Synergistic Mechanisms of DNA Demethylation during Transition to Ground-State Pluripotency

Pluripotent stem cells (PSCs) occupy a spectrum of reversible molecular states ranging from a naive ground-state in 2i, to metastable embryonic stem cells (ESCs) in serum, to lineage-primed epiblast stem cells (EpiSCs). To investigate the role of DNA methylation (5mC) across distinct pluripotent sta...

Full description

Saved in:
Bibliographic Details
Published inStem cell reports Vol. 1; no. 6; pp. 518 - 531
Main Authors Hackett, Jamie A., Dietmann, Sabine, Murakami, Kazuhiro, Down, Thomas A., Leitch, Harry G., Surani, M. Azim
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 17.12.2013
Elsevier
Subjects
Online AccessGet full text
ISSN2213-6711
2213-6711
DOI10.1016/j.stemcr.2013.11.010

Cover

Abstract Pluripotent stem cells (PSCs) occupy a spectrum of reversible molecular states ranging from a naive ground-state in 2i, to metastable embryonic stem cells (ESCs) in serum, to lineage-primed epiblast stem cells (EpiSCs). To investigate the role of DNA methylation (5mC) across distinct pluripotent states, we mapped genome-wide 5mC and 5-hydroxymethycytosine (5hmC) in multiple PSCs. Ground-state ESCs exhibit an altered distribution of 5mC and 5hmC at regulatory elements and dramatically lower absolute levels relative to ESCs in serum. By contrast, EpiSCs exhibit increased promoter 5mC coupled with reduced 5hmC, which contributes to their developmental restriction. Switch to 2i triggers rapid onset of both the ground-state gene expression program and global DNA demethylation. Mechanistically, repression of de novo methylases by PRDM14 drives DNA demethylation at slow kinetics, whereas TET1/TET2-mediated 5hmC conversion enhances both the rate and extent of hypomethylation. These processes thus act synergistically during transition to ground-state pluripotency to promote a robust hypomethylated state. [Display omitted] •Distinct genome-wide 5mC and 5hmC profiles in diverse pluripotent stem cells•Poised enhancers and promoters are enriched in 5hmC in ESCs in serum, but not 2i•Prdm14 overexpression in serum ESCs promotes partial demethylation at slow kinetics•Mutations in Tet1/Tet2 partially block DNA hypomethylation in ground-state cells Pluripotent stem cells (PSCs) can give rise to all embryonic lineages. Hackett, Surani, and colleagues analyzed the epigenetic landscape of PSCs in distinct but interchangeable pluripotent “states” and found they are associated with discrete 5mC and 5hmC profiles at regulatory elements and genome wide. Notably, ground-state PSCs are globally hypomethylated via the synergistic effects of PRDM14-dependent repression of Dnmt3 genes and TET-mediated 5hmC conversion.
AbstractList Pluripotent stem cells (PSCs) occupy a spectrum of reversible molecular states ranging from a naive ground-state in 2i, to metastable embryonic stem cells (ESCs) in serum, to lineage-primed epiblast stem cells (EpiSCs). To investigate the role of DNA methylation (5mC) across distinct pluripotent states, we mapped genome-wide 5mC and 5-hydroxymethycytosine (5hmC) in multiple PSCs. Ground-state ESCs exhibit an altered distribution of 5mC and 5hmC at regulatory elements and dramatically lower absolute levels relative to ESCs in serum. By contrast, EpiSCs exhibit increased promoter 5mC coupled with reduced 5hmC, which contributes to their developmental restriction. Switch to 2i triggers rapid onset of both the ground-state gene expression program and global DNA demethylation. Mechanistically, repression of de novo methylases by PRDM14 drives DNA demethylation at slow kinetics, whereas TET1/TET2-mediated 5hmC conversion enhances both the rate and extent of hypomethylation. These processes thus act synergistically during transition to ground-state pluripotency to promote a robust hypomethylated state. • Distinct genome-wide 5mC and 5hmC profiles in diverse pluripotent stem cells • Poised enhancers and promoters are enriched in 5hmC in ESCs in serum, but not 2i • Prdm14 overexpression in serum ESCs promotes partial demethylation at slow kinetics • Mutations in Tet1 / Tet2 partially block DNA hypomethylation in ground-state cells Pluripotent stem cells (PSCs) can give rise to all embryonic lineages. Hackett, Surani, and colleagues analyzed the epigenetic landscape of PSCs in distinct but interchangeable pluripotent “states” and found they are associated with discrete 5mC and 5hmC profiles at regulatory elements and genome wide. Notably, ground-state PSCs are globally hypomethylated via the synergistic effects of PRDM14-dependent repression of Dnmt3 genes and TET-mediated 5hmC conversion.
Pluripotent stem cells (PSCs) occupy a spectrum of reversible molecular states ranging from a naive ground-state in 2i, to metastable embryonic stem cells (ESCs) in serum, to lineage-primed epiblast stem cells (EpiSCs). To investigate the role of DNA methylation (5mC) across distinct pluripotent states, we mapped genome-wide 5mC and 5-hydroxymethycytosine (5hmC) in multiple PSCs. Ground-state ESCs exhibit an altered distribution of 5mC and 5hmC at regulatory elements and dramatically lower absolute levels relative to ESCs in serum. By contrast, EpiSCs exhibit increased promoter 5mC coupled with reduced 5hmC, which contributes to their developmental restriction. Switch to 2i triggers rapid onset of both the ground-state gene expression program and global DNA demethylation. Mechanistically, repression of de novo methylases by PRDM14 drives DNA demethylation at slow kinetics, whereas TET1/TET2-mediated 5hmC conversion enhances both the rate and extent of hypomethylation. These processes thus act synergistically during transition to ground-state pluripotency to promote a robust hypomethylated state.Pluripotent stem cells (PSCs) occupy a spectrum of reversible molecular states ranging from a naive ground-state in 2i, to metastable embryonic stem cells (ESCs) in serum, to lineage-primed epiblast stem cells (EpiSCs). To investigate the role of DNA methylation (5mC) across distinct pluripotent states, we mapped genome-wide 5mC and 5-hydroxymethycytosine (5hmC) in multiple PSCs. Ground-state ESCs exhibit an altered distribution of 5mC and 5hmC at regulatory elements and dramatically lower absolute levels relative to ESCs in serum. By contrast, EpiSCs exhibit increased promoter 5mC coupled with reduced 5hmC, which contributes to their developmental restriction. Switch to 2i triggers rapid onset of both the ground-state gene expression program and global DNA demethylation. Mechanistically, repression of de novo methylases by PRDM14 drives DNA demethylation at slow kinetics, whereas TET1/TET2-mediated 5hmC conversion enhances both the rate and extent of hypomethylation. These processes thus act synergistically during transition to ground-state pluripotency to promote a robust hypomethylated state.
Pluripotent stem cells (PSCs) occupy a spectrum of reversible molecular states ranging from a naive ground-state in 2i, to metastable embryonic stem cells (ESCs) in serum, to lineage-primed epiblast stem cells (EpiSCs). To investigate the role of DNA methylation (5mC) across distinct pluripotent states, we mapped genome-wide 5mC and 5-hydroxymethycytosine (5hmC) in multiple PSCs. Ground-state ESCs exhibit an altered distribution of 5mC and 5hmC at regulatory elements and dramatically lower absolute levels relative to ESCs in serum. By contrast, EpiSCs exhibit increased promoter 5mC coupled with reduced 5hmC, which contributes to their developmental restriction. Switch to 2i triggers rapid onset of both the ground-state gene expression program and global DNA demethylation. Mechanistically, repression of de novo methylases by PRDM14 drives DNA demethylation at slow kinetics, whereas TET1/TET2-mediated 5hmC conversion enhances both the rate and extent of hypomethylation. These processes thus act synergistically during transition to ground-state pluripotency to promote a robust hypomethylated state. [Display omitted] •Distinct genome-wide 5mC and 5hmC profiles in diverse pluripotent stem cells•Poised enhancers and promoters are enriched in 5hmC in ESCs in serum, but not 2i•Prdm14 overexpression in serum ESCs promotes partial demethylation at slow kinetics•Mutations in Tet1/Tet2 partially block DNA hypomethylation in ground-state cells Pluripotent stem cells (PSCs) can give rise to all embryonic lineages. Hackett, Surani, and colleagues analyzed the epigenetic landscape of PSCs in distinct but interchangeable pluripotent “states” and found they are associated with discrete 5mC and 5hmC profiles at regulatory elements and genome wide. Notably, ground-state PSCs are globally hypomethylated via the synergistic effects of PRDM14-dependent repression of Dnmt3 genes and TET-mediated 5hmC conversion.
Pluripotent stem cells (PSCs) occupy a spectrum of reversible molecular states ranging from a naive ground-state in 2i, to metastable embryonic stem cells (ESCs) in serum, to lineage-primed epiblast stem cells (EpiSCs). To investigate the role of DNA methylation (5mC) across distinct pluripotent states, we mapped genome-wide 5mC and 5-hydroxymethycytosine (5hmC) in multiple PSCs. Ground-state ESCs exhibit an altered distribution of 5mC and 5hmC at regulatory elements and dramatically lower absolute levels relative to ESCs in serum. By contrast, EpiSCs exhibit increased promoter 5mC coupled with reduced 5hmC, which contributes to their developmental restriction. Switch to 2i triggers rapid onset of both the ground-state gene expression program and global DNA demethylation. Mechanistically, repression of de novo methylases by PRDM14 drives DNA demethylation at slow kinetics, whereas TET1/TET2-mediated 5hmC conversion enhances both the rate and extent of hypomethylation. These processes thus act synergistically during transition to ground-state pluripotency to promote a robust hypomethylated state.
Author Hackett, Jamie A.
Dietmann, Sabine
Leitch, Harry G.
Murakami, Kazuhiro
Surani, M. Azim
Down, Thomas A.
AuthorAffiliation 1 Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
2 Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
3 Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
AuthorAffiliation_xml – name: 1 Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
– name: 3 Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
– name: 2 Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
Author_xml – sequence: 1
  givenname: Jamie A.
  surname: Hackett
  fullname: Hackett, Jamie A.
  email: j.hackett@gurdon.cam.ac.uk
  organization: Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
– sequence: 2
  givenname: Sabine
  surname: Dietmann
  fullname: Dietmann, Sabine
  organization: Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
– sequence: 3
  givenname: Kazuhiro
  surname: Murakami
  fullname: Murakami, Kazuhiro
  organization: Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
– sequence: 4
  givenname: Thomas A.
  surname: Down
  fullname: Down, Thomas A.
  organization: Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
– sequence: 5
  givenname: Harry G.
  surname: Leitch
  fullname: Leitch, Harry G.
  organization: Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
– sequence: 6
  givenname: M. Azim
  surname: Surani
  fullname: Surani, M. Azim
  email: a.surani@gurdon.cam.ac.uk
  organization: Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24371807$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1v1DAQtVARLaX_AKEcuSR44sRJOCBVLRSk8iG1XLiMvM5k16vEXmyn0v57vN0tKhxgLjOy34f03nN2ZJ0lxl4CL4CDfLMuQqRJ-6LkIAqAggN_wk7KEkQuG4CjR_cxOwthzdN0HZQVPGPHZSUaaHlzwn7cbC35pQnR6Owz6ZWyJkwhc0N2-eU8u6SJ4mo7qmiczfrZG7vMbr2ywdy_RJddeTfbPr-JKlL2bUyQjYtk9fYFezqoMdDZYZ-y7x_e3158zK-_Xn26OL_OdV12Me9a4FJqgFqCWMiqpaahXmhZqwVvVa06IdIqdUuDkkouSNS6JlkOjaYeSJyyd3vdzbyYqNdko1cjbryZlN-iUwb__LFmhUt3h6JtQHRVEnh9EPDu50wh4mSCpnFUltwcEKqONwJqvoO-euz12-Qh0AR4uwdo70LwNKA28T69ZG1GBI67AnGN-wJxVyACYCowkau_yA_6_6EdAqCU8p0hj0Gb1AD1xpOO2Dvzb4FfECC41Q
CitedBy_id crossref_primary_10_1016_j_jmb_2016_12_009
crossref_primary_10_1016_j_stem_2016_05_025
crossref_primary_10_1101_gad_299198_117
crossref_primary_10_1038_nature23286
crossref_primary_10_1098_rsob_150092
crossref_primary_10_1016_j_gde_2015_04_005
crossref_primary_10_1016_j_stemcr_2018_03_019
crossref_primary_10_1093_nar_gkaa529
crossref_primary_10_3390_ani10101848
crossref_primary_10_1038_ng_3868
crossref_primary_10_26508_lsa_201900516
crossref_primary_10_1016_j_jmb_2017_02_008
crossref_primary_10_1074_jbc_M114_620641
crossref_primary_10_3389_fcell_2019_00076
crossref_primary_10_1016_j_stemcr_2017_05_014
crossref_primary_10_1186_s13059_021_02321_2
crossref_primary_10_1186_s13072_016_0056_6
crossref_primary_10_1007_s00018_017_2703_x
crossref_primary_10_1016_j_jmb_2020_10_008
crossref_primary_10_1093_bfgp_elw017
crossref_primary_10_5713_ab_23_0310
crossref_primary_10_1016_j_ejphar_2020_173827
crossref_primary_10_1038_s41594_020_0445_1
crossref_primary_10_1093_nsr_nwv029
crossref_primary_10_1016_j_jmb_2016_12_017
crossref_primary_10_1016_j_molcel_2023_07_003
crossref_primary_10_1186_s13148_022_01323_6
crossref_primary_10_1152_physrev_00001_2014
crossref_primary_10_1016_j_mce_2014_07_016
crossref_primary_10_1038_nrm_2016_6
crossref_primary_10_18632_oncotarget_9452
crossref_primary_10_15252_embj_201695476
crossref_primary_10_1016_j_stem_2014_09_015
crossref_primary_10_1016_j_tibs_2014_04_003
crossref_primary_10_1038_s41598_019_44313_0
crossref_primary_10_1038_nrm_2015_28
crossref_primary_10_15252_embr_201948354
crossref_primary_10_7554_eLife_09571
crossref_primary_10_1038_nature13981
crossref_primary_10_7554_eLife_10150
crossref_primary_10_1016_j_jtbi_2019_06_001
crossref_primary_10_1016_j_stemcr_2015_11_012
crossref_primary_10_1016_j_jbc_2024_105714
crossref_primary_10_1093_nar_gkab476
crossref_primary_10_1073_pnas_1608564113
crossref_primary_10_1007_s00018_018_2965_y
crossref_primary_10_1016_j_cdev_2024_203935
crossref_primary_10_1038_s41467_021_22201_4
crossref_primary_10_1016_j_devcel_2014_03_003
crossref_primary_10_1186_s13293_017_0150_x
crossref_primary_10_1007_s12015_023_10552_y
crossref_primary_10_1016_j_celrep_2021_109233
crossref_primary_10_1038_ncomms7188
crossref_primary_10_1038_s41598_018_37258_3
crossref_primary_10_1042_BST20230416
crossref_primary_10_1016_j_stemcr_2020_01_004
crossref_primary_10_1038_s41467_020_14916_7
crossref_primary_10_1128_MCB_01172_14
crossref_primary_10_15252_embr_201540538
crossref_primary_10_1016_j_ceb_2015_10_006
crossref_primary_10_1016_j_molcel_2016_04_025
crossref_primary_10_1016_j_cell_2023_10_005
crossref_primary_10_1089_scd_2016_0103
crossref_primary_10_2217_epi_2017_0021
crossref_primary_10_1016_j_stemcr_2020_01_009
crossref_primary_10_1038_labinvest_2017_87
crossref_primary_10_1186_s13072_018_0177_1
crossref_primary_10_1073_pnas_1708710114
crossref_primary_10_1242_dev_164772
crossref_primary_10_1016_j_celrep_2024_114024
crossref_primary_10_1038_s12276_022_00824_x
crossref_primary_10_1016_j_stem_2020_10_017
crossref_primary_10_1038_srep08973
crossref_primary_10_1016_j_theriogenology_2020_01_051
crossref_primary_10_1016_j_gde_2015_09_002
crossref_primary_10_1016_j_stemcr_2014_07_003
crossref_primary_10_1038_s41467_020_19603_1
crossref_primary_10_1016_j_ydbio_2020_06_001
crossref_primary_10_1002_cpsc_105
crossref_primary_10_1038_nature23274
crossref_primary_10_1128_MCB_00587_15
crossref_primary_10_3390_genes10050369
crossref_primary_10_1016_j_stemcr_2018_12_004
crossref_primary_10_1038_s41556_018_0086_3
crossref_primary_10_1016_j_cell_2022_12_047
crossref_primary_10_1016_j_stem_2017_03_002
crossref_primary_10_1016_j_bbagrm_2015_03_002
crossref_primary_10_1038_srep17985
crossref_primary_10_1016_j_stemcr_2017_04_001
crossref_primary_10_1073_pnas_1608679113
crossref_primary_10_1016_j_tig_2016_08_005
crossref_primary_10_1016_j_gde_2017_02_003
crossref_primary_10_1038_s41588_020_00770_2
crossref_primary_10_1089_scd_2013_0639
crossref_primary_10_1016_j_tig_2019_04_004
Cites_doi 10.1016/j.molcel.2012.11.001
10.1038/nature12362
10.1016/j.stem.2008.07.027
10.1038/embor.2011.233
10.1038/embor.2013.67
10.1038/nature05972
10.1016/0092-8674(92)90317-6
10.1038/ng1663
10.1038/nature05950
10.1016/j.tig.2012.01.005
10.1016/j.stemcr.2013.08.005
10.1016/j.cell.2007.02.010
10.1016/j.cell.2012.04.027
10.1371/journal.pgen.1001134
10.1016/j.stem.2013.06.002
10.1126/science.1229277
10.1016/j.stem.2011.01.008
10.1038/nrm3589
10.1016/j.devcel.2012.12.015
10.1016/S0092-8674(00)81656-6
10.1038/nature10716
10.1038/nature10008
10.1242/dev.050427
10.1016/j.gde.2012.03.001
10.1038/nsmb.2510
10.1016/j.stem.2012.12.012
10.1016/j.molcel.2008.05.007
10.1073/pnas.1014033108
10.1016/j.celrep.2013.04.034
10.1038/ncb1786
10.1128/MCB.23.16.5594-5605.2003
10.1016/j.stem.2013.06.004
10.1128/MCB.24.20.8862-8871.2004
10.1038/emboj.2012.331
10.1016/j.stem.2009.05.015
10.1016/j.stem.2013.03.005
10.1016/j.cell.2013.04.002
10.1016/j.cell.2012.03.026
10.1016/j.cell.2013.03.035
10.1038/nature06968
10.1016/j.cell.2013.04.001
10.1126/science.1170116
10.1016/S0925-4773(02)00181-8
10.1242/dev.017400
ContentType Journal Article
Copyright 2013 The Authors
2013 The Authors 2013
Copyright_xml – notice: 2013 The Authors
– notice: 2013 The Authors 2013
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.stemcr.2013.11.010
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2213-6711
EndPage 531
ExternalDocumentID PMC3871394
24371807
10_1016_j_stemcr_2013_11_010
S2213671113001501
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 079249
– fundername: Wellcome Trust
– fundername: Wellcome Trust
  grantid: 092096
GroupedDBID 0R~
0SF
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAVLU
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADRAZ
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IXB
KQ8
M41
M48
M~E
NCXOZ
O9-
OK1
RCE
ROL
RPM
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
IPNFZ
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c529t-981066c115613b648e77ed3c65ab08a5a9338a52c8efa6a6be35c5e62f7ced1e3
IEDL.DBID M48
ISSN 2213-6711
IngestDate Thu Aug 21 14:34:49 EDT 2025
Fri Sep 05 05:11:37 EDT 2025
Mon Jul 21 06:00:54 EDT 2025
Tue Jul 01 02:44:09 EDT 2025
Thu Apr 24 22:59:33 EDT 2025
Wed May 17 02:21:46 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://creativecommons.org/licenses/by-nc-nd/3.0
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c529t-981066c115613b648e77ed3c65ab08a5a9338a52c8efa6a6be35c5e62f7ced1e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.stemcr.2013.11.010
PMID 24371807
PQID 1490731504
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3871394
proquest_miscellaneous_1490731504
pubmed_primary_24371807
crossref_citationtrail_10_1016_j_stemcr_2013_11_010
crossref_primary_10_1016_j_stemcr_2013_11_010
elsevier_sciencedirect_doi_10_1016_j_stemcr_2013_11_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-12-17
PublicationDateYYYYMMDD 2013-12-17
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-17
  day: 17
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Stem cell reports
PublicationTitleAlternate Stem Cell Reports
PublicationYear 2013
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Dawlaty, Breiling, Le, Raddatz, Barrasa, Cheng, Gao, Powell, Li, Xu (bib4) 2013; 24
De Los Angeles, Loh, Tesar, Daley (bib5) 2012; 22
Zvetkova, Apedaile, Ramsahoye, Mermoud, Crompton, John, Feil, Brockdorff (bib44) 2005; 37
Habibi, Brinkman, Arand, Kroeze, Kerstens, Matarese, Lepikhov, Gut, Brun-Heath, Hubner (bib9) 2013; 13
Koh, Yabuuchi, Rao, Huang, Cunniff, Nardone, Laiho, Tahiliani, Sommer, Mostoslavsky (bib19) 2011; 8
Stadler, Murr, Burger, Ivanek, Lienert, Schöler, van Nimwegen, Wirbelauer, Oakeley, Gaidatzis (bib34) 2011; 480
Ying, Wray, Nichols, Batlle-Morera, Doble, Woodgett, Cohen, Smith (bib42) 2008; 453
Blaschke, Ebata, Karimi, Zepeda-Martínez, Goyal, Mahapatra, Tam, Laird, Hirst, Rao (bib1) 2013; 500
Toyooka, Shimosato, Murakami, Takahashi, Niwa (bib38) 2008; 135
Williams, Christensen, Helin (bib40) 2012; 13
Grabole, Tischler, Hackett, Kim, Tang, Leitch, Magnúsdóttir, Surani (bib8) 2013; 14
Shyh-Chang, Daley (bib32) 2013; 12
Seisenberger, Andrews, Krueger, Arand, Walter, Santos, Popp, Thienpont, Dean, Reik (bib30) 2012; 48
Pastor, Aravind, Rao (bib29) 2013; 14
Surani, Hayashi, Hajkova (bib35) 2007; 128
Morgani, Canham, Nichols, Sharov, Migueles, Ko, Brickman (bib25) 2013; 3
Kagiwada, Kurimoto, Hirota, Yamaji, Saitou (bib18) 2013; 32
Iqbal, Jin, Pfeifer, Szabó (bib15) 2011; 108
Okano, Bell, Haber, Li (bib28) 1999; 99
Yu, Hon, Szulwach, Song, Zhang, Kim, Li, Dai, Shen, Park (bib43) 2012; 149
Leitch, Blair, Mansfield, Ayetey, Humphreys, Nichols, Surani, Smith (bib20) 2010; 137
Tesar, Chenoweth, Brook, Davies, Evans, Mack, Gardner, McKay (bib37) 2007; 448
Ficz, Hore, Santos, Lee, Dean, Arand, Krueger, Oxley, Paul, Walter (bib7) 2013; 13
Song, Szulwach, Dai, Fu, Mao, Lin, Street, Li, Poidevin, Wu (bib33) 2013; 153
Yamaji, Ueda, Hayashi, Ohta, Yabuta, Kurimoto, Nakato, Yamada, Shirahige, Saitou (bib41) 2013; 12
Illingworth, Gruenewald-Schneider, Webb, Kerr, James, Turner, Smith, Harrison, Andrews, Bird (bib14) 2010; 6
Ficz, Branco, Seisenberger, Santos, Krueger, Hore, Marques, Andrews, Reik (bib6) 2011; 473
Chen, Ueda, Dodge, Wang, Li (bib3) 2003; 23
Jackson, Krassowska, Gilbert, Chevassut, Forrester, Ansell, Ramsahoye (bib16) 2004; 24
Mohn, Weber, Rebhan, Roloff, Richter, Stadler, Bibel, Schübeler (bib24) 2008; 30
Marks, Kalkan, Menafra, Denissov, Jones, Hofemeister, Nichols, Kranz, Stewart, Smith, Stunnenberg (bib22) 2012; 149
Ng, Dean, Dawson, Lucifero, Madeja, Reik, Hemberger (bib26) 2008; 10
Jasnos, Aksoy, Hersi, Wantuch, Sawado (bib17) 2013; 1
Hackett, Zylicz, Surani (bib10) 2012; 28
Brons, Smithers, Trotter, Rugg-Gunn, Sun, Chuva de Sousa Lopes, Howlett, Clarkson, Ahrlund-Richter, Pedersen, Vallier (bib2) 2007; 448
Matsui, Zsebo, Hogan (bib23) 1992; 70
Whyte, Orlando, Hnisz, Abraham, Lin, Kagey, Rahl, Lee, Young (bib39) 2013; 153
Shen, Wu, Diep, Yamaguchi, D’Alessio, Fung, Zhang, Zhang (bib31) 2013; 153
Hayashi, Lopes, Tang, Surani (bib13) 2008; 3
Nichols, Smith (bib27) 2009; 4
Tahiliani, Koh, Shen, Pastor, Bandukwala, Brudno, Agarwal, Iyer, Liu, Aravind, Rao (bib36) 2009; 324
Hajkova, Erhardt, Lane, Haaf, El-Maarri, Reik, Walter, Surani (bib12) 2002; 117
Leitch, McEwen, Turp, Encheva, Carroll, Grabole, Mansfield, Nashun, Knezovich, Smith (bib21) 2013; 20
Hackett, Sengupta, Zylicz, Murakami, Lee, Down, Surani (bib11) 2013; 339
Pastor (10.1016/j.stemcr.2013.11.010_bib29) 2013; 14
Blaschke (10.1016/j.stemcr.2013.11.010_bib1) 2013; 500
Marks (10.1016/j.stemcr.2013.11.010_bib22) 2012; 149
Kagiwada (10.1016/j.stemcr.2013.11.010_bib18) 2013; 32
Habibi (10.1016/j.stemcr.2013.11.010_bib9) 2013; 13
Hajkova (10.1016/j.stemcr.2013.11.010_bib12) 2002; 117
Matsui (10.1016/j.stemcr.2013.11.010_bib23) 1992; 70
Chen (10.1016/j.stemcr.2013.11.010_bib3) 2003; 23
Koh (10.1016/j.stemcr.2013.11.010_bib19) 2011; 8
Shyh-Chang (10.1016/j.stemcr.2013.11.010_bib32) 2013; 12
Whyte (10.1016/j.stemcr.2013.11.010_bib39) 2013; 153
Ficz (10.1016/j.stemcr.2013.11.010_bib6) 2011; 473
Illingworth (10.1016/j.stemcr.2013.11.010_bib14) 2010; 6
Brons (10.1016/j.stemcr.2013.11.010_bib2) 2007; 448
Ng (10.1016/j.stemcr.2013.11.010_bib26) 2008; 10
Ying (10.1016/j.stemcr.2013.11.010_bib42) 2008; 453
Hackett (10.1016/j.stemcr.2013.11.010_bib10) 2012; 28
Jackson (10.1016/j.stemcr.2013.11.010_bib16) 2004; 24
Zvetkova (10.1016/j.stemcr.2013.11.010_bib44) 2005; 37
Iqbal (10.1016/j.stemcr.2013.11.010_bib15) 2011; 108
Nichols (10.1016/j.stemcr.2013.11.010_bib27) 2009; 4
Mohn (10.1016/j.stemcr.2013.11.010_bib24) 2008; 30
Stadler (10.1016/j.stemcr.2013.11.010_bib34) 2011; 480
Williams (10.1016/j.stemcr.2013.11.010_bib40) 2012; 13
Song (10.1016/j.stemcr.2013.11.010_bib33) 2013; 153
Grabole (10.1016/j.stemcr.2013.11.010_bib8) 2013; 14
Leitch (10.1016/j.stemcr.2013.11.010_bib21) 2013; 20
Seisenberger (10.1016/j.stemcr.2013.11.010_bib30) 2012; 48
Dawlaty (10.1016/j.stemcr.2013.11.010_bib4) 2013; 24
Shen (10.1016/j.stemcr.2013.11.010_bib31) 2013; 153
Toyooka (10.1016/j.stemcr.2013.11.010_bib38) 2008; 135
Surani (10.1016/j.stemcr.2013.11.010_bib35) 2007; 128
Hayashi (10.1016/j.stemcr.2013.11.010_bib13) 2008; 3
Leitch (10.1016/j.stemcr.2013.11.010_bib20) 2010; 137
Jasnos (10.1016/j.stemcr.2013.11.010_bib17) 2013; 1
Yu (10.1016/j.stemcr.2013.11.010_bib43) 2012; 149
Yamaji (10.1016/j.stemcr.2013.11.010_bib41) 2013; 12
De Los Angeles (10.1016/j.stemcr.2013.11.010_bib5) 2012; 22
Morgani (10.1016/j.stemcr.2013.11.010_bib25) 2013; 3
Tesar (10.1016/j.stemcr.2013.11.010_bib37) 2007; 448
Hackett (10.1016/j.stemcr.2013.11.010_bib11) 2013; 339
Tahiliani (10.1016/j.stemcr.2013.11.010_bib36) 2009; 324
Okano (10.1016/j.stemcr.2013.11.010_bib28) 1999; 99
Ficz (10.1016/j.stemcr.2013.11.010_bib7) 2013; 13
19372391 - Science. 2009 May 15;324(5929):930-5
18836439 - Nat Cell Biol. 2008 Nov;10(11):1280-90
23812591 - Nature. 2013 Aug 8;500(7461):222-6
23582322 - Cell. 2013 Apr 11;153(2):307-19
18497825 - Nature. 2008 May 22;453(7194):519-23
20519324 - Development. 2010 Jul;137(14):2279-87
12897133 - Mol Cell Biol. 2003 Aug;23(16):5594-605
23698584 - Nat Rev Mol Cell Biol. 2013 Jun;14(6):341-56
24319670 - Stem Cell Reports. 2013;1(4):360-9
17320511 - Cell. 2007 Feb 23;128(4):747-62
23746443 - Cell Rep. 2013 Jun 27;3(6):1945-57
16244654 - Nat Genet. 2005 Nov;37(11):1274-9
23850245 - Cell Stem Cell. 2013 Sep 5;13(3):351-9
1381289 - Cell. 1992 Sep 4;70(5):841-7
22157888 - EMBO Rep. 2012 Jan;13(1):28-35
19497275 - Cell Stem Cell. 2009 Jun 5;4(6):487-92
22170606 - Nature. 2011 Dec 22;480(7378):490-5
12204247 - Mech Dev. 2002 Sep;117(1-2):15-23
10555141 - Cell. 1999 Oct 29;99(3):247-57
23352810 - Dev Cell. 2013 Feb 11;24(3):310-23
21321204 - Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3642-7
23602152 - Cell. 2013 Apr 25;153(3):692-706
23223451 - Science. 2013 Jan 25;339(6118):448-52
23602153 - Cell. 2013 Apr 25;153(3):678-91
23416945 - Nat Struct Mol Biol. 2013 Mar;20(3):311-6
22541430 - Cell. 2012 Apr 27;149(3):590-604
22463982 - Curr Opin Genet Dev. 2012 Jun;22(3):272-82
18263842 - Development. 2008 Mar;135(5):909-18
23333148 - Cell Stem Cell. 2013 Mar 7;12(3):368-82
22608086 - Cell. 2012 Jun 8;149(6):1368-80
18514006 - Mol Cell. 2008 Jun 20;30(6):755-66
17597762 - Nature. 2007 Jul 12;448(7150):191-5
23561442 - Cell Stem Cell. 2013 Apr 4;12(4):395-406
22386917 - Trends Genet. 2012 Apr;28(4):164-74
23219530 - Mol Cell. 2012 Dec 28;48(6):849-62
23670199 - EMBO Rep. 2013 Jul;14(7):629-37
21295276 - Cell Stem Cell. 2011 Feb 4;8(2):200-13
20885785 - PLoS Genet. 2010 Sep;6(9):e1001134
21460836 - Nature. 2011 May 19;473(7347):398-402
23241950 - EMBO J. 2013 Feb 6;32(3):340-53
23850244 - Cell Stem Cell. 2013 Sep 5;13(3):360-9
15456861 - Mol Cell Biol. 2004 Oct;24(20):8862-71
17597760 - Nature. 2007 Jul 12;448(7150):196-9
18940731 - Cell Stem Cell. 2008 Oct 9;3(4):391-401
References_xml – volume: 14
  start-page: 629
  year: 2013
  end-page: 637
  ident: bib8
  article-title: Prdm14 promotes germline fate and naive pluripotency by repressing FGF signalling and DNA methylation
  publication-title: EMBO Rep.
– volume: 32
  start-page: 340
  year: 2013
  end-page: 353
  ident: bib18
  article-title: Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice
  publication-title: EMBO J.
– volume: 28
  start-page: 164
  year: 2012
  end-page: 174
  ident: bib10
  article-title: Parallel mechanisms of epigenetic reprogramming in the germline
  publication-title: Trends Genet.
– volume: 48
  start-page: 849
  year: 2012
  end-page: 862
  ident: bib30
  article-title: The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells
  publication-title: Mol. Cell
– volume: 448
  start-page: 196
  year: 2007
  end-page: 199
  ident: bib37
  article-title: New cell lines from mouse epiblast share defining features with human embryonic stem cells
  publication-title: Nature
– volume: 24
  start-page: 310
  year: 2013
  end-page: 323
  ident: bib4
  article-title: Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development
  publication-title: Dev. Cell
– volume: 13
  start-page: 360
  year: 2013
  end-page: 369
  ident: bib9
  article-title: Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells
  publication-title: Cell Stem Cell
– volume: 24
  start-page: 8862
  year: 2004
  end-page: 8871
  ident: bib16
  article-title: Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells
  publication-title: Mol. Cell. Biol.
– volume: 13
  start-page: 28
  year: 2012
  end-page: 35
  ident: bib40
  article-title: DNA methylation: TET proteins-guardians of CpG islands?
  publication-title: EMBO Rep.
– volume: 8
  start-page: 200
  year: 2011
  end-page: 213
  ident: bib19
  article-title: Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells
  publication-title: Cell Stem Cell
– volume: 70
  start-page: 841
  year: 1992
  end-page: 847
  ident: bib23
  article-title: Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture
  publication-title: Cell
– volume: 4
  start-page: 487
  year: 2009
  end-page: 492
  ident: bib27
  article-title: Naive and primed pluripotent states
  publication-title: Cell Stem Cell
– volume: 128
  start-page: 747
  year: 2007
  end-page: 762
  ident: bib35
  article-title: Genetic and epigenetic regulators of pluripotency
  publication-title: Cell
– volume: 149
  start-page: 590
  year: 2012
  end-page: 604
  ident: bib22
  article-title: The transcriptional and epigenomic foundations of ground state pluripotency
  publication-title: Cell
– volume: 108
  start-page: 3642
  year: 2011
  end-page: 3647
  ident: bib15
  article-title: Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 480
  start-page: 490
  year: 2011
  end-page: 495
  ident: bib34
  article-title: DNA-binding factors shape the mouse methylome at distal regulatory regions
  publication-title: Nature
– volume: 473
  start-page: 398
  year: 2011
  end-page: 402
  ident: bib6
  article-title: Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation
  publication-title: Nature
– volume: 117
  start-page: 15
  year: 2002
  end-page: 23
  ident: bib12
  article-title: Epigenetic reprogramming in mouse primordial germ cells
  publication-title: Mech. Dev.
– volume: 3
  start-page: 391
  year: 2008
  end-page: 401
  ident: bib13
  article-title: Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states
  publication-title: Cell Stem Cell
– volume: 23
  start-page: 5594
  year: 2003
  end-page: 5605
  ident: bib3
  article-title: Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b
  publication-title: Mol. Cell. Biol.
– volume: 13
  start-page: 351
  year: 2013
  end-page: 359
  ident: bib7
  article-title: FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency
  publication-title: Cell Stem Cell
– volume: 3
  start-page: 1945
  year: 2013
  end-page: 1957
  ident: bib25
  article-title: Totipotent embryonic stem cells arise in ground-state culture conditions
  publication-title: Cell Rep
– volume: 37
  start-page: 1274
  year: 2005
  end-page: 1279
  ident: bib44
  article-title: Global hypomethylation of the genome in XX embryonic stem cells
  publication-title: Nat. Genet.
– volume: 30
  start-page: 755
  year: 2008
  end-page: 766
  ident: bib24
  article-title: Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors
  publication-title: Mol. Cell
– volume: 137
  start-page: 2279
  year: 2010
  end-page: 2287
  ident: bib20
  article-title: Embryonic germ cells from mice and rats exhibit properties consistent with a generic pluripotent ground state
  publication-title: Development
– volume: 12
  start-page: 395
  year: 2013
  end-page: 406
  ident: bib32
  article-title: Lin28: primal regulator of growth and metabolism in stem cells
  publication-title: Cell Stem Cell
– volume: 153
  start-page: 307
  year: 2013
  end-page: 319
  ident: bib39
  article-title: Master transcription factors and mediator establish super-enhancers at key cell identity genes
  publication-title: Cell
– volume: 14
  start-page: 341
  year: 2013
  end-page: 356
  ident: bib29
  article-title: TETonic shift: biological roles of TET proteins in DNA demethylation and transcription
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 339
  start-page: 448
  year: 2013
  end-page: 452
  ident: bib11
  article-title: Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine
  publication-title: Science
– volume: 153
  start-page: 692
  year: 2013
  end-page: 706
  ident: bib31
  article-title: Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics
  publication-title: Cell
– volume: 453
  start-page: 519
  year: 2008
  end-page: 523
  ident: bib42
  article-title: The ground state of embryonic stem cell self-renewal
  publication-title: Nature
– volume: 99
  start-page: 247
  year: 1999
  end-page: 257
  ident: bib28
  article-title: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development
  publication-title: Cell
– volume: 324
  start-page: 930
  year: 2009
  end-page: 935
  ident: bib36
  article-title: Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1
  publication-title: Science
– volume: 20
  start-page: 311
  year: 2013
  end-page: 316
  ident: bib21
  article-title: Naive pluripotency is associated with global DNA hypomethylation
  publication-title: Nat. Struct. Mol. Biol.
– volume: 153
  start-page: 678
  year: 2013
  end-page: 691
  ident: bib33
  article-title: Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming
  publication-title: Cell
– volume: 10
  start-page: 1280
  year: 2008
  end-page: 1290
  ident: bib26
  article-title: Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5
  publication-title: Nat. Cell Biol.
– volume: 1
  start-page: 360
  year: 2013
  end-page: 369
  ident: bib17
  article-title: Identifying division symmetry of mouse embryonic stem cells: negative impact of DNA methyltransferases on symmetric self-renewal
  publication-title: Stem Cell Rep.
– volume: 135
  start-page: 909
  year: 2008
  end-page: 918
  ident: bib38
  article-title: Identification and characterization of subpopulations in undifferentiated ES cell culture
  publication-title: Development
– volume: 149
  start-page: 1368
  year: 2012
  end-page: 1380
  ident: bib43
  article-title: Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome
  publication-title: Cell
– volume: 6
  year: 2010
  ident: bib14
  article-title: Orphan CpG islands identify numerous conserved promoters in the mammalian genome
  publication-title: PLoS Genet.
– volume: 500
  start-page: 222
  year: 2013
  end-page: 226
  ident: bib1
  article-title: Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells
  publication-title: Nature
– volume: 22
  start-page: 272
  year: 2012
  end-page: 282
  ident: bib5
  article-title: Accessing naïve human pluripotency
  publication-title: Curr. Opin. Genet. Dev.
– volume: 448
  start-page: 191
  year: 2007
  end-page: 195
  ident: bib2
  article-title: Derivation of pluripotent epiblast stem cells from mammalian embryos
  publication-title: Nature
– volume: 12
  start-page: 368
  year: 2013
  end-page: 382
  ident: bib41
  article-title: PRDM14 ensures naive pluripotency through dual regulation of signaling and epigenetic pathways in mouse embryonic stem cells
  publication-title: Cell Stem Cell
– volume: 48
  start-page: 849
  year: 2012
  ident: 10.1016/j.stemcr.2013.11.010_bib30
  article-title: The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.11.001
– volume: 500
  start-page: 222
  year: 2013
  ident: 10.1016/j.stemcr.2013.11.010_bib1
  article-title: Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells
  publication-title: Nature
  doi: 10.1038/nature12362
– volume: 3
  start-page: 391
  year: 2008
  ident: 10.1016/j.stemcr.2013.11.010_bib13
  article-title: Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2008.07.027
– volume: 13
  start-page: 28
  year: 2012
  ident: 10.1016/j.stemcr.2013.11.010_bib40
  article-title: DNA methylation: TET proteins-guardians of CpG islands?
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2011.233
– volume: 14
  start-page: 629
  year: 2013
  ident: 10.1016/j.stemcr.2013.11.010_bib8
  article-title: Prdm14 promotes germline fate and naive pluripotency by repressing FGF signalling and DNA methylation
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2013.67
– volume: 448
  start-page: 196
  year: 2007
  ident: 10.1016/j.stemcr.2013.11.010_bib37
  article-title: New cell lines from mouse epiblast share defining features with human embryonic stem cells
  publication-title: Nature
  doi: 10.1038/nature05972
– volume: 70
  start-page: 841
  year: 1992
  ident: 10.1016/j.stemcr.2013.11.010_bib23
  article-title: Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture
  publication-title: Cell
  doi: 10.1016/0092-8674(92)90317-6
– volume: 37
  start-page: 1274
  year: 2005
  ident: 10.1016/j.stemcr.2013.11.010_bib44
  article-title: Global hypomethylation of the genome in XX embryonic stem cells
  publication-title: Nat. Genet.
  doi: 10.1038/ng1663
– volume: 448
  start-page: 191
  year: 2007
  ident: 10.1016/j.stemcr.2013.11.010_bib2
  article-title: Derivation of pluripotent epiblast stem cells from mammalian embryos
  publication-title: Nature
  doi: 10.1038/nature05950
– volume: 28
  start-page: 164
  year: 2012
  ident: 10.1016/j.stemcr.2013.11.010_bib10
  article-title: Parallel mechanisms of epigenetic reprogramming in the germline
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2012.01.005
– volume: 1
  start-page: 360
  year: 2013
  ident: 10.1016/j.stemcr.2013.11.010_bib17
  article-title: Identifying division symmetry of mouse embryonic stem cells: negative impact of DNA methyltransferases on symmetric self-renewal
  publication-title: Stem Cell Rep.
  doi: 10.1016/j.stemcr.2013.08.005
– volume: 128
  start-page: 747
  year: 2007
  ident: 10.1016/j.stemcr.2013.11.010_bib35
  article-title: Genetic and epigenetic regulators of pluripotency
  publication-title: Cell
  doi: 10.1016/j.cell.2007.02.010
– volume: 149
  start-page: 1368
  year: 2012
  ident: 10.1016/j.stemcr.2013.11.010_bib43
  article-title: Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome
  publication-title: Cell
  doi: 10.1016/j.cell.2012.04.027
– volume: 6
  year: 2010
  ident: 10.1016/j.stemcr.2013.11.010_bib14
  article-title: Orphan CpG islands identify numerous conserved promoters in the mammalian genome
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1001134
– volume: 13
  start-page: 360
  year: 2013
  ident: 10.1016/j.stemcr.2013.11.010_bib9
  article-title: Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.06.002
– volume: 339
  start-page: 448
  year: 2013
  ident: 10.1016/j.stemcr.2013.11.010_bib11
  article-title: Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine
  publication-title: Science
  doi: 10.1126/science.1229277
– volume: 8
  start-page: 200
  year: 2011
  ident: 10.1016/j.stemcr.2013.11.010_bib19
  article-title: Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2011.01.008
– volume: 14
  start-page: 341
  year: 2013
  ident: 10.1016/j.stemcr.2013.11.010_bib29
  article-title: TETonic shift: biological roles of TET proteins in DNA demethylation and transcription
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3589
– volume: 24
  start-page: 310
  year: 2013
  ident: 10.1016/j.stemcr.2013.11.010_bib4
  article-title: Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2012.12.015
– volume: 99
  start-page: 247
  year: 1999
  ident: 10.1016/j.stemcr.2013.11.010_bib28
  article-title: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81656-6
– volume: 480
  start-page: 490
  year: 2011
  ident: 10.1016/j.stemcr.2013.11.010_bib34
  article-title: DNA-binding factors shape the mouse methylome at distal regulatory regions
  publication-title: Nature
  doi: 10.1038/nature10716
– volume: 473
  start-page: 398
  year: 2011
  ident: 10.1016/j.stemcr.2013.11.010_bib6
  article-title: Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation
  publication-title: Nature
  doi: 10.1038/nature10008
– volume: 137
  start-page: 2279
  year: 2010
  ident: 10.1016/j.stemcr.2013.11.010_bib20
  article-title: Embryonic germ cells from mice and rats exhibit properties consistent with a generic pluripotent ground state
  publication-title: Development
  doi: 10.1242/dev.050427
– volume: 22
  start-page: 272
  year: 2012
  ident: 10.1016/j.stemcr.2013.11.010_bib5
  article-title: Accessing naïve human pluripotency
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2012.03.001
– volume: 20
  start-page: 311
  year: 2013
  ident: 10.1016/j.stemcr.2013.11.010_bib21
  article-title: Naive pluripotency is associated with global DNA hypomethylation
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2510
– volume: 12
  start-page: 368
  year: 2013
  ident: 10.1016/j.stemcr.2013.11.010_bib41
  article-title: PRDM14 ensures naive pluripotency through dual regulation of signaling and epigenetic pathways in mouse embryonic stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2012.12.012
– volume: 30
  start-page: 755
  year: 2008
  ident: 10.1016/j.stemcr.2013.11.010_bib24
  article-title: Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.05.007
– volume: 108
  start-page: 3642
  year: 2011
  ident: 10.1016/j.stemcr.2013.11.010_bib15
  article-title: Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1014033108
– volume: 3
  start-page: 1945
  year: 2013
  ident: 10.1016/j.stemcr.2013.11.010_bib25
  article-title: Totipotent embryonic stem cells arise in ground-state culture conditions
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2013.04.034
– volume: 10
  start-page: 1280
  year: 2008
  ident: 10.1016/j.stemcr.2013.11.010_bib26
  article-title: Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1786
– volume: 23
  start-page: 5594
  year: 2003
  ident: 10.1016/j.stemcr.2013.11.010_bib3
  article-title: Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.23.16.5594-5605.2003
– volume: 13
  start-page: 351
  year: 2013
  ident: 10.1016/j.stemcr.2013.11.010_bib7
  article-title: FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.06.004
– volume: 24
  start-page: 8862
  year: 2004
  ident: 10.1016/j.stemcr.2013.11.010_bib16
  article-title: Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.24.20.8862-8871.2004
– volume: 32
  start-page: 340
  year: 2013
  ident: 10.1016/j.stemcr.2013.11.010_bib18
  article-title: Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice
  publication-title: EMBO J.
  doi: 10.1038/emboj.2012.331
– volume: 4
  start-page: 487
  year: 2009
  ident: 10.1016/j.stemcr.2013.11.010_bib27
  article-title: Naive and primed pluripotent states
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.05.015
– volume: 12
  start-page: 395
  year: 2013
  ident: 10.1016/j.stemcr.2013.11.010_bib32
  article-title: Lin28: primal regulator of growth and metabolism in stem cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2013.03.005
– volume: 153
  start-page: 692
  year: 2013
  ident: 10.1016/j.stemcr.2013.11.010_bib31
  article-title: Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics
  publication-title: Cell
  doi: 10.1016/j.cell.2013.04.002
– volume: 149
  start-page: 590
  year: 2012
  ident: 10.1016/j.stemcr.2013.11.010_bib22
  article-title: The transcriptional and epigenomic foundations of ground state pluripotency
  publication-title: Cell
  doi: 10.1016/j.cell.2012.03.026
– volume: 153
  start-page: 307
  year: 2013
  ident: 10.1016/j.stemcr.2013.11.010_bib39
  article-title: Master transcription factors and mediator establish super-enhancers at key cell identity genes
  publication-title: Cell
  doi: 10.1016/j.cell.2013.03.035
– volume: 453
  start-page: 519
  year: 2008
  ident: 10.1016/j.stemcr.2013.11.010_bib42
  article-title: The ground state of embryonic stem cell self-renewal
  publication-title: Nature
  doi: 10.1038/nature06968
– volume: 153
  start-page: 678
  year: 2013
  ident: 10.1016/j.stemcr.2013.11.010_bib33
  article-title: Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming
  publication-title: Cell
  doi: 10.1016/j.cell.2013.04.001
– volume: 324
  start-page: 930
  year: 2009
  ident: 10.1016/j.stemcr.2013.11.010_bib36
  article-title: Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1
  publication-title: Science
  doi: 10.1126/science.1170116
– volume: 117
  start-page: 15
  year: 2002
  ident: 10.1016/j.stemcr.2013.11.010_bib12
  article-title: Epigenetic reprogramming in mouse primordial germ cells
  publication-title: Mech. Dev.
  doi: 10.1016/S0925-4773(02)00181-8
– volume: 135
  start-page: 909
  year: 2008
  ident: 10.1016/j.stemcr.2013.11.010_bib38
  article-title: Identification and characterization of subpopulations in undifferentiated ES cell culture
  publication-title: Development
  doi: 10.1242/dev.017400
– reference: 23582322 - Cell. 2013 Apr 11;153(2):307-19
– reference: 15456861 - Mol Cell Biol. 2004 Oct;24(20):8862-71
– reference: 18836439 - Nat Cell Biol. 2008 Nov;10(11):1280-90
– reference: 18497825 - Nature. 2008 May 22;453(7194):519-23
– reference: 20885785 - PLoS Genet. 2010 Sep;6(9):e1001134
– reference: 23241950 - EMBO J. 2013 Feb 6;32(3):340-53
– reference: 21295276 - Cell Stem Cell. 2011 Feb 4;8(2):200-13
– reference: 23850245 - Cell Stem Cell. 2013 Sep 5;13(3):351-9
– reference: 23219530 - Mol Cell. 2012 Dec 28;48(6):849-62
– reference: 23698584 - Nat Rev Mol Cell Biol. 2013 Jun;14(6):341-56
– reference: 18940731 - Cell Stem Cell. 2008 Oct 9;3(4):391-401
– reference: 22608086 - Cell. 2012 Jun 8;149(6):1368-80
– reference: 23416945 - Nat Struct Mol Biol. 2013 Mar;20(3):311-6
– reference: 23602153 - Cell. 2013 Apr 25;153(3):678-91
– reference: 17597760 - Nature. 2007 Jul 12;448(7150):196-9
– reference: 18263842 - Development. 2008 Mar;135(5):909-18
– reference: 23746443 - Cell Rep. 2013 Jun 27;3(6):1945-57
– reference: 16244654 - Nat Genet. 2005 Nov;37(11):1274-9
– reference: 19372391 - Science. 2009 May 15;324(5929):930-5
– reference: 22157888 - EMBO Rep. 2012 Jan;13(1):28-35
– reference: 21321204 - Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3642-7
– reference: 22170606 - Nature. 2011 Dec 22;480(7378):490-5
– reference: 23670199 - EMBO Rep. 2013 Jul;14(7):629-37
– reference: 12897133 - Mol Cell Biol. 2003 Aug;23(16):5594-605
– reference: 23561442 - Cell Stem Cell. 2013 Apr 4;12(4):395-406
– reference: 23333148 - Cell Stem Cell. 2013 Mar 7;12(3):368-82
– reference: 1381289 - Cell. 1992 Sep 4;70(5):841-7
– reference: 23812591 - Nature. 2013 Aug 8;500(7461):222-6
– reference: 23850244 - Cell Stem Cell. 2013 Sep 5;13(3):360-9
– reference: 12204247 - Mech Dev. 2002 Sep;117(1-2):15-23
– reference: 20519324 - Development. 2010 Jul;137(14):2279-87
– reference: 23352810 - Dev Cell. 2013 Feb 11;24(3):310-23
– reference: 17320511 - Cell. 2007 Feb 23;128(4):747-62
– reference: 21460836 - Nature. 2011 May 19;473(7347):398-402
– reference: 22541430 - Cell. 2012 Apr 27;149(3):590-604
– reference: 23223451 - Science. 2013 Jan 25;339(6118):448-52
– reference: 24319670 - Stem Cell Reports. 2013;1(4):360-9
– reference: 18514006 - Mol Cell. 2008 Jun 20;30(6):755-66
– reference: 22386917 - Trends Genet. 2012 Apr;28(4):164-74
– reference: 10555141 - Cell. 1999 Oct 29;99(3):247-57
– reference: 17597762 - Nature. 2007 Jul 12;448(7150):191-5
– reference: 23602152 - Cell. 2013 Apr 25;153(3):692-706
– reference: 22463982 - Curr Opin Genet Dev. 2012 Jun;22(3):272-82
– reference: 19497275 - Cell Stem Cell. 2009 Jun 5;4(6):487-92
SSID ssj0000991241
Score 2.3322406
Snippet Pluripotent stem cells (PSCs) occupy a spectrum of reversible molecular states ranging from a naive ground-state in 2i, to metastable embryonic stem cells...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 518
SubjectTerms Animals
Cell Culture Techniques
Cell Differentiation - genetics
DNA Methylation
DNA-Binding Proteins - genetics
Embryonic Stem Cells
Female
Gene Knockout Techniques
Genomic Imprinting
Male
Mice
Pluripotent Stem Cells - cytology
Proto-Oncogene Proteins - genetics
SummonAdditionalLinks – databaseName: ScienceDirect
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iCF7Et-uLCF7jbh959OgTERRBhcVLSeIUV7Rd3PWw_96ZtF1cFQSPbSeQzqSZb9KZbxg7NBoxbM8b4XouEykYECYtYlFQ-7gik1IDnUNe36jLh_SqL_tz7LSthaG0ymbvr_f0sFs3d7qNNrvDwaB7F8dEN0at0gNPHoVAVFVKRXz9k-k5CyIgdGEUd5G8oAFtBV1I8yK6ZE_EoFFyRHSeVEr7u4f6iUC_J1J-8UwXy2ypgZT8uJ71CpuDcpUt1E0mJ2vs8W5C9X2BkJlfA1X6DkZvI14V_OzmmJ8BNZGe1ClxvK5a5MGDhWQuPq44nU-VTyLgUn77iiLDiqD2ZJ09XJzfn16KpqOC8DLOxiIzGAEqjygQvbhTqQGt4SnxSlrXM1baDCNWK2NvoLDKKgeJ9BJUXGi0RwTJBpsvqxK2GLceMNbAx4WF1DllnSoQKxnIImtTqTssabWY-4ZunLpevOZtXtlLXus-J91jJJKj7jtMTEcNa7qNP-R1a6B8Ztnk6BH-GHnQ2jPHL4p-k9gSqo8RBkMZ7nu4otIO26ztO50L0TdGpodvp2csPxUgtu7ZJ-XgObB2JxiaJlm6_e8Z77BFuqJcmkjvsvnx-wfsISIau_2w5D8BlDcLkw
  priority: 102
  providerName: Elsevier
Title Synergistic Mechanisms of DNA Demethylation during Transition to Ground-State Pluripotency
URI https://dx.doi.org/10.1016/j.stemcr.2013.11.010
https://www.ncbi.nlm.nih.gov/pubmed/24371807
https://www.proquest.com/docview/1490731504
https://pubmed.ncbi.nlm.nih.gov/PMC3871394
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEA-iFHwp2tb21EoKfY3cfuRjH0TOWrEtSks9OHxZktwsVa676t2B-987s9m91qpIXwJLkmUzSXZ-k8z8hrGPRiOG7XsjXN9lIgUDwqRFLApKH1dkUmqgc8iTU3U8TL-O5GiJdTlbWwFOHzXtKJ_U8Gaye3td7-OG3_vjq0Wcx57YPaNklzg5KeZqpbkxIme-FvBfBjyECo2ssDiOEqF0FHXxdE-86Cl99RCP_utW-ZeeOlpjL1uAyQdhRayzJShfsRch5WT9mp3_rCnar6Fn5idAcb8X099TXhX88HTAD4FSStfBQY6HGEbe6LPGtYvPKk6nVeVYNCiVf59gk6uKgHf9hg2PPp99OhZtfgXhZZzNRGbQHlQeMSHqdKdSA1rDOPFKWtc3VtoM7VcrY2-gsMoqB4n0ElRcaA_jCJINtlxWJbxj3HpAywOrCwupc8o6VSByMpBF1qZS91jSSTH3Lfk45cCY5J2X2WUeZJ-T7NEuyVH2PSYWva4C-cYz7XU3QXkLIAIwyHG5PNPzQzefOe4vujSxJVTzKZpGGf4FETanPfY2zO_iW4jMMTJ9HJ2-N_OLBsTdfb-mvPjVcHgnaKgmWbr5nyPcYqv0RP40kd5my7ObObxHVDRzO81pApZfRgdYfvthdpqlfwctEw8w
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELaqVgguCMorUKiRejXZlx977IMqhSZCaitFXCzbnRVBZTci6SH_nhnvbtQUpEpc1x7JO-P1fOOd-YaxA6MRwybBCJ_4UhRgQJiiykRF7eOqUkoNdA85nqjRVfFlKqdb7LivhaG0yu7sb8_0eFp3T4adNofz2Wx4kWVEN0at0iNPHoZAO4gGEtraZ9Oj9UULQiD0YRR4kYAgib6ELuZ5EV9yIGbQNP9EfJ5US_tvF_U3BL2fSXnHNZ0-Y087TMkP22U_Z1tQ77JHbZfJ1Qv2_WJFBX6RkZmPgUp9Z4tfC95U_GRyyE-Aukiv2pw43pYt8ujCYjYXXzacLqjqaxGBKf92g1PmDWHt1Ut2dfr58ngkupYKIsisXIrSYAioAsJAdONeFQa0hus8KOl8Ypx0JYasTmbBQOWUUx5yGSSorNJokBTyV2y7bmp4w7gLgMEGDlcOCu-V86pCsGSgTJ0rpB6wvNeiDR3fOLW9uLF9YtlP2-reku4xFLGo-wETa6l5y7fxwHzdG8hu7BuLLuEByY-9PS1-UvSfxNXQ3C4wGirx4MMtVQzY69a-67UQf2NqEnw7vWH59QSi694cqWc_Im13jrFpXhZv_3vF--zx6HJ8bs_PJl_fsSc0Qok1qd5j28vft_Ae4dHSf4jb_w8PgA62
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+Mechanisms+of+DNA+Demethylation+during+Transition+to+Ground-State+Pluripotency&rft.jtitle=Stem+cell+reports&rft.au=Hackett%2C+Jamie%C2%A0A.&rft.au=Dietmann%2C+Sabine&rft.au=Murakami%2C+Kazuhiro&rft.au=Down%2C+Thomas%C2%A0A.&rft.date=2013-12-17&rft.issn=2213-6711&rft.eissn=2213-6711&rft.volume=1&rft.issue=6&rft.spage=518&rft.epage=531&rft_id=info:doi/10.1016%2Fj.stemcr.2013.11.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_stemcr_2013_11_010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-6711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-6711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-6711&client=summon