Common microscopic origin of the phase transitions in Ta2NiS5 and the excitonic insulator candidate Ta2NiSe5
The structural phase transition in Ta 2 NiSe 5 has been envisioned as driven by the formation of an excitonic insulating phase. However, the role of structural and electronic instabilities on crystal symmetry breaking has yet to be disentangled. Meanwhile, the phase transition in its complementary m...
Saved in:
Published in | npj computational materials Vol. 7; no. 1; pp. 1 - 14 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
20.12.2021
Nature Publishing Group Springer Nature Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2057-3960 2057-3960 |
DOI | 10.1038/s41524-021-00675-6 |
Cover
Abstract | The structural phase transition in Ta
2
NiSe
5
has been envisioned as driven by the formation of an excitonic insulating phase. However, the role of structural and electronic instabilities on crystal symmetry breaking has yet to be disentangled. Meanwhile, the phase transition in its complementary material Ta
2
NiS
5
does not show any experimental hints of an excitonic insulating phase. We present a microscopic investigation of the electronic and phononic effects involved in the structural phase transition in Ta
2
NiSe
5
and Ta
2
NiS
5
using extensive first-principles calculations. In both materials the crystal symmetries are broken by phonon instabilities, which in turn lead to changes in the electronic bandstructure also observed in the experiment. A total energy landscape analysis shows no tendency towards a purely electronic instability and we find that a sizeable lattice distortion is needed to open a bandgap. We conclude that an excitonic instability is not needed to explain the phase transition in both Ta
2
NiSe
5
and Ta
2
NiS
5
. |
---|---|
AbstractList | Abstract The structural phase transition in Ta2NiSe5 has been envisioned as driven by the formation of an excitonic insulating phase. However, the role of structural and electronic instabilities on crystal symmetry breaking has yet to be disentangled. Meanwhile, the phase transition in its complementary material Ta2NiS5 does not show any experimental hints of an excitonic insulating phase. We present a microscopic investigation of the electronic and phononic effects involved in the structural phase transition in Ta2NiSe5 and Ta2NiS5 using extensive first-principles calculations. In both materials the crystal symmetries are broken by phonon instabilities, which in turn lead to changes in the electronic bandstructure also observed in the experiment. A total energy landscape analysis shows no tendency towards a purely electronic instability and we find that a sizeable lattice distortion is needed to open a bandgap. We conclude that an excitonic instability is not needed to explain the phase transition in both Ta2NiSe5 and Ta2NiS5. The structural phase transition in Ta 2 NiSe 5 has been envisioned as driven by the formation of an excitonic insulating phase. However, the role of structural and electronic instabilities on crystal symmetry breaking has yet to be disentangled. Meanwhile, the phase transition in its complementary material Ta 2 NiS 5 does not show any experimental hints of an excitonic insulating phase. We present a microscopic investigation of the electronic and phononic effects involved in the structural phase transition in Ta 2 NiSe 5 and Ta 2 NiS 5 using extensive first-principles calculations. In both materials the crystal symmetries are broken by phonon instabilities, which in turn lead to changes in the electronic bandstructure also observed in the experiment. A total energy landscape analysis shows no tendency towards a purely electronic instability and we find that a sizeable lattice distortion is needed to open a bandgap. We conclude that an excitonic instability is not needed to explain the phase transition in both Ta 2 NiSe 5 and Ta 2 NiS 5 . The structural phase transition in Ta2NiSe5 has been envisioned as driven by the formation of an excitonic insulating phase. However, the role of structural and electronic instabilities on crystal symmetry breaking has yet to be disentangled. Meanwhile, the phase transition in its complementary material Ta2NiS5 does not show any experimental hints of an excitonic insulating phase. We present a microscopic investigation of the electronic and phononic effects involved in the structural phase transition in Ta2NiSe5 and Ta2NiS5 using extensive first-principles calculations. In both materials the crystal symmetries are broken by phonon instabilities, which in turn lead to changes in the electronic bandstructure also observed in the experiment. A total energy landscape analysis shows no tendency towards a purely electronic instability and we find that a sizeable lattice distortion is needed to open a bandgap. We conclude that an excitonic instability is not needed to explain the phase transition in both Ta2NiSe5 and Ta2NiS5. The structural phase transition in Ta 2 NiSe 5 has been envisioned as driven by the formation of an excitonic insulating phase. However, the role of structural and electronic instabilities on crystal symmetry breaking has yet to be disentangled. Meanwhile, the phase transition in its complementary material Ta 2 NiS 5 does not show any experimental hints of an excitonic insulating phase. We present a microscopic investigation of the electronic and phononic effects involved in the structural phase transition in Ta 2 NiSe 5 and Ta 2 NiS 5 using extensive first-principles calculations. In both materials the crystal symmetries are broken by phonon instabilities, which in turn lead to changes in the electronic bandstructure also observed in the experiment. A total energy landscape analysis shows no tendency towards a purely electronic instability and we find that a sizeable lattice distortion is needed to open a bandgap. We conclude that an excitonic instability is not needed to explain the phase transition in both Ta 2 NiSe 5 and Ta 2 NiS 5 . |
ArticleNumber | 210 |
Author | Georges, Antoine Windgätter, Lukas Mazza, Giacomo Millis, Andrew J. Latini, Simone Rubio, Angel Rösner, Malte Hübener, Hannes |
Author_xml | – sequence: 1 givenname: Lukas surname: Windgätter fullname: Windgätter, Lukas email: lukas.windgaetter@mpsd.mpg.de organization: Max Planck Institute for the Structure and Dynamics of Matter – sequence: 2 givenname: Malte orcidid: 0000-0002-6199-2176 surname: Rösner fullname: Rösner, Malte organization: Radboud University, Institute for Molecules and Materials – sequence: 3 givenname: Giacomo surname: Mazza fullname: Mazza, Giacomo organization: Department of Quantum Matter Physics, University of Geneva – sequence: 4 givenname: Hannes surname: Hübener fullname: Hübener, Hannes organization: Max Planck Institute for the Structure and Dynamics of Matter – sequence: 5 givenname: Antoine surname: Georges fullname: Georges, Antoine organization: Department of Quantum Matter Physics, University of Geneva, Collège de France, Center for Computational Quantum Physics, Flatiron Institute, CPHT, CNRS, Ecole Polytechnique, IP Paris – sequence: 6 givenname: Andrew J. surname: Millis fullname: Millis, Andrew J. organization: CPHT, CNRS, Ecole Polytechnique, IP Paris, Department of Physics, Columbia University – sequence: 7 givenname: Simone orcidid: 0000-0001-9553-5259 surname: Latini fullname: Latini, Simone email: simone.latini@mpsd.mpg.de organization: Max Planck Institute for the Structure and Dynamics of Matter – sequence: 8 givenname: Angel orcidid: 0000-0003-2060-3151 surname: Rubio fullname: Rubio, Angel email: angel.rubio@mpsd.mpg.de organization: Max Planck Institute for the Structure and Dynamics of Matter, CPHT, CNRS, Ecole Polytechnique, IP Paris, Nano-Bio Spectroscopy Group, Departamento de Física de Materiales, Universidad del País Vasco |
BackLink | https://hal.science/hal-04272231$$DView record in HAL |
BookMark | eNqNUU2P0zAQjdAisSz7BzhF4sQh4PF3jqsK2JUqOLCcranjtK5SO9gpsP8ep6n4Oqw42Zp5783Me8-rixCDq6qXQN4AYfpt5iAobwiFhhCpRCOfVJeUCNWwVpKLP_7Pquuc94QQaKmmnFxWwyoeDjHUB29TzDaO3tYx-a0PdezraefqcYfZ1VPCkP3kY8h16d0j_eg_ixpDdwK5H9ZPMRSyD_k44BRTbUvTdzi5M9qJF9XTHofsrs_vVfXl_bv71W2z_vThbnWzbqyg7dRsHCgLjimiqNJ6w3vBieICwSrNmRBSIu2ZdT0FWU7pJQK0QHjXs5Yyzq6qu0W3i7g3Y_IHTA8mojenQkxbg2nydnCGa911VIoNWsedQg2tAERCtWgJdlC02KJ1DCM-fMdh-CUIxMz-m8V_U_w3J_-NLKzXC2uHw18L3N6szVwjnCpKGXybJ7xasGOKX48uT2YfjykUgwyVAJpSIKKg6IKac8rJ9f-3hv6HVGLCOcWSpx8ep57vzmVO2Lr0e6tHWD8BZqrDow |
CitedBy_id | crossref_primary_10_1103_PhysRevB_106_L121106 crossref_primary_10_1103_PhysRevB_110_115104 crossref_primary_10_1103_PhysRevLett_130_106904 crossref_primary_10_1038_s41467_023_42567_x crossref_primary_10_1088_2053_1583_acb1c3 crossref_primary_10_1007_s11433_024_2480_4 crossref_primary_10_1126_sciadv_abl9020 crossref_primary_10_1021_acsami_2c17495 crossref_primary_10_1103_PhysRevB_107_115121 crossref_primary_10_3390_nano13243098 crossref_primary_10_1103_PhysRevB_107_235147 crossref_primary_10_1038_s41563_023_01755_2 crossref_primary_10_1016_j_progsurf_2022_100679 crossref_primary_10_1103_PhysRevB_111_L121106 crossref_primary_10_1103_PhysRevB_107_115117 crossref_primary_10_1038_s41567_023_02349_0 crossref_primary_10_1016_j_matchar_2024_114062 crossref_primary_10_1021_acsnano_4c02784 crossref_primary_10_1002_adom_202403463 crossref_primary_10_1063_5_0231169 crossref_primary_10_1103_PhysRevB_105_165125 crossref_primary_10_1103_PhysRevB_110_035120 crossref_primary_10_1103_PhysRevX_14_011046 crossref_primary_10_1038_s41467_023_36667_x crossref_primary_10_1002_advs_202300413 crossref_primary_10_1103_PhysRevB_108_L241107 crossref_primary_10_1103_PhysRevLett_131_256503 |
Cites_doi | 10.1021/acsnano.7b04860 10.1038/s41586-021-03947-9 10.1103/PhysRevB.18.768 10.1021/ic00216a027 10.1103/PhysRevB.34.5390 10.1103/PhysRevLett.121.126601 10.1016/0927-0256(96)00008-0 10.1016/j.scriptamat.2015.07.021 10.1103/PhysRevB.104.045102 10.1103/PhysRevB.59.1758 10.1103/PhysRevLett.121.226603 10.1103/PhysRevLett.120.247602 10.1103/PhysRevB.54.11169 10.1038/s41535-021-00351-4 10.1103/PhysRevB.101.235148 10.1021/acs.nanolett.9b01123 10.1088/1742-6596/400/3/032035 10.1103/PhysRevB.98.045139 10.1103/PhysRevLett.99.146403 10.1063/1.1564060 10.1088/0953-8984/6/40/015 10.1103/PhysRevMaterials.4.083601 10.1103/PhysRevB.99.075408 10.1103/PhysRevLett.124.197601 10.1103/PhysRevLett.103.026402 10.1103/PhysRevLett.102.226401 10.1038/s41467-017-01988-1 10.1103/PhysRevB.69.205204 10.1016/0022-5088(86)90216-X 10.1103/PhysRev.158.462 10.1073/pnas.2010110118 10.1103/PhysRevLett.55.1418 10.1107/S2052252517018334 10.1103/PhysRevB.47.558 10.1103/RevModPhys.40.755 10.1038/s41467-021-22133-z 10.1103/RevModPhys.74.601 10.1103/PhysRevLett.19.439 10.1103/PhysRevB.90.155116 10.1039/C8TC00149A 10.1103/PhysRevLett.110.146803 10.1038/nphys4140 10.1126/science.aam6432 10.1080/14786436108243318 10.1103/PhysRev.139.A796 10.1038/s41467-017-01660-8 10.1103/PhysRevB.95.195144 10.1103/PhysRev.84.1232 10.1103/PhysRevB.92.045209 10.1103/PhysRevLett.96.226402 10.1063/1.2213970 10.1103/PhysRevLett.67.2717 10.1103/PhysRevB.83.195131 10.1103/PhysRevB.87.035121 10.1103/PhysRevA.39.3761 10.1016/j.cpc.2014.05.003 10.1103/PhysRevLett.77.3865 10.1038/s41565-020-0650-4 10.1103/PhysRevResearch.2.013236 10.1038/s41467-020-16737-0 10.1088/0953-8984/22/2/022201 10.1103/PhysRevResearch.2.042039 10.1038/ncomms14408 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. KB. LK8 M0S M7P PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 1XC ADTOC UNPAY DOA |
DOI | 10.1038/s41524-021-00675-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Biological Science Collection ProQuest Health & Medical Collection Biological Science Database (ProQuest) Materials Science Collection Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Hyper Article en Ligne (HAL) Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (Selected full-text) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 2057-3960 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_488dd265bace4e7a81951aa028590ad1 10.1038/s41524-021-00675-6 oai_HAL_hal_04272231v1 10_1038_s41524_021_00675_6 |
GrantInformation_xml | – fundername: Simons Foundation funderid: https://doi.org/10.13039/100000893 – fundername: Flatiron Institute, Center for Computational Quantum Physics 162 5th Ave. New York, NY 10010 – fundername: Alexander von Humboldt-Stiftung (Alexander von Humboldt Foundation) funderid: https://doi.org/10.13039/100005156 – fundername: Deutsche Forschungsgemeinschaft (German Research Foundation) grantid: SFB 925 - project 170620586; EXC 2056 - 390715994 funderid: https://doi.org/10.13039/501100001659 – fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation) grantid: Ambitione Grant funderid: https://doi.org/10.13039/501100001711 – fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council) grantid: ERC-2015-AdG-694097 funderid: https://doi.org/10.13039/100010663 |
GroupedDBID | 0R~ 3V. 5VS 7X7 8FE 8FG 8FH 8FI 8FJ AAJSJ ABJCF ABUWG ACGFS ACSMW ADBBV ADMLS AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS ARCSS BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU D1I EBLON EBS FYUFA GROUPED_DOAJ HCIFZ HMCUK KB. KQ8 LK8 M7P M~E NAO NO~ OK1 PDBOC PIMPY PQQKQ PROAC RNT SNYQT UKHRP AASML AAYXX CITATION PUEGO 7XB 8FK AARCD AZQEC DWQXO GNUQQ K9. PHGZM PHGZT PKEHL PQEST PQGLB PQUKI PRINS 1XC EJD ADTOC UNPAY |
ID | FETCH-LOGICAL-c529t-be17c1e37072788b4f540745a1c78435566a2f3cef216019f6a119104df392343 |
IEDL.DBID | DOA |
ISSN | 2057-3960 |
IngestDate | Wed Aug 27 01:30:15 EDT 2025 Tue Aug 19 09:05:14 EDT 2025 Fri Sep 12 12:40:10 EDT 2025 Wed Aug 13 09:13:45 EDT 2025 Thu Apr 24 22:58:06 EDT 2025 Wed Oct 01 02:23:58 EDT 2025 Fri Feb 21 02:40:22 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c529t-be17c1e37072788b4f540745a1c78435566a2f3cef216019f6a119104df392343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6199-2176 0000-0003-2060-3151 0000-0001-9553-5259 |
OpenAccessLink | https://doaj.org/article/488dd265bace4e7a81951aa028590ad1 |
PQID | 2611822105 |
PQPubID | 2041924 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_488dd265bace4e7a81951aa028590ad1 unpaywall_primary_10_1038_s41524_021_00675_6 hal_primary_oai_HAL_hal_04272231v1 proquest_journals_2611822105 crossref_primary_10_1038_s41524_021_00675_6 crossref_citationtrail_10_1038_s41524_021_00675_6 springer_journals_10_1038_s41524_021_00675_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-20 |
PublicationDateYYYYMMDD | 2021-12-20 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | npj computational materials |
PublicationTitleAbbrev | npj Comput Mater |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Springer Nature Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Springer Nature – name: Nature Portfolio |
References | Keldysh, Kozlov (CR4) 1968; 27 Tang (CR25) 2020; 101 Sugimoto, Nishimoto, Kaneko, Ohta (CR44) 2018; 120 Spataru, Benedict, Louie (CR54) 2004; 69 Kaneko, Toriyama, Konishi, Ohta (CR21) 2013; 87 Perali, Neilson, Hamilton (CR17) 2013; 110 CR38 Tran, Blaha (CR40) 2009; 102 Becke, Johnson (CR41) 2006; 124 Hedin (CR51) 1965; 139 Becke, Roussel (CR42) 1989; 39 Du (CR19) 2017; 8 Beni, Rice (CR55) 1978; 18 Jérome, Rice, Kohn (CR2) 1967; 158 Hybertsen, Louie (CR50) 1986; 34 Larkin (CR46) 2017; 95 Kozlov (CR6) 1965; 21 Kohn (CR1) 1967; 19 Di Salvo (CR31) 1986; 116 Sunshine, Ibers (CR32) 1985; 24 Wakisaka (CR22) 2009; 103 Zhou, Hellman, Bernardi (CR61) 2018; 121 Hybertsen, Louie (CR49) 1985; 55 Kresse, Hafner (CR62) 1993; 47 Mazza (CR35) 2020; 124 Salpeter, Bethe (CR52) 1951; 84 Watson (CR24) 2020; 2 Hu, Venderbos, Kane (CR18) 2018; 121 Kresse, Joubert (CR69) 1999; 59 Sander, Maggio, Kresse (CR53) 2015; 92 Kresse, Furthmüller (CR63) 1996; 54 Ataei, Varsano, Molinari, Rontani (CR20) 2021; 118 CR59 Li (CR15) 2019; 19 Nakano (CR30) 2018; 98 Onida, Reining, Rubio (CR48) 2002; 74 CR11 Kogar (CR8) 2017; 358 Subedi (CR36) 2020; 4 Halperin, Rice (CR5) 1968; 40 Cercellier (CR7) 2007; 99 Volkov (CR58) 2021; 6 Li, Taniguchi, Watanabe, Hone, Dean (CR16) 2017; 13 Ye (CR33) 2021; 104 Mostofi (CR68) 2014; 185 Kresse, Furthmüller (CR64) 1996; 6 Kaneko, Toriyama, Konishi, Ohta (CR29) 2012; 400 Mott (CR3) 1961; 6 Lee (CR27) 2019; 99 Li (CR45) 2017; 11 Bucher, Steiner, Wachter (CR9) 1991; 67 Varsano, Palummo, Molinari, Rontani (CR12) 2020; 15 Perdew, Burke, Ernzerhof (CR39) 1996; 77 Nakano (CR57) 2018; 5 Gupta, Kutana, Yakobson (CR13) 2020; 11 CR28 Klimeš, Bowler, Michaelides (CR37) 2011; 83 CR26 van Schilfgaarde, Kotani, Faleev (CR47) 2006; 96 Seki (CR23) 2014; 90 Heyd, Scuseria, Ernzerhof (CR43) 2003; 118 CR60 Kresse, Hafner (CR65) 1994; 6 Kresse, Joubert (CR66) 1999; 59 Varsano (CR14) 2017; 8 Kim (CR56) 2021; 12 Togo, Tanaka (CR67) 2015; 108 Ma (CR10) 2021; 598 Mu (CR34) 2018; 6 675_CR28 T Kaneko (675_CR29) 2012; 400 PA Volkov (675_CR58) 2021; 6 G Kresse (675_CR66) 1999; 59 A Kozlov (675_CR6) 1965; 21 L Du (675_CR19) 2017; 8 AA Mostofi (675_CR68) 2014; 185 Y Wakisaka (675_CR22) 2009; 103 G Beni (675_CR55) 1978; 18 LV Keldysh (675_CR4) 1968; 27 MD Watson (675_CR24) 2020; 2 B Bucher (675_CR9) 1991; 67 D Varsano (675_CR14) 2017; 8 H Cercellier (675_CR7) 2007; 99 G Kresse (675_CR63) 1996; 54 A Kogar (675_CR8) 2017; 358 F Di Salvo (675_CR31) 1986; 116 BI Halperin (675_CR5) 1968; 40 675_CR38 K Mu (675_CR34) 2018; 6 AD Becke (675_CR41) 2006; 124 J Heyd (675_CR43) 2003; 118 D Jérome (675_CR2) 1967; 158 M Ye (675_CR33) 2021; 104 Jcv Klimeš (675_CR37) 2011; 83 K Sugimoto (675_CR44) 2018; 120 G Onida (675_CR48) 2002; 74 JP Perdew (675_CR39) 1996; 77 NF Mott (675_CR3) 1961; 6 A Togo (675_CR67) 2015; 108 T Kaneko (675_CR21) 2013; 87 G Kresse (675_CR62) 1993; 47 SS Ataei (675_CR20) 2021; 118 F Tran (675_CR40) 2009; 102 MS Hybertsen (675_CR49) 1985; 55 CD Spataru (675_CR54) 2004; 69 T Sander (675_CR53) 2015; 92 G Kresse (675_CR64) 1996; 6 TI Larkin (675_CR46) 2017; 95 K Kim (675_CR56) 2021; 12 L Li (675_CR45) 2017; 11 A Nakano (675_CR57) 2018; 5 G Kresse (675_CR65) 1994; 6 A Nakano (675_CR30) 2018; 98 J Lee (675_CR27) 2019; 99 675_CR11 T Tang (675_CR25) 2020; 101 G Mazza (675_CR35) 2020; 124 675_CR59 A Subedi (675_CR36) 2020; 4 EE Salpeter (675_CR52) 1951; 84 K Seki (675_CR23) 2014; 90 SA Sunshine (675_CR32) 1985; 24 L Hedin (675_CR51) 1965; 139 AD Becke (675_CR42) 1989; 39 L Ma (675_CR10) 2021; 598 Z Li (675_CR15) 2019; 19 W Kohn (675_CR1) 1967; 19 JIA Li (675_CR16) 2017; 13 D Varsano (675_CR12) 2020; 15 Y Hu (675_CR18) 2018; 121 675_CR60 S Gupta (675_CR13) 2020; 11 A Perali (675_CR17) 2013; 110 M van Schilfgaarde (675_CR47) 2006; 96 J-J Zhou (675_CR61) 2018; 121 G Kresse (675_CR69) 1999; 59 675_CR26 MS Hybertsen (675_CR50) 1986; 34 |
References_xml | – volume: 11 start-page: 10264 year: 2017 end-page: 10272 ident: CR45 article-title: Strong in-plane anisotropies of optical and electrical response in layered dimetal chalcogenide publication-title: ACS Nano doi: 10.1021/acsnano.7b04860 – volume: 598 start-page: 585 year: 2021 end-page: 589 ident: CR10 article-title: Strongly correlated excitonic insulator in atomic double layers publication-title: Nature doi: 10.1038/s41586-021-03947-9 – volume: 18 start-page: 768 year: 1978 end-page: 785 ident: CR55 article-title: Theory of electron-hole liquid in semiconductors publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.18.768 – volume: 24 start-page: 3611 year: 1985 end-page: 3614 ident: CR32 article-title: Structure and physical properties of the new layered ternary chalcogenides tantalum nickel sulfide (Ta NiS ) and tantalum nickel selenide (Ta NiSe ) publication-title: Inorg. Chem. doi: 10.1021/ic00216a027 – volume: 34 start-page: 5390 year: 1986 end-page: 5413 ident: CR50 article-title: Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.34.5390 – volume: 121 start-page: 126601 year: 2018 ident: CR18 article-title: Fractional excitonic insulator publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.126601 – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: CR64 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comp. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 108 start-page: 1 year: 2015 end-page: 5 ident: CR67 article-title: First principles phonon calculations in materials science publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2015.07.021 – volume: 104 start-page: 045102 year: 2021 ident: CR33 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.045102 – volume: 59 start-page: 1758 year: 1999 end-page: 1775 ident: CR69 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 121 start-page: 226603 year: 2018 ident: CR61 article-title: Electron-phonon scattering in the presence of soft modes and electron mobility in SrTiO perovskite from first principles publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.226603 – volume: 120 start-page: 247602 year: 2018 ident: CR44 article-title: Strong coupling nature of the excitonic insulator state in Ta NiSe publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.247602 – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: CR63 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 6 year: 2021 ident: CR58 article-title: Critical charge fluctuations and emergent coherence in a strongly correlated excitonic insulator publication-title: NPJ Quantum Mater. doi: 10.1038/s41535-021-00351-4 – volume: 101 start-page: 235148 year: 2020 ident: CR25 article-title: Non-coulomb strong electron-hole binding in Ta NiSe revealed by time- and angle-resolved photoemission spectroscopy publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.235148 – volume: 19 start-page: 4960 year: 2019 end-page: 4964 ident: CR15 article-title: Possible excitonic insulating phase in quantum-confined sb nanoflakes publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b01123 – volume: 400 start-page: 032035 year: 2012 ident: CR29 article-title: Electronic structure of Ta NiSe as a candidate for excitonic insulators publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/400/3/032035 – volume: 98 start-page: 045139 year: 2018 ident: CR30 article-title: Antiferroelectric distortion with anomalous phonon softening in the excitonic insulator Ta NiSe publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.045139 – volume: 99 start-page: 146403 year: 2007 ident: CR7 article-title: Evidence for an excitonic insulator phase in 1 − TiSe publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.146403 – volume: 118 start-page: 8207 year: 2003 end-page: 8215 ident: CR43 article-title: Hybrid functionals based on a screened coulomb potential publication-title: J. Chem. Phys. doi: 10.1063/1.1564060 – volume: 6 start-page: 8245 year: 1994 end-page: 8257 ident: CR65 article-title: Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/6/40/015 – volume: 4 start-page: 083601 year: 2020 ident: CR36 article-title: Orthorhombic-to-monoclinic transition in Ta NiSe due to a zone-center optical phonon instability publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.4.083601 – volume: 99 start-page: 075408 year: 2019 ident: CR27 article-title: Strong interband interaction in the excitonic insulator phase of Ta NiSe publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.075408 – volume: 124 start-page: 197601 year: 2020 ident: CR35 article-title: Nature of symmetry breaking at the excitonic insulator transition: Ta NiSe publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.197601 – volume: 59 start-page: 1758 year: 1999 end-page: 1775 ident: CR66 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 27 start-page: 978 year: 1968 ident: CR4 article-title: Collective properties of excitons in semiconductors publication-title: Sov. Phys. JETP – volume: 103 start-page: 026402 year: 2009 ident: CR22 article-title: Excitonic insulator state in Ta NiSe probed by photoemission spectroscopy publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.026402 – volume: 102 start-page: 226401 year: 2009 ident: CR40 article-title: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.226401 – ident: CR11 – ident: CR60 – volume: 21 start-page: 790 year: 1965 ident: CR6 article-title: The metal-dielectric divalent crystal phase transition publication-title: Sov. Phys. JETP – volume: 8 year: 2017 ident: CR19 article-title: Evidence for a topological excitonic insulator in inas/gasb bilayers publication-title: Nat. Commun. doi: 10.1038/s41467-017-01988-1 – volume: 69 start-page: 205204 year: 2004 ident: CR54 article-title: Ab initio calculation of band-gap renormalization in highly excited gaas publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.69.205204 – volume: 116 start-page: 51 year: 1986 end-page: 61 ident: CR31 article-title: Physical and structural properties of the new layered compounds Ta NiS and Ta NiSe publication-title: J. Less Common Met. doi: 10.1016/0022-5088(86)90216-X – volume: 158 start-page: 462 year: 1967 end-page: 475 ident: CR2 article-title: Excitonic insulator publication-title: Phys. Rev. doi: 10.1103/PhysRev.158.462 – volume: 118 start-page: e2010110118 year: 2021 ident: CR20 article-title: Evidence of ideal excitonic insulator in bulk mos(2) under pressure publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2010110118 – ident: CR26 – volume: 55 start-page: 1418 year: 1985 end-page: 1421 ident: CR49 article-title: First-principles theory of quasiparticles: calculation of band gaps in semiconductors and insulators publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.55.1418 – volume: 5 start-page: 158 year: 2018 end-page: 165 ident: CR57 article-title: Pressure-induced coherent sliding-layer transition in the excitonic insulator Ta NiSe publication-title: IUCrJ doi: 10.1107/S2052252517018334 – volume: 47 start-page: 558 year: 1993 end-page: 561 ident: CR62 article-title: Ab initio molecular dynamics for liquid metals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.558 – volume: 40 start-page: 755 year: 1968 end-page: 766 ident: CR5 article-title: Possible anomalies at a semimetal-semiconductor transistion publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.40.755 – volume: 12 year: 2021 ident: CR56 article-title: Direct observation of excitonic instability in Ta NiSe publication-title: Nat. Commun. doi: 10.1038/s41467-021-22133-z – volume: 74 start-page: 601 year: 2002 end-page: 659 ident: CR48 article-title: Electronic excitations: density-functional versus many-body green’s-function approaches publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.74.601 – volume: 19 start-page: 439 year: 1967 end-page: 442 ident: CR1 article-title: Excitonic phases publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.19.439 – volume: 90 start-page: 155116 year: 2014 ident: CR23 article-title: Excitonic bose-einstein condensation in Ta NiSe above room temperature publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.155116 – volume: 6 start-page: 3976 year: 2018 end-page: 3981 ident: CR34 article-title: Electronic structures of layered Ta NiS single crystals revealed by high-resolution angle-resolved photoemission spectroscopy publication-title: J. Mater. Chem. C doi: 10.1039/C8TC00149A – volume: 110 start-page: 146803 year: 2013 ident: CR17 article-title: High-temperature superfluidity in double-bilayer graphene publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.146803 – volume: 13 start-page: 751 year: 2017 end-page: 755 ident: CR16 article-title: Excitonic superfluid phase in double bilayer graphene publication-title: Nat. Phys. doi: 10.1038/nphys4140 – volume: 358 start-page: 1314 year: 2017 end-page: 1317 ident: CR8 article-title: Signatures of exciton condensation in a transition metal dichalcogenide publication-title: Science doi: 10.1126/science.aam6432 – volume: 6 start-page: 287 year: 1961 end-page: 309 ident: CR3 article-title: The transition to the metallic state publication-title: Philos. Mag. doi: 10.1080/14786436108243318 – volume: 139 start-page: A796 year: 1965 end-page: A823 ident: CR51 article-title: New method for calculating the one-particle green’s function with application to the electron-gas problem publication-title: Phys. Rev. doi: 10.1103/PhysRev.139.A796 – volume: 8 year: 2017 ident: CR14 article-title: Carbon nanotubes as excitonic insulators publication-title: Nat. Commun. doi: 10.1038/s41467-017-01660-8 – volume: 95 start-page: 195144 year: 2017 ident: CR46 article-title: Giant exciton fano resonance in quasi-one-dimensional Ta NiSe publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.195144 – volume: 84 start-page: 1232 year: 1951 end-page: 1242 ident: CR52 article-title: A relativistic equation for bound-state problems publication-title: Phys. Rev. doi: 10.1103/PhysRev.84.1232 – volume: 92 start-page: 045209 year: 2015 ident: CR53 article-title: Beyond the tamm-dancoff approximation for extended systems using exact diagonalization publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.045209 – volume: 96 start-page: 226402 year: 2006 ident: CR47 article-title: Quasiparticle self-consistent gw theory publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.226402 – volume: 124 start-page: 221101 year: 2006 ident: CR41 article-title: A simple effective potential for exchange publication-title: J. Chem. Phys. doi: 10.1063/1.2213970 – ident: CR38 – volume: 67 start-page: 2717 year: 1991 end-page: 2720 ident: CR9 article-title: Excitonic insulator phase in TmSe Te publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.67.2717 – volume: 83 start-page: 195131 year: 2011 ident: CR37 article-title: Van der waals density functionals applied to solids publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.195131 – volume: 87 start-page: 035121 year: 2013 ident: CR21 article-title: Orthorhombic-to-monoclinic phase transition of Ta NiSe induced by the bose-einstein condensation of excitons publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.035121 – ident: CR59 – volume: 39 start-page: 3761 year: 1989 end-page: 3767 ident: CR42 article-title: Exchange holes in inhomogeneous systems: a coordinate-space model publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.39.3761 – volume: 185 start-page: 2309 year: 2014 end-page: 2310 ident: CR68 article-title: An updated version of wannier90: a tool for obtaining maximally-localised wannier functions publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2014.05.003 – ident: CR28 – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: CR39 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 15 start-page: 367 year: 2020 end-page: 372 ident: CR12 article-title: A monolayer transition-metal dichalcogenide as a topological excitonic insulator publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0650-4 – volume: 2 start-page: 013236 year: 2020 ident: CR24 article-title: Band hybridization at the semimetal-semiconductor transition of Ta NiSe enabled by mirror-symmetry breaking publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.013236 – volume: 11 year: 2020 ident: CR13 article-title: Heterobilayers of 2d materials as a platform for excitonic superfluidity publication-title: Nat. Commun. doi: 10.1038/s41467-020-16737-0 – volume: 2 start-page: 013236 year: 2020 ident: 675_CR24 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.013236 – volume: 11 year: 2020 ident: 675_CR13 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16737-0 – volume: 6 start-page: 3976 year: 2018 ident: 675_CR34 publication-title: J. Mater. Chem. C doi: 10.1039/C8TC00149A – volume: 95 start-page: 195144 year: 2017 ident: 675_CR46 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.195144 – volume: 158 start-page: 462 year: 1967 ident: 675_CR2 publication-title: Phys. Rev. doi: 10.1103/PhysRev.158.462 – volume: 101 start-page: 235148 year: 2020 ident: 675_CR25 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.235148 – volume: 69 start-page: 205204 year: 2004 ident: 675_CR54 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.69.205204 – volume: 34 start-page: 5390 year: 1986 ident: 675_CR50 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.34.5390 – volume: 121 start-page: 126601 year: 2018 ident: 675_CR18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.126601 – volume: 99 start-page: 075408 year: 2019 ident: 675_CR27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.075408 – volume: 104 start-page: 045102 year: 2021 ident: 675_CR33 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.045102 – volume: 102 start-page: 226401 year: 2009 ident: 675_CR40 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.226401 – volume: 59 start-page: 1758 year: 1999 ident: 675_CR66 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 124 start-page: 197601 year: 2020 ident: 675_CR35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.197601 – volume: 110 start-page: 146803 year: 2013 ident: 675_CR17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.146803 – ident: 675_CR38 doi: 10.1088/0953-8984/22/2/022201 – volume: 21 start-page: 790 year: 1965 ident: 675_CR6 publication-title: Sov. Phys. JETP – volume: 47 start-page: 558 year: 1993 ident: 675_CR62 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.558 – volume: 11 start-page: 10264 year: 2017 ident: 675_CR45 publication-title: ACS Nano doi: 10.1021/acsnano.7b04860 – volume: 67 start-page: 2717 year: 1991 ident: 675_CR9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.67.2717 – volume: 6 start-page: 287 year: 1961 ident: 675_CR3 publication-title: Philos. Mag. doi: 10.1080/14786436108243318 – volume: 116 start-page: 51 year: 1986 ident: 675_CR31 publication-title: J. Less Common Met. doi: 10.1016/0022-5088(86)90216-X – volume: 40 start-page: 755 year: 1968 ident: 675_CR5 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.40.755 – volume: 84 start-page: 1232 year: 1951 ident: 675_CR52 publication-title: Phys. Rev. doi: 10.1103/PhysRev.84.1232 – volume: 400 start-page: 032035 year: 2012 ident: 675_CR29 publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/400/3/032035 – volume: 59 start-page: 1758 year: 1999 ident: 675_CR69 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 6 start-page: 8245 year: 1994 ident: 675_CR65 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/6/40/015 – volume: 98 start-page: 045139 year: 2018 ident: 675_CR30 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.045139 – volume: 96 start-page: 226402 year: 2006 ident: 675_CR47 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.226402 – volume: 99 start-page: 146403 year: 2007 ident: 675_CR7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.146403 – ident: 675_CR60 doi: 10.1103/PhysRevResearch.2.042039 – volume: 358 start-page: 1314 year: 2017 ident: 675_CR8 publication-title: Science doi: 10.1126/science.aam6432 – volume: 12 year: 2021 ident: 675_CR56 publication-title: Nat. Commun. doi: 10.1038/s41467-021-22133-z – volume: 18 start-page: 768 year: 1978 ident: 675_CR55 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.18.768 – ident: 675_CR26 doi: 10.1038/ncomms14408 – volume: 55 start-page: 1418 year: 1985 ident: 675_CR49 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.55.1418 – ident: 675_CR11 – volume: 8 year: 2017 ident: 675_CR14 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01660-8 – volume: 15 start-page: 367 year: 2020 ident: 675_CR12 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0650-4 – volume: 19 start-page: 4960 year: 2019 ident: 675_CR15 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b01123 – volume: 118 start-page: e2010110118 year: 2021 ident: 675_CR20 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2010110118 – volume: 27 start-page: 978 year: 1968 ident: 675_CR4 publication-title: Sov. Phys. JETP – volume: 77 start-page: 3865 year: 1996 ident: 675_CR39 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 120 start-page: 247602 year: 2018 ident: 675_CR44 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.247602 – volume: 6 start-page: 15 year: 1996 ident: 675_CR64 publication-title: Comp. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 19 start-page: 439 year: 1967 ident: 675_CR1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.19.439 – volume: 5 start-page: 158 year: 2018 ident: 675_CR57 publication-title: IUCrJ doi: 10.1107/S2052252517018334 – volume: 6 year: 2021 ident: 675_CR58 publication-title: NPJ Quantum Mater. doi: 10.1038/s41535-021-00351-4 – volume: 598 start-page: 585 year: 2021 ident: 675_CR10 publication-title: Nature doi: 10.1038/s41586-021-03947-9 – volume: 24 start-page: 3611 year: 1985 ident: 675_CR32 publication-title: Inorg. Chem. doi: 10.1021/ic00216a027 – volume: 108 start-page: 1 year: 2015 ident: 675_CR67 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2015.07.021 – volume: 4 start-page: 083601 year: 2020 ident: 675_CR36 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.4.083601 – volume: 103 start-page: 026402 year: 2009 ident: 675_CR22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.026402 – volume: 139 start-page: A796 year: 1965 ident: 675_CR51 publication-title: Phys. Rev. doi: 10.1103/PhysRev.139.A796 – volume: 124 start-page: 221101 year: 2006 ident: 675_CR41 publication-title: J. Chem. Phys. doi: 10.1063/1.2213970 – ident: 675_CR59 – volume: 118 start-page: 8207 year: 2003 ident: 675_CR43 publication-title: J. Chem. Phys. doi: 10.1063/1.1564060 – volume: 8 year: 2017 ident: 675_CR19 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01988-1 – volume: 74 start-page: 601 year: 2002 ident: 675_CR48 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.74.601 – volume: 39 start-page: 3761 year: 1989 ident: 675_CR42 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.39.3761 – volume: 121 start-page: 226603 year: 2018 ident: 675_CR61 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.226603 – volume: 13 start-page: 751 year: 2017 ident: 675_CR16 publication-title: Nat. Phys. doi: 10.1038/nphys4140 – volume: 90 start-page: 155116 year: 2014 ident: 675_CR23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.155116 – ident: 675_CR28 – volume: 92 start-page: 045209 year: 2015 ident: 675_CR53 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.045209 – volume: 87 start-page: 035121 year: 2013 ident: 675_CR21 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.035121 – volume: 83 start-page: 195131 year: 2011 ident: 675_CR37 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.195131 – volume: 54 start-page: 11169 year: 1996 ident: 675_CR63 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 185 start-page: 2309 year: 2014 ident: 675_CR68 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2014.05.003 |
SSID | ssj0001928240 |
Score | 2.3792787 |
Snippet | The structural phase transition in Ta
2
NiSe
5
has been envisioned as driven by the formation of an excitonic insulating phase. However, the role of structural... The structural phase transition in Ta2NiSe5 has been envisioned as driven by the formation of an excitonic insulating phase. However, the role of structural... The structural phase transition in Ta 2 NiSe 5 has been envisioned as driven by the formation of an excitonic insulating phase. However, the role of structural... Abstract The structural phase transition in Ta2NiSe5 has been envisioned as driven by the formation of an excitonic insulating phase. However, the role of... |
SourceID | doaj unpaywall hal proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | 639/301/1034/1038 639/301/119/2795 639/301/119/995 639/766/119/1000 Broken symmetry Characterization and Evaluation of Materials Chemistry and Materials Science Computational Intelligence Crystal structure Crystals First principles Materials Science Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Phase transitions Physics Stability analysis Theoretical |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOUAPiKdYKMhC3KhVv5JNTqgglhWCXmil3izbcWilJVm6Wx7_nhnH--hlxTUe5zUznm_seQC8QRMTfC0i16IVHCVEcifRS0HTKKPyOCtV5_96Uk7PzOfz4jxvuC1yWOVqTUwLddMH2iM_QqSPUBgdlOLd_CenrlF0uppbaNyGO1KhJFGm-OTTZo-lRofCiJwrI3R1tCB7ZTjFJdA6XfDyhj1KZfvRylxQUOQW4lwfku7D3etu7v7-drPZlh2aPID7GUCy44HjD-FW7B7B_lZZwccwo6yPvmM_KNiO0k4uAxsaYLG-ZYj42PwCjRdbkp0aQrYYjp06dXL5rWCuaxJR_BNQ3TucnALWyTtngbJgaJMgU8fiCZxNPp5-mPLcVYGHQtVL7qMcBxn1WCB0qSpvWqrBZwonw7hC8IT4zqlWh9gqid5a3ZaOisAJ07SIpbTRT2Gv67v4DFhQ0lWli0EbdHyC9lVALQ5S-zp61_oRyNW_tSGXHKfOFzObjr51ZQd-WOSHTfyw5QjerufMh4IbO6nfE8vWlFQsO13or77brHsWJbBpVFl4F6KJY0dHh9I5QbX7hGvkCF4jw2_cY3r8xdI16kSCAEr-QqKDlTzYrOYLuxHKERyuZGQzvOu9D9dy9B-f-Xz3w1_APUUiLRUuegewt7y6ji8RKy39q6QQ_wCoCgsq priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7R7YFyQC1t1QVaWRW3EuFXXkdYgVZVy6UgcbNsxylI2-wKdnn8e2acZFmkCrXXeGwlmbHnG3vmM8AeuhjvSh4SxWueoIWIxAqMUtA1iiAd9ors_D9Ps_G5_n6RXqyB7GthYtJ-pLSMy3SfHXZwQ45GJ5RQQAtsmmSv4HWRK0FpfKNs9LSvUmIQoXlXH8NV8Zeuz3xQpOpHz3JJiZArKHN5MLoB64tmZh_u7GSy4ntO3sJmBxrZYfua72AtNFuwsUIl-B4mVOkxbdgfSrCjUpMrz9pLr9i0Zojy2OwSHRabk29q07QYtp1ZeXr1K2W2qaJQuPc4xRvsHJPUKSJnnipfaGOgkw7pBzg_OT4bjZPuJoXEp7KcJy6I3Iugco5wpSicrol3T6dW-LxAwISYzspa-VBLgRFaWWeWiN-4rmrET0qrjzBopk34BMxLYYvMBq80BjteucLjzPVCuTI4W7shiP7fGt_RjNNtFxMTj7tVYVp9GNSHifow2RC-LfvMWpKNF6WPSGVLSSLIjg-m179NZzAGra6qZJY664MOuaXjQmEtJ74-bisxhK-o8GdjjA9_GHpGt48gaBK3KLTb24PppvaNwZATYzKMlNMh7Pc28tT80nvvL-3oHz5z-_9G34E3kkxcSFz4dmEwv16Ez4iX5u5LnCCPvm4I_Q priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-N7gH2wDeiYyAL8cZcYjtJ08eCmCoEFRKrGE-W7djbREmrLR0ffz13TlI6hCb26pwjx7nc_S6--x3AC3Qxzo4Sz1USEo4aIrgRGKWgaxReWpwV2fk_TPPJLH13lB1tQd7VwsSk_UhpGc10lx326pwcTcopoYAMbMbzwbIMN2A7p4OlHmzPph_HX6iTHAIQrhCXtxUyiSr-MfmSF4pk_ehbTigVcgNnro9Gd-Dmqlqan9_NfL7hfQ7uwOdu3U3SydfBqrYD9-svSsfrP9hduN0CUjZuJO_Blq_uw84GTeEDmFMVyaJi3yh5j8pYTh1rGmqxRWCIINnyBJ0hq8nvNSlgDK8dGjk9_ZQxU5VRyP9waD4qnBwT4CnaZ46qauinQyvts4cwO3h7-GbC2y4N3GVyVHPrxdAJr4YJQqGisGkgTr80M8INCwRjiBeNDMr5IAVGf6OQGyKVS9IyIDZTqXoEvWpR-cfAnBSmyI13KsVAyilbOLQKTig78tYE2wfRvTXtWgpz6qQx1_EoXRW62U2Nu6njbuq8Dy_Xc5YNgceV0q9JGdaSRL4dBxZnx7p9Zxo1uixlnlnjfOqHho4ihTEJcQEmphR9eI6qdOkek_F7TWPU2QQBmbhAob1O03RrNs41hrMY72EUnvVhv9O-P5evWvf-WkP_4zF3ryf-BG5JUlAh0ajuQa8-W_mniMVq-6z98H4Di3Qocg priority: 102 providerName: Unpaywall |
Title | Common microscopic origin of the phase transitions in Ta2NiS5 and the excitonic insulator candidate Ta2NiSe5 |
URI | https://link.springer.com/article/10.1038/s41524-021-00675-6 https://www.proquest.com/docview/2611822105 https://hal.science/hal-04272231 https://www.nature.com/articles/s41524-021-00675-6.pdf https://doaj.org/article/488dd265bace4e7a81951aa028590ad1 |
UnpaywallVersion | publishedVersion |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2057-3960 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001928240 issn: 2057-3960 databaseCode: KQ8 dateStart: 20150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2057-3960 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001928240 issn: 2057-3960 databaseCode: KQ8 dateStart: 20151125 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2057-3960 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001928240 issn: 2057-3960 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2057-3960 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001928240 issn: 2057-3960 databaseCode: ADMLS dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only) customDbUrl: eissn: 2057-3960 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001928240 issn: 2057-3960 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2057-3960 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001928240 issn: 2057-3960 databaseCode: NAO dateStart: 20151201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2057-3960 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001928240 issn: 2057-3960 databaseCode: 8FG dateStart: 20151101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 2057-3960 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001928240 issn: 2057-3960 databaseCode: AAJSJ dateStart: 20151201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals (Selected full-text) customDbUrl: eissn: 2057-3960 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001928240 issn: 2057-3960 databaseCode: C6C dateStart: 20151201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFH-CcYAdEJ-iMCoLcWPRYjsf7jGr1lUVVBNbpXKybMfRhkpasY6P_573nLTLLtsOXFLJeY6SvOf8fq9-_hngI0KMs4PYRzKu4ggjhEeGY5aC0Mi9sNgrqPN_mWbjWTKZp_POVl9UE9bIAzcv7gC7l6XIUmucT3xuaN6HGxOT8FpsypD4IIx1kqnvDW9RiFXtKplYqoNLQqokoooE-kKnUXYDiYJgP-LLOZVDdrjmdnp0Fx5f1Svz97dZLDoINHoGT1vqyIrmlp_DA1-_gN2OoOBLWNB6j2XNflCZHS04uXCs2fqKLSuGXI-tzhG22JoQqinWYnjuzIjpxWnKTF0GI__H4UCvsXMoVae8nDla_0J_D7TWPn0Fs9HR2XActfspRC4Vg3VkPc8d9zKPkbQoZZOK1PeS1HCXK6RNyOyMqKTzleCYpw2qzJD8W5yUFbIomcjXsFMva_8GmBPcqMx4JxNMeZy0yuH4dVzagbemsj3gm3erXSs2TnteLHSY9JZKN_7Q6A8d_KGzHnza9lk1Uhu3Wh-Sy7aWJJMdGjB4dBs8-q7g6cEHdPiNa4yLz5raaA8SpE78FxrtbeJBtwP8UmPiiZkZ5stpD_Y3MXJ9-rb73t_G0T0e8-3_eMx38ERQ4HOBH8U92Fn_vPLvkUutbR8e5vMcj2p03IdHRTE5neDv4dH05Cu2DrNhPwwsbJtNT4pv_wCK6BtX |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6Vcig9IJ5qoMAKwYla3ZdfB4TKo0ppmguplNuyXq9ppWCHJqX0T_EbmfEjSS8Rl17tXSf2zM73ze48AN4gxLgs5T5QvOABaogIrEAvBaFReJnhrLo6_8kw6p_qr-NwvAF_u1wYCqvsbGJtqPPK0R75PjJ9pMLooIQfpr8C6hpFp6tdC41GLY799RW6bLP3R59Rvm-lPPwy-tQP2q4CgQtlOg8yL2InvIo5QneSZLqgGnQ6tMLFCZIH5DdWFsr5Qgr0VtIislQEjeu8QC6htMLn3oG7WnFNtfrjcbzc00nRgdG8zc3hKtmfET7qgOIgCBfCILqBf3WbAES1MwrCXGG4i0PZbdi6LKf2-spOJiu4d_gA7reElR00GvYQNnz5CLZXyhg-hgllmVQl-0nBfZTmcu5Y03CLVQVDhsmmZwiWbE642ISIMbw3snJ4_i1ktszrQf6PQ_NS4uQ6QJ52A5ijrBvalGhH-_AJnN7K934Km2VV-h1gTgqbRNY7pdHRcipLHFoNJ1SW-swWWQ9E922Na0ucU6eNiamP2lViGnkYlIep5WGiHrxbzJk2BT7Wjv5IIluMpOLc9YXq4odp17pBjc9zGYWZdV772NJRpbCWU61AbnPRg9co8BvP6B8MDF2jzidI2MRvHLTb6YNpzcrMLBdBD_Y6HVneXve_9xZ69B-v-Wz9j7-Crf7oZGAGR8Pj53BPknoLiQZ3FzbnF5f-BfK0efayXhwMvt_2avwH43FFMA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgE9IJ4iUGCF4ESt7MPPA0KFEqW0REi0Um7L7npNKwU7NCmlf41fx4wfSXqJuPQW2bNO4nl8M7vzAHiNEONsxn2geMEDlBARGIFRCkKj8NLiqro7_5dRPDwOP4-j8Qb87WphKK2ys4m1oc4rR3vkffT00RXGACXqF21axNe9wfvpr4AmSNFJazdOoxGRA395geHb7N3-HvL6jZSDT0cfh0E7YSBwkczmgfUiccKrhCOMp6kNC-pHF0ZGuCRFRwJ9HSML5XwhBUYuWREbaojGw7xAv0KFCp97A24m-InSyZJxstzfyTCYCXlbp8NV2p8RVoYB5UQQRkRBfAUL65EBiHAnlJC54u0uDmi34PZ5OTWXF2YyWcHAwT242zqvbLeRtvuw4csHsLXS0vAhTKjipCrZT0r0o5KXU8ea4VusKhh6m2x6gsDJ5oSRTboYw3tHRo5Ov0XMlHlN5P84NDUlLq6T5WlngDmqwKENipbaR4_g-Fre92PYLKvSPwHmpDBpbLxTIQZdTtnUoQVxQtnMW1PYHoju3WrXtjunqRsTXR-7q1Q3_NDID13zQ8c9eLtYM22afayl_kAsW1BSo-76QnX2Q7d6r1H681zGkTXOhz4xdGwpjOHUN5CbXPTgFTL8yjOGu4eartEUFHTexG8k2u7kQbcmZqaXCtGDnU5GlrfX_e6dhRz9x998uv7LX8It1EN9uD86eAZ3JEm3kGh7t2Fzfnbun6PLNrcvat1g8P26lfEfltRJaw |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-N7gH2wDeiYyAL8cZcYjtJ08eCmCoEFRKrGE-W7djbREmrLR0ffz13TlI6hCb26pwjx7nc_S6--x3AC3Qxzo4Sz1USEo4aIrgRGKWgaxReWpwV2fk_TPPJLH13lB1tQd7VwsSk_UhpGc10lx326pwcTcopoYAMbMbzwbIMN2A7p4OlHmzPph_HX6iTHAIQrhCXtxUyiSr-MfmSF4pk_ehbTigVcgNnro9Gd-Dmqlqan9_NfL7hfQ7uwOdu3U3SydfBqrYD9-svSsfrP9hduN0CUjZuJO_Blq_uw84GTeEDmFMVyaJi3yh5j8pYTh1rGmqxRWCIINnyBJ0hq8nvNSlgDK8dGjk9_ZQxU5VRyP9waD4qnBwT4CnaZ46qauinQyvts4cwO3h7-GbC2y4N3GVyVHPrxdAJr4YJQqGisGkgTr80M8INCwRjiBeNDMr5IAVGf6OQGyKVS9IyIDZTqXoEvWpR-cfAnBSmyI13KsVAyilbOLQKTig78tYE2wfRvTXtWgpz6qQx1_EoXRW62U2Nu6njbuq8Dy_Xc5YNgceV0q9JGdaSRL4dBxZnx7p9Zxo1uixlnlnjfOqHho4ihTEJcQEmphR9eI6qdOkek_F7TWPU2QQBmbhAob1O03RrNs41hrMY72EUnvVhv9O-P5evWvf-WkP_4zF3ryf-BG5JUlAh0ajuQa8-W_mniMVq-6z98H4Di3Qocg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Common+microscopic+origin+of+the+phase+transitions+in+Ta2NiS5+and+the+excitonic+insulator+candidate+Ta2NiSe5&rft.jtitle=npj+computational+materials&rft.au=Lukas+Windg%C3%A4tter&rft.au=Malte+R%C3%B6sner&rft.au=Giacomo+Mazza&rft.au=Hannes+H%C3%BCbener&rft.date=2021-12-20&rft.pub=Nature+Portfolio&rft.eissn=2057-3960&rft.volume=7&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1038%2Fs41524-021-00675-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_488dd265bace4e7a81951aa028590ad1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2057-3960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2057-3960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2057-3960&client=summon |