Small and large deformation analysis with the p- and B-spline versions of the Finite Cell Method
The Finite Cell Method (FCM) is an embedded domain method, which combines the fictitious domain approach with high-order finite elements, adaptive integration, and weak imposition of unfitted Dirichlet boundary conditions. For smooth problems, FCM has been shown to achieve exponential rates of conve...
Saved in:
| Published in | Computational mechanics Vol. 50; no. 4; pp. 445 - 478 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer-Verlag
01.10.2012
Springer Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0178-7675 1432-0924 |
| DOI | 10.1007/s00466-012-0684-z |
Cover
| Abstract | The Finite Cell Method (FCM) is an embedded domain method, which combines the fictitious domain approach with high-order finite elements, adaptive integration, and weak imposition of unfitted Dirichlet boundary conditions. For smooth problems, FCM has been shown to achieve exponential rates of convergence in energy norm, while its structured cell grid guarantees simple mesh generation irrespective of the geometric complexity involved. The present contribution first unhinges the FCM concept from a special high-order basis. Several benchmarks of linear elasticity and a complex proximal femur bone with inhomogeneous material demonstrate that for small deformation analysis, FCM works equally well with basis functions of the
p
-version of the finite element method or high-order B-splines. Turning to large deformation analysis, it is then illustrated that a straightforward geometrically nonlinear FCM formulation leads to the loss of uniqueness of the deformation map in the fictitious domain. Therefore, a modified FCM formulation is introduced, based on repeated deformation resetting, which assumes for the fictitious domain the deformation-free reference configuration after each Newton iteration. Numerical experiments show that this intervention allows for stable nonlinear FCM analysis, preserving the full range of advantages of linear elastic FCM, in particular exponential rates of convergence. Finally, the weak imposition of unfitted Dirichlet boundary conditions via the penalty method, the robustness of FCM under severe mesh distortion, and the large deformation analysis of a complex voxel-based metal foam are addressed. |
|---|---|
| AbstractList | The Finite Cell Method (FCM) is an embedded domain method, which combines the fictitious domain approach with high-order finite elements, adaptive integration, and weak imposition of unfitted Dirichlet boundary conditions. For smooth problems, FCM has been shown to achieve exponential rates of convergence in energy norm, while its structured cell grid guarantees simple mesh generation irrespective of the geometric complexity involved. The present contribution first unhinges the FCM concept from a special high-order basis. Several benchmarks of linear elasticity and a complex proximal femur bone with inhomogeneous material demonstrate that for small deformation analysis, FCM works equally well with basis functions of the p-version of the finite element method or high-order B-splines. Turning to large deformation analysis, it is then illustrated that a straightforward geometrically nonlinear FCM formulation leads to the loss of uniqueness of the deformation map in the fictitious domain. Therefore, a modified FCM formulation is introduced, based on repeated deformation resetting, which assumes for the fictitious domain the deformation-free reference configuration after each Newton iteration. Numerical experiments show that this intervention allows for stable nonlinear FCM analysis, preserving the full range of advantages of linear elastic FCM, in particular exponential rates of convergence. Finally, the weak imposition of unfitted Dirichlet boundary conditions via the penalty method, the robustness of FCM under severe mesh distortion, and the large deformation analysis of a complex voxel-based metal foam are addressed. The Finite Cell Method (FCM) is an embedded domain method, which combines the fictitious domain approach with high-order finite elements, adaptive integration, and weak imposition of unfitted Dirichlet boundary conditions. For smooth problems, FCM has been shown to achieve exponential rates of convergence in energy norm, while its structured cell grid guarantees simple mesh generation irrespective of the geometric complexity involved. The present contribution first unhinges the FCM concept from a special high-order basis. Several benchmarks of linear elasticity and a complex proximal femur bone with inhomogeneous material demonstrate that for small deformation analysis, FCM works equally well with basis functions of the p-version of the finite element method or high-order B-splines. Turning to large deformation analysis, it is then illustrated that a straightforward geometrically nonlinear FCM formulation leads to the loss of uniqueness of the deformation map in the fictitious domain. Therefore, a modified FCM formulation is introduced, based on repeated deformation resetting, which assumes for the fictitious domain the deformation-free reference configuration after each Newton iteration. Numerical experiments show that this intervention allows for stable nonlinear FCM analysis, preserving the full range of advantages of linear elastic FCM, in particular exponential rates of convergence. Finally, the weak imposition of unfitted Dirichlet boundary conditions via the penalty method, the robustness of FCM under severe mesh distortion, and the large deformation analysis of a complex voxel-based metal foam are addressed. Keywords Embedded domain methods * Immersed boundary methods * Fictitious domain methods * p-Version of the Finite Cell Method * B-spline version of the Finite Cell Method * Large deformation solid mechanics * Weak boundary conditions The Finite Cell Method (FCM) is an embedded domain method, which combines the fictitious domain approach with high-order finite elements, adaptive integration, and weak imposition of unfitted Dirichlet boundary conditions. For smooth problems, FCM has been shown to achieve exponential rates of convergence in energy norm, while its structured cell grid guarantees simple mesh generation irrespective of the geometric complexity involved. The present contribution first unhinges the FCM concept from a special high-order basis. Several benchmarks of linear elasticity and a complex proximal femur bone with inhomogeneous material demonstrate that for small deformation analysis, FCM works equally well with basis functions of the p -version of the finite element method or high-order B-splines. Turning to large deformation analysis, it is then illustrated that a straightforward geometrically nonlinear FCM formulation leads to the loss of uniqueness of the deformation map in the fictitious domain. Therefore, a modified FCM formulation is introduced, based on repeated deformation resetting, which assumes for the fictitious domain the deformation-free reference configuration after each Newton iteration. Numerical experiments show that this intervention allows for stable nonlinear FCM analysis, preserving the full range of advantages of linear elastic FCM, in particular exponential rates of convergence. Finally, the weak imposition of unfitted Dirichlet boundary conditions via the penalty method, the robustness of FCM under severe mesh distortion, and the large deformation analysis of a complex voxel-based metal foam are addressed. |
| Audience | Academic |
| Author | Zander, Nils Schillinger, Dominik Ruess, Martin Rank, Ernst Bazilevs, Yuri Düster, Alexander |
| Author_xml | – sequence: 1 givenname: Dominik surname: Schillinger fullname: Schillinger, Dominik email: schillinger@bv.tum.de organization: Lehrstuhl für Computation in Engineering, Department of Civil Engineering and Surveying, Technische Universität München – sequence: 2 givenname: Martin surname: Ruess fullname: Ruess, Martin organization: Lehrstuhl für Computation in Engineering, Department of Civil Engineering and Surveying, Technische Universität München – sequence: 3 givenname: Nils surname: Zander fullname: Zander, Nils organization: Lehrstuhl für Computation in Engineering, Department of Civil Engineering and Surveying, Technische Universität München – sequence: 4 givenname: Yuri surname: Bazilevs fullname: Bazilevs, Yuri organization: Department of Structural Engineering, University of California, San Diego – sequence: 5 givenname: Alexander surname: Düster fullname: Düster, Alexander organization: Numerische Strukturanalyse mit Anwendungen in der Schiffstechnik (M-10), Technische Universität Hamburg-Harburg – sequence: 6 givenname: Ernst surname: Rank fullname: Rank, Ernst organization: Lehrstuhl für Computation in Engineering, Department of Civil Engineering and Surveying, Technische Universität München |
| BookMark | eNp9kc9vFCEUgIlpE7fVP8AbiScP1AczwHCsG_sjqTGx7RmZAXZpZocV2Gr710t3TExNbDgQHt_34L13hA6mODmE3lE4oQDyYwZohSBAGQHRteTxFVrQtqknxdoDtAAqOyKF5K_RUc53AJR3DV-g79cbM47YTBaPJq0cts7HtDElxKlGzfiQQ8Y_Q1njsnZ4S_boJ5K3Y5gcvncpVzLj6Pf3Z2EKxeGlqzm_uLKO9g069GbM7u2f_Rjdnn2-WV6Qq6_nl8vTKzJwpgrpB8mVAdcYr_pB2MZS2bDeWgueGeppK6myYBRAp7hXlnvbt52yghrB-q45Ru_nvNsUf-xcLvou7lItIGvGBABnXMlKnczUyoxOh8nHksxQl3WbMNSW-lDjpw3nrZCUNVX48EyoTHG_ysrsctaX19-es3RmhxRzTs7rbQobkx40Bf00JT1PSdcp6acp6cfqyH-cIZR99-vHwviiyWYz11emlUt_C_6_9BvjFqew |
| CitedBy_id | crossref_primary_10_1002_cnm_2880 crossref_primary_10_1016_j_jcp_2012_12_018 crossref_primary_10_1016_j_camwa_2017_01_027 crossref_primary_10_1007_s11831_014_9115_y crossref_primary_10_1002_nme_4522 crossref_primary_10_1016_j_cma_2022_115565 crossref_primary_10_1002_zamm_201700045 crossref_primary_10_1007_s00466_023_02411_x crossref_primary_10_1016_j_compstruct_2017_05_069 crossref_primary_10_1002_cpe_5207 crossref_primary_10_1002_pamm_201900419 crossref_primary_10_1016_j_cma_2018_02_027 crossref_primary_10_1016_j_cam_2018_09_027 crossref_primary_10_1016_j_cma_2018_02_029 crossref_primary_10_1002_nme_5340 crossref_primary_10_1002_nme_5207 crossref_primary_10_1002_nme_5606 crossref_primary_10_1016_j_apm_2020_03_043 crossref_primary_10_1186_s40323_015_0031_y crossref_primary_10_1016_j_finel_2019_01_009 crossref_primary_10_1063_5_0152690 crossref_primary_10_1002_gamm_202000004 crossref_primary_10_1016_j_camwa_2015_04_002 crossref_primary_10_1186_s40323_020_00157_2 crossref_primary_10_1016_j_cma_2013_10_023 crossref_primary_10_1016_j_cma_2013_07_017 crossref_primary_10_1007_s10915_015_9997_3 crossref_primary_10_1016_j_cma_2013_12_010 crossref_primary_10_1007_s00466_022_02140_7 crossref_primary_10_1002_nme_6020 crossref_primary_10_1016_j_cma_2024_116999 crossref_primary_10_1186_s40323_018_0109_4 crossref_primary_10_1007_s00466_017_1424_1 crossref_primary_10_1016_j_cma_2019_07_010 crossref_primary_10_1007_s00466_024_02482_4 crossref_primary_10_1007_s00466_024_02486_0 crossref_primary_10_1016_j_camwa_2018_01_048 crossref_primary_10_1016_j_cma_2023_116670 crossref_primary_10_1007_s00466_015_1174_x crossref_primary_10_1016_j_cma_2022_115584 crossref_primary_10_1016_j_apm_2019_10_011 crossref_primary_10_1007_s00466_019_01738_8 crossref_primary_10_1016_j_cma_2013_04_001 crossref_primary_10_1016_j_finel_2022_103794 crossref_primary_10_1007_s11831_023_09913_0 crossref_primary_10_1016_j_cma_2014_09_032 crossref_primary_10_1016_j_cma_2014_09_033 crossref_primary_10_1016_j_jmbbm_2022_105415 crossref_primary_10_1007_s00466_022_02203_9 crossref_primary_10_1007_s00466_014_0991_7 crossref_primary_10_1016_j_cma_2019_01_035 crossref_primary_10_1016_j_cma_2015_11_003 crossref_primary_10_1016_j_cma_2022_115856 crossref_primary_10_1007_s00466_019_01772_6 crossref_primary_10_1016_j_cma_2015_11_007 crossref_primary_10_1016_j_cma_2022_114648 crossref_primary_10_1016_j_camwa_2015_06_012 crossref_primary_10_1093_jcde_qwab070 crossref_primary_10_1016_j_cagd_2016_02_007 crossref_primary_10_1016_j_compgeo_2022_104637 crossref_primary_10_1002_cnm_2951 crossref_primary_10_1007_s00419_024_02644_z crossref_primary_10_1016_j_cma_2024_117393 crossref_primary_10_1016_j_cma_2013_10_009 crossref_primary_10_1093_jom_ufac005 crossref_primary_10_1093_jom_ufac006 crossref_primary_10_1002_nme_4817 crossref_primary_10_1016_j_commatsci_2013_10_012 crossref_primary_10_1016_j_cma_2017_04_002 crossref_primary_10_1016_j_cma_2019_03_010 crossref_primary_10_1016_j_jcp_2017_03_040 crossref_primary_10_1115_1_4029539 crossref_primary_10_1002_nme_4783 crossref_primary_10_1002_nme_4663 crossref_primary_10_1016_j_camwa_2020_03_020 crossref_primary_10_1007_s10915_021_01417_y crossref_primary_10_1016_j_cma_2012_05_022 crossref_primary_10_1016_j_jsv_2023_118058 crossref_primary_10_1007_s00466_015_1197_3 crossref_primary_10_1016_j_compstruct_2014_07_028 crossref_primary_10_1016_j_cma_2016_05_037 crossref_primary_10_1016_j_finel_2024_104262 crossref_primary_10_1016_j_cma_2018_08_002 crossref_primary_10_1016_j_finel_2021_103574 crossref_primary_10_1002_pamm_202200183 crossref_primary_10_1016_j_cagd_2019_05_001 crossref_primary_10_1016_j_cma_2018_01_015 crossref_primary_10_1007_s00466_024_02512_1 crossref_primary_10_1016_j_camwa_2016_10_023 crossref_primary_10_1016_j_camwa_2015_05_009 crossref_primary_10_1002_nme_5301 crossref_primary_10_1016_j_cma_2016_07_041 crossref_primary_10_1002_nme_5769 crossref_primary_10_1016_j_cma_2017_11_014 crossref_primary_10_1016_j_camwa_2012_09_002 crossref_primary_10_1007_s00466_021_02132_z crossref_primary_10_1016_j_compstruct_2015_01_012 crossref_primary_10_1016_j_advengsoft_2014_04_004 crossref_primary_10_1016_j_cma_2014_06_007 crossref_primary_10_1016_j_cma_2024_117374 crossref_primary_10_1016_j_cma_2020_113050 crossref_primary_10_1007_s00466_017_1441_0 crossref_primary_10_1016_j_cma_2016_04_006 crossref_primary_10_1007_s00466_016_1368_x crossref_primary_10_1016_j_cma_2014_10_040 crossref_primary_10_1016_j_cma_2012_03_017 crossref_primary_10_1007_s00466_017_1464_6 crossref_primary_10_1016_j_cma_2014_04_008 crossref_primary_10_1007_s00466_014_1118_x crossref_primary_10_1007_s11440_020_01123_3 crossref_primary_10_1016_j_addma_2020_101498 crossref_primary_10_1016_j_ijmecsci_2017_05_008 crossref_primary_10_1016_j_jcp_2018_10_030 crossref_primary_10_1016_j_camwa_2017_01_004 crossref_primary_10_1007_s00466_013_0853_8 crossref_primary_10_1142_S0219455415400180 crossref_primary_10_1016_j_cma_2012_06_011 crossref_primary_10_1016_j_compfluid_2015_08_027 crossref_primary_10_1016_j_cma_2016_09_036 crossref_primary_10_1016_j_cma_2019_04_017 crossref_primary_10_1002_pamm_201410123 crossref_primary_10_1016_j_cma_2013_11_002 crossref_primary_10_1016_j_cma_2020_112905 crossref_primary_10_1002_nme_5289 crossref_primary_10_1007_s00466_022_02172_z crossref_primary_10_1016_j_cma_2015_07_024 crossref_primary_10_1007_s00707_014_1227_9 crossref_primary_10_1016_j_compositesb_2013_02_045 crossref_primary_10_1007_s00466_017_1454_8 crossref_primary_10_1007_s00466_022_02158_x crossref_primary_10_1016_j_cma_2016_06_026 crossref_primary_10_1007_s00466_017_1378_3 crossref_primary_10_1007_s00466_014_1019_z crossref_primary_10_1002_pamm_202400042 crossref_primary_10_1016_j_apm_2015_09_071 crossref_primary_10_1007_s00466_016_1273_3 |
| Cites_doi | 10.1002/nme.4269 10.1016/j.compfluid.2005.07.012 10.1016/j.compstruc.2008.08.008 10.1002/cnm.1640111103 10.1137/S0363012992231124 10.1016/j.cma.2007.11.023 10.1016/j.cma.2011.08.002 10.1016/j.cma.2004.10.008 10.1016/j.cam.2008.08.034 10.1016/j.cma.2008.01.012 10.1007/s004660050296 10.1007/s11081-011-9159-x 10.1002/nme.146 10.1016/j.cma.2006.05.012 10.1002/nme.3289 10.1090/S0025-5718-1973-0351118-5 10.1016/S1350-4533(03)00081-X 10.1007/978-90-481-2822-8_9 10.1016/j.cma.2006.05.013 10.1002/nme.2755 10.1017/CBO9780511755446 10.1016/j.jbiomech.2008.05.017 10.1007/s00466-009-0414-3 10.1002/nme.222 10.1016/j.cma.2010.05.011 10.1016/j.cma.2011.06.005 10.1016/j.cma.2009.01.022 10.1007/s00466-009-0457-5 10.1016/j.cma.2008.02.036 10.1088/1757-899X/10/1/012170 10.1016/S0045-7825(01)00215-8 10.1002/nme.1388 10.1007/s00466-007-0173-y 10.1146/annurev.fluid.37.061903.175743 10.1016/j.cma.2003.12.019 10.1017/CBO9780511801181 10.1002/nme.2863 10.1002/nme.2631 10.1007/978-3-540-32360-0 10.1016/j.cma.2007.07.002 10.1137/1.9780898717532 10.1007/s10237-011-0322-2 10.1023/A:1026095405906 10.1002/9780470749081 10.1007/978-3-642-56103-0_1 10.1137/070704435 10.1016/j.jbiomech.2008.10.039 10.1002/nme.461 10.1002/(SICI)1097-0207(19970415)40:7<1263::AID-NME113>3.0.CO;2-3 10.1016/j.cma.2003.07.003 10.1016/j.jcp.2009.02.019 10.1007/978-3-642-59223-2 10.1016/j.jcp.2003.09.032 10.1115/1.2720906 10.1002/9780470694626 10.1016/j.apnum.2011.01.008 10.1007/s00466-003-0424-5 10.1017/CBO9780511550140.001 10.1016/S0079-6425(00)00002-5 10.1016/j.cma.2009.02.036 10.1007/s00466-012-0681-2 10.4203/ccp.93.310 10.1002/1097-0363(20010415)35:7<743::AID-FLD109>3.0.CO;2-A 10.1016/j.cma.2007.09.010 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag 2012 COPYRIGHT 2012 Springer Computational Mechanics is a copyright of Springer, (2012). All Rights Reserved. |
| Copyright_xml | – notice: Springer-Verlag 2012 – notice: COPYRIGHT 2012 Springer – notice: Computational Mechanics is a copyright of Springer, (2012). All Rights Reserved. |
| DBID | AAYXX CITATION ISR 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s00466-012-0684-z |
| DatabaseName | CrossRef Gale In Context: Science ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
| DatabaseTitleList | Engineering Database |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1432-0924 |
| EndPage | 478 |
| ExternalDocumentID | A355467123 10_1007_s00466_012_0684_z |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 28- 29F 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFSI ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 E.L EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAS LLZTM M4Y M7S MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9P PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WIP WK8 XH6 YLTOR Z45 Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8R Z8S Z8T Z8W Z92 ZMTXR _50 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c529t-bc759a0e3af9bc6d3d1732bddd0f2a1f14719d0a900895f9d5fdb489d61a62b83 |
| IEDL.DBID | U2A |
| ISSN | 0178-7675 |
| IngestDate | Fri Jul 25 11:12:10 EDT 2025 Mon Oct 20 16:10:32 EDT 2025 Thu Oct 16 14:38:38 EDT 2025 Wed Oct 01 04:31:29 EDT 2025 Thu Apr 24 23:09:24 EDT 2025 Fri Feb 21 02:32:11 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Embedded domain methods Version of the Finite Cell Method B-spline version of the Finite Cell Method Large deformation solid mechanics Weak boundary conditions Immersed boundary methods Fictitious domain methods |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c529t-bc759a0e3af9bc6d3d1732bddd0f2a1f14719d0a900895f9d5fdb489d61a62b83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2260052597 |
| PQPubID | 2043755 |
| PageCount | 34 |
| ParticipantIDs | proquest_journals_2260052597 gale_infotracacademiconefile_A355467123 gale_incontextgauss_ISR_A355467123 crossref_primary_10_1007_s00466_012_0684_z crossref_citationtrail_10_1007_s00466_012_0684_z springer_journals_10_1007_s00466_012_0684_z |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2012-10-01 |
| PublicationDateYYYYMMDD | 2012-10-01 |
| PublicationDate_xml | – month: 10 year: 2012 text: 2012-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | Solids, Fluids, Structures, Fluid-Structure Interactions, Biomechanics, Micromechanics, Multiscale Mechanics, Materials, Constitutive Modeling, Nonlinear Mechanics, Aerodynamics |
| PublicationTitle | Computational mechanics |
| PublicationTitleAbbrev | Comput Mech |
| PublicationYear | 2012 |
| Publisher | Springer-Verlag Springer Springer Nature B.V |
| Publisher_xml | – name: Springer-Verlag – name: Springer – name: Springer Nature B.V |
| References | Düster A, Sehlhorst HG, Rank E (2012) Numerical homogenization of heterogeneous and cellular materials utilizing the Finite Cell Method. Comp Mech. doi:10.1007/s00466-012-0681-2 YosibashZPadanRJoskowiczLMilgromCA CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experimentsJ Biomech Eng200712929730910.1115/1.2720906 PieglLATillerWThe NURBS book (monographs in visual communication)1997New YorkSpringer10.1007/978-3-642-59223-2 BazilevsYCaloVMCottrellJAEvansJAHughesTJRLiptonSScottMASederbergTWIsogeometric analysis using T-splinesComput Methods Appl Mech Eng201019922926325767591227.7412310.1016/j.cma.2009.02.036 HansboAHansboPAn unfitted finite element method, based on Nitsche’s method, for elliptic interface problemsComput Methods Appl Mech Eng2002191537552 AllaireGJouveFToaderAStructural optimization using sensitivity analysis and a level-set methodJ Comput Phys200419436339320333901136.7436810.1016/j.jcp.2003.09.032 Zander N (2011) The Finite Cell Method for linear thermoelasticity. Master thesis, Lehrstuhl für Computation in Engineering, Technische Universität München RamièreIAngotPBelliardMA fictitious domain approach with spread interface for elliptic problems with general boundary conditionsComput Methods Appl Mech Eng20071967667811121.6536410.1016/j.cma.2006.05.012 SametHFoundations of multidimensional and metric data structures2006San FranciscoMorgan Kaufmann Publishers1139.68022 HaslingerJRenardYA new fictitious domain approach inspired by the extended finite element methodSIAM J Numer Anal2009471474149924973371205.6532210.1137/070704435 RankEDüsterASchillingerDYangZYuanYCuiJMangHThe Finite Cell Method: high order simulation of complex structures without meshingComputational structural engineering2009HeidelbergSpringer879210.1007/978-90-481-2822-8_9 ParussiniLPedirodaVFictitious domain approach with hp-finite element approximation for incompressible fluid flowJ Comput Phys20092283891391025110791169.7603710.1016/j.jcp.2009.02.019 NovellineRSquire’s fundamentals of radiology1997CambridgeHarvard University Press BanhartJManufacture, characterization and application of cellular metals and metal foamsProg Mater Sci20014655963210.1016/S0079-6425(00)00002-5 ZhuTAtluriSNA modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin methodComput Mech19982121122216337250947.7408010.1007/s004660050296 NeittaanmäkiPTibaDAn embedding domains approach in free boundary problems and optimal designSIAM Control Optim1995335158716020843.4902410.1137/S0363012992231124 Abedian A, Parvizian J, Düster A, Khademyzadeh H, Rank E (2010) The Finite Cell Method for elasto-plastic problems. In: Proceedings of the 10th international conference on computational structures technology, Valencia, 2010 BastianPEngwerCAn unfitted finite element method using discontinuous GalerkinInt J Numer Methods Eng2009791557157625672571176.6513110.1002/nme.2631 TrabelsiNYosibashZMilgromCValidation of subject-specific automated p-FE analysis of the proximal femurJ Biomech20094223424110.1016/j.jbiomech.2008.10.039 BelytschkoTLiuWKMoranBNonlinear finite elements for continua and structures2006New YorkWiley Düster A (2001) High order finite elements for three-dimensional, thin-walled nonlinear continua. PhD thesis, Lehrstuhl für Bauinformatik, Technische Universität München, Shaker, Aachen BungartzHJGriebelMZengerCIntroduction to computer graphics2004HinghamCharles River Media DüsterABrökerHRankEThe p-version of the finite element method for three-dimensional curved thin walled structuresInt J Numer Methods Eng2001526737031058.7407910.1002/nme.222 Schillinger D, Kollmannsberger S, Mundani R-P, Rank E (2010) The Finite Cell Method for geometrically nonlinear problems of solid mechanics. IOP Conf Ser Mater Sci Eng 10:012170 BaaijensFPTA fictitious domain/mortar element method for fluid-structure interactionInt J Numer Methods Fluids20013574376118268490979.7604410.1002/1097-0363(20010415)35:7<743::AID-FLD109>3.0.CO;2-A WriggersPNonlinear finite element methods2008BerlinSpringer1153.74001 ParvizianJDüsterARankEFinite Cell Method: h- and p-extension for embedded domain methods in solid mechanicsComput Mech20074112213310.1007/s00466-007-0173-y LöhnerRCebralRJCamelliFEAppanaboyinaSBaumJDMestreauELSotoOAAdaptive embedded and immersed unstructured grid techniquesComput Methods Appl Mech Eng2008197217321971158.7640810.1016/j.cma.2007.09.010 FarhatCHetmaniukUA fictitious domain decomposition method for the solution of partially axisymmetric acoustic scattering problems. Part I: Dirichlet boundary conditionsInt J Numer Methods Eng2002541309133219130331008.7603910.1002/nme.461 de Souza NetoEAPerićDOwenDRJComputational methods for plasticity: theory and applications2008New YorkWiley10.1002/9780470694626 HölligKFinite element methods with B-splines2003PhiladelphiaSociety for Industrial and Applied Mathematics1020.6508510.1137/1.9780898717532 BeckerRBurmanEHansboPA hierarchical NXFEM for fictitious domain simulationsInt J Numer Methods Eng2011864–5545592815990 SaddMHElasticity: theory, applications, and numerics2009OxfordAcademic Press Fernandez-MendezSHuertaAImposing essential boundary conditions in mesh-free methodsComput Methods Appl Mech Eng20041931257127520455191060.7466510.1016/j.cma.2003.12.019 SueliEMayersDFAn introduction to numerical analysis2003CambridgeCambridge University Press1033.6500110.1017/CBO9780511801181 Netgen Version 4.9.13, Tetrahdral mesh generator developed by J. Schöberl. http://sourceforge.net/projects/netgen-mesher ElguedjTBazilevsYCaloVMHughesTJRB-bar and F-bar projection methods for nearly incompressible linear and nonlinear elasticity and plasticity using higher-order NURBS elementsComput Methods Appl Mech Eng2008197273227621194.7451810.1016/j.cma.2008.01.012 BertsekasDPConstrained optimization and lagrange multiplier methods1996NashuaAthina Scientific Cai Q, Kollmannsberger S, Mundani RP, Rank E (2011) The Finite Cell Method for solute transport problems in porous media. In: Proceedings of the 16th international conference on finite elements in flow problems, Munich, 2011 RogersDFAn introduction to NURBS with historical perspective2001San FranciscoMorgan Kaufmann Publishers ZohdiTWriggersPAspects of the computational testing of the mechanical properties of microheterogeneous material samplesInt J Numer Methods Eng200150257325991098.7472110.1002/nme.146 ChapmanBJostGvan der PasRUsing OpenMP. Portable shared memory parallel programming2008CambridgeMIT Press PeskinCThe immersed boundary methodActa Numer200211139200937810.1017/S0962492902000077 BabuškaIThe finite element method with penaltyMath Comput197227122221228 BonetJWoodRNonlinear continuum mechanics for finite element analysis2008CambridgeCambridge University Press1142.7400210.1017/CBO9780511755446 EmbarADolbowJHarariIImposing Dirichlet boundary conditions with Nitsche’s method and spline-based finite elementsInt J Numer Methods Eng20108387789826833791197.74178 VosPEJvan LoonRSherwinSJA comparison of fictitious domain methods appropriate for spectral/hp element discretisationsComput Methods Appl Mech Eng2008197227522891158.7635710.1016/j.cma.2007.11.023 Ruess M, Tal D, Trabelsi N, Yosibash Z, Rank E (2011) The Finite Cell Method for bone simulations: verification and validation. Biomech Model Mechanobiol. doi:10.1007/s10237-011-0322-2 Babuška I, Banerjee U, Osborn JE (2002) Meshless and generalized finite element methods: a survey of some major results. In: Griebel M, Schweitzer MA (eds) Meshfree methods for partial differential equations. Lecture notes in computational science and engineering, vol 26. Springer, Berlin SukumarNChoppDLMoësNBelytschkoTModeling holes and inclusions by level sets in the extended finite-element methodComput Methods Appl Mech Eng2001190618362001029.7404910.1016/S0045-7825(01)00215-8 SchillingerDRankEAn unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometryComput Methods Appl Mech Eng201120047–4833583380 HarariIDolbowJAnalysis of an efficient finite element method for embedded interface problemsComput Mech20104620521126444101190.6517210.1007/s00466-009-0457-5 SehlhorstHGJänickeRDüsterARankESteebHDiebelsSNumerical investigations of foam-like materials by nested high-order finite element methodsComput Mech20094545590564158310.1007/s00466-009-0414-3 Burman E, Hansbo P (2011) Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl Numer Math. doi:10.1016/j.apnum.2011.01.008 LegayAWangHWBelytschkoTStrong and weak arbitrary discontinuities in spectral finite elementsInt J Numer Methods Eng200564991100821734611167.7404510.1002/nme.1388 Vinci C (2009) Application of Dirichlet boundary conditions in the Finite Cell Method. Master thesis, Lehrstuhl für Computation in Engineering, Technische Universität München Schillinger D, Düster A, Rank E (2011) The hp-d adaptive Finite Cell Method for geometrically nonlinear problems of solid mechanics. Int J Numer Methods Eng. doi:10.1002/nme.3289 KrauseRMückeRRankEhp-version finite elements for geometrically non-linear problemsCommun Numer Methods Eng1995118878970835.7307510.1002/cnm.1640111103 Lapack Version 3.2.2. (2010) Linear algebra package. http://www.netlib.org/lapack RankEKollmannsbergerSSorgerCDüsterAShell Finite Cell Method: a high order fictitious domain approach for thin-walled structuresComput Methods Appl Mech Eng2011200320032091230.7423210.1016/j.cma.2011.06.005 DüsterAHartmannSRankEp-FEM applied to finite isotropic hyperelastic bodiesComput Methods Appl Mech Eng2003192514751661053.7404310.1016/j.cma.2003.07.003 DongSYosibashZA parallel spectral element method for dynamic three-dimensional nonlinear elasticity problemsComput Struct2009871–2597210.1016/j.compstruc.2008.08.008 HaslingerJKozubekTKunischKPeichlGShape optimization and fictitious domain approach for solving free boundary problems of bernoulli typeComput Optim Appl20032623125120133641077.4903010.1023/A: E Burman (684_CR17) 2010; 199 B Szabó (684_CR30) 1991 E Sueli (684_CR46) 2003 DP Bertsekas (684_CR80) 1996 A Düster (684_CR50) 2001; 52 I Babuška (684_CR56) 1972; 27 684_CR36 N Trabelsi (684_CR71) 2009; 42 684_CR33 R Löhner (684_CR9) 2008; 197 684_CR34 I Ramière (684_CR12) 2007; 196 J Banhart (684_CR90) 2001; 46 K-J Bathe (684_CR1) 1996 J Keyak (684_CR66) 2003; 25 E Rank (684_CR32) 2009 T Zhu (684_CR57) 1998; 21 A Legay (684_CR25) 2005; 64 H Samet (684_CR47) 2006 T Zohdi (684_CR91) 2005 B Szabó (684_CR31) 2004 J Haslinger (684_CR16) 2003; 26 P Bastian (684_CR24) 2009; 79 A Düster (684_CR29) 2008; 197 A Hansbo (684_CR61) 2002; 191 Z Yosibash (684_CR70) 2007; 129 J Bishop (684_CR13) 2003; 30 A Embar (684_CR63) 2010; 83 J Parvizian (684_CR28) 2007; 41 C Peskin (684_CR7) 2002; 11 R Mittal (684_CR8) 2005; 37 S Fernandez-Mendez (684_CR59) 2004; 193 PEJ Vos (684_CR35) 2008; 197 684_CR19 HJ Bungartz (684_CR68) 2004 TJR Hughes (684_CR2) 2000 P Neittaanmäki (684_CR6) 1995; 33 G Holzapfel (684_CR75) 2000 E Rank (684_CR37) 2011; 200 T Belytschko (684_CR72) 2006 S Del Pino (684_CR10) 2003 B Chapman (684_CR93) 2008 684_CR92 TJR Hughes (684_CR3) 2005; 194 JA Cottrell (684_CR4) 2009 684_CR51 DF Rogers (684_CR54) 2001 684_CR52 684_CR58 J Bonet (684_CR45) 2008 Y Bazilevs (684_CR5) 2010; 199 684_CR49 A Gerstenberger (684_CR18) 2010; 82 FPT Baaijens (684_CR14) 2001; 35 C Farhat (684_CR15) 2002; 54 J Haslinger (684_CR22) 2009; 47 I Harari (684_CR64) 2010; 46 MH Sadd (684_CR65) 2009 Y Bazilevs (684_CR62) 2007; 36 A Düster (684_CR77) 2003; 192 S Lui (684_CR26) 2009; 225 N Sukumar (684_CR20) 2001; 190 HG Sehlhorst (684_CR78) 2009; 45 T Elguedj (684_CR88) 2008; 197 K Höllig (684_CR55) 2003 684_CR82 T Zohdi (684_CR48) 2001; 50 OC Zienkiewicz (684_CR60) 2005 684_CR83 LA Piegl (684_CR53) 1997 684_CR81 684_CR42 E Schileo (684_CR67) 2008; 41 684_CR86 684_CR43 684_CR40 684_CR84 684_CR41 684_CR85 R Novelline (684_CR69) 1997 S Lipton (684_CR89) 2010; 199 G Allaire (684_CR44) 2004; 194 684_CR39 684_CR38 P Wriggers (684_CR74) 2008 R Glowinski (684_CR11) 2007; 196 S Dong (684_CR87) 2009; 87 EA Souza Neto de (684_CR73) 2008 L Parussini (684_CR27) 2009; 228 AT Noël (684_CR76) 1997; 40 A Gerstenberger (684_CR21) 2008; 197 R Krause (684_CR79) 1995; 11 R Becker (684_CR23) 2011; 86 |
| References_xml | – reference: DongSYosibashZA parallel spectral element method for dynamic three-dimensional nonlinear elasticity problemsComput Struct2009871–2597210.1016/j.compstruc.2008.08.008 – reference: HansboAHansboPAn unfitted finite element method, based on Nitsche’s method, for elliptic interface problemsComput Methods Appl Mech Eng2002191537552 – reference: LiptonSEvansJABazilevsYElguedjTHughesTJRRobustness of isogeometric structural discretizations under severe mesh distortionComput Methods Appl Mech Eng20101993573731227.7411210.1016/j.cma.2009.01.022 – reference: Lapack Version 3.2.2. (2010) Linear algebra package. http://www.netlib.org/lapack/ – reference: ParvizianJDüsterARankEFinite Cell Method: h- and p-extension for embedded domain methods in solid mechanicsComput Mech20074112213310.1007/s00466-007-0173-y – reference: RankEDüsterASchillingerDYangZYuanYCuiJMangHThe Finite Cell Method: high order simulation of complex structures without meshingComputational structural engineering2009HeidelbergSpringer879210.1007/978-90-481-2822-8_9 – reference: FlagShyp 08 Version 2.30, Nonlinear FE solver developed by J. Bonet and R. Wood. http://www.flagshyp.com – reference: Parvizian J, Düster A, Rank E (2011) Topology optimization using the Finite Cell Method. Opt Eng. doi:10.1007/s11081-011-9159-x – reference: Vinci C (2009) Application of Dirichlet boundary conditions in the Finite Cell Method. Master thesis, Lehrstuhl für Computation in Engineering, Technische Universität München – reference: NoëlATSzabóBFormulation of geometrically non-linear problems in the spatial reference frameInt J Numer Methods Eng199740126312800887.7306610.1002/(SICI)1097-0207(19970415)40:7<1263::AID-NME113>3.0.CO;2-3 – reference: ZohdiTWriggersPAspects of the computational testing of the mechanical properties of microheterogeneous material samplesInt J Numer Methods Eng200150257325991098.7472110.1002/nme.146 – reference: Trilinos Version 10.4, Sandia National Laboratories, Los Alamos, NM. http://trilinos.sandia.gov/ – reference: BaaijensFPTA fictitious domain/mortar element method for fluid-structure interactionInt J Numer Methods Fluids20013574376118268490979.7604410.1002/1097-0363(20010415)35:7<743::AID-FLD109>3.0.CO;2-A – reference: HaslingerJRenardYA new fictitious domain approach inspired by the extended finite element methodSIAM J Numer Anal2009471474149924973371205.6532210.1137/070704435 – reference: ParaView Version 3.8.1, Open-source scientific visualization package. Kitware Inc., Clifton Park, NY. http://www.paraview.org – reference: PeskinCThe immersed boundary methodActa Numer200211139200937810.1017/S0962492902000077 – reference: BelytschkoTLiuWKMoranBNonlinear finite elements for continua and structures2006New YorkWiley – reference: BazilevsYHughesTJRWeak imposition of Dirichlet boundary conditions in fluid mechanicsComput Fluids200736122622738541115.7604010.1016/j.compfluid.2005.07.012 – reference: BurmanEHansboPFictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier methodComput Methods Appl Mech Eng20101992680268627288201231.6520710.1016/j.cma.2010.05.011 – reference: Schillinger D, Kollmannsberger S, Mundani R-P, Rank E (2010) The Finite Cell Method for geometrically nonlinear problems of solid mechanics. IOP Conf Ser Mater Sci Eng 10:012170 – reference: Babuška I, Banerjee U, Osborn JE (2002) Meshless and generalized finite element methods: a survey of some major results. In: Griebel M, Schweitzer MA (eds) Meshfree methods for partial differential equations. Lecture notes in computational science and engineering, vol 26. Springer, Berlin – reference: SueliEMayersDFAn introduction to numerical analysis2003CambridgeCambridge University Press1033.6500110.1017/CBO9780511801181 – reference: BungartzHJGriebelMZengerCIntroduction to computer graphics2004HinghamCharles River Media – reference: BatheK-JFinite element procedures1996Upper Saddle RiverPrentice Hall – reference: BonetJWoodRNonlinear continuum mechanics for finite element analysis2008CambridgeCambridge University Press1142.7400210.1017/CBO9780511755446 – reference: KrauseRMückeRRankEhp-version finite elements for geometrically non-linear problemsCommun Numer Methods Eng1995118878970835.7307510.1002/cnm.1640111103 – reference: Cai Q, Kollmannsberger S, Mundani RP, Rank E (2011) The Finite Cell Method for solute transport problems in porous media. In: Proceedings of the 16th international conference on finite elements in flow problems, Munich, 2011 – reference: Del PinoSPironneauOKuznetsovYNeittanmäkiPPironneauOA fictitious domain based general PDE solverNumerical methods for scientific computing: variational problems and applications2003BarcelonaCIMNE – reference: AllaireGJouveFToaderAStructural optimization using sensitivity analysis and a level-set methodJ Comput Phys200419436339320333901136.7436810.1016/j.jcp.2003.09.032 – reference: Netgen Version 4.9.13, Tetrahdral mesh generator developed by J. Schöberl. http://sourceforge.net/projects/netgen-mesher – reference: SchillingerDRankEAn unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometryComput Methods Appl Mech Eng201120047–4833583380 – reference: ChapmanBJostGvan der PasRUsing OpenMP. Portable shared memory parallel programming2008CambridgeMIT Press – reference: BabuškaIThe finite element method with penaltyMath Comput197227122221228 – reference: HolzapfelGNonlinear solid mechanics. A continuum approach for engineering2000New YorkWiley0980.74001 – reference: SukumarNChoppDLMoësNBelytschkoTModeling holes and inclusions by level sets in the extended finite-element methodComput Methods Appl Mech Eng2001190618362001029.7404910.1016/S0045-7825(01)00215-8 – reference: BastianPEngwerCAn unfitted finite element method using discontinuous GalerkinInt J Numer Methods Eng2009791557157625672571176.6513110.1002/nme.2631 – reference: BazilevsYCaloVMCottrellJAEvansJAHughesTJRLiptonSScottMASederbergTWIsogeometric analysis using T-splinesComput Methods Appl Mech Eng201019922926325767591227.7412310.1016/j.cma.2009.02.036 – reference: RankEKollmannsbergerSSorgerCDüsterAShell Finite Cell Method: a high order fictitious domain approach for thin-walled structuresComput Methods Appl Mech Eng2011200320032091230.7423210.1016/j.cma.2011.06.005 – reference: Burman E, Hansbo P (2011) Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl Numer Math. doi:10.1016/j.apnum.2011.01.008 – reference: BanhartJManufacture, characterization and application of cellular metals and metal foamsProg Mater Sci20014655963210.1016/S0079-6425(00)00002-5 – reference: RogersDFAn introduction to NURBS with historical perspective2001San FranciscoMorgan Kaufmann Publishers – reference: de Souza NetoEAPerićDOwenDRJComputational methods for plasticity: theory and applications2008New YorkWiley10.1002/9780470694626 – reference: Yang Z, Ruess M, Kollmannsberger S, Düster A, Rank E (2012) An efficient integration technique for the voxel-based Finite Cell Method. Int J Numer Methods Eng (accepted) – reference: YosibashZPadanRJoskowiczLMilgromCA CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experimentsJ Biomech Eng200712929730910.1115/1.2720906 – reference: Zander N (2011) The Finite Cell Method for linear thermoelasticity. Master thesis, Lehrstuhl für Computation in Engineering, Technische Universität München – reference: NeittaanmäkiPTibaDAn embedding domains approach in free boundary problems and optimal designSIAM Control Optim1995335158716020843.4902410.1137/S0363012992231124 – reference: KeyakJFalkinsteinYComparison of in situ and in vitro CT-scan-based finite element model predictions of proximal femoral fracture loadJ Med Eng Phys20032578178710.1016/S1350-4533(03)00081-X – reference: ElguedjTBazilevsYCaloVMHughesTJRB-bar and F-bar projection methods for nearly incompressible linear and nonlinear elasticity and plasticity using higher-order NURBS elementsComput Methods Appl Mech Eng2008197273227621194.7451810.1016/j.cma.2008.01.012 – reference: ParussiniLPedirodaVFictitious domain approach with hp-finite element approximation for incompressible fluid flowJ Comput Phys20092283891391025110791169.7603710.1016/j.jcp.2009.02.019 – reference: SehlhorstHGJänickeRDüsterARankESteebHDiebelsSNumerical investigations of foam-like materials by nested high-order finite element methodsComput Mech20094545590564158310.1007/s00466-009-0414-3 – reference: HölligKFinite element methods with B-splines2003PhiladelphiaSociety for Industrial and Applied Mathematics1020.6508510.1137/1.9780898717532 – reference: FarhatCHetmaniukUA fictitious domain decomposition method for the solution of partially axisymmetric acoustic scattering problems. Part I: Dirichlet boundary conditionsInt J Numer Methods Eng2002541309133219130331008.7603910.1002/nme.461 – reference: HaslingerJKozubekTKunischKPeichlGShape optimization and fictitious domain approach for solving free boundary problems of bernoulli typeComput Optim Appl20032623125120133641077.4903010.1023/A:1026095405906 – reference: MKL PARDISO. http://www.intel.com/software/products/mkl. 16 January 2012 – reference: ZienkiewiczOCTaylorRLThe finite element method vol 1: the basis2005OxfordButterworth-Heinemann – reference: GerstenbergerAWallWAAn eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interactionComput Methods Appl Mech Eng20081971699171423998631194.7611710.1016/j.cma.2007.07.002 – reference: LuiSSpectral domain embedding for elliptic PDEs in complex domainsJ Comput Appl Math200922554155724947231160.6534610.1016/j.cam.2008.08.034 – reference: SchileoEDall’AraETaddeiFMalandrinoASchotkampTVicecontiMAn accurate estimation of bone density improves the accuracy of subject-specific finite element modelsJ Biomech2008412483249110.1016/j.jbiomech.2008.05.017 – reference: DüsterABrökerHRankEThe p-version of the finite element method for three-dimensional curved thin walled structuresInt J Numer Methods Eng2001526737031058.7407910.1002/nme.222 – reference: Fernandez-MendezSHuertaAImposing essential boundary conditions in mesh-free methodsComput Methods Appl Mech Eng20041931257127520455191060.7466510.1016/j.cma.2003.12.019 – reference: CottrellJAHughesTJRBazilevsYIsogeometric analysis: toward integration of CAD and FEA2009New YorkWiley – reference: MittalRIaccarinoGImmersed boundary methodsAnn Rev Fluid Mech200537239261211534310.1146/annurev.fluid.37.061903.175743 – reference: DüsterAParvizianJYangZRankEThe Finite Cell Method for three-dimensional problems of solid mechanicsComput Methods Appl Mech Eng2008197376837821194.7451710.1016/j.cma.2008.02.036 – reference: EmbarADolbowJHarariIImposing Dirichlet boundary conditions with Nitsche’s method and spline-based finite elementsInt J Numer Methods Eng20108387789826833791197.74178 – reference: GlowinskiRKuznetsovYDistributed Lagrange multipliers based on fictitious domain method for second order elliptic problemsComput Methods Appl Mech Eng20071961498150622770331173.6536910.1016/j.cma.2006.05.013 – reference: HughesTJRThe finite element method: linear static and dynamic finite element analysis2000New YorkDover1191.74002 – reference: BishopJRapid stress analysis of geometrically complex domains using implicit meshingComput Mech2003304604781038.7462610.1007/s00466-003-0424-5 – reference: SzabóBBabuškaIFinite element analysis1991New YorkWiley0792.73003 – reference: WriggersPNonlinear finite element methods2008BerlinSpringer1153.74001 – reference: SametHFoundations of multidimensional and metric data structures2006San FranciscoMorgan Kaufmann Publishers1139.68022 – reference: HarariIDolbowJAnalysis of an efficient finite element method for embedded interface problemsComput Mech20104620521126444101190.6517210.1007/s00466-009-0457-5 – reference: Düster A (2001) High order finite elements for three-dimensional, thin-walled nonlinear continua. PhD thesis, Lehrstuhl für Bauinformatik, Technische Universität München, Shaker, Aachen – reference: VosPEJvan LoonRSherwinSJA comparison of fictitious domain methods appropriate for spectral/hp element discretisationsComput Methods Appl Mech Eng2008197227522891158.7635710.1016/j.cma.2007.11.023 – reference: PieglLATillerWThe NURBS book (monographs in visual communication)1997New YorkSpringer10.1007/978-3-642-59223-2 – reference: ZhuTAtluriSNA modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin methodComput Mech19982121122216337250947.7408010.1007/s004660050296 – reference: Visual DoMesh 2008 Version 1.1, Mesh generator developed by C. Sorger, Chair for Computation in Engineering, Technische Universität München – reference: BeckerRBurmanEHansboPA hierarchical NXFEM for fictitious domain simulationsInt J Numer Methods Eng2011864–5545592815990 – reference: SzabóBDüsterARankESteinEde BorstRHughesTJRThe p-version of the finite element methodEncyclopedia of computational mechanics, vol 12004ChichesterWiley119139 – reference: TrabelsiNYosibashZMilgromCValidation of subject-specific automated p-FE analysis of the proximal femurJ Biomech20094223424110.1016/j.jbiomech.2008.10.039 – reference: LegayAWangHWBelytschkoTStrong and weak arbitrary discontinuities in spectral finite elementsInt J Numer Methods Eng200564991100821734611167.7404510.1002/nme.1388 – reference: GerstenbergerAWallWAAn embedded Dirichlet formulation for 3D continuaInt J Numer Methods Eng20108253756326624451188.74056 – reference: Ruess M, Tal D, Trabelsi N, Yosibash Z, Rank E (2011) The Finite Cell Method for bone simulations: verification and validation. Biomech Model Mechanobiol. doi:10.1007/s10237-011-0322-2 – reference: LöhnerRCebralRJCamelliFEAppanaboyinaSBaumJDMestreauELSotoOAAdaptive embedded and immersed unstructured grid techniquesComput Methods Appl Mech Eng2008197217321971158.7640810.1016/j.cma.2007.09.010 – reference: Düster A, Sehlhorst HG, Rank E (2012) Numerical homogenization of heterogeneous and cellular materials utilizing the Finite Cell Method. Comp Mech. doi:10.1007/s00466-012-0681-2 – reference: BertsekasDPConstrained optimization and lagrange multiplier methods1996NashuaAthina Scientific – reference: HughesTJRCottrellJABazilevsYIsogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinementComput Methods Appl Mech Eng20051944135419521523821151.7441910.1016/j.cma.2004.10.008 – reference: SaddMHElasticity: theory, applications, and numerics2009OxfordAcademic Press – reference: Abedian A, Parvizian J, Düster A, Khademyzadeh H, Rank E (2010) The Finite Cell Method for elasto-plastic problems. In: Proceedings of the 10th international conference on computational structures technology, Valencia, 2010 – reference: ZohdiTWriggersPIntroduction to computational micromechanics2005BerlinSpringer1085.7400110.1007/978-3-540-32360-0 – reference: DüsterAHartmannSRankEp-FEM applied to finite isotropic hyperelastic bodiesComput Methods Appl Mech Eng2003192514751661053.7404310.1016/j.cma.2003.07.003 – reference: NovellineRSquire’s fundamentals of radiology1997CambridgeHarvard University Press – reference: Schillinger D, Düster A, Rank E (2011) The hp-d adaptive Finite Cell Method for geometrically nonlinear problems of solid mechanics. Int J Numer Methods Eng. doi:10.1002/nme.3289 – reference: RamièreIAngotPBelliardMA fictitious domain approach with spread interface for elliptic problems with general boundary conditionsComput Methods Appl Mech Eng20071967667811121.6536410.1016/j.cma.2006.05.012 – ident: 684_CR43 doi: 10.1002/nme.4269 – volume-title: The finite element method vol 1: the basis year: 2005 ident: 684_CR60 – volume: 36 start-page: 12 year: 2007 ident: 684_CR62 publication-title: Comput Fluids doi: 10.1016/j.compfluid.2005.07.012 – volume-title: Nonlinear finite elements for continua and structures year: 2006 ident: 684_CR72 – volume-title: The finite element method: linear static and dynamic finite element analysis year: 2000 ident: 684_CR2 – volume: 87 start-page: 59 issue: 1–2 year: 2009 ident: 684_CR87 publication-title: Comput Struct doi: 10.1016/j.compstruc.2008.08.008 – volume-title: Squire’s fundamentals of radiology year: 1997 ident: 684_CR69 – volume: 11 start-page: 887 year: 1995 ident: 684_CR79 publication-title: Commun Numer Methods Eng doi: 10.1002/cnm.1640111103 – volume: 33 start-page: 1587 issue: 5 year: 1995 ident: 684_CR6 publication-title: SIAM Control Optim doi: 10.1137/S0363012992231124 – volume: 197 start-page: 2275 year: 2008 ident: 684_CR35 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2007.11.023 – ident: 684_CR52 doi: 10.1016/j.cma.2011.08.002 – volume-title: Introduction to computer graphics year: 2004 ident: 684_CR68 – volume: 194 start-page: 4135 year: 2005 ident: 684_CR3 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2004.10.008 – volume: 225 start-page: 541 year: 2009 ident: 684_CR26 publication-title: J Comput Appl Math doi: 10.1016/j.cam.2008.08.034 – volume: 197 start-page: 2732 year: 2008 ident: 684_CR88 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2008.01.012 – ident: 684_CR81 – volume-title: Finite element analysis year: 1991 ident: 684_CR30 – volume-title: Nonlinear solid mechanics. A continuum approach for engineering year: 2000 ident: 684_CR75 – volume: 21 start-page: 211 year: 1998 ident: 684_CR57 publication-title: Comput Mech doi: 10.1007/s004660050296 – ident: 684_CR36 doi: 10.1007/s11081-011-9159-x – volume: 50 start-page: 2573 year: 2001 ident: 684_CR48 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.146 – volume-title: Elasticity: theory, applications, and numerics year: 2009 ident: 684_CR65 – volume: 196 start-page: 766 year: 2007 ident: 684_CR12 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2006.05.012 – ident: 684_CR34 doi: 10.1002/nme.3289 – ident: 684_CR85 – volume: 27 start-page: 221 issue: 122 year: 1972 ident: 684_CR56 publication-title: Math Comput doi: 10.1090/S0025-5718-1973-0351118-5 – volume: 25 start-page: 781 year: 2003 ident: 684_CR66 publication-title: J Med Eng Phys doi: 10.1016/S1350-4533(03)00081-X – ident: 684_CR92 – start-page: 87 volume-title: Computational structural engineering year: 2009 ident: 684_CR32 doi: 10.1007/978-90-481-2822-8_9 – volume: 196 start-page: 1498 year: 2007 ident: 684_CR11 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2006.05.013 – start-page: 119 volume-title: Encyclopedia of computational mechanics, vol 1 year: 2004 ident: 684_CR31 – volume: 82 start-page: 537 year: 2010 ident: 684_CR18 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.2755 – volume-title: Nonlinear continuum mechanics for finite element analysis year: 2008 ident: 684_CR45 doi: 10.1017/CBO9780511755446 – volume-title: Using OpenMP. Portable shared memory parallel programming year: 2008 ident: 684_CR93 – volume: 41 start-page: 2483 year: 2008 ident: 684_CR67 publication-title: J Biomech doi: 10.1016/j.jbiomech.2008.05.017 – volume-title: Numerical methods for scientific computing: variational problems and applications year: 2003 ident: 684_CR10 – volume: 45 start-page: 45 year: 2009 ident: 684_CR78 publication-title: Comput Mech doi: 10.1007/s00466-009-0414-3 – volume: 86 start-page: 54 issue: 4–5 year: 2011 ident: 684_CR23 publication-title: Int J Numer Methods Eng – ident: 684_CR38 – volume: 52 start-page: 673 year: 2001 ident: 684_CR50 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.222 – volume: 199 start-page: 2680 year: 2010 ident: 684_CR17 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2010.05.011 – volume: 200 start-page: 3200 year: 2011 ident: 684_CR37 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2011.06.005 – volume: 199 start-page: 357 year: 2010 ident: 684_CR89 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2009.01.022 – volume: 46 start-page: 205 year: 2010 ident: 684_CR64 publication-title: Comput Mech doi: 10.1007/s00466-009-0457-5 – volume: 197 start-page: 3768 year: 2008 ident: 684_CR29 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2008.02.036 – ident: 684_CR51 doi: 10.1088/1757-899X/10/1/012170 – volume: 190 start-page: 6183 year: 2001 ident: 684_CR20 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(01)00215-8 – volume: 64 start-page: 991 year: 2005 ident: 684_CR25 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.1388 – volume: 191 start-page: 537 year: 2002 ident: 684_CR61 publication-title: Comput Methods Appl Mech Eng – ident: 684_CR82 – ident: 684_CR86 – volume-title: Finite element procedures year: 1996 ident: 684_CR1 – volume: 41 start-page: 122 year: 2007 ident: 684_CR28 publication-title: Comput Mech doi: 10.1007/s00466-007-0173-y – ident: 684_CR41 – volume: 37 start-page: 239 year: 2005 ident: 684_CR8 publication-title: Ann Rev Fluid Mech doi: 10.1146/annurev.fluid.37.061903.175743 – volume: 193 start-page: 1257 year: 2004 ident: 684_CR59 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2003.12.019 – volume-title: An introduction to numerical analysis year: 2003 ident: 684_CR46 doi: 10.1017/CBO9780511801181 – ident: 684_CR39 – volume: 83 start-page: 877 year: 2010 ident: 684_CR63 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.2863 – volume-title: Constrained optimization and lagrange multiplier methods year: 1996 ident: 684_CR80 – volume: 79 start-page: 1557 year: 2009 ident: 684_CR24 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.2631 – volume-title: Introduction to computational micromechanics year: 2005 ident: 684_CR91 doi: 10.1007/978-3-540-32360-0 – volume: 197 start-page: 1699 year: 2008 ident: 684_CR21 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2007.07.002 – volume-title: Finite element methods with B-splines year: 2003 ident: 684_CR55 doi: 10.1137/1.9780898717532 – ident: 684_CR33 doi: 10.1007/s10237-011-0322-2 – volume: 26 start-page: 231 year: 2003 ident: 684_CR16 publication-title: Comput Optim Appl doi: 10.1023/A:1026095405906 – volume-title: Isogeometric analysis: toward integration of CAD and FEA year: 2009 ident: 684_CR4 doi: 10.1002/9780470749081 – ident: 684_CR58 doi: 10.1007/978-3-642-56103-0_1 – ident: 684_CR49 – volume: 47 start-page: 1474 year: 2009 ident: 684_CR22 publication-title: SIAM J Numer Anal doi: 10.1137/070704435 – volume: 42 start-page: 234 year: 2009 ident: 684_CR71 publication-title: J Biomech doi: 10.1016/j.jbiomech.2008.10.039 – ident: 684_CR83 – volume: 54 start-page: 1309 year: 2002 ident: 684_CR15 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.461 – volume: 40 start-page: 1263 year: 1997 ident: 684_CR76 publication-title: Int J Numer Methods Eng doi: 10.1002/(SICI)1097-0207(19970415)40:7<1263::AID-NME113>3.0.CO;2-3 – volume: 192 start-page: 5147 year: 2003 ident: 684_CR77 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2003.07.003 – volume: 228 start-page: 3891 year: 2009 ident: 684_CR27 publication-title: J Comput Phys doi: 10.1016/j.jcp.2009.02.019 – volume-title: The NURBS book (monographs in visual communication) year: 1997 ident: 684_CR53 doi: 10.1007/978-3-642-59223-2 – volume: 194 start-page: 363 year: 2004 ident: 684_CR44 publication-title: J Comput Phys doi: 10.1016/j.jcp.2003.09.032 – volume: 129 start-page: 297 year: 2007 ident: 684_CR70 publication-title: J Biomech Eng doi: 10.1115/1.2720906 – volume-title: Computational methods for plasticity: theory and applications year: 2008 ident: 684_CR73 doi: 10.1002/9780470694626 – ident: 684_CR19 doi: 10.1016/j.apnum.2011.01.008 – volume: 30 start-page: 460 year: 2003 ident: 684_CR13 publication-title: Comput Mech doi: 10.1007/s00466-003-0424-5 – volume: 11 start-page: 1 year: 2002 ident: 684_CR7 publication-title: Acta Numer doi: 10.1017/CBO9780511550140.001 – volume: 46 start-page: 559 year: 2001 ident: 684_CR90 publication-title: Prog Mater Sci doi: 10.1016/S0079-6425(00)00002-5 – volume: 199 start-page: 229 year: 2010 ident: 684_CR5 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2009.02.036 – ident: 684_CR42 doi: 10.1007/s00466-012-0681-2 – volume-title: Foundations of multidimensional and metric data structures year: 2006 ident: 684_CR47 – ident: 684_CR40 doi: 10.4203/ccp.93.310 – volume: 35 start-page: 743 year: 2001 ident: 684_CR14 publication-title: Int J Numer Methods Fluids doi: 10.1002/1097-0363(20010415)35:7<743::AID-FLD109>3.0.CO;2-A – volume-title: Nonlinear finite element methods year: 2008 ident: 684_CR74 – volume: 197 start-page: 2173 year: 2008 ident: 684_CR9 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2007.09.010 – volume-title: An introduction to NURBS with historical perspective year: 2001 ident: 684_CR54 – ident: 684_CR84 |
| SSID | ssj0015835 |
| Score | 2.3969793 |
| Snippet | The Finite Cell Method (FCM) is an embedded domain method, which combines the fictitious domain approach with high-order finite elements, adaptive integration,... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 445 |
| SubjectTerms | Analysis Basis functions Boundary conditions Classical and Continuum Physics Complexity Computational Science and Engineering Convergence Coordination compounds Deformation analysis Dirichlet problem Elasticity Engineering Femur Finite element method Iterative methods Mathematical analysis Mesh generation Metal foams Methods Nonlinear analysis Original Paper Robustness (mathematics) Splines Theoretical and Applied Mechanics |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB2V7QUOFAqIpQVZCAkJZBE7dhIfKtRWXRWkrlBLpd6MP-IKaclumy2H_vp6EmdLQfQaO07imXiePTNvAN75XNQR9VvKHc-pCIZR5XxGS-uYZYVzVYHZyEfT4vBUfD2TZ2swHXJhMKxyWBO7hdrPHZ6Rf-LIpC4jWC8_Ly4oVo1C7-pQQsOk0gp-p6MYewDrHJmxRrC-dzD9drzyK8iqL7nJ4t4JaUwGP2fW04oWuLvmWIhF0Os7lurv9fofx2lnjyZP4HECkmS3l_xTWKubTdhIoJKkX7bdhEd_MA4-gx8nv8xsRkzjyQxjwImvV-mL8WpPUELwcJZEZEgWtOu6R1tM3K3J7_50rSXz0LVPfiJkJft1HPOoq0X9HE4nB9_3D2kqskCd5GpJrSulMlmdm6CsK3zuWZlz673PAjcssGi9lM-MimBByaC8DN6KSvmCmYLbKn8Bo2be1C-B5JWQKnMqzrIULChVMqOcE5KHUvgqjCEbJlS7xECOhTBmesWd3MlARxlolIG-HsOH1S2Lnn7jvs5vUUoaaS0ajJs5N1dtq7-cHOtdhFVFGc30GN6nTmEeH-5MSkOIn4BMWHd6bg_S1unHbvWtGo7h46ABt83_fbdX9w-2BQ85al4XJbgNo-XlVf06op2lfZNU-AY2efnY priority: 102 providerName: ProQuest |
| Title | Small and large deformation analysis with the p- and B-spline versions of the Finite Cell Method |
| URI | https://link.springer.com/article/10.1007/s00466-012-0684-z https://www.proquest.com/docview/2260052597 |
| Volume | 50 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1432-0924 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0015835 issn: 0178-7675 databaseCode: ABDBF dateStart: 20030401 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1432-0924 dateEnd: 20241103 omitProxy: false ssIdentifier: ssj0015835 issn: 0178-7675 databaseCode: AMVHM dateStart: 19860301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-0924 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015835 issn: 0178-7675 databaseCode: AFBBN dateStart: 19860301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1432-0924 dateEnd: 20151231 omitProxy: true ssIdentifier: ssj0015835 issn: 0178-7675 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1432-0924 dateEnd: 20151231 omitProxy: true ssIdentifier: ssj0015835 issn: 0178-7675 databaseCode: 8FG dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-0924 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015835 issn: 0178-7675 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-0924 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015835 issn: 0178-7675 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfY9gIPfAwQB-MUISQkUKQmTdrm8W66boB2QhsnjaeQJg1COnoTvfGwv564TQvjS-KpUuOmbewkdmz_DPDcpaIOWn9FueUpFd4wqqxLaF5ZVrHM2iLDbOSTZXa8Em_O5XnM426HaPfBJdmt1GOyG5pyaP1yLJQi6NUO7ElE8wpCvOKz0XUgi76qJgvmESKVDK7MP3VxbTP6dUn-zTfabTnlXbgddUUy65l7D27UzT7ciXojibOy3YdbP4EK3oePZ1_Mek1M48gaw7yJq8cMxXC3xyAheP5KgvJHLmhHOqct5ubW5Ft_gNaSje_ay8-olZLDOvR50pWbfgCrcvH-8JjGOgrUSq62tLK5VCapU-NVZTOXOpanvHLOJZ4b5lnYoJRLjAr6gJJeOeldJQrlMmYyXhXpQ9htNk39CEhaCKkSq8IoS8G8Ujkzylohuc-FK_wEkmFAtY0g41jrYq1HeOSOBzrwQCMP9NUEXo6PXPQIG_8ifoZc0ohc0WBozCdz2bb69dmpnqHmlOVhJ57Ai0jkN-Hl1sRMg_ALCHZ1jfJg4LaOc7fVHDH7ZTAL8wm8GiTgR_Nfv-3xf1E_gZscBbGLCzyA3e3Xy_pp0G-21RR2ivJoCnuzcj5f4vXow9tFuM4Xy3en007avwMDr_X2 |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAceBQQCy1YCIQEskgcO4kPVdWWrnZpd4X6kHpzHTtGSEt2IVsQ_XH8NjyJs6Ugeus1njiJZzLz-THfALy0CS896i8oMyyh3OmYSmMjmhUmLuLUmDzFbOTROB0c8w8n4mQJfnW5MHissvOJjaO2U4Nr5O8YMqkLD9azzdlXilWjcHe1K6GhQ2kFu9FQjIXEjr3y5w8_has3hu-9vl8x1t892hnQUGWAGsHknBYmE1JHZaKdLExqExtnCSustZFjOnaxd9_SRlr6aCmFk1Y4W_Bc2jTWKSvyxPd7A1Z4wqWf_K1s744_Hiz2MUTelviM_VwNaVO6fdWopTFNcTbPsPALp-eXIuPf8eGfjdom_vXvwZ0AXMlWa2n3YamsVuFuALEkuIh6FW7_wXD4AE4Pv-jJhOjKkgmeOSe2XKRL-qstIQrBxWDikSiZ0UZ0m9aYKFyS7-1qXk2mrmnvf0aITHZK3-eoqX39EI6vZbgfwXI1rcrHQJKcCxkZ6UdZ8NhJmcVaGsMFcxm3uetB1A2oMoHxHAtvTNSCq7nRgfI6UKgDdd6DN4tbZi3dx1XCL1BLCmk0Kjyn80mf1bUaHh6oLYRxaeZhQQ9eByE39Q83OqQ9-E9A5q1LkmudtlVwJLW6MPsevO0s4KL5v-_25OrOnsPNwdFoX-0Px3tP4RZDK2xOKK7B8vzbWbnukda8eBbMmcDpdf9BvwGS7TfN |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLdgSAge-BigHWwQISQkULQmTdrm8RicNmATYpy0t5CPBk06eid642F_PXGbdowvidfGTdvYqe3Y_hngmc9FHa1-S7njORXBMKqcz2hpHbOscK4qsBr58KjYn4u3J_Ik9Tlth2z3ISTZ1zQgSlOz3l35sDsWvqFbh54wx6Ypgp5fhWsCcRKiQM_5dAwjyKrvsMmiq4SoJUNY809TXFJMv_6ef4uTdupndgduJbuRTHtG34UrdbMJt5MNSdIObTfh5k8Ag_fg8_FXs1gQ03iywJRv4uuxWjFe7fFICJ7FkmgIkhXtSF_RFut0a_K9P0xryTJ047NTtFDJXh3nPOxaT9-H-ezNp719mnoqUCe5WlPrSqlMVucmKOsKn3tW5tx677PADQssKivlM6OibaBkUF4Gb0WlfMFMwW2VP4CNZtnUW0DySkiVORVXWQoWlCqZUc4JyUMpfBUmkA0Lql0CHMe-Fws9QiV3PNCRBxp5oM8n8GK8ZdWjbfyL-ClySSOKRYNpMl_MWdvqg-OPeopWVFFGrTyB54koLOPDnUlVB_ETEPjqEuX2wG2d9nGrOeL3y-gilhN4OUjAxfBf3-3hf1E_gesfXs_0-4Ojd4_gBkeZ7NIFt2Fj_e2s3olmz9o-7kT7B_zG944 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small+and+large+deformation+analysis+with+the+p-+and+B-spline+versions+of+the+finite+cell+method&rft.jtitle=Computational+mechanics&rft.au=Schillinger%2C+Dominik&rft.au=Ruess%2C+Martin&rft.au=Zander%2C+Nils&rft.au=Bazilevs%2C+Yuri&rft.date=2012-10-01&rft.pub=Springer&rft.issn=0178-7675&rft.volume=50&rft.issue=4&rft.spage=445&rft_id=info:doi/10.1007%2Fs00466-012-0684-z&rft.externalDBID=ISR&rft.externalDocID=A355467123 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-7675&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-7675&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-7675&client=summon |