Synergistic Mechanisms of DNA Demethylation during Transition to Ground-State Pluripotency
Pluripotent stem cells (PSCs) occupy a spectrum of reversible molecular states ranging from a naive ground-state in 2i, to metastable embryonic stem cells (ESCs) in serum, to lineage-primed epiblast stem cells (EpiSCs). To investigate the role of DNA methylation (5mC) across distinct pluripotent sta...
Saved in:
Published in | Stem cell reports Vol. 1; no. 6; pp. 518 - 531 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
17.12.2013
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2213-6711 2213-6711 |
DOI | 10.1016/j.stemcr.2013.11.010 |
Cover
Abstract | Pluripotent stem cells (PSCs) occupy a spectrum of reversible molecular states ranging from a naive ground-state in 2i, to metastable embryonic stem cells (ESCs) in serum, to lineage-primed epiblast stem cells (EpiSCs). To investigate the role of DNA methylation (5mC) across distinct pluripotent states, we mapped genome-wide 5mC and 5-hydroxymethycytosine (5hmC) in multiple PSCs. Ground-state ESCs exhibit an altered distribution of 5mC and 5hmC at regulatory elements and dramatically lower absolute levels relative to ESCs in serum. By contrast, EpiSCs exhibit increased promoter 5mC coupled with reduced 5hmC, which contributes to their developmental restriction. Switch to 2i triggers rapid onset of both the ground-state gene expression program and global DNA demethylation. Mechanistically, repression of de novo methylases by PRDM14 drives DNA demethylation at slow kinetics, whereas TET1/TET2-mediated 5hmC conversion enhances both the rate and extent of hypomethylation. These processes thus act synergistically during transition to ground-state pluripotency to promote a robust hypomethylated state.
[Display omitted]
•Distinct genome-wide 5mC and 5hmC profiles in diverse pluripotent stem cells•Poised enhancers and promoters are enriched in 5hmC in ESCs in serum, but not 2i•Prdm14 overexpression in serum ESCs promotes partial demethylation at slow kinetics•Mutations in Tet1/Tet2 partially block DNA hypomethylation in ground-state cells
Pluripotent stem cells (PSCs) can give rise to all embryonic lineages. Hackett, Surani, and colleagues analyzed the epigenetic landscape of PSCs in distinct but interchangeable pluripotent “states” and found they are associated with discrete 5mC and 5hmC profiles at regulatory elements and genome wide. Notably, ground-state PSCs are globally hypomethylated via the synergistic effects of PRDM14-dependent repression of Dnmt3 genes and TET-mediated 5hmC conversion. |
---|---|
AbstractList | Pluripotent stem cells (PSCs) occupy a spectrum of reversible molecular states ranging from a naive ground-state in 2i, to metastable embryonic stem cells (ESCs) in serum, to lineage-primed epiblast stem cells (EpiSCs). To investigate the role of DNA methylation (5mC) across distinct pluripotent states, we mapped genome-wide 5mC and 5-hydroxymethycytosine (5hmC) in multiple PSCs. Ground-state ESCs exhibit an altered distribution of 5mC and 5hmC at regulatory elements and dramatically lower absolute levels relative to ESCs in serum. By contrast, EpiSCs exhibit increased promoter 5mC coupled with reduced 5hmC, which contributes to their developmental restriction. Switch to 2i triggers rapid onset of both the ground-state gene expression program and global DNA demethylation. Mechanistically, repression of de novo methylases by PRDM14 drives DNA demethylation at slow kinetics, whereas TET1/TET2-mediated 5hmC conversion enhances both the rate and extent of hypomethylation. These processes thus act synergistically during transition to ground-state pluripotency to promote a robust hypomethylated state.
•
Distinct genome-wide 5mC and 5hmC profiles in diverse pluripotent stem cells
•
Poised enhancers and promoters are enriched in 5hmC in ESCs in serum, but not 2i
•
Prdm14
overexpression in serum ESCs promotes partial demethylation at slow kinetics
•
Mutations in
Tet1
/
Tet2
partially block DNA hypomethylation in ground-state cells
Pluripotent stem cells (PSCs) can give rise to all embryonic lineages. Hackett, Surani, and colleagues analyzed the epigenetic landscape of PSCs in distinct but interchangeable pluripotent “states” and found they are associated with discrete 5mC and 5hmC profiles at regulatory elements and genome wide. Notably, ground-state PSCs are globally hypomethylated via the synergistic effects of PRDM14-dependent repression of
Dnmt3
genes and TET-mediated 5hmC conversion. Pluripotent stem cells (PSCs) occupy a spectrum of reversible molecular states ranging from a naive ground-state in 2i, to metastable embryonic stem cells (ESCs) in serum, to lineage-primed epiblast stem cells (EpiSCs). To investigate the role of DNA methylation (5mC) across distinct pluripotent states, we mapped genome-wide 5mC and 5-hydroxymethycytosine (5hmC) in multiple PSCs. Ground-state ESCs exhibit an altered distribution of 5mC and 5hmC at regulatory elements and dramatically lower absolute levels relative to ESCs in serum. By contrast, EpiSCs exhibit increased promoter 5mC coupled with reduced 5hmC, which contributes to their developmental restriction. Switch to 2i triggers rapid onset of both the ground-state gene expression program and global DNA demethylation. Mechanistically, repression of de novo methylases by PRDM14 drives DNA demethylation at slow kinetics, whereas TET1/TET2-mediated 5hmC conversion enhances both the rate and extent of hypomethylation. These processes thus act synergistically during transition to ground-state pluripotency to promote a robust hypomethylated state.Pluripotent stem cells (PSCs) occupy a spectrum of reversible molecular states ranging from a naive ground-state in 2i, to metastable embryonic stem cells (ESCs) in serum, to lineage-primed epiblast stem cells (EpiSCs). To investigate the role of DNA methylation (5mC) across distinct pluripotent states, we mapped genome-wide 5mC and 5-hydroxymethycytosine (5hmC) in multiple PSCs. Ground-state ESCs exhibit an altered distribution of 5mC and 5hmC at regulatory elements and dramatically lower absolute levels relative to ESCs in serum. By contrast, EpiSCs exhibit increased promoter 5mC coupled with reduced 5hmC, which contributes to their developmental restriction. Switch to 2i triggers rapid onset of both the ground-state gene expression program and global DNA demethylation. Mechanistically, repression of de novo methylases by PRDM14 drives DNA demethylation at slow kinetics, whereas TET1/TET2-mediated 5hmC conversion enhances both the rate and extent of hypomethylation. These processes thus act synergistically during transition to ground-state pluripotency to promote a robust hypomethylated state. Pluripotent stem cells (PSCs) occupy a spectrum of reversible molecular states ranging from a naive ground-state in 2i, to metastable embryonic stem cells (ESCs) in serum, to lineage-primed epiblast stem cells (EpiSCs). To investigate the role of DNA methylation (5mC) across distinct pluripotent states, we mapped genome-wide 5mC and 5-hydroxymethycytosine (5hmC) in multiple PSCs. Ground-state ESCs exhibit an altered distribution of 5mC and 5hmC at regulatory elements and dramatically lower absolute levels relative to ESCs in serum. By contrast, EpiSCs exhibit increased promoter 5mC coupled with reduced 5hmC, which contributes to their developmental restriction. Switch to 2i triggers rapid onset of both the ground-state gene expression program and global DNA demethylation. Mechanistically, repression of de novo methylases by PRDM14 drives DNA demethylation at slow kinetics, whereas TET1/TET2-mediated 5hmC conversion enhances both the rate and extent of hypomethylation. These processes thus act synergistically during transition to ground-state pluripotency to promote a robust hypomethylated state. [Display omitted] •Distinct genome-wide 5mC and 5hmC profiles in diverse pluripotent stem cells•Poised enhancers and promoters are enriched in 5hmC in ESCs in serum, but not 2i•Prdm14 overexpression in serum ESCs promotes partial demethylation at slow kinetics•Mutations in Tet1/Tet2 partially block DNA hypomethylation in ground-state cells Pluripotent stem cells (PSCs) can give rise to all embryonic lineages. Hackett, Surani, and colleagues analyzed the epigenetic landscape of PSCs in distinct but interchangeable pluripotent “states” and found they are associated with discrete 5mC and 5hmC profiles at regulatory elements and genome wide. Notably, ground-state PSCs are globally hypomethylated via the synergistic effects of PRDM14-dependent repression of Dnmt3 genes and TET-mediated 5hmC conversion. Pluripotent stem cells (PSCs) occupy a spectrum of reversible molecular states ranging from a naive ground-state in 2i, to metastable embryonic stem cells (ESCs) in serum, to lineage-primed epiblast stem cells (EpiSCs). To investigate the role of DNA methylation (5mC) across distinct pluripotent states, we mapped genome-wide 5mC and 5-hydroxymethycytosine (5hmC) in multiple PSCs. Ground-state ESCs exhibit an altered distribution of 5mC and 5hmC at regulatory elements and dramatically lower absolute levels relative to ESCs in serum. By contrast, EpiSCs exhibit increased promoter 5mC coupled with reduced 5hmC, which contributes to their developmental restriction. Switch to 2i triggers rapid onset of both the ground-state gene expression program and global DNA demethylation. Mechanistically, repression of de novo methylases by PRDM14 drives DNA demethylation at slow kinetics, whereas TET1/TET2-mediated 5hmC conversion enhances both the rate and extent of hypomethylation. These processes thus act synergistically during transition to ground-state pluripotency to promote a robust hypomethylated state. |
Author | Hackett, Jamie A. Dietmann, Sabine Leitch, Harry G. Murakami, Kazuhiro Surani, M. Azim Down, Thomas A. |
AuthorAffiliation | 1 Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK 2 Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK 3 Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK |
AuthorAffiliation_xml | – name: 1 Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK – name: 3 Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK – name: 2 Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK |
Author_xml | – sequence: 1 givenname: Jamie A. surname: Hackett fullname: Hackett, Jamie A. email: j.hackett@gurdon.cam.ac.uk organization: Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK – sequence: 2 givenname: Sabine surname: Dietmann fullname: Dietmann, Sabine organization: Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK – sequence: 3 givenname: Kazuhiro surname: Murakami fullname: Murakami, Kazuhiro organization: Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK – sequence: 4 givenname: Thomas A. surname: Down fullname: Down, Thomas A. organization: Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK – sequence: 5 givenname: Harry G. surname: Leitch fullname: Leitch, Harry G. organization: Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK – sequence: 6 givenname: M. Azim surname: Surani fullname: Surani, M. Azim email: a.surani@gurdon.cam.ac.uk organization: Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24371807$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUU1v1DAQtVARLaX_AKEcuSR44sRJOCBVLRSk8iG1XLiMvM5k16vEXmyn0v57vN0tKhxgLjOy34f03nN2ZJ0lxl4CL4CDfLMuQqRJ-6LkIAqAggN_wk7KEkQuG4CjR_cxOwthzdN0HZQVPGPHZSUaaHlzwn7cbC35pQnR6Owz6ZWyJkwhc0N2-eU8u6SJ4mo7qmiczfrZG7vMbr2ywdy_RJddeTfbPr-JKlL2bUyQjYtk9fYFezqoMdDZYZ-y7x_e3158zK-_Xn26OL_OdV12Me9a4FJqgFqCWMiqpaahXmhZqwVvVa06IdIqdUuDkkouSNS6JlkOjaYeSJyyd3vdzbyYqNdko1cjbryZlN-iUwb__LFmhUt3h6JtQHRVEnh9EPDu50wh4mSCpnFUltwcEKqONwJqvoO-euz12-Qh0AR4uwdo70LwNKA28T69ZG1GBI67AnGN-wJxVyACYCowkau_yA_6_6EdAqCU8p0hj0Gb1AD1xpOO2Dvzb4FfECC41Q |
CitedBy_id | crossref_primary_10_1016_j_jmb_2016_12_009 crossref_primary_10_1016_j_stem_2016_05_025 crossref_primary_10_1101_gad_299198_117 crossref_primary_10_1038_nature23286 crossref_primary_10_1098_rsob_150092 crossref_primary_10_1016_j_gde_2015_04_005 crossref_primary_10_1016_j_stemcr_2018_03_019 crossref_primary_10_1093_nar_gkaa529 crossref_primary_10_3390_ani10101848 crossref_primary_10_1038_ng_3868 crossref_primary_10_26508_lsa_201900516 crossref_primary_10_1016_j_jmb_2017_02_008 crossref_primary_10_1074_jbc_M114_620641 crossref_primary_10_3389_fcell_2019_00076 crossref_primary_10_1016_j_stemcr_2017_05_014 crossref_primary_10_1186_s13059_021_02321_2 crossref_primary_10_1186_s13072_016_0056_6 crossref_primary_10_1007_s00018_017_2703_x crossref_primary_10_1016_j_jmb_2020_10_008 crossref_primary_10_1093_bfgp_elw017 crossref_primary_10_5713_ab_23_0310 crossref_primary_10_1016_j_ejphar_2020_173827 crossref_primary_10_1038_s41594_020_0445_1 crossref_primary_10_1093_nsr_nwv029 crossref_primary_10_1016_j_jmb_2016_12_017 crossref_primary_10_1016_j_molcel_2023_07_003 crossref_primary_10_1186_s13148_022_01323_6 crossref_primary_10_1152_physrev_00001_2014 crossref_primary_10_1016_j_mce_2014_07_016 crossref_primary_10_1038_nrm_2016_6 crossref_primary_10_18632_oncotarget_9452 crossref_primary_10_15252_embj_201695476 crossref_primary_10_1016_j_stem_2014_09_015 crossref_primary_10_1016_j_tibs_2014_04_003 crossref_primary_10_1038_s41598_019_44313_0 crossref_primary_10_1038_nrm_2015_28 crossref_primary_10_15252_embr_201948354 crossref_primary_10_7554_eLife_09571 crossref_primary_10_1038_nature13981 crossref_primary_10_7554_eLife_10150 crossref_primary_10_1016_j_jtbi_2019_06_001 crossref_primary_10_1016_j_stemcr_2015_11_012 crossref_primary_10_1016_j_jbc_2024_105714 crossref_primary_10_1093_nar_gkab476 crossref_primary_10_1073_pnas_1608564113 crossref_primary_10_1007_s00018_018_2965_y crossref_primary_10_1016_j_cdev_2024_203935 crossref_primary_10_1038_s41467_021_22201_4 crossref_primary_10_1016_j_devcel_2014_03_003 crossref_primary_10_1186_s13293_017_0150_x crossref_primary_10_1007_s12015_023_10552_y crossref_primary_10_1016_j_celrep_2021_109233 crossref_primary_10_1038_ncomms7188 crossref_primary_10_1038_s41598_018_37258_3 crossref_primary_10_1042_BST20230416 crossref_primary_10_1016_j_stemcr_2020_01_004 crossref_primary_10_1038_s41467_020_14916_7 crossref_primary_10_1128_MCB_01172_14 crossref_primary_10_15252_embr_201540538 crossref_primary_10_1016_j_ceb_2015_10_006 crossref_primary_10_1016_j_molcel_2016_04_025 crossref_primary_10_1016_j_cell_2023_10_005 crossref_primary_10_1089_scd_2016_0103 crossref_primary_10_2217_epi_2017_0021 crossref_primary_10_1016_j_stemcr_2020_01_009 crossref_primary_10_1038_labinvest_2017_87 crossref_primary_10_1186_s13072_018_0177_1 crossref_primary_10_1073_pnas_1708710114 crossref_primary_10_1242_dev_164772 crossref_primary_10_1016_j_celrep_2024_114024 crossref_primary_10_1038_s12276_022_00824_x crossref_primary_10_1016_j_stem_2020_10_017 crossref_primary_10_1038_srep08973 crossref_primary_10_1016_j_theriogenology_2020_01_051 crossref_primary_10_1016_j_gde_2015_09_002 crossref_primary_10_1016_j_stemcr_2014_07_003 crossref_primary_10_1038_s41467_020_19603_1 crossref_primary_10_1016_j_ydbio_2020_06_001 crossref_primary_10_1002_cpsc_105 crossref_primary_10_1038_nature23274 crossref_primary_10_1128_MCB_00587_15 crossref_primary_10_3390_genes10050369 crossref_primary_10_1016_j_stemcr_2018_12_004 crossref_primary_10_1038_s41556_018_0086_3 crossref_primary_10_1016_j_cell_2022_12_047 crossref_primary_10_1016_j_stem_2017_03_002 crossref_primary_10_1016_j_bbagrm_2015_03_002 crossref_primary_10_1038_srep17985 crossref_primary_10_1016_j_stemcr_2017_04_001 crossref_primary_10_1073_pnas_1608679113 crossref_primary_10_1016_j_tig_2016_08_005 crossref_primary_10_1016_j_gde_2017_02_003 crossref_primary_10_1038_s41588_020_00770_2 crossref_primary_10_1089_scd_2013_0639 crossref_primary_10_1016_j_tig_2019_04_004 |
Cites_doi | 10.1016/j.molcel.2012.11.001 10.1038/nature12362 10.1016/j.stem.2008.07.027 10.1038/embor.2011.233 10.1038/embor.2013.67 10.1038/nature05972 10.1016/0092-8674(92)90317-6 10.1038/ng1663 10.1038/nature05950 10.1016/j.tig.2012.01.005 10.1016/j.stemcr.2013.08.005 10.1016/j.cell.2007.02.010 10.1016/j.cell.2012.04.027 10.1371/journal.pgen.1001134 10.1016/j.stem.2013.06.002 10.1126/science.1229277 10.1016/j.stem.2011.01.008 10.1038/nrm3589 10.1016/j.devcel.2012.12.015 10.1016/S0092-8674(00)81656-6 10.1038/nature10716 10.1038/nature10008 10.1242/dev.050427 10.1016/j.gde.2012.03.001 10.1038/nsmb.2510 10.1016/j.stem.2012.12.012 10.1016/j.molcel.2008.05.007 10.1073/pnas.1014033108 10.1016/j.celrep.2013.04.034 10.1038/ncb1786 10.1128/MCB.23.16.5594-5605.2003 10.1016/j.stem.2013.06.004 10.1128/MCB.24.20.8862-8871.2004 10.1038/emboj.2012.331 10.1016/j.stem.2009.05.015 10.1016/j.stem.2013.03.005 10.1016/j.cell.2013.04.002 10.1016/j.cell.2012.03.026 10.1016/j.cell.2013.03.035 10.1038/nature06968 10.1016/j.cell.2013.04.001 10.1126/science.1170116 10.1016/S0925-4773(02)00181-8 10.1242/dev.017400 |
ContentType | Journal Article |
Copyright | 2013 The Authors 2013 The Authors 2013 |
Copyright_xml | – notice: 2013 The Authors – notice: 2013 The Authors 2013 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.stemcr.2013.11.010 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2213-6711 |
EndPage | 531 |
ExternalDocumentID | PMC3871394 24371807 10_1016_j_stemcr_2013_11_010 S2213671113001501 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust grantid: 079249 – fundername: Wellcome Trust – fundername: Wellcome Trust grantid: 092096 |
GroupedDBID | 0R~ 0SF 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAVLU AAXUO ABMAC ACGFS ADBBV ADEZE ADRAZ AENEX AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE IXB KQ8 M41 M48 M~E NCXOZ O9- OK1 RCE ROL RPM SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ RIG CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c529t-981066c115613b648e77ed3c65ab08a5a9338a52c8efa6a6be35c5e62f7ced1e3 |
IEDL.DBID | M48 |
ISSN | 2213-6711 |
IngestDate | Thu Aug 21 14:34:49 EDT 2025 Fri Sep 05 05:11:37 EDT 2025 Mon Jul 21 06:00:54 EDT 2025 Tue Jul 01 02:44:09 EDT 2025 Thu Apr 24 22:59:33 EDT 2025 Wed May 17 02:21:46 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/3.0 This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c529t-981066c115613b648e77ed3c65ab08a5a9338a52c8efa6a6be35c5e62f7ced1e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.stemcr.2013.11.010 |
PMID | 24371807 |
PQID | 1490731504 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3871394 proquest_miscellaneous_1490731504 pubmed_primary_24371807 crossref_citationtrail_10_1016_j_stemcr_2013_11_010 crossref_primary_10_1016_j_stemcr_2013_11_010 elsevier_sciencedirect_doi_10_1016_j_stemcr_2013_11_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-12-17 |
PublicationDateYYYYMMDD | 2013-12-17 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Stem cell reports |
PublicationTitleAlternate | Stem Cell Reports |
PublicationYear | 2013 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Dawlaty, Breiling, Le, Raddatz, Barrasa, Cheng, Gao, Powell, Li, Xu (bib4) 2013; 24 De Los Angeles, Loh, Tesar, Daley (bib5) 2012; 22 Zvetkova, Apedaile, Ramsahoye, Mermoud, Crompton, John, Feil, Brockdorff (bib44) 2005; 37 Habibi, Brinkman, Arand, Kroeze, Kerstens, Matarese, Lepikhov, Gut, Brun-Heath, Hubner (bib9) 2013; 13 Koh, Yabuuchi, Rao, Huang, Cunniff, Nardone, Laiho, Tahiliani, Sommer, Mostoslavsky (bib19) 2011; 8 Stadler, Murr, Burger, Ivanek, Lienert, Schöler, van Nimwegen, Wirbelauer, Oakeley, Gaidatzis (bib34) 2011; 480 Ying, Wray, Nichols, Batlle-Morera, Doble, Woodgett, Cohen, Smith (bib42) 2008; 453 Blaschke, Ebata, Karimi, Zepeda-Martínez, Goyal, Mahapatra, Tam, Laird, Hirst, Rao (bib1) 2013; 500 Toyooka, Shimosato, Murakami, Takahashi, Niwa (bib38) 2008; 135 Williams, Christensen, Helin (bib40) 2012; 13 Grabole, Tischler, Hackett, Kim, Tang, Leitch, Magnúsdóttir, Surani (bib8) 2013; 14 Shyh-Chang, Daley (bib32) 2013; 12 Seisenberger, Andrews, Krueger, Arand, Walter, Santos, Popp, Thienpont, Dean, Reik (bib30) 2012; 48 Pastor, Aravind, Rao (bib29) 2013; 14 Surani, Hayashi, Hajkova (bib35) 2007; 128 Morgani, Canham, Nichols, Sharov, Migueles, Ko, Brickman (bib25) 2013; 3 Kagiwada, Kurimoto, Hirota, Yamaji, Saitou (bib18) 2013; 32 Iqbal, Jin, Pfeifer, Szabó (bib15) 2011; 108 Okano, Bell, Haber, Li (bib28) 1999; 99 Yu, Hon, Szulwach, Song, Zhang, Kim, Li, Dai, Shen, Park (bib43) 2012; 149 Leitch, Blair, Mansfield, Ayetey, Humphreys, Nichols, Surani, Smith (bib20) 2010; 137 Tesar, Chenoweth, Brook, Davies, Evans, Mack, Gardner, McKay (bib37) 2007; 448 Ficz, Hore, Santos, Lee, Dean, Arand, Krueger, Oxley, Paul, Walter (bib7) 2013; 13 Song, Szulwach, Dai, Fu, Mao, Lin, Street, Li, Poidevin, Wu (bib33) 2013; 153 Yamaji, Ueda, Hayashi, Ohta, Yabuta, Kurimoto, Nakato, Yamada, Shirahige, Saitou (bib41) 2013; 12 Illingworth, Gruenewald-Schneider, Webb, Kerr, James, Turner, Smith, Harrison, Andrews, Bird (bib14) 2010; 6 Ficz, Branco, Seisenberger, Santos, Krueger, Hore, Marques, Andrews, Reik (bib6) 2011; 473 Chen, Ueda, Dodge, Wang, Li (bib3) 2003; 23 Jackson, Krassowska, Gilbert, Chevassut, Forrester, Ansell, Ramsahoye (bib16) 2004; 24 Mohn, Weber, Rebhan, Roloff, Richter, Stadler, Bibel, Schübeler (bib24) 2008; 30 Marks, Kalkan, Menafra, Denissov, Jones, Hofemeister, Nichols, Kranz, Stewart, Smith, Stunnenberg (bib22) 2012; 149 Ng, Dean, Dawson, Lucifero, Madeja, Reik, Hemberger (bib26) 2008; 10 Jasnos, Aksoy, Hersi, Wantuch, Sawado (bib17) 2013; 1 Hackett, Zylicz, Surani (bib10) 2012; 28 Brons, Smithers, Trotter, Rugg-Gunn, Sun, Chuva de Sousa Lopes, Howlett, Clarkson, Ahrlund-Richter, Pedersen, Vallier (bib2) 2007; 448 Matsui, Zsebo, Hogan (bib23) 1992; 70 Whyte, Orlando, Hnisz, Abraham, Lin, Kagey, Rahl, Lee, Young (bib39) 2013; 153 Shen, Wu, Diep, Yamaguchi, D’Alessio, Fung, Zhang, Zhang (bib31) 2013; 153 Hayashi, Lopes, Tang, Surani (bib13) 2008; 3 Nichols, Smith (bib27) 2009; 4 Tahiliani, Koh, Shen, Pastor, Bandukwala, Brudno, Agarwal, Iyer, Liu, Aravind, Rao (bib36) 2009; 324 Hajkova, Erhardt, Lane, Haaf, El-Maarri, Reik, Walter, Surani (bib12) 2002; 117 Leitch, McEwen, Turp, Encheva, Carroll, Grabole, Mansfield, Nashun, Knezovich, Smith (bib21) 2013; 20 Hackett, Sengupta, Zylicz, Murakami, Lee, Down, Surani (bib11) 2013; 339 Pastor (10.1016/j.stemcr.2013.11.010_bib29) 2013; 14 Blaschke (10.1016/j.stemcr.2013.11.010_bib1) 2013; 500 Marks (10.1016/j.stemcr.2013.11.010_bib22) 2012; 149 Kagiwada (10.1016/j.stemcr.2013.11.010_bib18) 2013; 32 Habibi (10.1016/j.stemcr.2013.11.010_bib9) 2013; 13 Hajkova (10.1016/j.stemcr.2013.11.010_bib12) 2002; 117 Matsui (10.1016/j.stemcr.2013.11.010_bib23) 1992; 70 Chen (10.1016/j.stemcr.2013.11.010_bib3) 2003; 23 Koh (10.1016/j.stemcr.2013.11.010_bib19) 2011; 8 Shyh-Chang (10.1016/j.stemcr.2013.11.010_bib32) 2013; 12 Whyte (10.1016/j.stemcr.2013.11.010_bib39) 2013; 153 Ficz (10.1016/j.stemcr.2013.11.010_bib6) 2011; 473 Illingworth (10.1016/j.stemcr.2013.11.010_bib14) 2010; 6 Brons (10.1016/j.stemcr.2013.11.010_bib2) 2007; 448 Ng (10.1016/j.stemcr.2013.11.010_bib26) 2008; 10 Ying (10.1016/j.stemcr.2013.11.010_bib42) 2008; 453 Hackett (10.1016/j.stemcr.2013.11.010_bib10) 2012; 28 Jackson (10.1016/j.stemcr.2013.11.010_bib16) 2004; 24 Zvetkova (10.1016/j.stemcr.2013.11.010_bib44) 2005; 37 Iqbal (10.1016/j.stemcr.2013.11.010_bib15) 2011; 108 Nichols (10.1016/j.stemcr.2013.11.010_bib27) 2009; 4 Mohn (10.1016/j.stemcr.2013.11.010_bib24) 2008; 30 Stadler (10.1016/j.stemcr.2013.11.010_bib34) 2011; 480 Williams (10.1016/j.stemcr.2013.11.010_bib40) 2012; 13 Song (10.1016/j.stemcr.2013.11.010_bib33) 2013; 153 Grabole (10.1016/j.stemcr.2013.11.010_bib8) 2013; 14 Leitch (10.1016/j.stemcr.2013.11.010_bib21) 2013; 20 Seisenberger (10.1016/j.stemcr.2013.11.010_bib30) 2012; 48 Dawlaty (10.1016/j.stemcr.2013.11.010_bib4) 2013; 24 Shen (10.1016/j.stemcr.2013.11.010_bib31) 2013; 153 Toyooka (10.1016/j.stemcr.2013.11.010_bib38) 2008; 135 Surani (10.1016/j.stemcr.2013.11.010_bib35) 2007; 128 Hayashi (10.1016/j.stemcr.2013.11.010_bib13) 2008; 3 Leitch (10.1016/j.stemcr.2013.11.010_bib20) 2010; 137 Jasnos (10.1016/j.stemcr.2013.11.010_bib17) 2013; 1 Yu (10.1016/j.stemcr.2013.11.010_bib43) 2012; 149 Yamaji (10.1016/j.stemcr.2013.11.010_bib41) 2013; 12 De Los Angeles (10.1016/j.stemcr.2013.11.010_bib5) 2012; 22 Morgani (10.1016/j.stemcr.2013.11.010_bib25) 2013; 3 Tesar (10.1016/j.stemcr.2013.11.010_bib37) 2007; 448 Hackett (10.1016/j.stemcr.2013.11.010_bib11) 2013; 339 Tahiliani (10.1016/j.stemcr.2013.11.010_bib36) 2009; 324 Okano (10.1016/j.stemcr.2013.11.010_bib28) 1999; 99 Ficz (10.1016/j.stemcr.2013.11.010_bib7) 2013; 13 19372391 - Science. 2009 May 15;324(5929):930-5 18836439 - Nat Cell Biol. 2008 Nov;10(11):1280-90 23812591 - Nature. 2013 Aug 8;500(7461):222-6 23582322 - Cell. 2013 Apr 11;153(2):307-19 18497825 - Nature. 2008 May 22;453(7194):519-23 20519324 - Development. 2010 Jul;137(14):2279-87 12897133 - Mol Cell Biol. 2003 Aug;23(16):5594-605 23698584 - Nat Rev Mol Cell Biol. 2013 Jun;14(6):341-56 24319670 - Stem Cell Reports. 2013;1(4):360-9 17320511 - Cell. 2007 Feb 23;128(4):747-62 23746443 - Cell Rep. 2013 Jun 27;3(6):1945-57 16244654 - Nat Genet. 2005 Nov;37(11):1274-9 23850245 - Cell Stem Cell. 2013 Sep 5;13(3):351-9 1381289 - Cell. 1992 Sep 4;70(5):841-7 22157888 - EMBO Rep. 2012 Jan;13(1):28-35 19497275 - Cell Stem Cell. 2009 Jun 5;4(6):487-92 22170606 - Nature. 2011 Dec 22;480(7378):490-5 12204247 - Mech Dev. 2002 Sep;117(1-2):15-23 10555141 - Cell. 1999 Oct 29;99(3):247-57 23352810 - Dev Cell. 2013 Feb 11;24(3):310-23 21321204 - Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3642-7 23602152 - Cell. 2013 Apr 25;153(3):692-706 23223451 - Science. 2013 Jan 25;339(6118):448-52 23602153 - Cell. 2013 Apr 25;153(3):678-91 23416945 - Nat Struct Mol Biol. 2013 Mar;20(3):311-6 22541430 - Cell. 2012 Apr 27;149(3):590-604 22463982 - Curr Opin Genet Dev. 2012 Jun;22(3):272-82 18263842 - Development. 2008 Mar;135(5):909-18 23333148 - Cell Stem Cell. 2013 Mar 7;12(3):368-82 22608086 - Cell. 2012 Jun 8;149(6):1368-80 18514006 - Mol Cell. 2008 Jun 20;30(6):755-66 17597762 - Nature. 2007 Jul 12;448(7150):191-5 23561442 - Cell Stem Cell. 2013 Apr 4;12(4):395-406 22386917 - Trends Genet. 2012 Apr;28(4):164-74 23219530 - Mol Cell. 2012 Dec 28;48(6):849-62 23670199 - EMBO Rep. 2013 Jul;14(7):629-37 21295276 - Cell Stem Cell. 2011 Feb 4;8(2):200-13 20885785 - PLoS Genet. 2010 Sep;6(9):e1001134 21460836 - Nature. 2011 May 19;473(7347):398-402 23241950 - EMBO J. 2013 Feb 6;32(3):340-53 23850244 - Cell Stem Cell. 2013 Sep 5;13(3):360-9 15456861 - Mol Cell Biol. 2004 Oct;24(20):8862-71 17597760 - Nature. 2007 Jul 12;448(7150):196-9 18940731 - Cell Stem Cell. 2008 Oct 9;3(4):391-401 |
References_xml | – volume: 14 start-page: 629 year: 2013 end-page: 637 ident: bib8 article-title: Prdm14 promotes germline fate and naive pluripotency by repressing FGF signalling and DNA methylation publication-title: EMBO Rep. – volume: 32 start-page: 340 year: 2013 end-page: 353 ident: bib18 article-title: Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice publication-title: EMBO J. – volume: 28 start-page: 164 year: 2012 end-page: 174 ident: bib10 article-title: Parallel mechanisms of epigenetic reprogramming in the germline publication-title: Trends Genet. – volume: 48 start-page: 849 year: 2012 end-page: 862 ident: bib30 article-title: The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells publication-title: Mol. Cell – volume: 448 start-page: 196 year: 2007 end-page: 199 ident: bib37 article-title: New cell lines from mouse epiblast share defining features with human embryonic stem cells publication-title: Nature – volume: 24 start-page: 310 year: 2013 end-page: 323 ident: bib4 article-title: Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development publication-title: Dev. Cell – volume: 13 start-page: 360 year: 2013 end-page: 369 ident: bib9 article-title: Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells publication-title: Cell Stem Cell – volume: 24 start-page: 8862 year: 2004 end-page: 8871 ident: bib16 article-title: Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells publication-title: Mol. Cell. Biol. – volume: 13 start-page: 28 year: 2012 end-page: 35 ident: bib40 article-title: DNA methylation: TET proteins-guardians of CpG islands? publication-title: EMBO Rep. – volume: 8 start-page: 200 year: 2011 end-page: 213 ident: bib19 article-title: Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells publication-title: Cell Stem Cell – volume: 70 start-page: 841 year: 1992 end-page: 847 ident: bib23 article-title: Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture publication-title: Cell – volume: 4 start-page: 487 year: 2009 end-page: 492 ident: bib27 article-title: Naive and primed pluripotent states publication-title: Cell Stem Cell – volume: 128 start-page: 747 year: 2007 end-page: 762 ident: bib35 article-title: Genetic and epigenetic regulators of pluripotency publication-title: Cell – volume: 149 start-page: 590 year: 2012 end-page: 604 ident: bib22 article-title: The transcriptional and epigenomic foundations of ground state pluripotency publication-title: Cell – volume: 108 start-page: 3642 year: 2011 end-page: 3647 ident: bib15 article-title: Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine publication-title: Proc. Natl. Acad. Sci. USA – volume: 480 start-page: 490 year: 2011 end-page: 495 ident: bib34 article-title: DNA-binding factors shape the mouse methylome at distal regulatory regions publication-title: Nature – volume: 473 start-page: 398 year: 2011 end-page: 402 ident: bib6 article-title: Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation publication-title: Nature – volume: 117 start-page: 15 year: 2002 end-page: 23 ident: bib12 article-title: Epigenetic reprogramming in mouse primordial germ cells publication-title: Mech. Dev. – volume: 3 start-page: 391 year: 2008 end-page: 401 ident: bib13 article-title: Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states publication-title: Cell Stem Cell – volume: 23 start-page: 5594 year: 2003 end-page: 5605 ident: bib3 article-title: Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b publication-title: Mol. Cell. Biol. – volume: 13 start-page: 351 year: 2013 end-page: 359 ident: bib7 article-title: FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency publication-title: Cell Stem Cell – volume: 3 start-page: 1945 year: 2013 end-page: 1957 ident: bib25 article-title: Totipotent embryonic stem cells arise in ground-state culture conditions publication-title: Cell Rep – volume: 37 start-page: 1274 year: 2005 end-page: 1279 ident: bib44 article-title: Global hypomethylation of the genome in XX embryonic stem cells publication-title: Nat. Genet. – volume: 30 start-page: 755 year: 2008 end-page: 766 ident: bib24 article-title: Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors publication-title: Mol. Cell – volume: 137 start-page: 2279 year: 2010 end-page: 2287 ident: bib20 article-title: Embryonic germ cells from mice and rats exhibit properties consistent with a generic pluripotent ground state publication-title: Development – volume: 12 start-page: 395 year: 2013 end-page: 406 ident: bib32 article-title: Lin28: primal regulator of growth and metabolism in stem cells publication-title: Cell Stem Cell – volume: 153 start-page: 307 year: 2013 end-page: 319 ident: bib39 article-title: Master transcription factors and mediator establish super-enhancers at key cell identity genes publication-title: Cell – volume: 14 start-page: 341 year: 2013 end-page: 356 ident: bib29 article-title: TETonic shift: biological roles of TET proteins in DNA demethylation and transcription publication-title: Nat. Rev. Mol. Cell Biol. – volume: 339 start-page: 448 year: 2013 end-page: 452 ident: bib11 article-title: Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine publication-title: Science – volume: 153 start-page: 692 year: 2013 end-page: 706 ident: bib31 article-title: Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics publication-title: Cell – volume: 453 start-page: 519 year: 2008 end-page: 523 ident: bib42 article-title: The ground state of embryonic stem cell self-renewal publication-title: Nature – volume: 99 start-page: 247 year: 1999 end-page: 257 ident: bib28 article-title: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development publication-title: Cell – volume: 324 start-page: 930 year: 2009 end-page: 935 ident: bib36 article-title: Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1 publication-title: Science – volume: 20 start-page: 311 year: 2013 end-page: 316 ident: bib21 article-title: Naive pluripotency is associated with global DNA hypomethylation publication-title: Nat. Struct. Mol. Biol. – volume: 153 start-page: 678 year: 2013 end-page: 691 ident: bib33 article-title: Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming publication-title: Cell – volume: 10 start-page: 1280 year: 2008 end-page: 1290 ident: bib26 article-title: Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5 publication-title: Nat. Cell Biol. – volume: 1 start-page: 360 year: 2013 end-page: 369 ident: bib17 article-title: Identifying division symmetry of mouse embryonic stem cells: negative impact of DNA methyltransferases on symmetric self-renewal publication-title: Stem Cell Rep. – volume: 135 start-page: 909 year: 2008 end-page: 918 ident: bib38 article-title: Identification and characterization of subpopulations in undifferentiated ES cell culture publication-title: Development – volume: 149 start-page: 1368 year: 2012 end-page: 1380 ident: bib43 article-title: Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome publication-title: Cell – volume: 6 year: 2010 ident: bib14 article-title: Orphan CpG islands identify numerous conserved promoters in the mammalian genome publication-title: PLoS Genet. – volume: 500 start-page: 222 year: 2013 end-page: 226 ident: bib1 article-title: Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells publication-title: Nature – volume: 22 start-page: 272 year: 2012 end-page: 282 ident: bib5 article-title: Accessing naïve human pluripotency publication-title: Curr. Opin. Genet. Dev. – volume: 448 start-page: 191 year: 2007 end-page: 195 ident: bib2 article-title: Derivation of pluripotent epiblast stem cells from mammalian embryos publication-title: Nature – volume: 12 start-page: 368 year: 2013 end-page: 382 ident: bib41 article-title: PRDM14 ensures naive pluripotency through dual regulation of signaling and epigenetic pathways in mouse embryonic stem cells publication-title: Cell Stem Cell – volume: 48 start-page: 849 year: 2012 ident: 10.1016/j.stemcr.2013.11.010_bib30 article-title: The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.11.001 – volume: 500 start-page: 222 year: 2013 ident: 10.1016/j.stemcr.2013.11.010_bib1 article-title: Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells publication-title: Nature doi: 10.1038/nature12362 – volume: 3 start-page: 391 year: 2008 ident: 10.1016/j.stemcr.2013.11.010_bib13 article-title: Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states publication-title: Cell Stem Cell doi: 10.1016/j.stem.2008.07.027 – volume: 13 start-page: 28 year: 2012 ident: 10.1016/j.stemcr.2013.11.010_bib40 article-title: DNA methylation: TET proteins-guardians of CpG islands? publication-title: EMBO Rep. doi: 10.1038/embor.2011.233 – volume: 14 start-page: 629 year: 2013 ident: 10.1016/j.stemcr.2013.11.010_bib8 article-title: Prdm14 promotes germline fate and naive pluripotency by repressing FGF signalling and DNA methylation publication-title: EMBO Rep. doi: 10.1038/embor.2013.67 – volume: 448 start-page: 196 year: 2007 ident: 10.1016/j.stemcr.2013.11.010_bib37 article-title: New cell lines from mouse epiblast share defining features with human embryonic stem cells publication-title: Nature doi: 10.1038/nature05972 – volume: 70 start-page: 841 year: 1992 ident: 10.1016/j.stemcr.2013.11.010_bib23 article-title: Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture publication-title: Cell doi: 10.1016/0092-8674(92)90317-6 – volume: 37 start-page: 1274 year: 2005 ident: 10.1016/j.stemcr.2013.11.010_bib44 article-title: Global hypomethylation of the genome in XX embryonic stem cells publication-title: Nat. Genet. doi: 10.1038/ng1663 – volume: 448 start-page: 191 year: 2007 ident: 10.1016/j.stemcr.2013.11.010_bib2 article-title: Derivation of pluripotent epiblast stem cells from mammalian embryos publication-title: Nature doi: 10.1038/nature05950 – volume: 28 start-page: 164 year: 2012 ident: 10.1016/j.stemcr.2013.11.010_bib10 article-title: Parallel mechanisms of epigenetic reprogramming in the germline publication-title: Trends Genet. doi: 10.1016/j.tig.2012.01.005 – volume: 1 start-page: 360 year: 2013 ident: 10.1016/j.stemcr.2013.11.010_bib17 article-title: Identifying division symmetry of mouse embryonic stem cells: negative impact of DNA methyltransferases on symmetric self-renewal publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2013.08.005 – volume: 128 start-page: 747 year: 2007 ident: 10.1016/j.stemcr.2013.11.010_bib35 article-title: Genetic and epigenetic regulators of pluripotency publication-title: Cell doi: 10.1016/j.cell.2007.02.010 – volume: 149 start-page: 1368 year: 2012 ident: 10.1016/j.stemcr.2013.11.010_bib43 article-title: Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome publication-title: Cell doi: 10.1016/j.cell.2012.04.027 – volume: 6 year: 2010 ident: 10.1016/j.stemcr.2013.11.010_bib14 article-title: Orphan CpG islands identify numerous conserved promoters in the mammalian genome publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1001134 – volume: 13 start-page: 360 year: 2013 ident: 10.1016/j.stemcr.2013.11.010_bib9 article-title: Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.06.002 – volume: 339 start-page: 448 year: 2013 ident: 10.1016/j.stemcr.2013.11.010_bib11 article-title: Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine publication-title: Science doi: 10.1126/science.1229277 – volume: 8 start-page: 200 year: 2011 ident: 10.1016/j.stemcr.2013.11.010_bib19 article-title: Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2011.01.008 – volume: 14 start-page: 341 year: 2013 ident: 10.1016/j.stemcr.2013.11.010_bib29 article-title: TETonic shift: biological roles of TET proteins in DNA demethylation and transcription publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3589 – volume: 24 start-page: 310 year: 2013 ident: 10.1016/j.stemcr.2013.11.010_bib4 article-title: Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development publication-title: Dev. Cell doi: 10.1016/j.devcel.2012.12.015 – volume: 99 start-page: 247 year: 1999 ident: 10.1016/j.stemcr.2013.11.010_bib28 article-title: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development publication-title: Cell doi: 10.1016/S0092-8674(00)81656-6 – volume: 480 start-page: 490 year: 2011 ident: 10.1016/j.stemcr.2013.11.010_bib34 article-title: DNA-binding factors shape the mouse methylome at distal regulatory regions publication-title: Nature doi: 10.1038/nature10716 – volume: 473 start-page: 398 year: 2011 ident: 10.1016/j.stemcr.2013.11.010_bib6 article-title: Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation publication-title: Nature doi: 10.1038/nature10008 – volume: 137 start-page: 2279 year: 2010 ident: 10.1016/j.stemcr.2013.11.010_bib20 article-title: Embryonic germ cells from mice and rats exhibit properties consistent with a generic pluripotent ground state publication-title: Development doi: 10.1242/dev.050427 – volume: 22 start-page: 272 year: 2012 ident: 10.1016/j.stemcr.2013.11.010_bib5 article-title: Accessing naïve human pluripotency publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2012.03.001 – volume: 20 start-page: 311 year: 2013 ident: 10.1016/j.stemcr.2013.11.010_bib21 article-title: Naive pluripotency is associated with global DNA hypomethylation publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2510 – volume: 12 start-page: 368 year: 2013 ident: 10.1016/j.stemcr.2013.11.010_bib41 article-title: PRDM14 ensures naive pluripotency through dual regulation of signaling and epigenetic pathways in mouse embryonic stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2012.12.012 – volume: 30 start-page: 755 year: 2008 ident: 10.1016/j.stemcr.2013.11.010_bib24 article-title: Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.05.007 – volume: 108 start-page: 3642 year: 2011 ident: 10.1016/j.stemcr.2013.11.010_bib15 article-title: Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1014033108 – volume: 3 start-page: 1945 year: 2013 ident: 10.1016/j.stemcr.2013.11.010_bib25 article-title: Totipotent embryonic stem cells arise in ground-state culture conditions publication-title: Cell Rep doi: 10.1016/j.celrep.2013.04.034 – volume: 10 start-page: 1280 year: 2008 ident: 10.1016/j.stemcr.2013.11.010_bib26 article-title: Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5 publication-title: Nat. Cell Biol. doi: 10.1038/ncb1786 – volume: 23 start-page: 5594 year: 2003 ident: 10.1016/j.stemcr.2013.11.010_bib3 article-title: Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.23.16.5594-5605.2003 – volume: 13 start-page: 351 year: 2013 ident: 10.1016/j.stemcr.2013.11.010_bib7 article-title: FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.06.004 – volume: 24 start-page: 8862 year: 2004 ident: 10.1016/j.stemcr.2013.11.010_bib16 article-title: Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.24.20.8862-8871.2004 – volume: 32 start-page: 340 year: 2013 ident: 10.1016/j.stemcr.2013.11.010_bib18 article-title: Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice publication-title: EMBO J. doi: 10.1038/emboj.2012.331 – volume: 4 start-page: 487 year: 2009 ident: 10.1016/j.stemcr.2013.11.010_bib27 article-title: Naive and primed pluripotent states publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.05.015 – volume: 12 start-page: 395 year: 2013 ident: 10.1016/j.stemcr.2013.11.010_bib32 article-title: Lin28: primal regulator of growth and metabolism in stem cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2013.03.005 – volume: 153 start-page: 692 year: 2013 ident: 10.1016/j.stemcr.2013.11.010_bib31 article-title: Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics publication-title: Cell doi: 10.1016/j.cell.2013.04.002 – volume: 149 start-page: 590 year: 2012 ident: 10.1016/j.stemcr.2013.11.010_bib22 article-title: The transcriptional and epigenomic foundations of ground state pluripotency publication-title: Cell doi: 10.1016/j.cell.2012.03.026 – volume: 153 start-page: 307 year: 2013 ident: 10.1016/j.stemcr.2013.11.010_bib39 article-title: Master transcription factors and mediator establish super-enhancers at key cell identity genes publication-title: Cell doi: 10.1016/j.cell.2013.03.035 – volume: 453 start-page: 519 year: 2008 ident: 10.1016/j.stemcr.2013.11.010_bib42 article-title: The ground state of embryonic stem cell self-renewal publication-title: Nature doi: 10.1038/nature06968 – volume: 153 start-page: 678 year: 2013 ident: 10.1016/j.stemcr.2013.11.010_bib33 article-title: Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming publication-title: Cell doi: 10.1016/j.cell.2013.04.001 – volume: 324 start-page: 930 year: 2009 ident: 10.1016/j.stemcr.2013.11.010_bib36 article-title: Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1 publication-title: Science doi: 10.1126/science.1170116 – volume: 117 start-page: 15 year: 2002 ident: 10.1016/j.stemcr.2013.11.010_bib12 article-title: Epigenetic reprogramming in mouse primordial germ cells publication-title: Mech. Dev. doi: 10.1016/S0925-4773(02)00181-8 – volume: 135 start-page: 909 year: 2008 ident: 10.1016/j.stemcr.2013.11.010_bib38 article-title: Identification and characterization of subpopulations in undifferentiated ES cell culture publication-title: Development doi: 10.1242/dev.017400 – reference: 23582322 - Cell. 2013 Apr 11;153(2):307-19 – reference: 15456861 - Mol Cell Biol. 2004 Oct;24(20):8862-71 – reference: 18836439 - Nat Cell Biol. 2008 Nov;10(11):1280-90 – reference: 18497825 - Nature. 2008 May 22;453(7194):519-23 – reference: 20885785 - PLoS Genet. 2010 Sep;6(9):e1001134 – reference: 23241950 - EMBO J. 2013 Feb 6;32(3):340-53 – reference: 21295276 - Cell Stem Cell. 2011 Feb 4;8(2):200-13 – reference: 23850245 - Cell Stem Cell. 2013 Sep 5;13(3):351-9 – reference: 23219530 - Mol Cell. 2012 Dec 28;48(6):849-62 – reference: 23698584 - Nat Rev Mol Cell Biol. 2013 Jun;14(6):341-56 – reference: 18940731 - Cell Stem Cell. 2008 Oct 9;3(4):391-401 – reference: 22608086 - Cell. 2012 Jun 8;149(6):1368-80 – reference: 23416945 - Nat Struct Mol Biol. 2013 Mar;20(3):311-6 – reference: 23602153 - Cell. 2013 Apr 25;153(3):678-91 – reference: 17597760 - Nature. 2007 Jul 12;448(7150):196-9 – reference: 18263842 - Development. 2008 Mar;135(5):909-18 – reference: 23746443 - Cell Rep. 2013 Jun 27;3(6):1945-57 – reference: 16244654 - Nat Genet. 2005 Nov;37(11):1274-9 – reference: 19372391 - Science. 2009 May 15;324(5929):930-5 – reference: 22157888 - EMBO Rep. 2012 Jan;13(1):28-35 – reference: 21321204 - Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3642-7 – reference: 22170606 - Nature. 2011 Dec 22;480(7378):490-5 – reference: 23670199 - EMBO Rep. 2013 Jul;14(7):629-37 – reference: 12897133 - Mol Cell Biol. 2003 Aug;23(16):5594-605 – reference: 23561442 - Cell Stem Cell. 2013 Apr 4;12(4):395-406 – reference: 23333148 - Cell Stem Cell. 2013 Mar 7;12(3):368-82 – reference: 1381289 - Cell. 1992 Sep 4;70(5):841-7 – reference: 23812591 - Nature. 2013 Aug 8;500(7461):222-6 – reference: 23850244 - Cell Stem Cell. 2013 Sep 5;13(3):360-9 – reference: 12204247 - Mech Dev. 2002 Sep;117(1-2):15-23 – reference: 20519324 - Development. 2010 Jul;137(14):2279-87 – reference: 23352810 - Dev Cell. 2013 Feb 11;24(3):310-23 – reference: 17320511 - Cell. 2007 Feb 23;128(4):747-62 – reference: 21460836 - Nature. 2011 May 19;473(7347):398-402 – reference: 22541430 - Cell. 2012 Apr 27;149(3):590-604 – reference: 23223451 - Science. 2013 Jan 25;339(6118):448-52 – reference: 24319670 - Stem Cell Reports. 2013;1(4):360-9 – reference: 18514006 - Mol Cell. 2008 Jun 20;30(6):755-66 – reference: 22386917 - Trends Genet. 2012 Apr;28(4):164-74 – reference: 10555141 - Cell. 1999 Oct 29;99(3):247-57 – reference: 17597762 - Nature. 2007 Jul 12;448(7150):191-5 – reference: 23602152 - Cell. 2013 Apr 25;153(3):692-706 – reference: 22463982 - Curr Opin Genet Dev. 2012 Jun;22(3):272-82 – reference: 19497275 - Cell Stem Cell. 2009 Jun 5;4(6):487-92 |
SSID | ssj0000991241 |
Score | 2.3322406 |
Snippet | Pluripotent stem cells (PSCs) occupy a spectrum of reversible molecular states ranging from a naive ground-state in 2i, to metastable embryonic stem cells... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 518 |
SubjectTerms | Animals Cell Culture Techniques Cell Differentiation - genetics DNA Methylation DNA-Binding Proteins - genetics Embryonic Stem Cells Female Gene Knockout Techniques Genomic Imprinting Male Mice Pluripotent Stem Cells - cytology Proto-Oncogene Proteins - genetics |
SummonAdditionalLinks | – databaseName: ScienceDirect dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iCF7Et-uLCF7jbh959OgTERRBhcVLSeIUV7Rd3PWw_96ZtF1cFQSPbSeQzqSZb9KZbxg7NBoxbM8b4XouEykYECYtYlFQ-7gik1IDnUNe36jLh_SqL_tz7LSthaG0ymbvr_f0sFs3d7qNNrvDwaB7F8dEN0at0gNPHoVAVFVKRXz9k-k5CyIgdGEUd5G8oAFtBV1I8yK6ZE_EoFFyRHSeVEr7u4f6iUC_J1J-8UwXy2ypgZT8uJ71CpuDcpUt1E0mJ2vs8W5C9X2BkJlfA1X6DkZvI14V_OzmmJ8BNZGe1ClxvK5a5MGDhWQuPq44nU-VTyLgUn77iiLDiqD2ZJ09XJzfn16KpqOC8DLOxiIzGAEqjygQvbhTqQGt4SnxSlrXM1baDCNWK2NvoLDKKgeJ9BJUXGi0RwTJBpsvqxK2GLceMNbAx4WF1DllnSoQKxnIImtTqTssabWY-4ZunLpevOZtXtlLXus-J91jJJKj7jtMTEcNa7qNP-R1a6B8Ztnk6BH-GHnQ2jPHL4p-k9gSqo8RBkMZ7nu4otIO26ztO50L0TdGpodvp2csPxUgtu7ZJ-XgObB2JxiaJlm6_e8Z77BFuqJcmkjvsvnx-wfsISIau_2w5D8BlDcLkw priority: 102 providerName: Elsevier |
Title | Synergistic Mechanisms of DNA Demethylation during Transition to Ground-State Pluripotency |
URI | https://dx.doi.org/10.1016/j.stemcr.2013.11.010 https://www.ncbi.nlm.nih.gov/pubmed/24371807 https://www.proquest.com/docview/1490731504 https://pubmed.ncbi.nlm.nih.gov/PMC3871394 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEA-iFHwp2tb21EoKfY3cfuRjH0TOWrEtSks9OHxZktwsVa676t2B-987s9m91qpIXwJLkmUzSXZ-k8z8hrGPRiOG7XsjXN9lIgUDwqRFLApKH1dkUmqgc8iTU3U8TL-O5GiJdTlbWwFOHzXtKJ_U8Gaye3td7-OG3_vjq0Wcx57YPaNklzg5KeZqpbkxIme-FvBfBjyECo2ssDiOEqF0FHXxdE-86Cl99RCP_utW-ZeeOlpjL1uAyQdhRayzJShfsRch5WT9mp3_rCnar6Fn5idAcb8X099TXhX88HTAD4FSStfBQY6HGEbe6LPGtYvPKk6nVeVYNCiVf59gk6uKgHf9hg2PPp99OhZtfgXhZZzNRGbQHlQeMSHqdKdSA1rDOPFKWtc3VtoM7VcrY2-gsMoqB4n0ElRcaA_jCJINtlxWJbxj3HpAywOrCwupc8o6VSByMpBF1qZS91jSSTH3Lfk45cCY5J2X2WUeZJ-T7NEuyVH2PSYWva4C-cYz7XU3QXkLIAIwyHG5PNPzQzefOe4vujSxJVTzKZpGGf4FETanPfY2zO_iW4jMMTJ9HJ2-N_OLBsTdfb-mvPjVcHgnaKgmWbr5nyPcYqv0RP40kd5my7ObObxHVDRzO81pApZfRgdYfvthdpqlfwctEw8w |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELaqVgguCMorUKiRejXZlx977IMqhSZCaitFXCzbnRVBZTci6SH_nhnvbtQUpEpc1x7JO-P1fOOd-YaxA6MRwybBCJ_4UhRgQJiiykRF7eOqUkoNdA85nqjRVfFlKqdb7LivhaG0yu7sb8_0eFp3T4adNofz2Wx4kWVEN0at0iNPHoZAO4gGEtraZ9Oj9UULQiD0YRR4kYAgib6ELuZ5EV9yIGbQNP9EfJ5US_tvF_U3BL2fSXnHNZ0-Y087TMkP22U_Z1tQ77JHbZfJ1Qv2_WJFBX6RkZmPgUp9Z4tfC95U_GRyyE-Aukiv2pw43pYt8ujCYjYXXzacLqjqaxGBKf92g1PmDWHt1Ut2dfr58ngkupYKIsisXIrSYAioAsJAdONeFQa0hus8KOl8Ypx0JYasTmbBQOWUUx5yGSSorNJokBTyV2y7bmp4w7gLgMEGDlcOCu-V86pCsGSgTJ0rpB6wvNeiDR3fOLW9uLF9YtlP2-reku4xFLGo-wETa6l5y7fxwHzdG8hu7BuLLuEByY-9PS1-UvSfxNXQ3C4wGirx4MMtVQzY69a-67UQf2NqEnw7vWH59QSi694cqWc_Im13jrFpXhZv_3vF--zx6HJ8bs_PJl_fsSc0Qok1qd5j28vft_Ae4dHSf4jb_w8PgA62 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+Mechanisms+of+DNA+Demethylation+during+Transition+to+Ground-State+Pluripotency&rft.jtitle=Stem+cell+reports&rft.au=Hackett%2C+Jamie%C2%A0A.&rft.au=Dietmann%2C+Sabine&rft.au=Murakami%2C+Kazuhiro&rft.au=Down%2C+Thomas%C2%A0A.&rft.date=2013-12-17&rft.issn=2213-6711&rft.eissn=2213-6711&rft.volume=1&rft.issue=6&rft.spage=518&rft.epage=531&rft_id=info:doi/10.1016%2Fj.stemcr.2013.11.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_stemcr_2013_11_010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-6711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-6711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-6711&client=summon |