Machine Learning Big Data Analysis of the Impact of Air Pollutants on Rhinitis-Related Hospital Visits

This study seeks to elucidate the intricate relationship between various air pollutants and the incidence of rhinitis in Seoul, South Korea, wherein it leveraged a vast repository of data and machine learning techniques. The dataset comprised more than 93 million hospital visits (n = 93,530,064) by...

Full description

Saved in:
Bibliographic Details
Published inToxics (Basel) Vol. 11; no. 8; p. 719
Main Authors Lee, Soyeon, Hyun, Changwan, Lee, Minhyeok
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2023
MDPI
Subjects
Online AccessGet full text
ISSN2305-6304
2305-6304
DOI10.3390/toxics11080719

Cover

Abstract This study seeks to elucidate the intricate relationship between various air pollutants and the incidence of rhinitis in Seoul, South Korea, wherein it leveraged a vast repository of data and machine learning techniques. The dataset comprised more than 93 million hospital visits (n = 93,530,064) by rhinitis patients between 2013 and 2017. Daily atmospheric measurements were captured for six major pollutants: PM10, PM2.5, O3, NO2, CO, and SO2. We employed traditional correlation analyses alongside machine learning models, including the least absolute shrinkage and selection operator (LASSO), random forest (RF), and gradient boosting machine (GBM), to dissect the effects of these pollutants and the potential time lag in their symptom manifestation. Our analyses revealed that CO showed the strongest positive correlation with hospital visits across all three categories, with a notable significance in the 4-day lag analysis. NO2 also exhibited a substantial positive association, particularly with outpatient visits and hospital admissions and especially in the 4-day lag analysis. Interestingly, O3 demonstrated mixed results. Both PM10 and PM2.5 showed significant correlations with the different types of hospital visits, thus underlining their potential to exacerbate rhinitis symptoms. This study thus underscores the deleterious impacts of air pollution on respiratory health, thereby highlighting the importance of reducing pollutant levels and developing strategies to minimize rhinitis-related hospital visits. Further research considering other environmental factors and individual patient characteristics will enhance our understanding of these intricate dynamics.
AbstractList This study seeks to elucidate the intricate relationship between various air pollutants and the incidence of rhinitis in Seoul, South Korea, wherein it leveraged a vast repository of data and machine learning techniques. The dataset comprised more than 93 million hospital visits (n = 93,530,064) by rhinitis patients between 2013 and 2017. Daily atmospheric measurements were captured for six major pollutants: PM10, PM2.5, O3, NO2, CO, and SO2. We employed traditional correlation analyses alongside machine learning models, including the least absolute shrinkage and selection operator (LASSO), random forest (RF), and gradient boosting machine (GBM), to dissect the effects of these pollutants and the potential time lag in their symptom manifestation. Our analyses revealed that CO showed the strongest positive correlation with hospital visits across all three categories, with a notable significance in the 4-day lag analysis. NO2 also exhibited a substantial positive association, particularly with outpatient visits and hospital admissions and especially in the 4-day lag analysis. Interestingly, O3 demonstrated mixed results. Both PM10 and PM2.5 showed significant correlations with the different types of hospital visits, thus underlining their potential to exacerbate rhinitis symptoms. This study thus underscores the deleterious impacts of air pollution on respiratory health, thereby highlighting the importance of reducing pollutant levels and developing strategies to minimize rhinitis-related hospital visits. Further research considering other environmental factors and individual patient characteristics will enhance our understanding of these intricate dynamics.
This study seeks to elucidate the intricate relationship between various air pollutants and the incidence of rhinitis in Seoul, South Korea, wherein it leveraged a vast repository of data and machine learning techniques. The dataset comprised more than 93 million hospital visits (n = 93,530,064) by rhinitis patients between 2013 and 2017. Daily atmospheric measurements were captured for six major pollutants: PM10, PM2.5, O3, NO2, CO, and SO2. We employed traditional correlation analyses alongside machine learning models, including the least absolute shrinkage and selection operator (LASSO), random forest (RF), and gradient boosting machine (GBM), to dissect the effects of these pollutants and the potential time lag in their symptom manifestation. Our analyses revealed that CO showed the strongest positive correlation with hospital visits across all three categories, with a notable significance in the 4-day lag analysis. NO2 also exhibited a substantial positive association, particularly with outpatient visits and hospital admissions and especially in the 4-day lag analysis. Interestingly, O3 demonstrated mixed results. Both PM10 and PM2.5 showed significant correlations with the different types of hospital visits, thus underlining their potential to exacerbate rhinitis symptoms. This study thus underscores the deleterious impacts of air pollution on respiratory health, thereby highlighting the importance of reducing pollutant levels and developing strategies to minimize rhinitis-related hospital visits. Further research considering other environmental factors and individual patient characteristics will enhance our understanding of these intricate dynamics.This study seeks to elucidate the intricate relationship between various air pollutants and the incidence of rhinitis in Seoul, South Korea, wherein it leveraged a vast repository of data and machine learning techniques. The dataset comprised more than 93 million hospital visits (n = 93,530,064) by rhinitis patients between 2013 and 2017. Daily atmospheric measurements were captured for six major pollutants: PM10, PM2.5, O3, NO2, CO, and SO2. We employed traditional correlation analyses alongside machine learning models, including the least absolute shrinkage and selection operator (LASSO), random forest (RF), and gradient boosting machine (GBM), to dissect the effects of these pollutants and the potential time lag in their symptom manifestation. Our analyses revealed that CO showed the strongest positive correlation with hospital visits across all three categories, with a notable significance in the 4-day lag analysis. NO2 also exhibited a substantial positive association, particularly with outpatient visits and hospital admissions and especially in the 4-day lag analysis. Interestingly, O3 demonstrated mixed results. Both PM10 and PM2.5 showed significant correlations with the different types of hospital visits, thus underlining their potential to exacerbate rhinitis symptoms. This study thus underscores the deleterious impacts of air pollution on respiratory health, thereby highlighting the importance of reducing pollutant levels and developing strategies to minimize rhinitis-related hospital visits. Further research considering other environmental factors and individual patient characteristics will enhance our understanding of these intricate dynamics.
This study seeks to elucidate the intricate relationship between various air pollutants and the incidence of rhinitis in Seoul, South Korea, wherein it leveraged a vast repository of data and machine learning techniques. The dataset comprised more than 93 million hospital visits (n = 93,530,064) by rhinitis patients between 2013 and 2017. Daily atmospheric measurements were captured for six major pollutants: PM[sub.10] , PM[sub.2.5] , O[sub.3] , NO[sub.2] , CO, and SO[sub.2] . We employed traditional correlation analyses alongside machine learning models, including the least absolute shrinkage and selection operator (LASSO), random forest (RF), and gradient boosting machine (GBM), to dissect the effects of these pollutants and the potential time lag in their symptom manifestation. Our analyses revealed that CO showed the strongest positive correlation with hospital visits across all three categories, with a notable significance in the 4-day lag analysis. NO[sub.2] also exhibited a substantial positive association, particularly with outpatient visits and hospital admissions and especially in the 4-day lag analysis. Interestingly, O[sub.3] demonstrated mixed results. Both PM[sub.10] and PM[sub.2.5] showed significant correlations with the different types of hospital visits, thus underlining their potential to exacerbate rhinitis symptoms. This study thus underscores the deleterious impacts of air pollution on respiratory health, thereby highlighting the importance of reducing pollutant levels and developing strategies to minimize rhinitis-related hospital visits. Further research considering other environmental factors and individual patient characteristics will enhance our understanding of these intricate dynamics.
This study seeks to elucidate the intricate relationship between various air pollutants and the incidence of rhinitis in Seoul, South Korea, wherein it leveraged a vast repository of data and machine learning techniques. The dataset comprised more than 93 million hospital visits (n = 93,530,064) by rhinitis patients between 2013 and 2017. Daily atmospheric measurements were captured for six major pollutants: PM 10 , PM 2.5 , O3, NO2, CO, and SO2. We employed traditional correlation analyses alongside machine learning models, including the least absolute shrinkage and selection operator (LASSO), random forest (RF), and gradient boosting machine (GBM), to dissect the effects of these pollutants and the potential time lag in their symptom manifestation. Our analyses revealed that CO showed the strongest positive correlation with hospital visits across all three categories, with a notable significance in the 4-day lag analysis. NO2 also exhibited a substantial positive association, particularly with outpatient visits and hospital admissions and especially in the 4-day lag analysis. Interestingly, O3 demonstrated mixed results. Both PM 10 and PM 2.5 showed significant correlations with the different types of hospital visits, thus underlining their potential to exacerbate rhinitis symptoms. This study thus underscores the deleterious impacts of air pollution on respiratory health, thereby highlighting the importance of reducing pollutant levels and developing strategies to minimize rhinitis-related hospital visits. Further research considering other environmental factors and individual patient characteristics will enhance our understanding of these intricate dynamics.
Audience Academic
Author Hyun, Changwan
Lee, Minhyeok
Lee, Soyeon
AuthorAffiliation 2 Department of Urology, Korea University College of Medicine, Seoul 02841, Republic of Korea; gusckddhks@kumc.or.kr
1 School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Republic of Korea; soyeon1608@cau.ac.kr
AuthorAffiliation_xml – name: 1 School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Republic of Korea; soyeon1608@cau.ac.kr
– name: 2 Department of Urology, Korea University College of Medicine, Seoul 02841, Republic of Korea; gusckddhks@kumc.or.kr
Author_xml – sequence: 1
  givenname: Soyeon
  surname: Lee
  fullname: Lee, Soyeon
– sequence: 2
  givenname: Changwan
  surname: Hyun
  fullname: Hyun, Changwan
– sequence: 3
  givenname: Minhyeok
  orcidid: 0000-0003-2562-172X
  surname: Lee
  fullname: Lee, Minhyeok
BookMark eNqFkktvEzEUhUeoiJbSLWtLbNiknfFjbK9QaKGNFASqgK11x2Mnjhw7jD1A_n0dUgGpivBd-HXO58e9z6ujEIOpqpdNfU6IrC9y_Ol0appa1LyRT6oTTGo2aUlNj_4aH1dnKa3q0mRDRNs-q44JbzHFmJ5U9gPopQsGzQ0MwYUFeusW6AoyoGkAv00uoWhRXho0W29A591s6gb0KXo_Zgi57Ad0WxguuzS5NR6y6dFNTBuXwaOvLrmcXlRPLfhkzu770-rL-3efL28m84_Xs8vpfKIZlnkisbCG9ARYV0IITBlmBFuKO1k32DaUtp3AmnHoRRGD1W0nLSZGW93whpxWsz23j7BSm8GtYdiqCE79WojDQsGQnfZGAde8sxYE74BqaaDtONNEYt0Li1lfWBd71hg2sP0B3v8GNrXaJUAdJqA43uwdm7Fbm16bkAfwB9c43AluqRbxe-FRJjnnhfD6njDEb6NJWa1d0sZ7CCaOSWHBuGC45LJIXz2QruI4lJztVZRwKds_qgWUN7tgYzlY76BqWoqAUUkwLqrzR1QlerN2uhSddWX9MYMeYkqDsf__GvrAoEt5ZBd3H-H8v2x3LGPn2A
CitedBy_id crossref_primary_10_1016_j_scitotenv_2024_174027
crossref_primary_10_1007_s44163_024_00184_7
Cites_doi 10.1017/CBO9781139025751
10.3390/ijerph20042916
10.3390/cancers15061853
10.3390/biology12071033
10.1016/j.rmed.2017.02.010
10.3390/bioengineering10080897
10.1016/j.envres.2021.112472
10.1007/s10653-015-9720-1
10.3389/fimmu.2019.02518
10.1111/all.14177
10.3389/fbioe.2023.1226182
10.3389/fgene.2023.1226336
10.1007/s11356-017-9239-3
10.1023/A:1010933404324
10.1016/j.waojou.2020.100106
10.3390/healthcare11071031
10.3390/air1020008
10.3390/toxics10110644
10.1097/MD.0000000000031737
10.1016/j.envres.2018.07.008
10.3390/atmos13010080
10.1038/s41572-020-00227-0
10.1007/s10916-011-9710-5
10.1093/bib/bbw114
10.1016/j.atmosenv.2017.11.014
10.3390/economies11070196
10.3390/app13074646
10.1007/s12070-015-0828-5
10.3390/toxics11070591
10.3390/s23073365
10.1214/aos/1013203451
10.3322/caac.21632
10.1016/S0140-6736(11)60130-X
10.4046/trd.2019.0025
10.3390/computation8030074
10.3390/rs12101613
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
3V.
7U7
7XB
8FE
8FH
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
LK8
M2O
M7P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/toxics11080719
DatabaseName CrossRef
ProQuest Central (Corporate)
Toxicology Abstracts
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Biological Sciences
ProQuest Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest Central Basic
Toxicology Abstracts
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 2305-6304
ExternalDocumentID oai_doaj_org_article_a7c7bffa87ba4c9ea6b75c392cd8f25d
10.3390/toxics11080719
PMC10459777
A762549322
10_3390_toxics11080719
GeographicLocations South Korea
GeographicLocations_xml – name: South Korea
GrantInformation_xml – fundername: National Research Foundation of Korea (NRF)
  grantid: RS-2023-00251528
GroupedDBID 53G
5VS
8FE
8FH
8G5
AADQD
AAFWJ
AAHBH
AAYXX
ABUWG
ADBBV
AEUYN
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M2O
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RPM
3V.
7U7
7XB
8FK
C1K
MBDVC
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c529t-928fe3d3a5b5b5882452532f42b9012f1446b82c57ad8928afc6b9f23ecfc1713
IEDL.DBID DOA
ISSN 2305-6304
IngestDate Fri Oct 03 12:32:47 EDT 2025
Sun Oct 26 03:59:08 EDT 2025
Tue Sep 30 17:11:52 EDT 2025
Thu Oct 02 06:49:26 EDT 2025
Fri Jul 25 11:56:06 EDT 2025
Mon Oct 20 22:54:15 EDT 2025
Mon Oct 20 16:58:40 EDT 2025
Thu Apr 24 22:56:23 EDT 2025
Thu Oct 16 04:44:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c529t-928fe3d3a5b5b5882452532f42b9012f1446b82c57ad8928afc6b9f23ecfc1713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2562-172X
OpenAccessLink https://doaj.org/article/a7c7bffa87ba4c9ea6b75c392cd8f25d
PMID 37624224
PQID 2857437996
PQPubID 2032322
ParticipantIDs doaj_primary_oai_doaj_org_article_a7c7bffa87ba4c9ea6b75c392cd8f25d
unpaywall_primary_10_3390_toxics11080719
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10459777
proquest_miscellaneous_2857852000
proquest_journals_2857437996
gale_infotracmisc_A762549322
gale_infotracacademiconefile_A762549322
crossref_primary_10_3390_toxics11080719
crossref_citationtrail_10_3390_toxics11080719
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Toxics (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Naclerio (ref_17) 2020; 13
Wu (ref_35) 2018; 4
Friedman (ref_29) 2001; 29
Kyung (ref_33) 2020; 83
ref_14
ref_36
ref_12
Lee (ref_22) 2023; 14
ref_10
Zhang (ref_30) 2019; 10
Jo (ref_34) 2017; 124
Reid (ref_27) 2016; 26
Nuvolone (ref_32) 2018; 25
Greiner (ref_4) 2011; 378
ref_38
ref_15
ref_37
Klepac (ref_8) 2018; 167
Mathioudakis (ref_16) 2020; 75
Yoo (ref_2) 2012; 36
Varshney (ref_5) 2015; 67
Li (ref_18) 2022; 205
Turner (ref_9) 2020; 70
Lee (ref_11) 2022; 101
Pinakana (ref_13) 2023; 1
Lee (ref_19) 2023; 11
ref_25
ref_24
ref_23
ref_21
ref_20
ref_1
Breiman (ref_28) 2001; 45
ref_26
Bousquet (ref_6) 2020; 6
Manzoni (ref_3) 2018; 19
Kelly (ref_7) 2015; 37
Liu (ref_31) 2018; 173
References_xml – ident: ref_1
  doi: 10.1017/CBO9781139025751
– ident: ref_12
  doi: 10.3390/ijerph20042916
– ident: ref_23
  doi: 10.3390/cancers15061853
– ident: ref_21
  doi: 10.3390/biology12071033
– volume: 124
  start-page: 79
  year: 2017
  ident: ref_34
  article-title: Effects of particulate matter on respiratory disease and the impact of meteorological factors in Busan, Korea
  publication-title: Respir. Med.
  doi: 10.1016/j.rmed.2017.02.010
– ident: ref_24
  doi: 10.3390/bioengineering10080897
– volume: 205
  start-page: 112472
  year: 2022
  ident: ref_18
  article-title: Association between exposure to air pollution and risk of allergic rhinitis: A systematic review and meta-analysis
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2021.112472
– volume: 37
  start-page: 631
  year: 2015
  ident: ref_7
  article-title: Air pollution and public health: Emerging hazards and improved understanding of risk
  publication-title: Environ. Geochem. Health
  doi: 10.1007/s10653-015-9720-1
– volume: 10
  start-page: 2518
  year: 2019
  ident: ref_30
  article-title: Ozone pollution: A major health hazard worldwide
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.02518
– volume: 75
  start-page: 2170
  year: 2020
  ident: ref_16
  article-title: The need for clean air: The way air pollution and climate change affect allergic rhinitis and asthma
  publication-title: Allergy
  doi: 10.1111/all.14177
– volume: 11
  start-page: 1226182
  year: 2023
  ident: ref_19
  article-title: Deep learning in CRISPR-Cas systems: A review of recent studies
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2023.1226182
– volume: 14
  start-page: 1226336
  year: 2023
  ident: ref_22
  article-title: Machine Learning for Small Interfering RNAs: A Concise Review of Recent Developments
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2023.1226336
– volume: 25
  start-page: 8074
  year: 2018
  ident: ref_32
  article-title: The effects of ozone on human health
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-017-9239-3
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_28
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 13
  start-page: 100106
  year: 2020
  ident: ref_17
  article-title: International expert consensus on the management of allergic rhinitis (AR) aggravated by air pollutants: Impact of air pollution on patients with AR: Current knowledge and future strategies
  publication-title: World Allergy Organ. J.
  doi: 10.1016/j.waojou.2020.100106
– ident: ref_26
  doi: 10.3390/healthcare11071031
– volume: 1
  start-page: 94
  year: 2023
  ident: ref_13
  article-title: Air Pollution in South Texas: A Short Communication of Health Risks and Implications
  publication-title: Air
  doi: 10.3390/air1020008
– ident: ref_10
  doi: 10.3390/toxics10110644
– volume: 101
  start-page: e31737
  year: 2022
  ident: ref_11
  article-title: Low-to-moderate atmospheric ozone levels are negatively correlated with hospital visits by asthma patients
  publication-title: Medicine
  doi: 10.1097/MD.0000000000031737
– volume: 167
  start-page: 144
  year: 2018
  ident: ref_8
  article-title: Ambient air pollution and pregnancy outcomes: A comprehensive review and identification of environmental public health challenges
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2018.07.008
– volume: 26
  start-page: 35
  year: 2016
  ident: ref_27
  article-title: A study of error variance estimation in lasso regression
  publication-title: Stat. Sin.
– ident: ref_36
  doi: 10.3390/atmos13010080
– volume: 6
  start-page: 95
  year: 2020
  ident: ref_6
  article-title: Allergic rhinitis
  publication-title: Nat. Rev. Dis. Prim.
  doi: 10.1038/s41572-020-00227-0
– volume: 36
  start-page: 2431
  year: 2012
  ident: ref_2
  article-title: Data mining in healthcare and biomedicine: A survey of the literature
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-011-9710-5
– volume: 19
  start-page: 286
  year: 2018
  ident: ref_3
  article-title: Genome, transcriptome and proteome: The rise of omics data and their integration in biomedical sciences
  publication-title: Briefings Bioinform.
  doi: 10.1093/bib/bbw114
– volume: 173
  start-page: 223
  year: 2018
  ident: ref_31
  article-title: Ground-level ozone pollution and its health impacts in China
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2017.11.014
– ident: ref_15
  doi: 10.3390/economies11070196
– ident: ref_25
  doi: 10.3390/app13074646
– volume: 67
  start-page: 143
  year: 2015
  ident: ref_5
  article-title: Allergic rhinitis: An overview
  publication-title: Indian J. Otolaryngol. Head Neck Surg.
  doi: 10.1007/s12070-015-0828-5
– ident: ref_14
  doi: 10.3390/toxics11070591
– ident: ref_20
  doi: 10.3390/s23073365
– volume: 4
  start-page: 95
  year: 2018
  ident: ref_35
  article-title: Effects of particulate matter on allergic respiratory diseases
  publication-title: Chronic Dis. Transl. Med.
– volume: 29
  start-page: 1189
  year: 2001
  ident: ref_29
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– volume: 70
  start-page: 460
  year: 2020
  ident: ref_9
  article-title: Outdoor air pollution and cancer: An overview of the current evidence and public health recommendations
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21632
– volume: 378
  start-page: 2112
  year: 2011
  ident: ref_4
  article-title: Allergic rhinitis
  publication-title: Lancet
  doi: 10.1016/S0140-6736(11)60130-X
– volume: 83
  start-page: 116
  year: 2020
  ident: ref_33
  article-title: Particulate-matter related respiratory diseases
  publication-title: Tuberc. Respir. Dis.
  doi: 10.4046/trd.2019.0025
– ident: ref_38
  doi: 10.3390/computation8030074
– ident: ref_37
  doi: 10.3390/rs12101613
SSID ssj0000913866
Score 2.2645211
Snippet This study seeks to elucidate the intricate relationship between various air pollutants and the incidence of rhinitis in Seoul, South Korea, wherein it...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 719
SubjectTerms Air pollution
Analysis
Atmospheric models
Big Data
carbon monoxide
Correlation analysis
Data analysis
Datasets
Development and progression
Diagnosis
Emergency medical care
Environmental factors
Holidays & special occasions
hospital visits
Hospitals
Impact analysis
Influence
Investigations
Learning algorithms
Machine learning
Methods
National health insurance
Nitrogen dioxide
Outdoor air quality
Particulate matter
Patient admissions
Pollutants
Pollution control
Pollution levels
Public health
Rhinitis
Sulfur dioxide
Time lag
Variables
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9RAEB_q9UFBxE9MrbKCoC-h5yabTR5E7rSlCj1KsdK3sJ9n4EjOuxzV_96ZfGkoKnlJspOv3ZnZmc3MbwBeoQXiI2uSUHqFDookmdNKhMZlCs1zq52mfOezRXJ6GX--Eld7sOhzYSissteJjaK2laE18iOeCknYeVnyfv09pKpR9He1L6GhutIK9l0DMXYL9jkhY01gf368OL8YVl0IBTNNkha9MUJ__6iufhRmS8HwONlmo9mpAfG_qapvhk_e3pVr9fNarVZ_zE0n9-FeZ1SyWcsFD2DPlQ_hbrsix9pEo0fgz5q4Scc6SNUlmxdL9lHVivXIJKzyDA1C9qlJnaSjWbFh51QNmYoNY3vJLvAehIMUNmF0zrK-8gj7WmBfbR_D5cnxlw-nYVdlITSCZ3WY8dS7yEZKaNzQ4KY_nRH3MddoK3BPDqNOuRFS2RSJlTeJzjyPnPHmLfq4T2BSVqV7CmyqdDyNCQIQd7iKsshqPfXCW_R7tPQBhH3v5qaDIKdKGKscXREajXw8GgG8HujXLfjGXynnNFgDFYFmNyeqzTLvZDBX0kjtvUqlVrHJnEq0FAYNRGNTz4XFx9FQ5yTa-FpGdRkK-HEEkpXPcOJAdxpVYACHI0oUSTNu7pkl71TCNv_NwAG8HJrpSgpzK121a2lSAsKaBpCOmGz0ZeOWsvjWwIKjY01ggjKANwM__qfbDv79os_gDkebro13PIRJvdm552iD1fpFJ1i_APakNEM
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWgewAJ8Y0ILMhISHDJtnHiOD6hLrBakHa1QhQtp8h27BJRJVWT8vXrmUmcirBCINRLW0_Suh6P33PHbwh5CgjExYVJQ-EUEBSBc04rHhorFcDzQluN551PTtPjRfL2nJ_7DbfGp1UCFS-7IA3wmIcpEO5pFE2zqYjkdF24F1_8TlKUSpYKACjZZbKXcsDiE7K3OD2bf-wqyvlre6XGGLj9tK2_labBxHdYWOVoJeoE-y-G5Yupkle21Vp9_6pWq1_WoaMbJB960KeffD7YtvrA_PhN3PH_u3iTXPcQlc57n7pFLtnqNrnW7-_R_tjSHeJOuixMS71A65Ielkv6SrWKDjontHYU4CV90x3ExFfzckPPsLYyli6G9oq-g3ugqlLYJeXZgg51TOiHsinb5i5ZHL1-__I49DUbQsOZbEPJMmfjIlZcwwPgO_5vGjOXMA3IgzmknzpjhgtVZGCsnEm1dCy2xpkIGPM9Mqnqyt4ndKZ0MktQUBCeMBXLuNB65rgrgEVp4QISDuOXGy9ojnU1VjkQGxzvfDzeAXm2s1_3Uh5_tDxEd9hZoQR390a9WeZ-RudKGKGdU5nQKjHSqlQLbgBumiJzjBfwcehMOQYK-FpG-fMO0DmU3MrnsAwBOYeAGpD9kSVMcDNuHtwx9wGmyVnGBUpJyjQgT3bNeCUmzVW23vY2GcpqzQKSjdx41LNxS1V-6kTGgaajNKEIyPOdx__lZ3vw76YPyVUGaLHPpNwnk3aztY8A3bX6sZ_CPwFVlkx9
  priority: 102
  providerName: Unpaywall
Title Machine Learning Big Data Analysis of the Impact of Air Pollutants on Rhinitis-Related Hospital Visits
URI https://www.proquest.com/docview/2857437996
https://www.proquest.com/docview/2857852000
https://pubmed.ncbi.nlm.nih.gov/PMC10459777
https://www.mdpi.com/2305-6304/11/8/719/pdf?version=1692672318
https://doaj.org/article/a7c7bffa87ba4c9ea6b75c392cd8f25d
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2305-6304
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913866
  issn: 2305-6304
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2305-6304
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913866
  issn: 2305-6304
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2305-6304
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913866
  issn: 2305-6304
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2305-6304
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913866
  issn: 2305-6304
  databaseCode: RPM
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2305-6304
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913866
  issn: 2305-6304
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBaje9hglP1kXruiwWB7MXUly5Iek62lGzSEsozuyUiy1BmCUxqHtv997ywnxJTRl5EXO7rYsnSnuy8-fUfIZ4hAAq9ckcpgAKBItDlrROq8NhCeV9Zb3O98NilOZ_nPC3GxVeoLc8IiPXAcuEMjnbQhGCWtyZ32prBSOPDqrlKBiQpX30zpLTDVrcH6iKuiiCyNHHD9Ybu4rd0Sk97BqeqBF-rI-h8uyQ_TJJ-tmitzd2Pm8y0fdPKS7PbBIx3FTr8iT3zzmryI_7zRuKHoDQlnXX6kpz116iUd15f0u2kNXTOQ0EWgEPjRH90WSTwb1dd0ilWPsagwtDf0HK6BfEdply7nK7quMEJ_18u6Xb4ls5PjX99O076aQuoE022qmQqeV9wICx8IrPGNJmchZxZiAhYQGFrFnJCmUiBsgiusDox7F9wRYNl3ZKdZNP49oZmxeZYj1R8cMMM1r6zNgggV4BsrQ0LS9eiWrqcax4oX8xIgB85GOZyNhHzZyF9Fko1_So5xsjZSSI7dfQEqU_YqUz6mMnA7nOoSTRi65Uy_EwEeDsmwyhE4CIDNsNQlZH8gCabnhs1rZSl701-WTAmJJI-6SMinTTP-EtPZGr9YRRmFhFdZQtRAyQZPNmxp6r8d_TcAaCQNlAn5utHHR4btw_8Ytj3ynEGEF7Mf98lOe73yHyEia-0BeTo-nkzPDzojhLPZZDr6cw_6Kzt4
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lAkhHgKQ4FFAsHFali_DxVKaKuENlFVtag3d58hUmSHxFHpn-O3MeMXWBVwqnJxsmPH3tl5rWe-AXiLHoj1tArdyAoMUCKSOSkCV5lEoHuupZFU7zyehMNz_8tFcLEBP5taGEqrbHRiqah1rmiPfJfHQUTYeUn4afHdpa5R9Ha1aaEh6tYKeq-EGKsLO47M9RWGcKu90T7y-x3nhwdnn4du3WXAVQFPCjfhsTWe9kQg8YMOJ73p87j1uURbyS0FTDLmKoiEjpFYWBXKxHLPKKs-YoyH170DW77nJxj8bQ0OJien7S4PoW7GYVihRXpe0tst8h8ztaLkezTuSccalk0DbpqGm-ma2-tsIa6vxHz-hy08fAD3ayeW9atV9xA2TPYI7lU7gKwqbHoMdlzmaRpWQ7hO2WA2ZfuiEKxBQmG5ZeiAslFZqknf-rMlO6Huy9TcGMczdorXINwlt0zbM5o1nU7Y1xnyZvUEzm9lvp_CZpZn5hmwnpB-zyfIQTzgwks8LWXPBlZjnCUj64DbzG6qashz6rwxTzH0IW6kXW448L6lX1RgH3-lHBCzWioC6S5_yJfTtJb5VEQqktaKOJLCV4kRoYwChQ6p0rHlgca_I1anpErwtpSoKyLw4QiUK-2jocLwHVWuAzsdSlQBqjvcLJa0VkGr9LfAOPCmHaYzKa0uM_m6ookJeKvnQNxZZJ0n645ks28lDDkG8gReGDnwoV2P_5m25_--0dewPTwbH6fHo8nRC7jL0Z-sci13YLNYrs1L9P8K-aoWMgaXty3XvwDmh3BZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VVgIkhDiFocAigeDFSljH10OFEtKooTSKKor65u6ZRorsNIdK_yK_ihl7HbAq4KnKS5KdOPbOzrU78w3AW_RAbKBV5MdWYIASk8xJEfrKpALdcy2NpHrno1F0cNL5chqebsHPuhaG0iprnVgqal0o2iNv8SSMCTsvjVrWpUWM-4NP8wufOkjRSWvdTkO4Ngt6r4Qbc0Ueh-bqEsO55d6wj7x_x_lg_9vnA991HPBVyNOVn_LEmkAHIpT4QueTTv0Cbjtcot3kloInmXAVxkInSCysimRqeWCUVR8x3sPr3oIdOvxCJbHT2x-Njzc7PoTAmURRhRwZBGm7tSp-TNWSEvHR0KcNy1g2ELhuJq6nbt5Z53NxdSlmsz_s4uAB3HcOLetWK_AhbJn8EdyrdgNZVeT0GOxRmbNpmINznbDedML6YiVYjYrCCsvQGWXDsmyTPnWnCzamTszU6BjHc3aM1yAMJr9M4TOa1V1P2Pcp8mb5BE5uZL6fwnZe5OYZsLaQnXaH4AfxDRdBGmgp2za0GmMuGVsP_Hp2M-Xgz6kLxyzDMIi4kTW54cH7Df28Av74K2WPmLWhIsDu8otiMcmc_GciVrG0ViSxFB2VGhHJOFTonCqdWB5q_DtidUZqBW9LCVcdgQ9HAF1ZF40WhvKofj3YbVCiOlDN4XqxZE4dLbPfwuPBm80w_ZJS7HJTrCuahEC42h4kjUXWeLLmSD49LyHJMagnIMPYgw-b9fifaXv-7xt9DbdRvrOvw9HhC7jL0bWs0i53YXu1WJuX6Aqu5CsnYwzOblqsfwHsVnSI
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWgewAJ8Y0ILMhISHDJtnHiOD6hLrBakHa1QhQtp8h27BJRJVWT8vXrmUmcirBCINRLW0_Suh6P33PHbwh5CgjExYVJQ-EUEBSBc04rHhorFcDzQluN551PTtPjRfL2nJ_7DbfGp1UCFS-7IA3wmIcpEO5pFE2zqYjkdF24F1_8TlKUSpYKACjZZbKXcsDiE7K3OD2bf-wqyvlre6XGGLj9tK2_labBxHdYWOVoJeoE-y-G5Yupkle21Vp9_6pWq1_WoaMbJB960KeffD7YtvrA_PhN3PH_u3iTXPcQlc57n7pFLtnqNrnW7-_R_tjSHeJOuixMS71A65Ielkv6SrWKDjontHYU4CV90x3ExFfzckPPsLYyli6G9oq-g3ugqlLYJeXZgg51TOiHsinb5i5ZHL1-__I49DUbQsOZbEPJMmfjIlZcwwPgO_5vGjOXMA3IgzmknzpjhgtVZGCsnEm1dCy2xpkIGPM9Mqnqyt4ndKZ0MktQUBCeMBXLuNB65rgrgEVp4QISDuOXGy9ojnU1VjkQGxzvfDzeAXm2s1_3Uh5_tDxEd9hZoQR390a9WeZ-RudKGKGdU5nQKjHSqlQLbgBumiJzjBfwcehMOQYK-FpG-fMO0DmU3MrnsAwBOYeAGpD9kSVMcDNuHtwx9wGmyVnGBUpJyjQgT3bNeCUmzVW23vY2GcpqzQKSjdx41LNxS1V-6kTGgaajNKEIyPOdx__lZ3vw76YPyVUGaLHPpNwnk3aztY8A3bX6sZ_CPwFVlkx9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Big+Data+Analysis+of+the+Impact+of+Air+Pollutants+on+Rhinitis-Related+Hospital+Visits&rft.jtitle=Toxics+%28Basel%29&rft.au=Lee%2C+Soyeon&rft.au=Hyun%2C+Changwan&rft.au=Lee%2C+Minhyeok&rft.date=2023-08-01&rft.pub=MDPI+AG&rft.issn=2305-6304&rft.eissn=2305-6304&rft.volume=11&rft.issue=8&rft_id=info:doi/10.3390%2Ftoxics11080719&rft.externalDocID=A762549322
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2305-6304&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2305-6304&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2305-6304&client=summon