Machine Learning Big Data Analysis of the Impact of Air Pollutants on Rhinitis-Related Hospital Visits
This study seeks to elucidate the intricate relationship between various air pollutants and the incidence of rhinitis in Seoul, South Korea, wherein it leveraged a vast repository of data and machine learning techniques. The dataset comprised more than 93 million hospital visits (n = 93,530,064) by...
Saved in:
| Published in | Toxics (Basel) Vol. 11; no. 8; p. 719 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.08.2023
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2305-6304 2305-6304 |
| DOI | 10.3390/toxics11080719 |
Cover
| Abstract | This study seeks to elucidate the intricate relationship between various air pollutants and the incidence of rhinitis in Seoul, South Korea, wherein it leveraged a vast repository of data and machine learning techniques. The dataset comprised more than 93 million hospital visits (n = 93,530,064) by rhinitis patients between 2013 and 2017. Daily atmospheric measurements were captured for six major pollutants: PM10, PM2.5, O3, NO2, CO, and SO2. We employed traditional correlation analyses alongside machine learning models, including the least absolute shrinkage and selection operator (LASSO), random forest (RF), and gradient boosting machine (GBM), to dissect the effects of these pollutants and the potential time lag in their symptom manifestation. Our analyses revealed that CO showed the strongest positive correlation with hospital visits across all three categories, with a notable significance in the 4-day lag analysis. NO2 also exhibited a substantial positive association, particularly with outpatient visits and hospital admissions and especially in the 4-day lag analysis. Interestingly, O3 demonstrated mixed results. Both PM10 and PM2.5 showed significant correlations with the different types of hospital visits, thus underlining their potential to exacerbate rhinitis symptoms. This study thus underscores the deleterious impacts of air pollution on respiratory health, thereby highlighting the importance of reducing pollutant levels and developing strategies to minimize rhinitis-related hospital visits. Further research considering other environmental factors and individual patient characteristics will enhance our understanding of these intricate dynamics. |
|---|---|
| AbstractList | This study seeks to elucidate the intricate relationship between various air pollutants and the incidence of rhinitis in Seoul, South Korea, wherein it leveraged a vast repository of data and machine learning techniques. The dataset comprised more than 93 million hospital visits (n = 93,530,064) by rhinitis patients between 2013 and 2017. Daily atmospheric measurements were captured for six major pollutants: PM10, PM2.5, O3, NO2, CO, and SO2. We employed traditional correlation analyses alongside machine learning models, including the least absolute shrinkage and selection operator (LASSO), random forest (RF), and gradient boosting machine (GBM), to dissect the effects of these pollutants and the potential time lag in their symptom manifestation. Our analyses revealed that CO showed the strongest positive correlation with hospital visits across all three categories, with a notable significance in the 4-day lag analysis. NO2 also exhibited a substantial positive association, particularly with outpatient visits and hospital admissions and especially in the 4-day lag analysis. Interestingly, O3 demonstrated mixed results. Both PM10 and PM2.5 showed significant correlations with the different types of hospital visits, thus underlining their potential to exacerbate rhinitis symptoms. This study thus underscores the deleterious impacts of air pollution on respiratory health, thereby highlighting the importance of reducing pollutant levels and developing strategies to minimize rhinitis-related hospital visits. Further research considering other environmental factors and individual patient characteristics will enhance our understanding of these intricate dynamics. This study seeks to elucidate the intricate relationship between various air pollutants and the incidence of rhinitis in Seoul, South Korea, wherein it leveraged a vast repository of data and machine learning techniques. The dataset comprised more than 93 million hospital visits (n = 93,530,064) by rhinitis patients between 2013 and 2017. Daily atmospheric measurements were captured for six major pollutants: PM10, PM2.5, O3, NO2, CO, and SO2. We employed traditional correlation analyses alongside machine learning models, including the least absolute shrinkage and selection operator (LASSO), random forest (RF), and gradient boosting machine (GBM), to dissect the effects of these pollutants and the potential time lag in their symptom manifestation. Our analyses revealed that CO showed the strongest positive correlation with hospital visits across all three categories, with a notable significance in the 4-day lag analysis. NO2 also exhibited a substantial positive association, particularly with outpatient visits and hospital admissions and especially in the 4-day lag analysis. Interestingly, O3 demonstrated mixed results. Both PM10 and PM2.5 showed significant correlations with the different types of hospital visits, thus underlining their potential to exacerbate rhinitis symptoms. This study thus underscores the deleterious impacts of air pollution on respiratory health, thereby highlighting the importance of reducing pollutant levels and developing strategies to minimize rhinitis-related hospital visits. Further research considering other environmental factors and individual patient characteristics will enhance our understanding of these intricate dynamics.This study seeks to elucidate the intricate relationship between various air pollutants and the incidence of rhinitis in Seoul, South Korea, wherein it leveraged a vast repository of data and machine learning techniques. The dataset comprised more than 93 million hospital visits (n = 93,530,064) by rhinitis patients between 2013 and 2017. Daily atmospheric measurements were captured for six major pollutants: PM10, PM2.5, O3, NO2, CO, and SO2. We employed traditional correlation analyses alongside machine learning models, including the least absolute shrinkage and selection operator (LASSO), random forest (RF), and gradient boosting machine (GBM), to dissect the effects of these pollutants and the potential time lag in their symptom manifestation. Our analyses revealed that CO showed the strongest positive correlation with hospital visits across all three categories, with a notable significance in the 4-day lag analysis. NO2 also exhibited a substantial positive association, particularly with outpatient visits and hospital admissions and especially in the 4-day lag analysis. Interestingly, O3 demonstrated mixed results. Both PM10 and PM2.5 showed significant correlations with the different types of hospital visits, thus underlining their potential to exacerbate rhinitis symptoms. This study thus underscores the deleterious impacts of air pollution on respiratory health, thereby highlighting the importance of reducing pollutant levels and developing strategies to minimize rhinitis-related hospital visits. Further research considering other environmental factors and individual patient characteristics will enhance our understanding of these intricate dynamics. This study seeks to elucidate the intricate relationship between various air pollutants and the incidence of rhinitis in Seoul, South Korea, wherein it leveraged a vast repository of data and machine learning techniques. The dataset comprised more than 93 million hospital visits (n = 93,530,064) by rhinitis patients between 2013 and 2017. Daily atmospheric measurements were captured for six major pollutants: PM[sub.10] , PM[sub.2.5] , O[sub.3] , NO[sub.2] , CO, and SO[sub.2] . We employed traditional correlation analyses alongside machine learning models, including the least absolute shrinkage and selection operator (LASSO), random forest (RF), and gradient boosting machine (GBM), to dissect the effects of these pollutants and the potential time lag in their symptom manifestation. Our analyses revealed that CO showed the strongest positive correlation with hospital visits across all three categories, with a notable significance in the 4-day lag analysis. NO[sub.2] also exhibited a substantial positive association, particularly with outpatient visits and hospital admissions and especially in the 4-day lag analysis. Interestingly, O[sub.3] demonstrated mixed results. Both PM[sub.10] and PM[sub.2.5] showed significant correlations with the different types of hospital visits, thus underlining their potential to exacerbate rhinitis symptoms. This study thus underscores the deleterious impacts of air pollution on respiratory health, thereby highlighting the importance of reducing pollutant levels and developing strategies to minimize rhinitis-related hospital visits. Further research considering other environmental factors and individual patient characteristics will enhance our understanding of these intricate dynamics. This study seeks to elucidate the intricate relationship between various air pollutants and the incidence of rhinitis in Seoul, South Korea, wherein it leveraged a vast repository of data and machine learning techniques. The dataset comprised more than 93 million hospital visits (n = 93,530,064) by rhinitis patients between 2013 and 2017. Daily atmospheric measurements were captured for six major pollutants: PM 10 , PM 2.5 , O3, NO2, CO, and SO2. We employed traditional correlation analyses alongside machine learning models, including the least absolute shrinkage and selection operator (LASSO), random forest (RF), and gradient boosting machine (GBM), to dissect the effects of these pollutants and the potential time lag in their symptom manifestation. Our analyses revealed that CO showed the strongest positive correlation with hospital visits across all three categories, with a notable significance in the 4-day lag analysis. NO2 also exhibited a substantial positive association, particularly with outpatient visits and hospital admissions and especially in the 4-day lag analysis. Interestingly, O3 demonstrated mixed results. Both PM 10 and PM 2.5 showed significant correlations with the different types of hospital visits, thus underlining their potential to exacerbate rhinitis symptoms. This study thus underscores the deleterious impacts of air pollution on respiratory health, thereby highlighting the importance of reducing pollutant levels and developing strategies to minimize rhinitis-related hospital visits. Further research considering other environmental factors and individual patient characteristics will enhance our understanding of these intricate dynamics. |
| Audience | Academic |
| Author | Hyun, Changwan Lee, Minhyeok Lee, Soyeon |
| AuthorAffiliation | 2 Department of Urology, Korea University College of Medicine, Seoul 02841, Republic of Korea; gusckddhks@kumc.or.kr 1 School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Republic of Korea; soyeon1608@cau.ac.kr |
| AuthorAffiliation_xml | – name: 1 School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Republic of Korea; soyeon1608@cau.ac.kr – name: 2 Department of Urology, Korea University College of Medicine, Seoul 02841, Republic of Korea; gusckddhks@kumc.or.kr |
| Author_xml | – sequence: 1 givenname: Soyeon surname: Lee fullname: Lee, Soyeon – sequence: 2 givenname: Changwan surname: Hyun fullname: Hyun, Changwan – sequence: 3 givenname: Minhyeok orcidid: 0000-0003-2562-172X surname: Lee fullname: Lee, Minhyeok |
| BookMark | eNqFkktvEzEUhUeoiJbSLWtLbNiknfFjbK9QaKGNFASqgK11x2Mnjhw7jD1A_n0dUgGpivBd-HXO58e9z6ujEIOpqpdNfU6IrC9y_Ol0appa1LyRT6oTTGo2aUlNj_4aH1dnKa3q0mRDRNs-q44JbzHFmJ5U9gPopQsGzQ0MwYUFeusW6AoyoGkAv00uoWhRXho0W29A591s6gb0KXo_Zgi57Ad0WxguuzS5NR6y6dFNTBuXwaOvLrmcXlRPLfhkzu770-rL-3efL28m84_Xs8vpfKIZlnkisbCG9ARYV0IITBlmBFuKO1k32DaUtp3AmnHoRRGD1W0nLSZGW93whpxWsz23j7BSm8GtYdiqCE79WojDQsGQnfZGAde8sxYE74BqaaDtONNEYt0Li1lfWBd71hg2sP0B3v8GNrXaJUAdJqA43uwdm7Fbm16bkAfwB9c43AluqRbxe-FRJjnnhfD6njDEb6NJWa1d0sZ7CCaOSWHBuGC45LJIXz2QruI4lJztVZRwKds_qgWUN7tgYzlY76BqWoqAUUkwLqrzR1QlerN2uhSddWX9MYMeYkqDsf__GvrAoEt5ZBd3H-H8v2x3LGPn2A |
| CitedBy_id | crossref_primary_10_1016_j_scitotenv_2024_174027 crossref_primary_10_1007_s44163_024_00184_7 |
| Cites_doi | 10.1017/CBO9781139025751 10.3390/ijerph20042916 10.3390/cancers15061853 10.3390/biology12071033 10.1016/j.rmed.2017.02.010 10.3390/bioengineering10080897 10.1016/j.envres.2021.112472 10.1007/s10653-015-9720-1 10.3389/fimmu.2019.02518 10.1111/all.14177 10.3389/fbioe.2023.1226182 10.3389/fgene.2023.1226336 10.1007/s11356-017-9239-3 10.1023/A:1010933404324 10.1016/j.waojou.2020.100106 10.3390/healthcare11071031 10.3390/air1020008 10.3390/toxics10110644 10.1097/MD.0000000000031737 10.1016/j.envres.2018.07.008 10.3390/atmos13010080 10.1038/s41572-020-00227-0 10.1007/s10916-011-9710-5 10.1093/bib/bbw114 10.1016/j.atmosenv.2017.11.014 10.3390/economies11070196 10.3390/app13074646 10.1007/s12070-015-0828-5 10.3390/toxics11070591 10.3390/s23073365 10.1214/aos/1013203451 10.3322/caac.21632 10.1016/S0140-6736(11)60130-X 10.4046/trd.2019.0025 10.3390/computation8030074 10.3390/rs12101613 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION 3V. 7U7 7XB 8FE 8FH 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO GNUQQ GUQSH HCIFZ LK8 M2O M7P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/toxics11080719 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Toxicology Abstracts ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection Biological Sciences ProQuest Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Biological Science Collection ProQuest Central Basic Toxicology Abstracts ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health |
| EISSN | 2305-6304 |
| ExternalDocumentID | oai_doaj_org_article_a7c7bffa87ba4c9ea6b75c392cd8f25d 10.3390/toxics11080719 PMC10459777 A762549322 10_3390_toxics11080719 |
| GeographicLocations | South Korea |
| GeographicLocations_xml | – name: South Korea |
| GrantInformation_xml | – fundername: National Research Foundation of Korea (NRF) grantid: RS-2023-00251528 |
| GroupedDBID | 53G 5VS 8FE 8FH 8G5 AADQD AAFWJ AAHBH AAYXX ABUWG ADBBV AEUYN AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ GUQSH HCIFZ HYE IAO IHR ITC KQ8 LK8 M2O M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RPM 3V. 7U7 7XB 8FK C1K MBDVC PKEHL PQEST PQUKI Q9U 7X8 PUEGO 5PM ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c529t-928fe3d3a5b5b5882452532f42b9012f1446b82c57ad8928afc6b9f23ecfc1713 |
| IEDL.DBID | DOA |
| ISSN | 2305-6304 |
| IngestDate | Fri Oct 03 12:32:47 EDT 2025 Sun Oct 26 03:59:08 EDT 2025 Tue Sep 30 17:11:52 EDT 2025 Thu Oct 02 06:49:26 EDT 2025 Fri Jul 25 11:56:06 EDT 2025 Mon Oct 20 22:54:15 EDT 2025 Mon Oct 20 16:58:40 EDT 2025 Thu Apr 24 22:56:23 EDT 2025 Thu Oct 16 04:44:28 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c529t-928fe3d3a5b5b5882452532f42b9012f1446b82c57ad8928afc6b9f23ecfc1713 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2562-172X |
| OpenAccessLink | https://doaj.org/article/a7c7bffa87ba4c9ea6b75c392cd8f25d |
| PMID | 37624224 |
| PQID | 2857437996 |
| PQPubID | 2032322 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a7c7bffa87ba4c9ea6b75c392cd8f25d unpaywall_primary_10_3390_toxics11080719 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10459777 proquest_miscellaneous_2857852000 proquest_journals_2857437996 gale_infotracmisc_A762549322 gale_infotracacademiconefile_A762549322 crossref_primary_10_3390_toxics11080719 crossref_citationtrail_10_3390_toxics11080719 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-01 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Toxics (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Naclerio (ref_17) 2020; 13 Wu (ref_35) 2018; 4 Friedman (ref_29) 2001; 29 Kyung (ref_33) 2020; 83 ref_14 ref_36 ref_12 Lee (ref_22) 2023; 14 ref_10 Zhang (ref_30) 2019; 10 Jo (ref_34) 2017; 124 Reid (ref_27) 2016; 26 Nuvolone (ref_32) 2018; 25 Greiner (ref_4) 2011; 378 ref_38 ref_15 ref_37 Klepac (ref_8) 2018; 167 Mathioudakis (ref_16) 2020; 75 Yoo (ref_2) 2012; 36 Varshney (ref_5) 2015; 67 Li (ref_18) 2022; 205 Turner (ref_9) 2020; 70 Lee (ref_11) 2022; 101 Pinakana (ref_13) 2023; 1 Lee (ref_19) 2023; 11 ref_25 ref_24 ref_23 ref_21 ref_20 ref_1 Breiman (ref_28) 2001; 45 ref_26 Bousquet (ref_6) 2020; 6 Manzoni (ref_3) 2018; 19 Kelly (ref_7) 2015; 37 Liu (ref_31) 2018; 173 |
| References_xml | – ident: ref_1 doi: 10.1017/CBO9781139025751 – ident: ref_12 doi: 10.3390/ijerph20042916 – ident: ref_23 doi: 10.3390/cancers15061853 – ident: ref_21 doi: 10.3390/biology12071033 – volume: 124 start-page: 79 year: 2017 ident: ref_34 article-title: Effects of particulate matter on respiratory disease and the impact of meteorological factors in Busan, Korea publication-title: Respir. Med. doi: 10.1016/j.rmed.2017.02.010 – ident: ref_24 doi: 10.3390/bioengineering10080897 – volume: 205 start-page: 112472 year: 2022 ident: ref_18 article-title: Association between exposure to air pollution and risk of allergic rhinitis: A systematic review and meta-analysis publication-title: Environ. Res. doi: 10.1016/j.envres.2021.112472 – volume: 37 start-page: 631 year: 2015 ident: ref_7 article-title: Air pollution and public health: Emerging hazards and improved understanding of risk publication-title: Environ. Geochem. Health doi: 10.1007/s10653-015-9720-1 – volume: 10 start-page: 2518 year: 2019 ident: ref_30 article-title: Ozone pollution: A major health hazard worldwide publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.02518 – volume: 75 start-page: 2170 year: 2020 ident: ref_16 article-title: The need for clean air: The way air pollution and climate change affect allergic rhinitis and asthma publication-title: Allergy doi: 10.1111/all.14177 – volume: 11 start-page: 1226182 year: 2023 ident: ref_19 article-title: Deep learning in CRISPR-Cas systems: A review of recent studies publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2023.1226182 – volume: 14 start-page: 1226336 year: 2023 ident: ref_22 article-title: Machine Learning for Small Interfering RNAs: A Concise Review of Recent Developments publication-title: Front. Genet. doi: 10.3389/fgene.2023.1226336 – volume: 25 start-page: 8074 year: 2018 ident: ref_32 article-title: The effects of ozone on human health publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-9239-3 – volume: 45 start-page: 5 year: 2001 ident: ref_28 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 13 start-page: 100106 year: 2020 ident: ref_17 article-title: International expert consensus on the management of allergic rhinitis (AR) aggravated by air pollutants: Impact of air pollution on patients with AR: Current knowledge and future strategies publication-title: World Allergy Organ. J. doi: 10.1016/j.waojou.2020.100106 – ident: ref_26 doi: 10.3390/healthcare11071031 – volume: 1 start-page: 94 year: 2023 ident: ref_13 article-title: Air Pollution in South Texas: A Short Communication of Health Risks and Implications publication-title: Air doi: 10.3390/air1020008 – ident: ref_10 doi: 10.3390/toxics10110644 – volume: 101 start-page: e31737 year: 2022 ident: ref_11 article-title: Low-to-moderate atmospheric ozone levels are negatively correlated with hospital visits by asthma patients publication-title: Medicine doi: 10.1097/MD.0000000000031737 – volume: 167 start-page: 144 year: 2018 ident: ref_8 article-title: Ambient air pollution and pregnancy outcomes: A comprehensive review and identification of environmental public health challenges publication-title: Environ. Res. doi: 10.1016/j.envres.2018.07.008 – volume: 26 start-page: 35 year: 2016 ident: ref_27 article-title: A study of error variance estimation in lasso regression publication-title: Stat. Sin. – ident: ref_36 doi: 10.3390/atmos13010080 – volume: 6 start-page: 95 year: 2020 ident: ref_6 article-title: Allergic rhinitis publication-title: Nat. Rev. Dis. Prim. doi: 10.1038/s41572-020-00227-0 – volume: 36 start-page: 2431 year: 2012 ident: ref_2 article-title: Data mining in healthcare and biomedicine: A survey of the literature publication-title: J. Med. Syst. doi: 10.1007/s10916-011-9710-5 – volume: 19 start-page: 286 year: 2018 ident: ref_3 article-title: Genome, transcriptome and proteome: The rise of omics data and their integration in biomedical sciences publication-title: Briefings Bioinform. doi: 10.1093/bib/bbw114 – volume: 173 start-page: 223 year: 2018 ident: ref_31 article-title: Ground-level ozone pollution and its health impacts in China publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2017.11.014 – ident: ref_15 doi: 10.3390/economies11070196 – ident: ref_25 doi: 10.3390/app13074646 – volume: 67 start-page: 143 year: 2015 ident: ref_5 article-title: Allergic rhinitis: An overview publication-title: Indian J. Otolaryngol. Head Neck Surg. doi: 10.1007/s12070-015-0828-5 – ident: ref_14 doi: 10.3390/toxics11070591 – ident: ref_20 doi: 10.3390/s23073365 – volume: 4 start-page: 95 year: 2018 ident: ref_35 article-title: Effects of particulate matter on allergic respiratory diseases publication-title: Chronic Dis. Transl. Med. – volume: 29 start-page: 1189 year: 2001 ident: ref_29 article-title: Greedy function approximation: A gradient boosting machine publication-title: Ann. Stat. doi: 10.1214/aos/1013203451 – volume: 70 start-page: 460 year: 2020 ident: ref_9 article-title: Outdoor air pollution and cancer: An overview of the current evidence and public health recommendations publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21632 – volume: 378 start-page: 2112 year: 2011 ident: ref_4 article-title: Allergic rhinitis publication-title: Lancet doi: 10.1016/S0140-6736(11)60130-X – volume: 83 start-page: 116 year: 2020 ident: ref_33 article-title: Particulate-matter related respiratory diseases publication-title: Tuberc. Respir. Dis. doi: 10.4046/trd.2019.0025 – ident: ref_38 doi: 10.3390/computation8030074 – ident: ref_37 doi: 10.3390/rs12101613 |
| SSID | ssj0000913866 |
| Score | 2.2645211 |
| Snippet | This study seeks to elucidate the intricate relationship between various air pollutants and the incidence of rhinitis in Seoul, South Korea, wherein it... |
| SourceID | doaj unpaywall pubmedcentral proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 719 |
| SubjectTerms | Air pollution Analysis Atmospheric models Big Data carbon monoxide Correlation analysis Data analysis Datasets Development and progression Diagnosis Emergency medical care Environmental factors Holidays & special occasions hospital visits Hospitals Impact analysis Influence Investigations Learning algorithms Machine learning Methods National health insurance Nitrogen dioxide Outdoor air quality Particulate matter Patient admissions Pollutants Pollution control Pollution levels Public health Rhinitis Sulfur dioxide Time lag Variables |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9RAEB_q9UFBxE9MrbKCoC-h5yabTR5E7rSlCj1KsdK3sJ9n4EjOuxzV_96ZfGkoKnlJspOv3ZnZmc3MbwBeoQXiI2uSUHqFDookmdNKhMZlCs1zq52mfOezRXJ6GX--Eld7sOhzYSissteJjaK2laE18iOeCknYeVnyfv09pKpR9He1L6GhutIK9l0DMXYL9jkhY01gf368OL8YVl0IBTNNkha9MUJ__6iufhRmS8HwONlmo9mpAfG_qapvhk_e3pVr9fNarVZ_zE0n9-FeZ1SyWcsFD2DPlQ_hbrsix9pEo0fgz5q4Scc6SNUlmxdL9lHVivXIJKzyDA1C9qlJnaSjWbFh51QNmYoNY3vJLvAehIMUNmF0zrK-8gj7WmBfbR_D5cnxlw-nYVdlITSCZ3WY8dS7yEZKaNzQ4KY_nRH3MddoK3BPDqNOuRFS2RSJlTeJzjyPnPHmLfq4T2BSVqV7CmyqdDyNCQIQd7iKsshqPfXCW_R7tPQBhH3v5qaDIKdKGKscXREajXw8GgG8HujXLfjGXynnNFgDFYFmNyeqzTLvZDBX0kjtvUqlVrHJnEq0FAYNRGNTz4XFx9FQ5yTa-FpGdRkK-HEEkpXPcOJAdxpVYACHI0oUSTNu7pkl71TCNv_NwAG8HJrpSgpzK121a2lSAsKaBpCOmGz0ZeOWsvjWwIKjY01ggjKANwM__qfbDv79os_gDkebro13PIRJvdm552iD1fpFJ1i_APakNEM priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWgewAJ8Y0ILMhISHDJtnHiOD6hLrBakHa1QhQtp8h27BJRJVWT8vXrmUmcirBCINRLW0_Suh6P33PHbwh5CgjExYVJQ-EUEBSBc04rHhorFcDzQluN551PTtPjRfL2nJ_7DbfGp1UCFS-7IA3wmIcpEO5pFE2zqYjkdF24F1_8TlKUSpYKACjZZbKXcsDiE7K3OD2bf-wqyvlre6XGGLj9tK2_labBxHdYWOVoJeoE-y-G5Yupkle21Vp9_6pWq1_WoaMbJB960KeffD7YtvrA_PhN3PH_u3iTXPcQlc57n7pFLtnqNrnW7-_R_tjSHeJOuixMS71A65Ielkv6SrWKDjontHYU4CV90x3ExFfzckPPsLYyli6G9oq-g3ugqlLYJeXZgg51TOiHsinb5i5ZHL1-__I49DUbQsOZbEPJMmfjIlZcwwPgO_5vGjOXMA3IgzmknzpjhgtVZGCsnEm1dCy2xpkIGPM9Mqnqyt4ndKZ0MktQUBCeMBXLuNB65rgrgEVp4QISDuOXGy9ojnU1VjkQGxzvfDzeAXm2s1_3Uh5_tDxEd9hZoQR390a9WeZ-RudKGKGdU5nQKjHSqlQLbgBumiJzjBfwcehMOQYK-FpG-fMO0DmU3MrnsAwBOYeAGpD9kSVMcDNuHtwx9wGmyVnGBUpJyjQgT3bNeCUmzVW23vY2GcpqzQKSjdx41LNxS1V-6kTGgaajNKEIyPOdx__lZ3vw76YPyVUGaLHPpNwnk3aztY8A3bX6sZ_CPwFVlkx9 priority: 102 providerName: Unpaywall |
| Title | Machine Learning Big Data Analysis of the Impact of Air Pollutants on Rhinitis-Related Hospital Visits |
| URI | https://www.proquest.com/docview/2857437996 https://www.proquest.com/docview/2857852000 https://pubmed.ncbi.nlm.nih.gov/PMC10459777 https://www.mdpi.com/2305-6304/11/8/719/pdf?version=1692672318 https://doaj.org/article/a7c7bffa87ba4c9ea6b75c392cd8f25d |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2305-6304 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913866 issn: 2305-6304 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2305-6304 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913866 issn: 2305-6304 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2305-6304 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913866 issn: 2305-6304 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2305-6304 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913866 issn: 2305-6304 databaseCode: RPM dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2305-6304 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913866 issn: 2305-6304 databaseCode: BENPR dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBaje9hglP1kXruiwWB7MXUly5Iek62lGzSEsozuyUiy1BmCUxqHtv997ywnxJTRl5EXO7rYsnSnuy8-fUfIZ4hAAq9ckcpgAKBItDlrROq8NhCeV9Zb3O98NilOZ_nPC3GxVeoLc8IiPXAcuEMjnbQhGCWtyZ32prBSOPDqrlKBiQpX30zpLTDVrcH6iKuiiCyNHHD9Ybu4rd0Sk97BqeqBF-rI-h8uyQ_TJJ-tmitzd2Pm8y0fdPKS7PbBIx3FTr8iT3zzmryI_7zRuKHoDQlnXX6kpz116iUd15f0u2kNXTOQ0EWgEPjRH90WSTwb1dd0ilWPsagwtDf0HK6BfEdply7nK7quMEJ_18u6Xb4ls5PjX99O076aQuoE022qmQqeV9wICx8IrPGNJmchZxZiAhYQGFrFnJCmUiBsgiusDox7F9wRYNl3ZKdZNP49oZmxeZYj1R8cMMM1r6zNgggV4BsrQ0LS9eiWrqcax4oX8xIgB85GOZyNhHzZyF9Fko1_So5xsjZSSI7dfQEqU_YqUz6mMnA7nOoSTRi65Uy_EwEeDsmwyhE4CIDNsNQlZH8gCabnhs1rZSl701-WTAmJJI-6SMinTTP-EtPZGr9YRRmFhFdZQtRAyQZPNmxp6r8d_TcAaCQNlAn5utHHR4btw_8Ytj3ynEGEF7Mf98lOe73yHyEia-0BeTo-nkzPDzojhLPZZDr6cw_6Kzt4 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lAkhHgKQ4FFAsHFali_DxVKaKuENlFVtag3d58hUmSHxFHpn-O3MeMXWBVwqnJxsmPH3tl5rWe-AXiLHoj1tArdyAoMUCKSOSkCV5lEoHuupZFU7zyehMNz_8tFcLEBP5taGEqrbHRiqah1rmiPfJfHQUTYeUn4afHdpa5R9Ha1aaEh6tYKeq-EGKsLO47M9RWGcKu90T7y-x3nhwdnn4du3WXAVQFPCjfhsTWe9kQg8YMOJ73p87j1uURbyS0FTDLmKoiEjpFYWBXKxHLPKKs-YoyH170DW77nJxj8bQ0OJien7S4PoW7GYVihRXpe0tst8h8ztaLkezTuSccalk0DbpqGm-ma2-tsIa6vxHz-hy08fAD3ayeW9atV9xA2TPYI7lU7gKwqbHoMdlzmaRpWQ7hO2WA2ZfuiEKxBQmG5ZeiAslFZqknf-rMlO6Huy9TcGMczdorXINwlt0zbM5o1nU7Y1xnyZvUEzm9lvp_CZpZn5hmwnpB-zyfIQTzgwks8LWXPBlZjnCUj64DbzG6qashz6rwxTzH0IW6kXW448L6lX1RgH3-lHBCzWioC6S5_yJfTtJb5VEQqktaKOJLCV4kRoYwChQ6p0rHlgca_I1anpErwtpSoKyLw4QiUK-2jocLwHVWuAzsdSlQBqjvcLJa0VkGr9LfAOPCmHaYzKa0uM_m6ookJeKvnQNxZZJ0n645ks28lDDkG8gReGDnwoV2P_5m25_--0dewPTwbH6fHo8nRC7jL0Z-sci13YLNYrs1L9P8K-aoWMgaXty3XvwDmh3BZ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VVgIkhDiFocAigeDFSljH10OFEtKooTSKKor65u6ZRorsNIdK_yK_ihl7HbAq4KnKS5KdOPbOzrU78w3AW_RAbKBV5MdWYIASk8xJEfrKpALdcy2NpHrno1F0cNL5chqebsHPuhaG0iprnVgqal0o2iNv8SSMCTsvjVrWpUWM-4NP8wufOkjRSWvdTkO4Ngt6r4Qbc0Ueh-bqEsO55d6wj7x_x_lg_9vnA991HPBVyNOVn_LEmkAHIpT4QueTTv0Cbjtcot3kloInmXAVxkInSCysimRqeWCUVR8x3sPr3oIdOvxCJbHT2x-Njzc7PoTAmURRhRwZBGm7tSp-TNWSEvHR0KcNy1g2ELhuJq6nbt5Z53NxdSlmsz_s4uAB3HcOLetWK_AhbJn8EdyrdgNZVeT0GOxRmbNpmINznbDedML6YiVYjYrCCsvQGWXDsmyTPnWnCzamTszU6BjHc3aM1yAMJr9M4TOa1V1P2Pcp8mb5BE5uZL6fwnZe5OYZsLaQnXaH4AfxDRdBGmgp2za0GmMuGVsP_Hp2M-Xgz6kLxyzDMIi4kTW54cH7Df28Av74K2WPmLWhIsDu8otiMcmc_GciVrG0ViSxFB2VGhHJOFTonCqdWB5q_DtidUZqBW9LCVcdgQ9HAF1ZF40WhvKofj3YbVCiOlDN4XqxZE4dLbPfwuPBm80w_ZJS7HJTrCuahEC42h4kjUXWeLLmSD49LyHJMagnIMPYgw-b9fifaXv-7xt9DbdRvrOvw9HhC7jL0bWs0i53YXu1WJuX6Aqu5CsnYwzOblqsfwHsVnSI |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWgewAJ8Y0ILMhISHDJtnHiOD6hLrBakHa1QhQtp8h27BJRJVWT8vXrmUmcirBCINRLW0_Suh6P33PHbwh5CgjExYVJQ-EUEBSBc04rHhorFcDzQluN551PTtPjRfL2nJ_7DbfGp1UCFS-7IA3wmIcpEO5pFE2zqYjkdF24F1_8TlKUSpYKACjZZbKXcsDiE7K3OD2bf-wqyvlre6XGGLj9tK2_labBxHdYWOVoJeoE-y-G5Yupkle21Vp9_6pWq1_WoaMbJB960KeffD7YtvrA_PhN3PH_u3iTXPcQlc57n7pFLtnqNrnW7-_R_tjSHeJOuixMS71A65Ielkv6SrWKDjontHYU4CV90x3ExFfzckPPsLYyli6G9oq-g3ugqlLYJeXZgg51TOiHsinb5i5ZHL1-__I49DUbQsOZbEPJMmfjIlZcwwPgO_5vGjOXMA3IgzmknzpjhgtVZGCsnEm1dCy2xpkIGPM9Mqnqyt4ndKZ0MktQUBCeMBXLuNB65rgrgEVp4QISDuOXGy9ojnU1VjkQGxzvfDzeAXm2s1_3Uh5_tDxEd9hZoQR390a9WeZ-RudKGKGdU5nQKjHSqlQLbgBumiJzjBfwcehMOQYK-FpG-fMO0DmU3MrnsAwBOYeAGpD9kSVMcDNuHtwx9wGmyVnGBUpJyjQgT3bNeCUmzVW23vY2GcpqzQKSjdx41LNxS1V-6kTGgaajNKEIyPOdx__lZ3vw76YPyVUGaLHPpNwnk3aztY8A3bX6sZ_CPwFVlkx9 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Big+Data+Analysis+of+the+Impact+of+Air+Pollutants+on+Rhinitis-Related+Hospital+Visits&rft.jtitle=Toxics+%28Basel%29&rft.au=Lee%2C+Soyeon&rft.au=Hyun%2C+Changwan&rft.au=Lee%2C+Minhyeok&rft.date=2023-08-01&rft.pub=MDPI+AG&rft.issn=2305-6304&rft.eissn=2305-6304&rft.volume=11&rft.issue=8&rft_id=info:doi/10.3390%2Ftoxics11080719&rft.externalDocID=A762549322 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2305-6304&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2305-6304&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2305-6304&client=summon |