Small and large deformation analysis with the p- and B-spline versions of the Finite Cell Method

The Finite Cell Method (FCM) is an embedded domain method, which combines the fictitious domain approach with high-order finite elements, adaptive integration, and weak imposition of unfitted Dirichlet boundary conditions. For smooth problems, FCM has been shown to achieve exponential rates of conve...

Full description

Saved in:
Bibliographic Details
Published inComputational mechanics Vol. 50; no. 4; pp. 445 - 478
Main Authors Schillinger, Dominik, Ruess, Martin, Zander, Nils, Bazilevs, Yuri, Düster, Alexander, Rank, Ernst
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.10.2012
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0178-7675
1432-0924
DOI10.1007/s00466-012-0684-z

Cover

Abstract The Finite Cell Method (FCM) is an embedded domain method, which combines the fictitious domain approach with high-order finite elements, adaptive integration, and weak imposition of unfitted Dirichlet boundary conditions. For smooth problems, FCM has been shown to achieve exponential rates of convergence in energy norm, while its structured cell grid guarantees simple mesh generation irrespective of the geometric complexity involved. The present contribution first unhinges the FCM concept from a special high-order basis. Several benchmarks of linear elasticity and a complex proximal femur bone with inhomogeneous material demonstrate that for small deformation analysis, FCM works equally well with basis functions of the p -version of the finite element method or high-order B-splines. Turning to large deformation analysis, it is then illustrated that a straightforward geometrically nonlinear FCM formulation leads to the loss of uniqueness of the deformation map in the fictitious domain. Therefore, a modified FCM formulation is introduced, based on repeated deformation resetting, which assumes for the fictitious domain the deformation-free reference configuration after each Newton iteration. Numerical experiments show that this intervention allows for stable nonlinear FCM analysis, preserving the full range of advantages of linear elastic FCM, in particular exponential rates of convergence. Finally, the weak imposition of unfitted Dirichlet boundary conditions via the penalty method, the robustness of FCM under severe mesh distortion, and the large deformation analysis of a complex voxel-based metal foam are addressed.
AbstractList The Finite Cell Method (FCM) is an embedded domain method, which combines the fictitious domain approach with high-order finite elements, adaptive integration, and weak imposition of unfitted Dirichlet boundary conditions. For smooth problems, FCM has been shown to achieve exponential rates of convergence in energy norm, while its structured cell grid guarantees simple mesh generation irrespective of the geometric complexity involved. The present contribution first unhinges the FCM concept from a special high-order basis. Several benchmarks of linear elasticity and a complex proximal femur bone with inhomogeneous material demonstrate that for small deformation analysis, FCM works equally well with basis functions of the p-version of the finite element method or high-order B-splines. Turning to large deformation analysis, it is then illustrated that a straightforward geometrically nonlinear FCM formulation leads to the loss of uniqueness of the deformation map in the fictitious domain. Therefore, a modified FCM formulation is introduced, based on repeated deformation resetting, which assumes for the fictitious domain the deformation-free reference configuration after each Newton iteration. Numerical experiments show that this intervention allows for stable nonlinear FCM analysis, preserving the full range of advantages of linear elastic FCM, in particular exponential rates of convergence. Finally, the weak imposition of unfitted Dirichlet boundary conditions via the penalty method, the robustness of FCM under severe mesh distortion, and the large deformation analysis of a complex voxel-based metal foam are addressed.
The Finite Cell Method (FCM) is an embedded domain method, which combines the fictitious domain approach with high-order finite elements, adaptive integration, and weak imposition of unfitted Dirichlet boundary conditions. For smooth problems, FCM has been shown to achieve exponential rates of convergence in energy norm, while its structured cell grid guarantees simple mesh generation irrespective of the geometric complexity involved. The present contribution first unhinges the FCM concept from a special high-order basis. Several benchmarks of linear elasticity and a complex proximal femur bone with inhomogeneous material demonstrate that for small deformation analysis, FCM works equally well with basis functions of the p-version of the finite element method or high-order B-splines. Turning to large deformation analysis, it is then illustrated that a straightforward geometrically nonlinear FCM formulation leads to the loss of uniqueness of the deformation map in the fictitious domain. Therefore, a modified FCM formulation is introduced, based on repeated deformation resetting, which assumes for the fictitious domain the deformation-free reference configuration after each Newton iteration. Numerical experiments show that this intervention allows for stable nonlinear FCM analysis, preserving the full range of advantages of linear elastic FCM, in particular exponential rates of convergence. Finally, the weak imposition of unfitted Dirichlet boundary conditions via the penalty method, the robustness of FCM under severe mesh distortion, and the large deformation analysis of a complex voxel-based metal foam are addressed. Keywords Embedded domain methods * Immersed boundary methods * Fictitious domain methods * p-Version of the Finite Cell Method * B-spline version of the Finite Cell Method * Large deformation solid mechanics * Weak boundary conditions
The Finite Cell Method (FCM) is an embedded domain method, which combines the fictitious domain approach with high-order finite elements, adaptive integration, and weak imposition of unfitted Dirichlet boundary conditions. For smooth problems, FCM has been shown to achieve exponential rates of convergence in energy norm, while its structured cell grid guarantees simple mesh generation irrespective of the geometric complexity involved. The present contribution first unhinges the FCM concept from a special high-order basis. Several benchmarks of linear elasticity and a complex proximal femur bone with inhomogeneous material demonstrate that for small deformation analysis, FCM works equally well with basis functions of the p -version of the finite element method or high-order B-splines. Turning to large deformation analysis, it is then illustrated that a straightforward geometrically nonlinear FCM formulation leads to the loss of uniqueness of the deformation map in the fictitious domain. Therefore, a modified FCM formulation is introduced, based on repeated deformation resetting, which assumes for the fictitious domain the deformation-free reference configuration after each Newton iteration. Numerical experiments show that this intervention allows for stable nonlinear FCM analysis, preserving the full range of advantages of linear elastic FCM, in particular exponential rates of convergence. Finally, the weak imposition of unfitted Dirichlet boundary conditions via the penalty method, the robustness of FCM under severe mesh distortion, and the large deformation analysis of a complex voxel-based metal foam are addressed.
Audience Academic
Author Zander, Nils
Schillinger, Dominik
Ruess, Martin
Rank, Ernst
Bazilevs, Yuri
Düster, Alexander
Author_xml – sequence: 1
  givenname: Dominik
  surname: Schillinger
  fullname: Schillinger, Dominik
  email: schillinger@bv.tum.de
  organization: Lehrstuhl für Computation in Engineering, Department of Civil Engineering and Surveying, Technische Universität München
– sequence: 2
  givenname: Martin
  surname: Ruess
  fullname: Ruess, Martin
  organization: Lehrstuhl für Computation in Engineering, Department of Civil Engineering and Surveying, Technische Universität München
– sequence: 3
  givenname: Nils
  surname: Zander
  fullname: Zander, Nils
  organization: Lehrstuhl für Computation in Engineering, Department of Civil Engineering and Surveying, Technische Universität München
– sequence: 4
  givenname: Yuri
  surname: Bazilevs
  fullname: Bazilevs, Yuri
  organization: Department of Structural Engineering, University of California, San Diego
– sequence: 5
  givenname: Alexander
  surname: Düster
  fullname: Düster, Alexander
  organization: Numerische Strukturanalyse mit Anwendungen in der Schiffstechnik (M-10), Technische Universität Hamburg-Harburg
– sequence: 6
  givenname: Ernst
  surname: Rank
  fullname: Rank, Ernst
  organization: Lehrstuhl für Computation in Engineering, Department of Civil Engineering and Surveying, Technische Universität München
BookMark eNp9kc9vFCEUgIlpE7fVP8AbiScP1AczwHCsG_sjqTGx7RmZAXZpZocV2Gr710t3TExNbDgQHt_34L13hA6mODmE3lE4oQDyYwZohSBAGQHRteTxFVrQtqknxdoDtAAqOyKF5K_RUc53AJR3DV-g79cbM47YTBaPJq0cts7HtDElxKlGzfiQQ8Y_Q1njsnZ4S_boJ5K3Y5gcvncpVzLj6Pf3Z2EKxeGlqzm_uLKO9g069GbM7u2f_Rjdnn2-WV6Qq6_nl8vTKzJwpgrpB8mVAdcYr_pB2MZS2bDeWgueGeppK6myYBRAp7hXlnvbt52yghrB-q45Ru_nvNsUf-xcLvou7lItIGvGBABnXMlKnczUyoxOh8nHksxQl3WbMNSW-lDjpw3nrZCUNVX48EyoTHG_ysrsctaX19-es3RmhxRzTs7rbQobkx40Bf00JT1PSdcp6acp6cfqyH-cIZR99-vHwviiyWYz11emlUt_C_6_9BvjFqew
CitedBy_id crossref_primary_10_1002_cnm_2880
crossref_primary_10_1016_j_jcp_2012_12_018
crossref_primary_10_1016_j_camwa_2017_01_027
crossref_primary_10_1007_s11831_014_9115_y
crossref_primary_10_1002_nme_4522
crossref_primary_10_1016_j_cma_2022_115565
crossref_primary_10_1002_zamm_201700045
crossref_primary_10_1007_s00466_023_02411_x
crossref_primary_10_1016_j_compstruct_2017_05_069
crossref_primary_10_1002_cpe_5207
crossref_primary_10_1002_pamm_201900419
crossref_primary_10_1016_j_cma_2018_02_027
crossref_primary_10_1016_j_cam_2018_09_027
crossref_primary_10_1016_j_cma_2018_02_029
crossref_primary_10_1002_nme_5340
crossref_primary_10_1002_nme_5207
crossref_primary_10_1002_nme_5606
crossref_primary_10_1016_j_apm_2020_03_043
crossref_primary_10_1186_s40323_015_0031_y
crossref_primary_10_1016_j_finel_2019_01_009
crossref_primary_10_1063_5_0152690
crossref_primary_10_1002_gamm_202000004
crossref_primary_10_1016_j_camwa_2015_04_002
crossref_primary_10_1186_s40323_020_00157_2
crossref_primary_10_1016_j_cma_2013_10_023
crossref_primary_10_1016_j_cma_2013_07_017
crossref_primary_10_1007_s10915_015_9997_3
crossref_primary_10_1016_j_cma_2013_12_010
crossref_primary_10_1007_s00466_022_02140_7
crossref_primary_10_1002_nme_6020
crossref_primary_10_1016_j_cma_2024_116999
crossref_primary_10_1186_s40323_018_0109_4
crossref_primary_10_1007_s00466_017_1424_1
crossref_primary_10_1016_j_cma_2019_07_010
crossref_primary_10_1007_s00466_024_02482_4
crossref_primary_10_1007_s00466_024_02486_0
crossref_primary_10_1016_j_camwa_2018_01_048
crossref_primary_10_1016_j_cma_2023_116670
crossref_primary_10_1007_s00466_015_1174_x
crossref_primary_10_1016_j_cma_2022_115584
crossref_primary_10_1016_j_apm_2019_10_011
crossref_primary_10_1007_s00466_019_01738_8
crossref_primary_10_1016_j_cma_2013_04_001
crossref_primary_10_1016_j_finel_2022_103794
crossref_primary_10_1007_s11831_023_09913_0
crossref_primary_10_1016_j_cma_2014_09_032
crossref_primary_10_1016_j_cma_2014_09_033
crossref_primary_10_1016_j_jmbbm_2022_105415
crossref_primary_10_1007_s00466_022_02203_9
crossref_primary_10_1007_s00466_014_0991_7
crossref_primary_10_1016_j_cma_2019_01_035
crossref_primary_10_1016_j_cma_2015_11_003
crossref_primary_10_1016_j_cma_2022_115856
crossref_primary_10_1007_s00466_019_01772_6
crossref_primary_10_1016_j_cma_2015_11_007
crossref_primary_10_1016_j_cma_2022_114648
crossref_primary_10_1016_j_camwa_2015_06_012
crossref_primary_10_1093_jcde_qwab070
crossref_primary_10_1016_j_cagd_2016_02_007
crossref_primary_10_1016_j_compgeo_2022_104637
crossref_primary_10_1002_cnm_2951
crossref_primary_10_1007_s00419_024_02644_z
crossref_primary_10_1016_j_cma_2024_117393
crossref_primary_10_1016_j_cma_2013_10_009
crossref_primary_10_1093_jom_ufac005
crossref_primary_10_1093_jom_ufac006
crossref_primary_10_1002_nme_4817
crossref_primary_10_1016_j_commatsci_2013_10_012
crossref_primary_10_1016_j_cma_2017_04_002
crossref_primary_10_1016_j_cma_2019_03_010
crossref_primary_10_1016_j_jcp_2017_03_040
crossref_primary_10_1115_1_4029539
crossref_primary_10_1002_nme_4783
crossref_primary_10_1002_nme_4663
crossref_primary_10_1016_j_camwa_2020_03_020
crossref_primary_10_1007_s10915_021_01417_y
crossref_primary_10_1016_j_cma_2012_05_022
crossref_primary_10_1016_j_jsv_2023_118058
crossref_primary_10_1007_s00466_015_1197_3
crossref_primary_10_1016_j_compstruct_2014_07_028
crossref_primary_10_1016_j_cma_2016_05_037
crossref_primary_10_1016_j_finel_2024_104262
crossref_primary_10_1016_j_cma_2018_08_002
crossref_primary_10_1016_j_finel_2021_103574
crossref_primary_10_1002_pamm_202200183
crossref_primary_10_1016_j_cagd_2019_05_001
crossref_primary_10_1016_j_cma_2018_01_015
crossref_primary_10_1007_s00466_024_02512_1
crossref_primary_10_1016_j_camwa_2016_10_023
crossref_primary_10_1016_j_camwa_2015_05_009
crossref_primary_10_1002_nme_5301
crossref_primary_10_1016_j_cma_2016_07_041
crossref_primary_10_1002_nme_5769
crossref_primary_10_1016_j_cma_2017_11_014
crossref_primary_10_1016_j_camwa_2012_09_002
crossref_primary_10_1007_s00466_021_02132_z
crossref_primary_10_1016_j_compstruct_2015_01_012
crossref_primary_10_1016_j_advengsoft_2014_04_004
crossref_primary_10_1016_j_cma_2014_06_007
crossref_primary_10_1016_j_cma_2024_117374
crossref_primary_10_1016_j_cma_2020_113050
crossref_primary_10_1007_s00466_017_1441_0
crossref_primary_10_1016_j_cma_2016_04_006
crossref_primary_10_1007_s00466_016_1368_x
crossref_primary_10_1016_j_cma_2014_10_040
crossref_primary_10_1016_j_cma_2012_03_017
crossref_primary_10_1007_s00466_017_1464_6
crossref_primary_10_1016_j_cma_2014_04_008
crossref_primary_10_1007_s00466_014_1118_x
crossref_primary_10_1007_s11440_020_01123_3
crossref_primary_10_1016_j_addma_2020_101498
crossref_primary_10_1016_j_ijmecsci_2017_05_008
crossref_primary_10_1016_j_jcp_2018_10_030
crossref_primary_10_1016_j_camwa_2017_01_004
crossref_primary_10_1007_s00466_013_0853_8
crossref_primary_10_1142_S0219455415400180
crossref_primary_10_1016_j_cma_2012_06_011
crossref_primary_10_1016_j_compfluid_2015_08_027
crossref_primary_10_1016_j_cma_2016_09_036
crossref_primary_10_1016_j_cma_2019_04_017
crossref_primary_10_1002_pamm_201410123
crossref_primary_10_1016_j_cma_2013_11_002
crossref_primary_10_1016_j_cma_2020_112905
crossref_primary_10_1002_nme_5289
crossref_primary_10_1007_s00466_022_02172_z
crossref_primary_10_1016_j_cma_2015_07_024
crossref_primary_10_1007_s00707_014_1227_9
crossref_primary_10_1016_j_compositesb_2013_02_045
crossref_primary_10_1007_s00466_017_1454_8
crossref_primary_10_1007_s00466_022_02158_x
crossref_primary_10_1016_j_cma_2016_06_026
crossref_primary_10_1007_s00466_017_1378_3
crossref_primary_10_1007_s00466_014_1019_z
crossref_primary_10_1002_pamm_202400042
crossref_primary_10_1016_j_apm_2015_09_071
crossref_primary_10_1007_s00466_016_1273_3
Cites_doi 10.1002/nme.4269
10.1016/j.compfluid.2005.07.012
10.1016/j.compstruc.2008.08.008
10.1002/cnm.1640111103
10.1137/S0363012992231124
10.1016/j.cma.2007.11.023
10.1016/j.cma.2011.08.002
10.1016/j.cma.2004.10.008
10.1016/j.cam.2008.08.034
10.1016/j.cma.2008.01.012
10.1007/s004660050296
10.1007/s11081-011-9159-x
10.1002/nme.146
10.1016/j.cma.2006.05.012
10.1002/nme.3289
10.1090/S0025-5718-1973-0351118-5
10.1016/S1350-4533(03)00081-X
10.1007/978-90-481-2822-8_9
10.1016/j.cma.2006.05.013
10.1002/nme.2755
10.1017/CBO9780511755446
10.1016/j.jbiomech.2008.05.017
10.1007/s00466-009-0414-3
10.1002/nme.222
10.1016/j.cma.2010.05.011
10.1016/j.cma.2011.06.005
10.1016/j.cma.2009.01.022
10.1007/s00466-009-0457-5
10.1016/j.cma.2008.02.036
10.1088/1757-899X/10/1/012170
10.1016/S0045-7825(01)00215-8
10.1002/nme.1388
10.1007/s00466-007-0173-y
10.1146/annurev.fluid.37.061903.175743
10.1016/j.cma.2003.12.019
10.1017/CBO9780511801181
10.1002/nme.2863
10.1002/nme.2631
10.1007/978-3-540-32360-0
10.1016/j.cma.2007.07.002
10.1137/1.9780898717532
10.1007/s10237-011-0322-2
10.1023/A:1026095405906
10.1002/9780470749081
10.1007/978-3-642-56103-0_1
10.1137/070704435
10.1016/j.jbiomech.2008.10.039
10.1002/nme.461
10.1002/(SICI)1097-0207(19970415)40:7<1263::AID-NME113>3.0.CO;2-3
10.1016/j.cma.2003.07.003
10.1016/j.jcp.2009.02.019
10.1007/978-3-642-59223-2
10.1016/j.jcp.2003.09.032
10.1115/1.2720906
10.1002/9780470694626
10.1016/j.apnum.2011.01.008
10.1007/s00466-003-0424-5
10.1017/CBO9780511550140.001
10.1016/S0079-6425(00)00002-5
10.1016/j.cma.2009.02.036
10.1007/s00466-012-0681-2
10.4203/ccp.93.310
10.1002/1097-0363(20010415)35:7<743::AID-FLD109>3.0.CO;2-A
10.1016/j.cma.2007.09.010
ContentType Journal Article
Copyright Springer-Verlag 2012
COPYRIGHT 2012 Springer
Computational Mechanics is a copyright of Springer, (2012). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag 2012
– notice: COPYRIGHT 2012 Springer
– notice: Computational Mechanics is a copyright of Springer, (2012). All Rights Reserved.
DBID AAYXX
CITATION
ISR
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s00466-012-0684-z
DatabaseName CrossRef
Gale In Context: Science
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList


Engineering Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1432-0924
EndPage 478
ExternalDocumentID A355467123
10_1007_s00466_012_0684_z
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
28-
29F
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFSI
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
E.L
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M4Y
M7S
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WIP
WK8
XH6
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
_50
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c529t-bc759a0e3af9bc6d3d1732bddd0f2a1f14719d0a900895f9d5fdb489d61a62b83
IEDL.DBID U2A
ISSN 0178-7675
IngestDate Fri Jul 25 11:12:10 EDT 2025
Mon Oct 20 16:10:32 EDT 2025
Thu Oct 16 14:38:38 EDT 2025
Wed Oct 01 04:31:29 EDT 2025
Thu Apr 24 23:09:24 EDT 2025
Fri Feb 21 02:32:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Embedded domain methods
Version of the Finite Cell Method
B-spline version of the Finite Cell Method
Large deformation solid mechanics
Weak boundary conditions
Immersed boundary methods
Fictitious domain methods
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c529t-bc759a0e3af9bc6d3d1732bddd0f2a1f14719d0a900895f9d5fdb489d61a62b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2260052597
PQPubID 2043755
PageCount 34
ParticipantIDs proquest_journals_2260052597
gale_infotracacademiconefile_A355467123
gale_incontextgauss_ISR_A355467123
crossref_primary_10_1007_s00466_012_0684_z
crossref_citationtrail_10_1007_s00466_012_0684_z
springer_journals_10_1007_s00466_012_0684_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-10-01
PublicationDateYYYYMMDD 2012-10-01
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Solids, Fluids, Structures, Fluid-Structure Interactions, Biomechanics, Micromechanics, Multiscale Mechanics, Materials, Constitutive Modeling, Nonlinear Mechanics, Aerodynamics
PublicationTitle Computational mechanics
PublicationTitleAbbrev Comput Mech
PublicationYear 2012
Publisher Springer-Verlag
Springer
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer
– name: Springer Nature B.V
References Düster A, Sehlhorst HG, Rank E (2012) Numerical homogenization of heterogeneous and cellular materials utilizing the Finite Cell Method. Comp Mech. doi:10.1007/s00466-012-0681-2
YosibashZPadanRJoskowiczLMilgromCA CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experimentsJ Biomech Eng200712929730910.1115/1.2720906
PieglLATillerWThe NURBS book (monographs in visual communication)1997New YorkSpringer10.1007/978-3-642-59223-2
BazilevsYCaloVMCottrellJAEvansJAHughesTJRLiptonSScottMASederbergTWIsogeometric analysis using T-splinesComput Methods Appl Mech Eng201019922926325767591227.7412310.1016/j.cma.2009.02.036
HansboAHansboPAn unfitted finite element method, based on Nitsche’s method, for elliptic interface problemsComput Methods Appl Mech Eng2002191537552
AllaireGJouveFToaderAStructural optimization using sensitivity analysis and a level-set methodJ Comput Phys200419436339320333901136.7436810.1016/j.jcp.2003.09.032
Zander N (2011) The Finite Cell Method for linear thermoelasticity. Master thesis, Lehrstuhl für Computation in Engineering, Technische Universität München
RamièreIAngotPBelliardMA fictitious domain approach with spread interface for elliptic problems with general boundary conditionsComput Methods Appl Mech Eng20071967667811121.6536410.1016/j.cma.2006.05.012
SametHFoundations of multidimensional and metric data structures2006San FranciscoMorgan Kaufmann Publishers1139.68022
HaslingerJRenardYA new fictitious domain approach inspired by the extended finite element methodSIAM J Numer Anal2009471474149924973371205.6532210.1137/070704435
RankEDüsterASchillingerDYangZYuanYCuiJMangHThe Finite Cell Method: high order simulation of complex structures without meshingComputational structural engineering2009HeidelbergSpringer879210.1007/978-90-481-2822-8_9
ParussiniLPedirodaVFictitious domain approach with hp-finite element approximation for incompressible fluid flowJ Comput Phys20092283891391025110791169.7603710.1016/j.jcp.2009.02.019
NovellineRSquire’s fundamentals of radiology1997CambridgeHarvard University Press
BanhartJManufacture, characterization and application of cellular metals and metal foamsProg Mater Sci20014655963210.1016/S0079-6425(00)00002-5
ZhuTAtluriSNA modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin methodComput Mech19982121122216337250947.7408010.1007/s004660050296
NeittaanmäkiPTibaDAn embedding domains approach in free boundary problems and optimal designSIAM Control Optim1995335158716020843.4902410.1137/S0363012992231124
Abedian A, Parvizian J, Düster A, Khademyzadeh H, Rank E (2010) The Finite Cell Method for elasto-plastic problems. In: Proceedings of the 10th international conference on computational structures technology, Valencia, 2010
BastianPEngwerCAn unfitted finite element method using discontinuous GalerkinInt J Numer Methods Eng2009791557157625672571176.6513110.1002/nme.2631
TrabelsiNYosibashZMilgromCValidation of subject-specific automated p-FE analysis of the proximal femurJ Biomech20094223424110.1016/j.jbiomech.2008.10.039
BelytschkoTLiuWKMoranBNonlinear finite elements for continua and structures2006New YorkWiley
Düster A (2001) High order finite elements for three-dimensional, thin-walled nonlinear continua. PhD thesis, Lehrstuhl für Bauinformatik, Technische Universität München, Shaker, Aachen
BungartzHJGriebelMZengerCIntroduction to computer graphics2004HinghamCharles River Media
DüsterABrökerHRankEThe p-version of the finite element method for three-dimensional curved thin walled structuresInt J Numer Methods Eng2001526737031058.7407910.1002/nme.222
Schillinger D, Kollmannsberger S, Mundani R-P, Rank E (2010) The Finite Cell Method for geometrically nonlinear problems of solid mechanics. IOP Conf Ser Mater Sci Eng 10:012170
BaaijensFPTA fictitious domain/mortar element method for fluid-structure interactionInt J Numer Methods Fluids20013574376118268490979.7604410.1002/1097-0363(20010415)35:7<743::AID-FLD109>3.0.CO;2-A
WriggersPNonlinear finite element methods2008BerlinSpringer1153.74001
ParvizianJDüsterARankEFinite Cell Method: h- and p-extension for embedded domain methods in solid mechanicsComput Mech20074112213310.1007/s00466-007-0173-y
LöhnerRCebralRJCamelliFEAppanaboyinaSBaumJDMestreauELSotoOAAdaptive embedded and immersed unstructured grid techniquesComput Methods Appl Mech Eng2008197217321971158.7640810.1016/j.cma.2007.09.010
FarhatCHetmaniukUA fictitious domain decomposition method for the solution of partially axisymmetric acoustic scattering problems. Part I: Dirichlet boundary conditionsInt J Numer Methods Eng2002541309133219130331008.7603910.1002/nme.461
de Souza NetoEAPerićDOwenDRJComputational methods for plasticity: theory and applications2008New YorkWiley10.1002/9780470694626
HölligKFinite element methods with B-splines2003PhiladelphiaSociety for Industrial and Applied Mathematics1020.6508510.1137/1.9780898717532
BeckerRBurmanEHansboPA hierarchical NXFEM for fictitious domain simulationsInt J Numer Methods Eng2011864–5545592815990
SaddMHElasticity: theory, applications, and numerics2009OxfordAcademic Press
Fernandez-MendezSHuertaAImposing essential boundary conditions in mesh-free methodsComput Methods Appl Mech Eng20041931257127520455191060.7466510.1016/j.cma.2003.12.019
SueliEMayersDFAn introduction to numerical analysis2003CambridgeCambridge University Press1033.6500110.1017/CBO9780511801181
Netgen Version 4.9.13, Tetrahdral mesh generator developed by J. Schöberl. http://sourceforge.net/projects/netgen-mesher
ElguedjTBazilevsYCaloVMHughesTJRB-bar and F-bar projection methods for nearly incompressible linear and nonlinear elasticity and plasticity using higher-order NURBS elementsComput Methods Appl Mech Eng2008197273227621194.7451810.1016/j.cma.2008.01.012
BertsekasDPConstrained optimization and lagrange multiplier methods1996NashuaAthina Scientific
Cai Q, Kollmannsberger S, Mundani RP, Rank E (2011) The Finite Cell Method for solute transport problems in porous media. In: Proceedings of the 16th international conference on finite elements in flow problems, Munich, 2011
RogersDFAn introduction to NURBS with historical perspective2001San FranciscoMorgan Kaufmann Publishers
ZohdiTWriggersPAspects of the computational testing of the mechanical properties of microheterogeneous material samplesInt J Numer Methods Eng200150257325991098.7472110.1002/nme.146
ChapmanBJostGvan der PasRUsing OpenMP. Portable shared memory parallel programming2008CambridgeMIT Press
PeskinCThe immersed boundary methodActa Numer200211139200937810.1017/S0962492902000077
BabuškaIThe finite element method with penaltyMath Comput197227122221228
BonetJWoodRNonlinear continuum mechanics for finite element analysis2008CambridgeCambridge University Press1142.7400210.1017/CBO9780511755446
EmbarADolbowJHarariIImposing Dirichlet boundary conditions with Nitsche’s method and spline-based finite elementsInt J Numer Methods Eng20108387789826833791197.74178
VosPEJvan LoonRSherwinSJA comparison of fictitious domain methods appropriate for spectral/hp element discretisationsComput Methods Appl Mech Eng2008197227522891158.7635710.1016/j.cma.2007.11.023
Ruess M, Tal D, Trabelsi N, Yosibash Z, Rank E (2011) The Finite Cell Method for bone simulations: verification and validation. Biomech Model Mechanobiol. doi:10.1007/s10237-011-0322-2
Babuška I, Banerjee U, Osborn JE (2002) Meshless and generalized finite element methods: a survey of some major results. In: Griebel M, Schweitzer MA (eds) Meshfree methods for partial differential equations. Lecture notes in computational science and engineering, vol 26. Springer, Berlin
SukumarNChoppDLMoësNBelytschkoTModeling holes and inclusions by level sets in the extended finite-element methodComput Methods Appl Mech Eng2001190618362001029.7404910.1016/S0045-7825(01)00215-8
SchillingerDRankEAn unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometryComput Methods Appl Mech Eng201120047–4833583380
HarariIDolbowJAnalysis of an efficient finite element method for embedded interface problemsComput Mech20104620521126444101190.6517210.1007/s00466-009-0457-5
SehlhorstHGJänickeRDüsterARankESteebHDiebelsSNumerical investigations of foam-like materials by nested high-order finite element methodsComput Mech20094545590564158310.1007/s00466-009-0414-3
Burman E, Hansbo P (2011) Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl Numer Math. doi:10.1016/j.apnum.2011.01.008
LegayAWangHWBelytschkoTStrong and weak arbitrary discontinuities in spectral finite elementsInt J Numer Methods Eng200564991100821734611167.7404510.1002/nme.1388
Vinci C (2009) Application of Dirichlet boundary conditions in the Finite Cell Method. Master thesis, Lehrstuhl für Computation in Engineering, Technische Universität München
Schillinger D, Düster A, Rank E (2011) The hp-d adaptive Finite Cell Method for geometrically nonlinear problems of solid mechanics. Int J Numer Methods Eng. doi:10.1002/nme.3289
KrauseRMückeRRankEhp-version finite elements for geometrically non-linear problemsCommun Numer Methods Eng1995118878970835.7307510.1002/cnm.1640111103
Lapack Version 3.2.2. (2010) Linear algebra package. http://www.netlib.org/lapack
RankEKollmannsbergerSSorgerCDüsterAShell Finite Cell Method: a high order fictitious domain approach for thin-walled structuresComput Methods Appl Mech Eng2011200320032091230.7423210.1016/j.cma.2011.06.005
DüsterAHartmannSRankEp-FEM applied to finite isotropic hyperelastic bodiesComput Methods Appl Mech Eng2003192514751661053.7404310.1016/j.cma.2003.07.003
DongSYosibashZA parallel spectral element method for dynamic three-dimensional nonlinear elasticity problemsComput Struct2009871–2597210.1016/j.compstruc.2008.08.008
HaslingerJKozubekTKunischKPeichlGShape optimization and fictitious domain approach for solving free boundary problems of bernoulli typeComput Optim Appl20032623125120133641077.4903010.1023/A:
E Burman (684_CR17) 2010; 199
B Szabó (684_CR30) 1991
E Sueli (684_CR46) 2003
DP Bertsekas (684_CR80) 1996
A Düster (684_CR50) 2001; 52
I Babuška (684_CR56) 1972; 27
684_CR36
N Trabelsi (684_CR71) 2009; 42
684_CR33
R Löhner (684_CR9) 2008; 197
684_CR34
I Ramière (684_CR12) 2007; 196
J Banhart (684_CR90) 2001; 46
K-J Bathe (684_CR1) 1996
J Keyak (684_CR66) 2003; 25
E Rank (684_CR32) 2009
T Zhu (684_CR57) 1998; 21
A Legay (684_CR25) 2005; 64
H Samet (684_CR47) 2006
T Zohdi (684_CR91) 2005
B Szabó (684_CR31) 2004
J Haslinger (684_CR16) 2003; 26
P Bastian (684_CR24) 2009; 79
A Düster (684_CR29) 2008; 197
A Hansbo (684_CR61) 2002; 191
Z Yosibash (684_CR70) 2007; 129
J Bishop (684_CR13) 2003; 30
A Embar (684_CR63) 2010; 83
J Parvizian (684_CR28) 2007; 41
C Peskin (684_CR7) 2002; 11
R Mittal (684_CR8) 2005; 37
S Fernandez-Mendez (684_CR59) 2004; 193
PEJ Vos (684_CR35) 2008; 197
684_CR19
HJ Bungartz (684_CR68) 2004
TJR Hughes (684_CR2) 2000
P Neittaanmäki (684_CR6) 1995; 33
G Holzapfel (684_CR75) 2000
E Rank (684_CR37) 2011; 200
T Belytschko (684_CR72) 2006
S Del Pino (684_CR10) 2003
B Chapman (684_CR93) 2008
684_CR92
TJR Hughes (684_CR3) 2005; 194
JA Cottrell (684_CR4) 2009
684_CR51
DF Rogers (684_CR54) 2001
684_CR52
684_CR58
J Bonet (684_CR45) 2008
Y Bazilevs (684_CR5) 2010; 199
684_CR49
A Gerstenberger (684_CR18) 2010; 82
FPT Baaijens (684_CR14) 2001; 35
C Farhat (684_CR15) 2002; 54
J Haslinger (684_CR22) 2009; 47
I Harari (684_CR64) 2010; 46
MH Sadd (684_CR65) 2009
Y Bazilevs (684_CR62) 2007; 36
A Düster (684_CR77) 2003; 192
S Lui (684_CR26) 2009; 225
N Sukumar (684_CR20) 2001; 190
HG Sehlhorst (684_CR78) 2009; 45
T Elguedj (684_CR88) 2008; 197
K Höllig (684_CR55) 2003
684_CR82
T Zohdi (684_CR48) 2001; 50
OC Zienkiewicz (684_CR60) 2005
684_CR83
LA Piegl (684_CR53) 1997
684_CR81
684_CR42
E Schileo (684_CR67) 2008; 41
684_CR86
684_CR43
684_CR40
684_CR84
684_CR41
684_CR85
R Novelline (684_CR69) 1997
S Lipton (684_CR89) 2010; 199
G Allaire (684_CR44) 2004; 194
684_CR39
684_CR38
P Wriggers (684_CR74) 2008
R Glowinski (684_CR11) 2007; 196
S Dong (684_CR87) 2009; 87
EA Souza Neto de (684_CR73) 2008
L Parussini (684_CR27) 2009; 228
AT Noël (684_CR76) 1997; 40
A Gerstenberger (684_CR21) 2008; 197
R Krause (684_CR79) 1995; 11
R Becker (684_CR23) 2011; 86
References_xml – reference: DongSYosibashZA parallel spectral element method for dynamic three-dimensional nonlinear elasticity problemsComput Struct2009871–2597210.1016/j.compstruc.2008.08.008
– reference: HansboAHansboPAn unfitted finite element method, based on Nitsche’s method, for elliptic interface problemsComput Methods Appl Mech Eng2002191537552
– reference: LiptonSEvansJABazilevsYElguedjTHughesTJRRobustness of isogeometric structural discretizations under severe mesh distortionComput Methods Appl Mech Eng20101993573731227.7411210.1016/j.cma.2009.01.022
– reference: Lapack Version 3.2.2. (2010) Linear algebra package. http://www.netlib.org/lapack/
– reference: ParvizianJDüsterARankEFinite Cell Method: h- and p-extension for embedded domain methods in solid mechanicsComput Mech20074112213310.1007/s00466-007-0173-y
– reference: RankEDüsterASchillingerDYangZYuanYCuiJMangHThe Finite Cell Method: high order simulation of complex structures without meshingComputational structural engineering2009HeidelbergSpringer879210.1007/978-90-481-2822-8_9
– reference: FlagShyp 08 Version 2.30, Nonlinear FE solver developed by J. Bonet and R. Wood. http://www.flagshyp.com
– reference: Parvizian J, Düster A, Rank E (2011) Topology optimization using the Finite Cell Method. Opt Eng. doi:10.1007/s11081-011-9159-x
– reference: Vinci C (2009) Application of Dirichlet boundary conditions in the Finite Cell Method. Master thesis, Lehrstuhl für Computation in Engineering, Technische Universität München
– reference: NoëlATSzabóBFormulation of geometrically non-linear problems in the spatial reference frameInt J Numer Methods Eng199740126312800887.7306610.1002/(SICI)1097-0207(19970415)40:7<1263::AID-NME113>3.0.CO;2-3
– reference: ZohdiTWriggersPAspects of the computational testing of the mechanical properties of microheterogeneous material samplesInt J Numer Methods Eng200150257325991098.7472110.1002/nme.146
– reference: Trilinos Version 10.4, Sandia National Laboratories, Los Alamos, NM. http://trilinos.sandia.gov/
– reference: BaaijensFPTA fictitious domain/mortar element method for fluid-structure interactionInt J Numer Methods Fluids20013574376118268490979.7604410.1002/1097-0363(20010415)35:7<743::AID-FLD109>3.0.CO;2-A
– reference: HaslingerJRenardYA new fictitious domain approach inspired by the extended finite element methodSIAM J Numer Anal2009471474149924973371205.6532210.1137/070704435
– reference: ParaView Version 3.8.1, Open-source scientific visualization package. Kitware Inc., Clifton Park, NY. http://www.paraview.org
– reference: PeskinCThe immersed boundary methodActa Numer200211139200937810.1017/S0962492902000077
– reference: BelytschkoTLiuWKMoranBNonlinear finite elements for continua and structures2006New YorkWiley
– reference: BazilevsYHughesTJRWeak imposition of Dirichlet boundary conditions in fluid mechanicsComput Fluids200736122622738541115.7604010.1016/j.compfluid.2005.07.012
– reference: BurmanEHansboPFictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier methodComput Methods Appl Mech Eng20101992680268627288201231.6520710.1016/j.cma.2010.05.011
– reference: Schillinger D, Kollmannsberger S, Mundani R-P, Rank E (2010) The Finite Cell Method for geometrically nonlinear problems of solid mechanics. IOP Conf Ser Mater Sci Eng 10:012170
– reference: Babuška I, Banerjee U, Osborn JE (2002) Meshless and generalized finite element methods: a survey of some major results. In: Griebel M, Schweitzer MA (eds) Meshfree methods for partial differential equations. Lecture notes in computational science and engineering, vol 26. Springer, Berlin
– reference: SueliEMayersDFAn introduction to numerical analysis2003CambridgeCambridge University Press1033.6500110.1017/CBO9780511801181
– reference: BungartzHJGriebelMZengerCIntroduction to computer graphics2004HinghamCharles River Media
– reference: BatheK-JFinite element procedures1996Upper Saddle RiverPrentice Hall
– reference: BonetJWoodRNonlinear continuum mechanics for finite element analysis2008CambridgeCambridge University Press1142.7400210.1017/CBO9780511755446
– reference: KrauseRMückeRRankEhp-version finite elements for geometrically non-linear problemsCommun Numer Methods Eng1995118878970835.7307510.1002/cnm.1640111103
– reference: Cai Q, Kollmannsberger S, Mundani RP, Rank E (2011) The Finite Cell Method for solute transport problems in porous media. In: Proceedings of the 16th international conference on finite elements in flow problems, Munich, 2011
– reference: Del PinoSPironneauOKuznetsovYNeittanmäkiPPironneauOA fictitious domain based general PDE solverNumerical methods for scientific computing: variational problems and applications2003BarcelonaCIMNE
– reference: AllaireGJouveFToaderAStructural optimization using sensitivity analysis and a level-set methodJ Comput Phys200419436339320333901136.7436810.1016/j.jcp.2003.09.032
– reference: Netgen Version 4.9.13, Tetrahdral mesh generator developed by J. Schöberl. http://sourceforge.net/projects/netgen-mesher
– reference: SchillingerDRankEAn unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometryComput Methods Appl Mech Eng201120047–4833583380
– reference: ChapmanBJostGvan der PasRUsing OpenMP. Portable shared memory parallel programming2008CambridgeMIT Press
– reference: BabuškaIThe finite element method with penaltyMath Comput197227122221228
– reference: HolzapfelGNonlinear solid mechanics. A continuum approach for engineering2000New YorkWiley0980.74001
– reference: SukumarNChoppDLMoësNBelytschkoTModeling holes and inclusions by level sets in the extended finite-element methodComput Methods Appl Mech Eng2001190618362001029.7404910.1016/S0045-7825(01)00215-8
– reference: BastianPEngwerCAn unfitted finite element method using discontinuous GalerkinInt J Numer Methods Eng2009791557157625672571176.6513110.1002/nme.2631
– reference: BazilevsYCaloVMCottrellJAEvansJAHughesTJRLiptonSScottMASederbergTWIsogeometric analysis using T-splinesComput Methods Appl Mech Eng201019922926325767591227.7412310.1016/j.cma.2009.02.036
– reference: RankEKollmannsbergerSSorgerCDüsterAShell Finite Cell Method: a high order fictitious domain approach for thin-walled structuresComput Methods Appl Mech Eng2011200320032091230.7423210.1016/j.cma.2011.06.005
– reference: Burman E, Hansbo P (2011) Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl Numer Math. doi:10.1016/j.apnum.2011.01.008
– reference: BanhartJManufacture, characterization and application of cellular metals and metal foamsProg Mater Sci20014655963210.1016/S0079-6425(00)00002-5
– reference: RogersDFAn introduction to NURBS with historical perspective2001San FranciscoMorgan Kaufmann Publishers
– reference: de Souza NetoEAPerićDOwenDRJComputational methods for plasticity: theory and applications2008New YorkWiley10.1002/9780470694626
– reference: Yang Z, Ruess M, Kollmannsberger S, Düster A, Rank E (2012) An efficient integration technique for the voxel-based Finite Cell Method. Int J Numer Methods Eng (accepted)
– reference: YosibashZPadanRJoskowiczLMilgromCA CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experimentsJ Biomech Eng200712929730910.1115/1.2720906
– reference: Zander N (2011) The Finite Cell Method for linear thermoelasticity. Master thesis, Lehrstuhl für Computation in Engineering, Technische Universität München
– reference: NeittaanmäkiPTibaDAn embedding domains approach in free boundary problems and optimal designSIAM Control Optim1995335158716020843.4902410.1137/S0363012992231124
– reference: KeyakJFalkinsteinYComparison of in situ and in vitro CT-scan-based finite element model predictions of proximal femoral fracture loadJ Med Eng Phys20032578178710.1016/S1350-4533(03)00081-X
– reference: ElguedjTBazilevsYCaloVMHughesTJRB-bar and F-bar projection methods for nearly incompressible linear and nonlinear elasticity and plasticity using higher-order NURBS elementsComput Methods Appl Mech Eng2008197273227621194.7451810.1016/j.cma.2008.01.012
– reference: ParussiniLPedirodaVFictitious domain approach with hp-finite element approximation for incompressible fluid flowJ Comput Phys20092283891391025110791169.7603710.1016/j.jcp.2009.02.019
– reference: SehlhorstHGJänickeRDüsterARankESteebHDiebelsSNumerical investigations of foam-like materials by nested high-order finite element methodsComput Mech20094545590564158310.1007/s00466-009-0414-3
– reference: HölligKFinite element methods with B-splines2003PhiladelphiaSociety for Industrial and Applied Mathematics1020.6508510.1137/1.9780898717532
– reference: FarhatCHetmaniukUA fictitious domain decomposition method for the solution of partially axisymmetric acoustic scattering problems. Part I: Dirichlet boundary conditionsInt J Numer Methods Eng2002541309133219130331008.7603910.1002/nme.461
– reference: HaslingerJKozubekTKunischKPeichlGShape optimization and fictitious domain approach for solving free boundary problems of bernoulli typeComput Optim Appl20032623125120133641077.4903010.1023/A:1026095405906
– reference: MKL PARDISO. http://www.intel.com/software/products/mkl. 16 January 2012
– reference: ZienkiewiczOCTaylorRLThe finite element method vol 1: the basis2005OxfordButterworth-Heinemann
– reference: GerstenbergerAWallWAAn eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interactionComput Methods Appl Mech Eng20081971699171423998631194.7611710.1016/j.cma.2007.07.002
– reference: LuiSSpectral domain embedding for elliptic PDEs in complex domainsJ Comput Appl Math200922554155724947231160.6534610.1016/j.cam.2008.08.034
– reference: SchileoEDall’AraETaddeiFMalandrinoASchotkampTVicecontiMAn accurate estimation of bone density improves the accuracy of subject-specific finite element modelsJ Biomech2008412483249110.1016/j.jbiomech.2008.05.017
– reference: DüsterABrökerHRankEThe p-version of the finite element method for three-dimensional curved thin walled structuresInt J Numer Methods Eng2001526737031058.7407910.1002/nme.222
– reference: Fernandez-MendezSHuertaAImposing essential boundary conditions in mesh-free methodsComput Methods Appl Mech Eng20041931257127520455191060.7466510.1016/j.cma.2003.12.019
– reference: CottrellJAHughesTJRBazilevsYIsogeometric analysis: toward integration of CAD and FEA2009New YorkWiley
– reference: MittalRIaccarinoGImmersed boundary methodsAnn Rev Fluid Mech200537239261211534310.1146/annurev.fluid.37.061903.175743
– reference: DüsterAParvizianJYangZRankEThe Finite Cell Method for three-dimensional problems of solid mechanicsComput Methods Appl Mech Eng2008197376837821194.7451710.1016/j.cma.2008.02.036
– reference: EmbarADolbowJHarariIImposing Dirichlet boundary conditions with Nitsche’s method and spline-based finite elementsInt J Numer Methods Eng20108387789826833791197.74178
– reference: GlowinskiRKuznetsovYDistributed Lagrange multipliers based on fictitious domain method for second order elliptic problemsComput Methods Appl Mech Eng20071961498150622770331173.6536910.1016/j.cma.2006.05.013
– reference: HughesTJRThe finite element method: linear static and dynamic finite element analysis2000New YorkDover1191.74002
– reference: BishopJRapid stress analysis of geometrically complex domains using implicit meshingComput Mech2003304604781038.7462610.1007/s00466-003-0424-5
– reference: SzabóBBabuškaIFinite element analysis1991New YorkWiley0792.73003
– reference: WriggersPNonlinear finite element methods2008BerlinSpringer1153.74001
– reference: SametHFoundations of multidimensional and metric data structures2006San FranciscoMorgan Kaufmann Publishers1139.68022
– reference: HarariIDolbowJAnalysis of an efficient finite element method for embedded interface problemsComput Mech20104620521126444101190.6517210.1007/s00466-009-0457-5
– reference: Düster A (2001) High order finite elements for three-dimensional, thin-walled nonlinear continua. PhD thesis, Lehrstuhl für Bauinformatik, Technische Universität München, Shaker, Aachen
– reference: VosPEJvan LoonRSherwinSJA comparison of fictitious domain methods appropriate for spectral/hp element discretisationsComput Methods Appl Mech Eng2008197227522891158.7635710.1016/j.cma.2007.11.023
– reference: PieglLATillerWThe NURBS book (monographs in visual communication)1997New YorkSpringer10.1007/978-3-642-59223-2
– reference: ZhuTAtluriSNA modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin methodComput Mech19982121122216337250947.7408010.1007/s004660050296
– reference: Visual DoMesh 2008 Version 1.1, Mesh generator developed by C. Sorger, Chair for Computation in Engineering, Technische Universität München
– reference: BeckerRBurmanEHansboPA hierarchical NXFEM for fictitious domain simulationsInt J Numer Methods Eng2011864–5545592815990
– reference: SzabóBDüsterARankESteinEde BorstRHughesTJRThe p-version of the finite element methodEncyclopedia of computational mechanics, vol 12004ChichesterWiley119139
– reference: TrabelsiNYosibashZMilgromCValidation of subject-specific automated p-FE analysis of the proximal femurJ Biomech20094223424110.1016/j.jbiomech.2008.10.039
– reference: LegayAWangHWBelytschkoTStrong and weak arbitrary discontinuities in spectral finite elementsInt J Numer Methods Eng200564991100821734611167.7404510.1002/nme.1388
– reference: GerstenbergerAWallWAAn embedded Dirichlet formulation for 3D continuaInt J Numer Methods Eng20108253756326624451188.74056
– reference: Ruess M, Tal D, Trabelsi N, Yosibash Z, Rank E (2011) The Finite Cell Method for bone simulations: verification and validation. Biomech Model Mechanobiol. doi:10.1007/s10237-011-0322-2
– reference: LöhnerRCebralRJCamelliFEAppanaboyinaSBaumJDMestreauELSotoOAAdaptive embedded and immersed unstructured grid techniquesComput Methods Appl Mech Eng2008197217321971158.7640810.1016/j.cma.2007.09.010
– reference: Düster A, Sehlhorst HG, Rank E (2012) Numerical homogenization of heterogeneous and cellular materials utilizing the Finite Cell Method. Comp Mech. doi:10.1007/s00466-012-0681-2
– reference: BertsekasDPConstrained optimization and lagrange multiplier methods1996NashuaAthina Scientific
– reference: HughesTJRCottrellJABazilevsYIsogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinementComput Methods Appl Mech Eng20051944135419521523821151.7441910.1016/j.cma.2004.10.008
– reference: SaddMHElasticity: theory, applications, and numerics2009OxfordAcademic Press
– reference: Abedian A, Parvizian J, Düster A, Khademyzadeh H, Rank E (2010) The Finite Cell Method for elasto-plastic problems. In: Proceedings of the 10th international conference on computational structures technology, Valencia, 2010
– reference: ZohdiTWriggersPIntroduction to computational micromechanics2005BerlinSpringer1085.7400110.1007/978-3-540-32360-0
– reference: DüsterAHartmannSRankEp-FEM applied to finite isotropic hyperelastic bodiesComput Methods Appl Mech Eng2003192514751661053.7404310.1016/j.cma.2003.07.003
– reference: NovellineRSquire’s fundamentals of radiology1997CambridgeHarvard University Press
– reference: Schillinger D, Düster A, Rank E (2011) The hp-d adaptive Finite Cell Method for geometrically nonlinear problems of solid mechanics. Int J Numer Methods Eng. doi:10.1002/nme.3289
– reference: RamièreIAngotPBelliardMA fictitious domain approach with spread interface for elliptic problems with general boundary conditionsComput Methods Appl Mech Eng20071967667811121.6536410.1016/j.cma.2006.05.012
– ident: 684_CR43
  doi: 10.1002/nme.4269
– volume-title: The finite element method vol 1: the basis
  year: 2005
  ident: 684_CR60
– volume: 36
  start-page: 12
  year: 2007
  ident: 684_CR62
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2005.07.012
– volume-title: Nonlinear finite elements for continua and structures
  year: 2006
  ident: 684_CR72
– volume-title: The finite element method: linear static and dynamic finite element analysis
  year: 2000
  ident: 684_CR2
– volume: 87
  start-page: 59
  issue: 1–2
  year: 2009
  ident: 684_CR87
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2008.08.008
– volume-title: Squire’s fundamentals of radiology
  year: 1997
  ident: 684_CR69
– volume: 11
  start-page: 887
  year: 1995
  ident: 684_CR79
  publication-title: Commun Numer Methods Eng
  doi: 10.1002/cnm.1640111103
– volume: 33
  start-page: 1587
  issue: 5
  year: 1995
  ident: 684_CR6
  publication-title: SIAM Control Optim
  doi: 10.1137/S0363012992231124
– volume: 197
  start-page: 2275
  year: 2008
  ident: 684_CR35
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2007.11.023
– ident: 684_CR52
  doi: 10.1016/j.cma.2011.08.002
– volume-title: Introduction to computer graphics
  year: 2004
  ident: 684_CR68
– volume: 194
  start-page: 4135
  year: 2005
  ident: 684_CR3
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2004.10.008
– volume: 225
  start-page: 541
  year: 2009
  ident: 684_CR26
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2008.08.034
– volume: 197
  start-page: 2732
  year: 2008
  ident: 684_CR88
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2008.01.012
– ident: 684_CR81
– volume-title: Finite element analysis
  year: 1991
  ident: 684_CR30
– volume-title: Nonlinear solid mechanics. A continuum approach for engineering
  year: 2000
  ident: 684_CR75
– volume: 21
  start-page: 211
  year: 1998
  ident: 684_CR57
  publication-title: Comput Mech
  doi: 10.1007/s004660050296
– ident: 684_CR36
  doi: 10.1007/s11081-011-9159-x
– volume: 50
  start-page: 2573
  year: 2001
  ident: 684_CR48
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.146
– volume-title: Elasticity: theory, applications, and numerics
  year: 2009
  ident: 684_CR65
– volume: 196
  start-page: 766
  year: 2007
  ident: 684_CR12
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2006.05.012
– ident: 684_CR34
  doi: 10.1002/nme.3289
– ident: 684_CR85
– volume: 27
  start-page: 221
  issue: 122
  year: 1972
  ident: 684_CR56
  publication-title: Math Comput
  doi: 10.1090/S0025-5718-1973-0351118-5
– volume: 25
  start-page: 781
  year: 2003
  ident: 684_CR66
  publication-title: J Med Eng Phys
  doi: 10.1016/S1350-4533(03)00081-X
– ident: 684_CR92
– start-page: 87
  volume-title: Computational structural engineering
  year: 2009
  ident: 684_CR32
  doi: 10.1007/978-90-481-2822-8_9
– volume: 196
  start-page: 1498
  year: 2007
  ident: 684_CR11
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2006.05.013
– start-page: 119
  volume-title: Encyclopedia of computational mechanics, vol 1
  year: 2004
  ident: 684_CR31
– volume: 82
  start-page: 537
  year: 2010
  ident: 684_CR18
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.2755
– volume-title: Nonlinear continuum mechanics for finite element analysis
  year: 2008
  ident: 684_CR45
  doi: 10.1017/CBO9780511755446
– volume-title: Using OpenMP. Portable shared memory parallel programming
  year: 2008
  ident: 684_CR93
– volume: 41
  start-page: 2483
  year: 2008
  ident: 684_CR67
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2008.05.017
– volume-title: Numerical methods for scientific computing: variational problems and applications
  year: 2003
  ident: 684_CR10
– volume: 45
  start-page: 45
  year: 2009
  ident: 684_CR78
  publication-title: Comput Mech
  doi: 10.1007/s00466-009-0414-3
– volume: 86
  start-page: 54
  issue: 4–5
  year: 2011
  ident: 684_CR23
  publication-title: Int J Numer Methods Eng
– ident: 684_CR38
– volume: 52
  start-page: 673
  year: 2001
  ident: 684_CR50
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.222
– volume: 199
  start-page: 2680
  year: 2010
  ident: 684_CR17
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2010.05.011
– volume: 200
  start-page: 3200
  year: 2011
  ident: 684_CR37
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2011.06.005
– volume: 199
  start-page: 357
  year: 2010
  ident: 684_CR89
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2009.01.022
– volume: 46
  start-page: 205
  year: 2010
  ident: 684_CR64
  publication-title: Comput Mech
  doi: 10.1007/s00466-009-0457-5
– volume: 197
  start-page: 3768
  year: 2008
  ident: 684_CR29
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2008.02.036
– ident: 684_CR51
  doi: 10.1088/1757-899X/10/1/012170
– volume: 190
  start-page: 6183
  year: 2001
  ident: 684_CR20
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(01)00215-8
– volume: 64
  start-page: 991
  year: 2005
  ident: 684_CR25
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1388
– volume: 191
  start-page: 537
  year: 2002
  ident: 684_CR61
  publication-title: Comput Methods Appl Mech Eng
– ident: 684_CR82
– ident: 684_CR86
– volume-title: Finite element procedures
  year: 1996
  ident: 684_CR1
– volume: 41
  start-page: 122
  year: 2007
  ident: 684_CR28
  publication-title: Comput Mech
  doi: 10.1007/s00466-007-0173-y
– ident: 684_CR41
– volume: 37
  start-page: 239
  year: 2005
  ident: 684_CR8
  publication-title: Ann Rev Fluid Mech
  doi: 10.1146/annurev.fluid.37.061903.175743
– volume: 193
  start-page: 1257
  year: 2004
  ident: 684_CR59
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2003.12.019
– volume-title: An introduction to numerical analysis
  year: 2003
  ident: 684_CR46
  doi: 10.1017/CBO9780511801181
– ident: 684_CR39
– volume: 83
  start-page: 877
  year: 2010
  ident: 684_CR63
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.2863
– volume-title: Constrained optimization and lagrange multiplier methods
  year: 1996
  ident: 684_CR80
– volume: 79
  start-page: 1557
  year: 2009
  ident: 684_CR24
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.2631
– volume-title: Introduction to computational micromechanics
  year: 2005
  ident: 684_CR91
  doi: 10.1007/978-3-540-32360-0
– volume: 197
  start-page: 1699
  year: 2008
  ident: 684_CR21
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2007.07.002
– volume-title: Finite element methods with B-splines
  year: 2003
  ident: 684_CR55
  doi: 10.1137/1.9780898717532
– ident: 684_CR33
  doi: 10.1007/s10237-011-0322-2
– volume: 26
  start-page: 231
  year: 2003
  ident: 684_CR16
  publication-title: Comput Optim Appl
  doi: 10.1023/A:1026095405906
– volume-title: Isogeometric analysis: toward integration of CAD and FEA
  year: 2009
  ident: 684_CR4
  doi: 10.1002/9780470749081
– ident: 684_CR58
  doi: 10.1007/978-3-642-56103-0_1
– ident: 684_CR49
– volume: 47
  start-page: 1474
  year: 2009
  ident: 684_CR22
  publication-title: SIAM J Numer Anal
  doi: 10.1137/070704435
– volume: 42
  start-page: 234
  year: 2009
  ident: 684_CR71
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2008.10.039
– ident: 684_CR83
– volume: 54
  start-page: 1309
  year: 2002
  ident: 684_CR15
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.461
– volume: 40
  start-page: 1263
  year: 1997
  ident: 684_CR76
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/(SICI)1097-0207(19970415)40:7<1263::AID-NME113>3.0.CO;2-3
– volume: 192
  start-page: 5147
  year: 2003
  ident: 684_CR77
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2003.07.003
– volume: 228
  start-page: 3891
  year: 2009
  ident: 684_CR27
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2009.02.019
– volume-title: The NURBS book (monographs in visual communication)
  year: 1997
  ident: 684_CR53
  doi: 10.1007/978-3-642-59223-2
– volume: 194
  start-page: 363
  year: 2004
  ident: 684_CR44
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2003.09.032
– volume: 129
  start-page: 297
  year: 2007
  ident: 684_CR70
  publication-title: J Biomech Eng
  doi: 10.1115/1.2720906
– volume-title: Computational methods for plasticity: theory and applications
  year: 2008
  ident: 684_CR73
  doi: 10.1002/9780470694626
– ident: 684_CR19
  doi: 10.1016/j.apnum.2011.01.008
– volume: 30
  start-page: 460
  year: 2003
  ident: 684_CR13
  publication-title: Comput Mech
  doi: 10.1007/s00466-003-0424-5
– volume: 11
  start-page: 1
  year: 2002
  ident: 684_CR7
  publication-title: Acta Numer
  doi: 10.1017/CBO9780511550140.001
– volume: 46
  start-page: 559
  year: 2001
  ident: 684_CR90
  publication-title: Prog Mater Sci
  doi: 10.1016/S0079-6425(00)00002-5
– volume: 199
  start-page: 229
  year: 2010
  ident: 684_CR5
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2009.02.036
– ident: 684_CR42
  doi: 10.1007/s00466-012-0681-2
– volume-title: Foundations of multidimensional and metric data structures
  year: 2006
  ident: 684_CR47
– ident: 684_CR40
  doi: 10.4203/ccp.93.310
– volume: 35
  start-page: 743
  year: 2001
  ident: 684_CR14
  publication-title: Int J Numer Methods Fluids
  doi: 10.1002/1097-0363(20010415)35:7<743::AID-FLD109>3.0.CO;2-A
– volume-title: Nonlinear finite element methods
  year: 2008
  ident: 684_CR74
– volume: 197
  start-page: 2173
  year: 2008
  ident: 684_CR9
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2007.09.010
– volume-title: An introduction to NURBS with historical perspective
  year: 2001
  ident: 684_CR54
– ident: 684_CR84
SSID ssj0015835
Score 2.3969793
Snippet The Finite Cell Method (FCM) is an embedded domain method, which combines the fictitious domain approach with high-order finite elements, adaptive integration,...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 445
SubjectTerms Analysis
Basis functions
Boundary conditions
Classical and Continuum Physics
Complexity
Computational Science and Engineering
Convergence
Coordination compounds
Deformation analysis
Dirichlet problem
Elasticity
Engineering
Femur
Finite element method
Iterative methods
Mathematical analysis
Mesh generation
Metal foams
Methods
Nonlinear analysis
Original Paper
Robustness (mathematics)
Splines
Theoretical and Applied Mechanics
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB2V7QUOFAqIpQVZCAkJZBE7dhIfKtRWXRWkrlBLpd6MP-IKaclumy2H_vp6EmdLQfQaO07imXiePTNvAN75XNQR9VvKHc-pCIZR5XxGS-uYZYVzVYHZyEfT4vBUfD2TZ2swHXJhMKxyWBO7hdrPHZ6Rf-LIpC4jWC8_Ly4oVo1C7-pQQsOk0gp-p6MYewDrHJmxRrC-dzD9drzyK8iqL7nJ4t4JaUwGP2fW04oWuLvmWIhF0Os7lurv9fofx2lnjyZP4HECkmS3l_xTWKubTdhIoJKkX7bdhEd_MA4-gx8nv8xsRkzjyQxjwImvV-mL8WpPUELwcJZEZEgWtOu6R1tM3K3J7_50rSXz0LVPfiJkJft1HPOoq0X9HE4nB9_3D2kqskCd5GpJrSulMlmdm6CsK3zuWZlz673PAjcssGi9lM-MimBByaC8DN6KSvmCmYLbKn8Bo2be1C-B5JWQKnMqzrIULChVMqOcE5KHUvgqjCEbJlS7xECOhTBmesWd3MlARxlolIG-HsOH1S2Lnn7jvs5vUUoaaS0ajJs5N1dtq7-cHOtdhFVFGc30GN6nTmEeH-5MSkOIn4BMWHd6bg_S1unHbvWtGo7h46ABt83_fbdX9w-2BQ85al4XJbgNo-XlVf06op2lfZNU-AY2efnY
  priority: 102
  providerName: ProQuest
Title Small and large deformation analysis with the p- and B-spline versions of the Finite Cell Method
URI https://link.springer.com/article/10.1007/s00466-012-0684-z
https://www.proquest.com/docview/2260052597
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1432-0924
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0015835
  issn: 0178-7675
  databaseCode: ABDBF
  dateStart: 20030401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1432-0924
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0015835
  issn: 0178-7675
  databaseCode: AMVHM
  dateStart: 19860301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-0924
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015835
  issn: 0178-7675
  databaseCode: AFBBN
  dateStart: 19860301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1432-0924
  dateEnd: 20151231
  omitProxy: true
  ssIdentifier: ssj0015835
  issn: 0178-7675
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1432-0924
  dateEnd: 20151231
  omitProxy: true
  ssIdentifier: ssj0015835
  issn: 0178-7675
  databaseCode: 8FG
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-0924
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015835
  issn: 0178-7675
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-0924
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015835
  issn: 0178-7675
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfY9gIPfAwQB-MUISQkUKQmTdrm8W66boB2QhsnjaeQJg1COnoTvfGwv564TQvjS-KpUuOmbewkdmz_DPDcpaIOWn9FueUpFd4wqqxLaF5ZVrHM2iLDbOSTZXa8Em_O5XnM426HaPfBJdmt1GOyG5pyaP1yLJQi6NUO7ElE8wpCvOKz0XUgi76qJgvmESKVDK7MP3VxbTP6dUn-zTfabTnlXbgddUUy65l7D27UzT7ciXojibOy3YdbP4EK3oePZ1_Mek1M48gaw7yJq8cMxXC3xyAheP5KgvJHLmhHOqct5ubW5Ft_gNaSje_ay8-olZLDOvR50pWbfgCrcvH-8JjGOgrUSq62tLK5VCapU-NVZTOXOpanvHLOJZ4b5lnYoJRLjAr6gJJeOeldJQrlMmYyXhXpQ9htNk39CEhaCKkSq8IoS8G8Ujkzylohuc-FK_wEkmFAtY0g41jrYq1HeOSOBzrwQCMP9NUEXo6PXPQIG_8ifoZc0ohc0WBozCdz2bb69dmpnqHmlOVhJ57Ai0jkN-Hl1sRMg_ALCHZ1jfJg4LaOc7fVHDH7ZTAL8wm8GiTgR_Nfv-3xf1E_gZscBbGLCzyA3e3Xy_pp0G-21RR2ivJoCnuzcj5f4vXow9tFuM4Xy3en007avwMDr_X2
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAceBQQCy1YCIQEskgcO4kPVdWWrnZpd4X6kHpzHTtGSEt2IVsQ_XH8NjyJs6Ugeus1njiJZzLz-THfALy0CS896i8oMyyh3OmYSmMjmhUmLuLUmDzFbOTROB0c8w8n4mQJfnW5MHissvOJjaO2U4Nr5O8YMqkLD9azzdlXilWjcHe1K6GhQ2kFu9FQjIXEjr3y5w8_has3hu-9vl8x1t892hnQUGWAGsHknBYmE1JHZaKdLExqExtnCSustZFjOnaxd9_SRlr6aCmFk1Y4W_Bc2jTWKSvyxPd7A1Z4wqWf_K1s744_Hiz2MUTelviM_VwNaVO6fdWopTFNcTbPsPALp-eXIuPf8eGfjdom_vXvwZ0AXMlWa2n3YamsVuFuALEkuIh6FW7_wXD4AE4Pv-jJhOjKkgmeOSe2XKRL-qstIQrBxWDikSiZ0UZ0m9aYKFyS7-1qXk2mrmnvf0aITHZK3-eoqX39EI6vZbgfwXI1rcrHQJKcCxkZ6UdZ8NhJmcVaGsMFcxm3uetB1A2oMoHxHAtvTNSCq7nRgfI6UKgDdd6DN4tbZi3dx1XCL1BLCmk0Kjyn80mf1bUaHh6oLYRxaeZhQQ9eByE39Q83OqQ9-E9A5q1LkmudtlVwJLW6MPsevO0s4KL5v-_25OrOnsPNwdFoX-0Px3tP4RZDK2xOKK7B8vzbWbnukda8eBbMmcDpdf9BvwGS7TfN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLdgSAge-BigHWwQISQkULQmTdrm8RicNmATYpy0t5CPBk06eid642F_PXGbdowvidfGTdvYqe3Y_hngmc9FHa1-S7njORXBMKqcz2hpHbOscK4qsBr58KjYn4u3J_Ik9Tlth2z3ISTZ1zQgSlOz3l35sDsWvqFbh54wx6Ypgp5fhWsCcRKiQM_5dAwjyKrvsMmiq4SoJUNY809TXFJMv_6ef4uTdupndgduJbuRTHtG34UrdbMJt5MNSdIObTfh5k8Ag_fg8_FXs1gQ03iywJRv4uuxWjFe7fFICJ7FkmgIkhXtSF_RFut0a_K9P0xryTJ047NTtFDJXh3nPOxaT9-H-ezNp719mnoqUCe5WlPrSqlMVucmKOsKn3tW5tx677PADQssKivlM6OibaBkUF4Gb0WlfMFMwW2VP4CNZtnUW0DySkiVORVXWQoWlCqZUc4JyUMpfBUmkA0Lql0CHMe-Fws9QiV3PNCRBxp5oM8n8GK8ZdWjbfyL-ClySSOKRYNpMl_MWdvqg-OPeopWVFFGrTyB54koLOPDnUlVB_ETEPjqEuX2wG2d9nGrOeL3y-gilhN4OUjAxfBf3-3hf1E_gesfXs_0-4Ojd4_gBkeZ7NIFt2Fj_e2s3olmz9o-7kT7B_zG944
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small+and+large+deformation+analysis+with+the+p-+and+B-spline+versions+of+the+finite+cell+method&rft.jtitle=Computational+mechanics&rft.au=Schillinger%2C+Dominik&rft.au=Ruess%2C+Martin&rft.au=Zander%2C+Nils&rft.au=Bazilevs%2C+Yuri&rft.date=2012-10-01&rft.pub=Springer&rft.issn=0178-7675&rft.volume=50&rft.issue=4&rft.spage=445&rft_id=info:doi/10.1007%2Fs00466-012-0684-z&rft.externalDBID=ISR&rft.externalDocID=A355467123
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-7675&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-7675&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-7675&client=summon