullname: Denny, Roxanne
– sequence: 15
  fullname: Deshpande, Shweta
– sequence: 16
  fullname: Egan, Ashley N
– sequence: 17
  fullname: Glover, Natasha
– sequence: 18
  fullname: Howell, Stacy
– sequence: 19
  fullname: Ilut, Dan
– sequence: 20
  fullname: Lai, Hongshing
– sequence: 21
  fullname: del Campo, Sara Martin
– sequence: 22
  fullname: Metcalf, Michelle
– sequence: 23
  fullname: O'Bleness, Majesta
– sequence: 24
  fullname: Pfeil, Bernard E
– sequence: 25
  fullname: Ratnaparkhe, Milind B
– sequence: 26
  fullname: Samain, Sylvie
– sequence: 27
  fullname: Sanders, Iryna
– sequence: 28
  fullname: Ségurens, Béatrice
– sequence: 29
  fullname: Sévignac, Mireille
– sequence: 30
  fullname: Sherman-Broyles, Sue
– sequence: 31
  fullname: Tucker, Dominic M
– sequence: 32
  fullname: Yi, Jing
– sequence: 33
  fullname: Doyle, Jeff J
– sequence: 34
  fullname: Geffroy, Valérie
– sequence: 35
  fullname: Roe, Bruce A
– sequence: 36
  fullname: Maroof, M.A. Saghai
– sequence: 37
  fullname: Young, Nevin D
– sequence: 38
  fullname: Innes, Roger W
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20980257$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18952860$$D View this record in MEDLINE/PubMed
BookMark eNqFks1v1DAQxS1URLeFI0fAF7hlGdux41yQ2hVfUgVSSy9cLMeZtKkSO9hZpP73eMmyAiTEySPNb56eZ94JOfLBIyFPGawZg_L1NK0Z6DXjVc3gAVkxKXjBZamPyAog16B1fUxOUroDACZY-YgcM11LrhWsyNdLnIbe2bkPnoaOfgrebufgwxi2iV7iHAMOOKKfE-09vQr3DVpPz6YJbUx0DvQc6XmYbzPrMkWtb-kmjGPwj8nDzg4Jn-zfU3L97u2XzYfi4vP7j5uzi8JJXs-FE1Byi1pw15Si07pV0HHOmrZWqDjWDC1XDjh3utHYWnSisS0wWZe2KlGckjeL7rRtRmx3LqIdzBT70cZ7E2xv_uz4_tbchO-Gy1ooybPAq71ADN-2mGYz9snhMFiPeQtG1bpiWsv_gqVmimtdZvD575YOXn7tPQMv94BNzg5dtN716cBxqDVwWWVOLJyLIaWInXH9_PNY-Sf9YBiYXQrMNOVSmyUFear4a-pg4B_8s4W_S3OIB7gEUErAzsWLpd_ZYOxNzE6vr3gOUz6CqjhI8QOukMbr
CODEN PPHYA5
CitedBy_id crossref_primary_10_1007_s00606_010_0285_2
crossref_primary_10_1186_1471_2164_13_644
crossref_primary_10_1104_pp_108_127902
crossref_primary_10_1007_s00299_013_1500_8
crossref_primary_10_21323_2414_438X_2019_4_4_23_27
crossref_primary_10_3389_fpls_2018_01185
crossref_primary_10_1007_s00122_014_2293_z
crossref_primary_10_1007_s42994_022_00072_7
crossref_primary_10_1007_s00438_009_0509_8
crossref_primary_10_1111_j_1365_313X_2010_04263_x
crossref_primary_10_1104_pp_112_194605
crossref_primary_10_1111_j_1469_8137_2010_03337_x
crossref_primary_10_1186_1756_0500_4_52
crossref_primary_10_1016_j_gene_2009_06_011
crossref_primary_10_1007_s10577_010_9119_x
crossref_primary_10_3389_fpls_2014_00339
crossref_primary_10_1371_journal_pone_0176728
crossref_primary_10_1104_pp_112_195040
crossref_primary_10_1093_aob_mct128
crossref_primary_10_3390_ijms130810316
crossref_primary_10_3732_ajb_1400121
crossref_primary_10_1002_pld3_164
crossref_primary_10_3835_plantgenome2010_11_0024
crossref_primary_10_1007_s00122_013_2079_8
crossref_primary_10_1105_tpc_110_074229
crossref_primary_10_1111_tpj_13521
crossref_primary_10_1007_s10709_010_9450_3
crossref_primary_10_1007_s11295_011_0421_3
crossref_primary_10_1534_g3_116_037572
crossref_primary_10_1371_journal_pone_0099427
crossref_primary_10_1007_s00438_011_0656_6
crossref_primary_10_1186_1471_2164_11_113
crossref_primary_10_1534_genetics_110_120790
crossref_primary_10_1111_j_1469_8137_2011_03800_x
Cites_doi 10.1002/j.1460-2075.1987.tb02727.x
10.1104/pp.015412
10.1073/pnas.95.12.6897
10.1093/molbev/msg142
10.1007/BF00484384
10.1016/j.gene.2006.09.009
10.1038/nrg2165
10.1007/s10709-006-7725-5
10.1186/1471-2164-5-18
10.1093/aob/mci008
10.1534/genetics.166.3.1437
10.1534/genetics.105.055020
10.1186/1471-2164-8-427
10.1093/oxfordjournals.molbev.a026385
10.1093/molbev/msn085
10.1101/gr.132102
10.1101/gr.6214107
10.1002/j.1460-2075.1990.tb07536.x
10.1186/1471-2164-9-382
10.1093/bib/5.2.150
10.1016/j.pbi.2006.01.007
10.1038/nature02953
10.1016/S0169-5347(99)01638-9
10.1105/tpc.106.041905
10.1104/pp.108.127902
10.1016/j.gde.2005.09.010
10.1038/nature722
10.1007/BF00710014
10.1534/genetics.106.060756
10.1104/pp.104.057034
10.1023/A:1014469830680
10.1080/10635150590945359
10.1038/1695
10.1016/j.pbi.2004.09.003
10.1093/bioinformatics/btf878
10.1002/j.1460-2075.1995.tb07265.x
10.1186/1471-2164-8-132
10.1016/j.gene.2004.12.017
10.1046/j.1365-313X.2001.01141.x
10.1073/pnas.0605618103
10.1016/0092-8674(83)90226-X
10.1073/pnas.241341898
10.1186/1471-2148-5-30
10.1093/nar/29.22.4633
10.1101/gr.196001
10.1105/tpc.105.033506
10.1111/j.1365-313X.2007.03242.x
10.1093/jhered/esg053
10.1139/g04-047
10.1038/ng1615
10.1016/j.ympev.2005.11.018
10.1534/genetics.106.056259
10.1534/genetics.106.062752
10.1093/genetics/142.2.569
10.1093/nar/25.17.3389
10.1073/pnas.36.6.344
10.1093/bioinformatics/btg180
10.1016/0005-2787(79)90500-8
10.1007/BF01731581
10.1101/gr.1466204
10.1016/S0968-0004(98)01285-7
ContentType Journal Article
Copyright Copyright 2008 American Society of Plant Biologists
2009 INIST-CNRS
Copyright © 2008, American Society of Plant Biologists
Copyright_xml – notice: Copyright 2008 American Society of Plant Biologists
– notice: 2009 INIST-CNRS
– notice: Copyright © 2008, American Society of Plant Biologists
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
5PM
DOI 10.1104/pp.108.127910
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList AGRICOLA
MEDLINE



MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Chemistry
EISSN 1532-2548
EndPage 1771
ExternalDocumentID PMC2593652
18952860
20980257
10_1104_pp_108_127910
40066307
US201301567205
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
0R~
123
29O
2AX
2WC
2~F
4.4
53G
5VS
5WD
7X2
7X7
85S
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8G5
8R4
8R5
AAHBH
AAHKG
AAPXW
AARHZ
AAUAY
AAVAP
AAWDT
AAXTN
AAYJJ
ABBHK
ABDFA
ABEJV
ABGNP
ABIME
ABJNI
ABMNT
ABPIB
ABPLY
ABPPZ
ABPTD
ABTLG
ABUWG
ABVGC
ABXSQ
ABXVV
ABXZS
ABZEO
ACBTR
ACFRR
ACGOD
ACHIC
ACIPB
ACNCT
ACPRK
ACUFI
ACUTJ
ACVCV
ACZBC
ADBBV
ADGKP
ADIPN
ADIYS
ADQBN
ADULT
ADVEK
ADYHW
ADYWZ
AEEJZ
AENEX
AEUPB
AEUYN
AFAZZ
AFFDN
AFFZL
AFGWE
AFKRA
AFRAH
AFYAG
AGMDO
AGUYK
AHMBA
AHXOZ
AICQM
AIDAL
AIDBO
AJDVS
AJEEA
AJNCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALXQX
ANFBD
APJGH
AQDSO
AQVQM
AS~
ATCPS
ATGXG
AZQEC
BAWUL
BBNVY
BCRHZ
BENPR
BEYMZ
BHPHI
BPHCQ
BTFSW
BVXVI
C1A
CBGCD
CCPQU
CS3
D1J
DATOO
DIK
DU5
DWQXO
E3Z
EBS
ECGQY
EJD
F5P
FBQ
FLUFQ
FOEOM
FYUFA
GNUQQ
GTFYD
GUQSH
H13
HCIFZ
HMCUK
HTVGU
IPSME
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JXSIZ
KOP
KQ8
KSI
KSN
LK8
LU7
M0K
M1P
M2O
M2P
M2Q
M7P
MV1
MVM
NOMLY
NU-
OBOKY
OJZSN
OK1
OWPYF
P0-
P2P
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
QZG
RHI
ROX
RPB
RWL
RXW
S0X
SA0
TAE
TCN
TN5
TR2
UBC
UKHRP
UKR
W8F
WH7
WHG
WOQ
XOL
XSW
Y6R
YBU
YKV
YNT
YSK
YZZ
ZCA
ZCG
ZCN
~02
~KM
ADXHL
AGORE
AJBYB
PHGZM
AAYXX
CITATION
AHGBF
IQODW
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
PUEGO
7X8
5PM
ID FETCH-LOGICAL-c529t-c3042ae832cb43f88d60f221bd96e62e91ea26c022c8b8edaec3bad01594a74e3
ISSN 0032-0889
1532-2548
IngestDate Thu Aug 21 18:04:43 EDT 2025
Sun Sep 28 02:37:12 EDT 2025
Sun Sep 28 07:24:29 EDT 2025
Mon Jul 21 05:51:51 EDT 2025
Mon Jul 21 09:14:42 EDT 2025
Thu Apr 24 23:00:36 EDT 2025
Tue Jul 01 02:53:57 EDT 2025
Fri Jun 20 02:19:13 EDT 2025
Thu Apr 03 09:44:31 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Grain legume
Leguminosae
Plant physiology
Dicotyledones
Angiospermae
Replication
Spermatophyta
Soybean
Glycine max
Language English
License https://creativecommons.org/licenses/by/4.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c529t-c3042ae832cb43f88d60f221bd96e62e91ea26c022c8b8edaec3bad01594a74e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Open access articles can be viewed online without a subscription.
The online version of this article contains Web-only data.
This work was supported by the National Science Foundation (Plant Genome Research Program grant no. DBI–0321664 to R.W.I., M.A.S.M., N.D.Y., B.A.R., and J.J.D. and Systematics award no. DEB–0516673 to A.N.E.) and by Genoscope/CEA-Centre National de Séquençage (grant to V.G.).
www.plantphysiol.org/cgi/doi/10.1104/pp.108.127910
The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) is: Roger W. Innes (rinnes@indiana.edu).
Present address: Trait Genetics and Technology, Dow AgroSciences LLC, Indianapolis, IN 46268.
Corresponding author; e-mail rinnes@indiana.edu.
OpenAccessLink https://doi.org/10.1104/pp.108.127910
PMID 18952860
PQID 48162884
PQPubID 24069
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2593652
proquest_miscellaneous_69871885
proquest_miscellaneous_48162884
pubmed_primary_18952860
pascalfrancis_primary_20980257
crossref_citationtrail_10_1104_pp_108_127910
crossref_primary_10_1104_pp_108_127910
jstor_primary_40066307
fao_agris_US201301567205
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-12-01
PublicationDateYYYYMMDD 2008-12-01
PublicationDate_xml – month: 12
  year: 2008
  text: 2008-12-01
  day: 01
PublicationDecade 2000
PublicationPlace Rockville, MD
PublicationPlace_xml – name: Rockville, MD
– name: United States
PublicationTitle Plant physiology (Bethesda)
PublicationTitleAlternate Plant Physiol
PublicationYear 2008
Publisher American Society of Plant Biologists
Publisher_xml – name: American Society of Plant Biologists
References (2021041706041730500_b51) 2006; 39
(2021041706041730500_b7) 2002; 12
(2021041706041730500_b48) 2006; 9
(2021041706041730500_b62) 2002; 12
(2021041706041730500_b38) 2003; 94
(2021041706041730500_b24) 2005; 347
(2021041706041730500_b22) 2004; 166
(2021041706041730500_b18) 1998; 23
(2021041706041730500_b25) 2004; 5
(2021041706041730500_b45) 2006; 174
(2021041706041730500_b47) 1987; 6
(2021041706041730500_b8) 1985; 40
(2021041706041730500_b65) 2005; 137
(2021041706041730500_b32) 2003; 19
(2021041706041730500_b26) 2001; 29
(2021041706041730500_b41) 2006; 97
(2021041706041730500_b55) 2006; 103
(2021041706041730500_b57) 2006; 18
(2021041706041730500_b21) 1994; 6
(2021041706041730500_b59) 2007; 8
(2021041706041730500_b10) 1983; 35
(2021041706041730500_b44) 2004; 47
(2021041706041730500_b35) 2005; 37
(2021041706041730500_b36) 2006; 173
(2021041706041730500_b5) 2005; 95
(2021041706041730500_b16) 2006; 174
(2021041706041730500_b46) 1995; 3
(2021041706041730500_b56) 2008; 9
(2021041706041730500_b33) 1950; 36
(2021041706041730500_b52) 2007; 8
(2021041706041730500_b66) 2005; 17
(2021041706041730500_b13) 2008; 25
(2021041706041730500_b23) 1980; 16
(2021041706041730500_b58) 2007; 17
(2021041706041730500_b14) 2006; 174
(2021041706041730500_b61) 1996; 142
(2021041706041730500_b15) 1979; 561
(2021041706041730500_b63) 1990; 9
(2021041706041730500_b29) 2004; 14
(2021041706041730500_b30) 2007; 8
(2021041706041730500_b17) 2008; 148
(2021041706041730500_b42) 2006; 128
(2021041706041730500_b11) 2004; 5
(2021041706041730500_b60) 2001; 98
(2021041706041730500_b34) 2001; 28
(2021041706041730500_b53) 2007; 390
(2021041706041730500_b1) 1997; 25
(2021041706041730500_b27) 2003; 20
(2021041706041730500_b19) 2004; 431
(2021041706041730500_b40) 2003; 19
(2021041706041730500_b12) 1978; 16
(2021041706041730500_b6) 1995; 14
(2021041706041730500_b9) 1992; 4
(2021041706041730500_b50) 1999; 14
(2021041706041730500_b54) 2002; 49
(2021041706041730500_b67) 1996–2008
(2021041706041730500_b4) 2004; 7
(2021041706041730500_b3) 2005; 15
(2021041706041730500_b31) 2000; 17
(2021041706041730500_b39) 2005; 54
(2021041706041730500_b20) 2002; 130
(2021041706041730500_b37) 2002; 416
(2021041706041730500_b2) 2007; 52
(2021041706041730500_b43) 1998; 20
(2021041706041730500_b28) 1998; 95
(2021041706041730500_b64) 2005; 5
References_xml – volume: 6
  start-page: 3873
  year: 1987
  ident: 2021041706041730500_b47
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1987.tb02727.x
– volume: 130
  start-page: 1697
  year: 2002
  ident: 2021041706041730500_b20
  publication-title: Plant Physiol
  doi: 10.1104/pp.015412
– volume: 95
  start-page: 6897
  year: 1998
  ident: 2021041706041730500_b28
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.95.12.6897
– volume: 20
  start-page: 1222
  year: 2003
  ident: 2021041706041730500_b27
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msg142
– volume: 16
  start-page: 45
  year: 1978
  ident: 2021041706041730500_b12
  publication-title: Biochem Genet
  doi: 10.1007/BF00484384
– volume: 390
  start-page: 166
  year: 2007
  ident: 2021041706041730500_b53
  publication-title: Gene
  doi: 10.1016/j.gene.2006.09.009
– volume: 8
  start-page: 973
  year: 2007
  ident: 2021041706041730500_b59
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2165
– volume: 128
  start-page: 439
  year: 2006
  ident: 2021041706041730500_b42
  publication-title: Genetica
  doi: 10.1007/s10709-006-7725-5
– volume: 5
  start-page: 18
  year: 2004
  ident: 2021041706041730500_b11
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-5-18
– volume: 95
  start-page: 127
  year: 2005
  ident: 2021041706041730500_b5
  publication-title: Ann Bot (Lond)
  doi: 10.1093/aob/mci008
– volume: 166
  start-page: 1437
  year: 2004
  ident: 2021041706041730500_b22
  publication-title: Genetics
  doi: 10.1534/genetics.166.3.1437
– volume: 174
  start-page: 1017
  year: 2006
  ident: 2021041706041730500_b45
  publication-title: Genetics
  doi: 10.1534/genetics.105.055020
– volume: 8
  start-page: 427
  year: 2007
  ident: 2021041706041730500_b30
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-8-427
– volume: 17
  start-page: 1040
  year: 2000
  ident: 2021041706041730500_b31
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a026385
– volume: 25
  start-page: 1415
  year: 2008
  ident: 2021041706041730500_b13
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msn085
– volume: 12
  start-page: 1075
  year: 2002
  ident: 2021041706041730500_b7
  publication-title: Genome Res
  doi: 10.1101/gr.132102
– volume: 17
  start-page: 1072
  year: 2007
  ident: 2021041706041730500_b58
  publication-title: Genome Res
  doi: 10.1101/gr.6214107
– volume: 9
  start-page: 3353
  year: 1990
  ident: 2021041706041730500_b63
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1990.tb07536.x
– year: 1996–2008
  ident: 2021041706041730500_b67
– volume: 9
  start-page: 382
  year: 2008
  ident: 2021041706041730500_b56
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-9-382
– volume: 5
  start-page: 150
  year: 2004
  ident: 2021041706041730500_b25
  publication-title: Brief Bioinform
  doi: 10.1093/bib/5.2.150
– volume: 9
  start-page: 104
  year: 2006
  ident: 2021041706041730500_b48
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2006.01.007
– volume: 431
  start-page: 569
  year: 2004
  ident: 2021041706041730500_b19
  publication-title: Nature
  doi: 10.1038/nature02953
– volume: 14
  start-page: 348
  year: 1999
  ident: 2021041706041730500_b50
  publication-title: Trends Ecol Evol
  doi: 10.1016/S0169-5347(99)01638-9
– volume: 18
  start-page: 1791
  year: 2006
  ident: 2021041706041730500_b57
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.041905
– volume: 148
  start-page: 1740
  year: 2008
  ident: 2021041706041730500_b17
  publication-title: Plant Physiol
  doi: 10.1104/pp.108.127902
– volume: 15
  start-page: 621
  year: 2005
  ident: 2021041706041730500_b3
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/j.gde.2005.09.010
– volume: 416
  start-page: 103
  year: 2002
  ident: 2021041706041730500_b37
  publication-title: Nature
  doi: 10.1038/nature722
– volume: 3
  start-page: 335
  year: 1995
  ident: 2021041706041730500_b46
  publication-title: Chromosome Res
  doi: 10.1007/BF00710014
– volume: 174
  start-page: 1493
  year: 2006
  ident: 2021041706041730500_b14
  publication-title: Genetics
  doi: 10.1534/genetics.106.060756
– volume: 137
  start-page: 1174
  year: 2005
  ident: 2021041706041730500_b65
  publication-title: Plant Physiol
  doi: 10.1104/pp.104.057034
– volume: 49
  start-page: 1
  year: 2002
  ident: 2021041706041730500_b54
  publication-title: Plant Mol Biol
  doi: 10.1023/A:1014469830680
– volume: 54
  start-page: 441
  year: 2005
  ident: 2021041706041730500_b39
  publication-title: Syst Biol
  doi: 10.1080/10635150590945359
– volume: 40
  start-page: 1
  year: 1985
  ident: 2021041706041730500_b8
  publication-title: Gene
– volume: 20
  start-page: 43
  year: 1998
  ident: 2021041706041730500_b43
  publication-title: Nat Genet
  doi: 10.1038/1695
– volume: 7
  start-page: 732
  year: 2004
  ident: 2021041706041730500_b4
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2004.09.003
– volume: 19
  start-page: 362
  year: 2003
  ident: 2021041706041730500_b32
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btf878
– volume: 14
  start-page: 2670
  year: 1995
  ident: 2021041706041730500_b6
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1995.tb07265.x
– volume: 4
  start-page: 430
  year: 1992
  ident: 2021041706041730500_b9
  publication-title: New Biol
– volume: 8
  start-page: 132
  year: 2007
  ident: 2021041706041730500_b52
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-8-132
– volume: 347
  start-page: 161
  year: 2005
  ident: 2021041706041730500_b24
  publication-title: Gene
  doi: 10.1016/j.gene.2004.12.017
– volume: 28
  start-page: 159
  year: 2001
  ident: 2021041706041730500_b34
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.2001.01141.x
– volume: 103
  start-page: 17638
  year: 2006
  ident: 2021041706041730500_b55
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0605618103
– volume: 35
  start-page: 235
  year: 1983
  ident: 2021041706041730500_b10
  publication-title: Cell
  doi: 10.1016/0092-8674(83)90226-X
– volume: 98
  start-page: 13778
  year: 2001
  ident: 2021041706041730500_b60
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.241341898
– volume: 5
  start-page: 30
  year: 2005
  ident: 2021041706041730500_b64
  publication-title: BMC Evol Biol
  doi: 10.1186/1471-2148-5-30
– volume: 29
  start-page: 4633
  year: 2001
  ident: 2021041706041730500_b26
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/29.22.4633
– volume: 12
  start-page: 122
  year: 2002
  ident: 2021041706041730500_b62
  publication-title: Genome Res
  doi: 10.1101/gr.196001
– volume: 17
  start-page: 2619
  year: 2005
  ident: 2021041706041730500_b66
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.033506
– volume: 52
  start-page: 342
  year: 2007
  ident: 2021041706041730500_b2
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2007.03242.x
– volume: 6
  start-page: 1177
  year: 1994
  ident: 2021041706041730500_b21
  publication-title: Plant Cell
– volume: 94
  start-page: 260
  year: 2003
  ident: 2021041706041730500_b38
  publication-title: J Hered
  doi: 10.1093/jhered/esg053
– volume: 47
  start-page: 868
  year: 2004
  ident: 2021041706041730500_b44
  publication-title: Genome
  doi: 10.1139/g04-047
– volume: 37
  start-page: 997
  year: 2005
  ident: 2021041706041730500_b35
  publication-title: Nat Genet
  doi: 10.1038/ng1615
– volume: 39
  start-page: 580
  year: 2006
  ident: 2021041706041730500_b51
  publication-title: Mol Phylogenet Evol
  doi: 10.1016/j.ympev.2005.11.018
– volume: 173
  start-page: 1047
  year: 2006
  ident: 2021041706041730500_b36
  publication-title: Genetics
  doi: 10.1534/genetics.106.056259
– volume: 174
  start-page: 2215
  year: 2006
  ident: 2021041706041730500_b16
  publication-title: Genetics
  doi: 10.1534/genetics.106.062752
– volume: 142
  start-page: 569
  year: 1996
  ident: 2021041706041730500_b61
  publication-title: Genetics
  doi: 10.1093/genetics/142.2.569
– volume: 25
  start-page: 3389
  year: 1997
  ident: 2021041706041730500_b1
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/25.17.3389
– volume: 36
  start-page: 344
  year: 1950
  ident: 2021041706041730500_b33
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.36.6.344
– volume: 19
  start-page: 1572
  year: 2003
  ident: 2021041706041730500_b40
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg180
– volume: 561
  start-page: 167
  year: 1979
  ident: 2021041706041730500_b15
  publication-title: Biochim Biophys Acta
  doi: 10.1016/0005-2787(79)90500-8
– volume: 16
  start-page: 111
  year: 1980
  ident: 2021041706041730500_b23
  publication-title: J Mol Evol
  doi: 10.1007/BF01731581
– volume: 14
  start-page: 860
  year: 2004
  ident: 2021041706041730500_b29
  publication-title: Genome Res
  doi: 10.1101/gr.1466204
– volume: 23
  start-page: 403
  year: 1998
  ident: 2021041706041730500_b18
  publication-title: Trends Biochem Sci
  doi: 10.1016/S0968-0004(98)01285-7
– volume: 97
  start-page: 381
  year: 2006
  ident: 2021041706041730500_b41
  publication-title: Heredity
SSID ssj0001314
Score 2.1276608
Snippet Retrotransposons and their remnants often constitute more than 50% of higher plant genomes. Although extensively studied in monocot crops such as maize (Zea...
Retrotransposons and their remnants often constitute more than 50% of higher plant genomes. Although extensively studied in monocot crops such as maize ( Zea...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1760
SubjectTerms Base Sequence
beans
Biological and medical sciences
chemistry
Corn
crops
DNA, Plant
DNA, Plant - chemistry
Evolution
Evolution, Molecular
Fundamental and applied biological sciences. Psychology
Gene Deletion
genetics
Genome Analysis
Genome, Plant
Genomes
Genomics
Genomics - methods
Glycine max
Glycine max - genetics
Glycine tomentella
homologous recombination
Long Interspersed Nucleotide Elements
methods
Methylation
Mutagenesis, Insertional
mutation
Neonotonia wightii
Oryza sativa
Phaseolus
Phaseolus - genetics
Phaseolus vulgaris
Phylogeny
Plant physiology and development
planting date
Plants
Retroelements
Retrotransposons
Rice
Sequence Alignment
Sequence Analysis, DNA
Soybeans
Terminal Repeat Sequences
Transposons
wild relatives
Zea mays
Title Replication of Nonautonomous Retroelements in Soybean Appears to Be Both Recent and Common
URI https://www.jstor.org/stable/40066307
https://www.ncbi.nlm.nih.gov/pubmed/18952860
https://www.proquest.com/docview/48162884
https://www.proquest.com/docview/69871885
https://pubmed.ncbi.nlm.nih.gov/PMC2593652
Volume 148
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db5swFLWSdg97mfbVNfvI_DDtpSMDxxjz2FTduk2rpjZRo70gg01baYEoIZva_7H_u2sMDnSp1O0FIeMA4Rzscy_X9yL0xk9jIbyAOcRjiUOlx51Y7w0Vk1wGMUvKlPlfj9nRhH6e-tNO53cjamlVxIPkeuO6kv9BFdoAV71K9h-QtSeFBtgHfGELCMP2ThiDeq59bqXlD6p6VehVCjqu9UQVi1yZ6PAy6PU0v4q13x2EJ9C7zOwwUnsjgEqLxzrWXK8YqaCqNKuua1QYF4hJ2ASidKTXCS-laDgSzsSvxfVVXQd7X4qZJdPywlbCHue2-aBaGFKSUSz3zgYfB2sH-WwmZP7TBPKmYtHyTvBGpEc9oBIHjFAzxqoNbfUoTHmDbrQxpgKT3Mb87AWmZsvfY79LdcHiuQ6bHHgkCKt42VaO7Rtzn41ILG0hl0bzuU6ZGpmfd9E2CUCSaa396Yud4L1hmTLe_g2bupW-b129JXW6qcjrmFcdgCuW8A6mpnjKJuvmZpBuQ_WMH6IHlbmC9w33HqGOyh6je8AZmEOeoO8NAuI8xS0C4hYB8WWGKwLiioC4yPFIYU1AbAiIgYDYEPApmnw4HB8cOVWxDifxSVg4ifaLCQUTRBLTYcq5ZG5KiBfLkClGVOgpQVgCkjHhMVdSqGQYCwlqNKQioGq4g7ayPFO7CA-JhFOQRPq-ooKnPJW-q8DyACnLYqV66F39XKOkymSvC6r8iDai2ENvbfe5SeFyW8ddACkS5zC9RpNToj_qez4LiOv30E6JnD0BLbW6G_RQvwWl7UDckIM9AR1e19hGMHLrz3EiU4BCRLmna33T23uwkIN05HD1Z4YL6_vnoU84g1sOWiyxHXTW-PaR7PKizB5PdA1Pnzy_61N5ge6vX-yXaKtYrNQrEOJF3EfdYBr00fbo8PjbSb98Sf4A3yjeEQ
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Replication+of+Nonautonomous+Retroelements+in+Soybean+Appears+to+Be+Both+Recent+and+Common&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Wawrzynski%2C+Adam&rft.au=Ashfield%2C+Tom&rft.au=Chen%2C+Nicolas+W.G.&rft.au=Mammadov%2C+Jafar&rft.date=2008-12-01&rft.issn=1532-2548&rft.eissn=1532-2548&rft.volume=148&rft.issue=4&rft.spage=1760&rft.epage=1771&rft_id=info:doi/10.1104%2Fpp.108.127910&rft.externalDBID=n%2Fa&rft.externalDocID=10_1104_pp_108_127910
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon