Multiple Country Approach to Improve the Test-Day Prediction of Dairy Cows’ Dry Matter Intake

We predicted dry matter intake of dairy cows using parity, week of lactation, milk yield, milk mid-infrared (MIR) spectrum, and MIR-based predictions of bodyweight, fat, protein, lactose, and fatty acids content in milk. The dataset comprised 10,711 samples of 534 dairy cows with a geographical dive...

Full description

Saved in:
Bibliographic Details
Published inAnimals (Basel) Vol. 11; no. 5; p. 1316
Main Authors Tedde, Anthony, Grelet, Clément, Ho, Phuong, Pryce, Jennie, Hailemariam, Dagnachew, Wang, Zhiquan, Plastow, Graham, Gengler, Nicolas, Froidmont, Eric, Dehareng, Frédéric, Bertozzi, Carlo, Crowe, Mark, Soyeurt, Hélène
Format Journal Article Web Resource
LanguageEnglish
Published Basel MDPI AG 04.05.2021
MDPI
Subjects
Online AccessGet full text
ISSN2076-2615
2076-2615
DOI10.3390/ani11051316

Cover

Abstract We predicted dry matter intake of dairy cows using parity, week of lactation, milk yield, milk mid-infrared (MIR) spectrum, and MIR-based predictions of bodyweight, fat, protein, lactose, and fatty acids content in milk. The dataset comprised 10,711 samples of 534 dairy cows with a geographical diversity (Australia, Canada, Denmark, and Ireland). We set up partial least square (PLS) regressions with different constructs and a one-hidden-layer artificial neural network (ANN) using the highest contribution variables. In the ANN, we replaced the spectra with their projections to the 25 first PLS factors explaining 99% of the spectral variability to reduce the model complexity. Cow-independent 10 × 10-fold cross-validation (CV) achieved the best performance with root mean square errors (RMSECV) of 3.27 ± 0.08 kg for the PLS regression and 3.25 ± 0.13 kg for ANN. Although the available data were significantly different, we also performed a country-independent validation (CIV) to measure the models’ performance fairly. We found RMSECIV varying from 3.73 to 6.03 kg for PLS and 3.69 to 5.08 kg for ANN. Ultimately, based on the country-independent validation, we discussed the developed models’ performance with those achieved by the National Research Council’s equation.
AbstractList Simple SummaryDry matter intake, related to the number of nutrients available to an animal to meet its production and health needs, is crucial for the economic, environmental, and welfare management of dairy herds. Because the equipment required to weigh the ingested food at an individual level is not broadly available, we propose some new ways to approach the actual dry matter consumed by a dairy cow for a given day. To do so, we used regression models using parity (number of lactations), week of lactation, milk yield, milk mid-infrared spectrum, and prediction of bodyweight, fat, protein, lactose, and fatty acids content in milk. We chose these elements to predict individual dry matter intake because they are either easily accessible or routinely provided by regional dairy organizations (often called “dairy herd improvement” associations). We succeeded in producing a model whose dry matter intake predictions were moderately related to the actual values.AbstractWe predicted dry matter intake of dairy cows using parity, week of lactation, milk yield, milk mid-infrared (MIR) spectrum, and MIR-based predictions of bodyweight, fat, protein, lactose, and fatty acids content in milk. The dataset comprised 10,711 samples of 534 dairy cows with a geographical diversity (Australia, Canada, Denmark, and Ireland). We set up partial least square (PLS) regressions with different constructs and a one-hidden-layer artificial neural network (ANN) using the highest contribution variables. In the ANN, we replaced the spectra with their projections to the 25 first PLS factors explaining 99% of the spectral variability to reduce the model complexity. Cow-independent 10 × 10-fold cross-validation (CV) achieved the best performance with root mean square errors (RMSECV) of 3.27 ± 0.08 kg for the PLS regression and 3.25 ± 0.13 kg for ANN. Although the available data were significantly different, we also performed a country-independent validation (CIV) to measure the models’ performance fairly. We found RMSECIV varying from 3.73 to 6.03 kg for PLS and 3.69 to 5.08 kg for ANN. Ultimately, based on the country-independent validation, we discussed the developed models’ performance with those achieved by the National Research Council’s equation.
We predicted dry matter intake of dairy cows using parity, week of lactation, milk yield, milk mid-infrared (MIR) spectrum, and MIR-based predictions of bodyweight, fat, protein, lactose, and fatty acids content in milk. The dataset comprised 10,711 samples of 534 dairy cows with a geographical diversity (Australia, Canada, Denmark, and Ireland). We set up partial least square (PLS) regressions with different constructs and a one-hidden-layer artificial neural network (ANN) using the highest contribution variables. In the ANN, we replaced the spectra with their projections to the 25 first PLS factors explaining 99% of the spectral variability to reduce the model complexity. Cow-independent 10 × 10-fold cross-validation (CV) achieved the best performance with root mean square errors (RMSECV) of 3.27 ± 0.08 kg for the PLS regression and 3.25 ± 0.13 kg for ANN. Although the available data were significantly different, we also performed a country-independent validation (CIV) to measure the models' performance fairly. We found RMSECIV varying from 3.73 to 6.03 kg for PLS and 3.69 to 5.08 kg for ANN. Ultimately, based on the country-independent validation, we discussed the developed models' performance with those achieved by the National Research Council's equation.We predicted dry matter intake of dairy cows using parity, week of lactation, milk yield, milk mid-infrared (MIR) spectrum, and MIR-based predictions of bodyweight, fat, protein, lactose, and fatty acids content in milk. The dataset comprised 10,711 samples of 534 dairy cows with a geographical diversity (Australia, Canada, Denmark, and Ireland). We set up partial least square (PLS) regressions with different constructs and a one-hidden-layer artificial neural network (ANN) using the highest contribution variables. In the ANN, we replaced the spectra with their projections to the 25 first PLS factors explaining 99% of the spectral variability to reduce the model complexity. Cow-independent 10 × 10-fold cross-validation (CV) achieved the best performance with root mean square errors (RMSECV) of 3.27 ± 0.08 kg for the PLS regression and 3.25 ± 0.13 kg for ANN. Although the available data were significantly different, we also performed a country-independent validation (CIV) to measure the models' performance fairly. We found RMSECIV varying from 3.73 to 6.03 kg for PLS and 3.69 to 5.08 kg for ANN. Ultimately, based on the country-independent validation, we discussed the developed models' performance with those achieved by the National Research Council's equation.
We predicted dry matter intake of dairy cows using parity, week of lactation, milk yield, milk mid-infrared (MIR) spectrum, and MIR-based predictions of bodyweight, fat, protein, lactose, and fatty acids content in milk. The dataset comprised 10,711 samples of 534 dairy cows with a geographical diversity (Australia, Canada, Denmark, and Ireland). We set up partial least square (PLS) regressions with different constructs and a one-hidden-layer artificial neural network (ANN) using the highest contribution variables. In the ANN, we replaced the spectra with their projections to the 25 first PLS factors explaining 99% of the spectral variability to reduce the model complexity. Cow-independent 10 × 10-fold cross-validation (CV) achieved the best performance with root mean square errors (RMSECV) of 3.27 ± 0.08 kg for the PLS regression and 3.25 ± 0.13 kg for ANN. Although the available data were significantly different, we also performed a country-independent validation (CIV) to measure the models’ performance fairly. We found RMSECIV varying from 3.73 to 6.03 kg for PLS and 3.69 to 5.08 kg for ANN. Ultimately, based on the country-independent validation, we discussed the developed models’ performance with those achieved by the National Research Council’s equation.
Author Dehareng, Frédéric
Froidmont, Eric
Tedde, Anthony
Wang, Zhiquan
Ho, Phuong
Hailemariam, Dagnachew
Gengler, Nicolas
Bertozzi, Carlo
Plastow, Graham
Pryce, Jennie
Grelet, Clément
Crowe, Mark
Soyeurt, Hélène
AuthorAffiliation 7 Walloon Breeding Association, 5590 Ciney, Belgium; cbertozzi@awenet.be
4 Agriculture Victoria Research, Centre for AgriBioscience, AgriBio, Bundoora, VIC 3083, Australia; phuong.ho@agriculture.vic.gov.au (P.N.H.); jennie.pryce@agriculture.vic.gov.au (J.E.P.)
1 AGROBIOCHEM Department, Research and Teaching Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; Nicolas.Gengler@uliege.be (N.G.); hsoyeurt@uliege.be (H.S.)
8 UCD School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland; mark.crowe@ucd.ie
5 School of Applied Systems Biology, La Trobe University, 5 Ring Road, Bundoora, VIC 3083, Australia
2 National Funds for Scientific Research, 1000 Brussels, Belgium
6 Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; hailemar@ualberta.ca (D.H.); zhiquan.wang@ualberta.ca (Z.W.); plastow@ualberta.ca (G.P.)
3 Walloon Agricultural Research Center (CRA-W), 5030 Gembloux, Belgium; c.grelet@cra
AuthorAffiliation_xml – name: 2 National Funds for Scientific Research, 1000 Brussels, Belgium
– name: 4 Agriculture Victoria Research, Centre for AgriBioscience, AgriBio, Bundoora, VIC 3083, Australia; phuong.ho@agriculture.vic.gov.au (P.N.H.); jennie.pryce@agriculture.vic.gov.au (J.E.P.)
– name: 3 Walloon Agricultural Research Center (CRA-W), 5030 Gembloux, Belgium; c.grelet@cra.wallonie.be (C.G.); e.froidmont@cra.wallonie.be (E.F.); f.dehareng@cra.wallonie.be (F.D.)
– name: 5 School of Applied Systems Biology, La Trobe University, 5 Ring Road, Bundoora, VIC 3083, Australia
– name: 8 UCD School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland; mark.crowe@ucd.ie
– name: 1 AGROBIOCHEM Department, Research and Teaching Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; Nicolas.Gengler@uliege.be (N.G.); hsoyeurt@uliege.be (H.S.)
– name: 6 Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; hailemar@ualberta.ca (D.H.); zhiquan.wang@ualberta.ca (Z.W.); plastow@ualberta.ca (G.P.)
– name: 7 Walloon Breeding Association, 5590 Ciney, Belgium; cbertozzi@awenet.be
Author_xml – sequence: 1
  givenname: Anthony
  orcidid: 0000-0002-4882-3386
  surname: Tedde
  fullname: Tedde, Anthony
– sequence: 2
  givenname: Clément
  orcidid: 0000-0003-3313-485X
  surname: Grelet
  fullname: Grelet, Clément
– sequence: 3
  givenname: Phuong
  surname: Ho
  fullname: Ho, Phuong
– sequence: 4
  givenname: Jennie
  surname: Pryce
  fullname: Pryce, Jennie
– sequence: 5
  givenname: Dagnachew
  surname: Hailemariam
  fullname: Hailemariam, Dagnachew
– sequence: 6
  givenname: Zhiquan
  surname: Wang
  fullname: Wang, Zhiquan
– sequence: 7
  givenname: Graham
  surname: Plastow
  fullname: Plastow, Graham
– sequence: 8
  givenname: Nicolas
  orcidid: 0000-0002-5981-5509
  surname: Gengler
  fullname: Gengler, Nicolas
– sequence: 9
  givenname: Eric
  orcidid: 0000-0002-7950-4193
  surname: Froidmont
  fullname: Froidmont, Eric
– sequence: 10
  givenname: Frédéric
  orcidid: 0000-0002-6733-4334
  surname: Dehareng
  fullname: Dehareng, Frédéric
– sequence: 11
  givenname: Carlo
  surname: Bertozzi
  fullname: Bertozzi, Carlo
– sequence: 12
  givenname: Mark
  surname: Crowe
  fullname: Crowe, Mark
– sequence: 13
  givenname: Hélène
  orcidid: 0000-0001-9883-9047
  surname: Soyeurt
  fullname: Soyeurt, Hélène
BookMark eNqFUstu1DAUjVARLaUrfsASG6Qq4EfsOBukaobHSK1gUdaW41zPeMjEwXEGzY7f4Pf4EpxJhdoKCW98ZJ9z7vN5dtL5DrLsJcFvGKvwW905QjAnjIgn2RnFpcipIPzkHj7NLoZhi9MpOSOcPMtOWYFFUZDyLFM3Yxtd3wJa-LGL4YCu-j54bTYoerTaJbwHFDeAbmGI-VIf0JcAjTPR-Q55i5baJdHC_xh-__yFlgnf6BghoFUX9Td4kT21uh3g4u4-z75-eH-7-JRff_64Wlxd54bTKuZljaGoudDacskMprTUBZOV5dZKQkta4oqYhteyloCJLSqJmcVGC1JXAmN2nq1m38brreqD2-lwUF47dXzwYa10iM60oKChWlgobAWiSG41gNXQlJZTkbIok9e72asf6x00BlJfdPvA9OFP5zZq7fdKkqKUjCUDNhu0DtaQgtdO7elReMRjm7IxqgZFqZCKSlkVk-r1Xdjgv4-p22rnBgNtqzvw46Ao5xRTSdOw_09lqTSC2UR99Yi69WPo0iwmFmEVm1mXM8sEPwwB7N9qCVbToql7i5bY5BHbuKinjUjtcO0_NX8AxvfVrA
CitedBy_id crossref_primary_10_1007_s11250_025_04295_w
crossref_primary_10_3390_dairy4030028
crossref_primary_10_1016_j_atech_2023_100286
crossref_primary_10_3168_jds_2024_24701
crossref_primary_10_3390_s22010052
crossref_primary_10_3390_ani13030509
Cites_doi 10.1002/ejlt.200700080
10.3168/jds.2010-3408
10.3168/jds.2019-17473
10.1016/j.livsci.2019.07.007
10.1007/978-0-387-21706-2
10.1016/j.anireprosci.2010.12.001
10.3168/jds.2016-11609
10.3168/jds.2020-18870
10.3168/jds.S0022-0302(97)76142-3
10.3168/jds.2009-2431
10.3168/jds.2010-3888
10.3168/jds.2019-16363
10.3168/jds.2019-17910
10.2527/jas.2011-4528
10.3168/jds.2014-8764
10.1177/0967033519848296
10.3168/jds.S0022-0302(07)71546-1
10.1017/S0022029911000550
10.3168/jds.S0022-0302(98)75704-2
10.3168/jds.2017-13874
10.1016/j.ymeth.2020.07.012
10.1017/S0021859600066910
10.1051/rnd:2005059
10.1007/978-1-4614-6849-3
10.1016/S0169-7439(99)00047-7
10.3168/jds.2008-1734
10.3168/jds.S0022-0302(02)74411-1
10.1255/nirn.1165
10.3168/jds.2017-13338
10.1016/j.theriogenology.2007.04.031
10.1002/jsfa.10969
10.2527/jas.2006-353
10.1071/AN18532
ContentType Journal Article
Web Resource
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
CorporateAuthor on behalf of the GplusE Consortium
CorporateAuthor_xml – name: on behalf of the GplusE Consortium
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
Q33
5PM
DOA
DOI 10.3390/ani11051316
DatabaseName CrossRef
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Université de Liège - Open Repository and Bibliography (ORBI)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic

AGRICOLA
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 2076-2615
ExternalDocumentID oai_doaj_org_article_ed2a6fe4f9e648e0beefaed7f5260e47
PMC8147833
oai_orbi_ulg_ac_be_2268_288943
10_3390_ani11051316
GeographicLocations Ireland
Denmark
Canada
Australia
GeographicLocations_xml – name: Ireland
– name: Denmark
– name: Canada
– name: Australia
GroupedDBID 5VS
7XC
8FE
8FH
AAFWJ
AAHBH
AAYXX
ABDBF
ACUHS
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
APEBS
BENPR
CCPQU
CITATION
DIK
EAD
EAP
EPL
ESX
GROUPED_DOAJ
HYE
IAO
ITC
LK8
M48
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
TUS
ZBA
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
7S9
L.6
Q33
5PM
ID FETCH-LOGICAL-c529t-7b0e4b56aaf583c0227a4389f5ff812727091cd5b8b8e01f49803f0ca61b96003
IEDL.DBID M48
ISSN 2076-2615
IngestDate Wed Aug 27 01:28:33 EDT 2025
Thu Aug 21 18:20:56 EDT 2025
Fri Jul 18 15:34:51 EDT 2025
Fri Sep 05 13:10:53 EDT 2025
Fri Sep 05 09:37:14 EDT 2025
Mon Jun 30 11:15:52 EDT 2025
Thu Apr 24 23:05:05 EDT 2025
Tue Jul 01 02:59:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c529t-7b0e4b56aaf583c0227a4389f5ff812727091cd5b8b8e01f49803f0ca61b96003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
scopus-id:2-s2.0-85105154815
List of authors in the GplusE consortium provided in the acknowledgments.
ORCID 0000-0002-4882-3386
0000-0002-6733-4334
0000-0002-7950-4193
0000-0001-9883-9047
0000-0003-3313-485X
0000-0002-5981-5509
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ani11051316
PMID 34064417
PQID 2531393031
PQPubID 2032438
ParticipantIDs doaj_primary_oai_doaj_org_article_ed2a6fe4f9e648e0beefaed7f5260e47
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8147833
liege_orbi_v2_oai_orbi_ulg_ac_be_2268_288943
proquest_miscellaneous_2552028251
proquest_miscellaneous_2536481031
proquest_journals_2531393031
crossref_primary_10_3390_ani11051316
crossref_citationtrail_10_3390_ani11051316
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210504
PublicationDateYYYYMMDD 2021-05-04
PublicationDate_xml – month: 5
  year: 2021
  text: 20210504
  day: 4
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Animals (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Berry (ref_2) 2007; 90
Lahart (ref_14) 2019; 102
Mayes (ref_42) 1986; 107
Walsh (ref_5) 2011; 123
Grelet (ref_16) 2020; 103
Grelet (ref_26) 2015; 98
ref_36
ref_13
ref_35
Dardenne (ref_41) 2010; 21
ref_34
ref_33
ref_32
ref_31
Grelet (ref_17) 2021; 186
Enevoldsen (ref_43) 1997; 80
Meuwissen (ref_15) 2018; 101
ref_18
Roche (ref_9) 2009; 92
Connor (ref_10) 2012; 90
Grummer (ref_6) 2007; 68
ref_38
ref_37
Soyeurt (ref_20) 2020; 103
Brand (ref_7) 2005; 45
Vallimont (ref_4) 2011; 94
Soyeurt (ref_22) 2009; 92
Gulati (ref_45) 2018; 101
Kolver (ref_39) 1998; 81
Massart (ref_28) 2000; 50
Fearn (ref_29) 2019; 27
Chilliard (ref_40) 2007; 109
ref_44
Mahalanobis (ref_27) 1936; 12
Westwood (ref_3) 2002; 85
Shetty (ref_11) 2017; 100
McCulloch (ref_24) 1943; 5
ref_1
Soyeurt (ref_19) 2011; 94
Delhez (ref_30) 2020; 103
Ho (ref_25) 2020; 60
Basarab (ref_12) 2013; 7
Lake (ref_8) 2007; 85
Gross (ref_23) 2011; 78
Soyeurt (ref_21) 2019; 227
References_xml – volume: 109
  start-page: 828
  year: 2007
  ident: ref_40
  article-title: Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat
  publication-title: Eur. J. Lipid Sci. Technol.
  doi: 10.1002/ejlt.200700080
– volume: 94
  start-page: 1657
  year: 2011
  ident: ref_19
  article-title: Mid-infrared prediction of bovine milk fatty acids across multiple breeds, production systems, and countries
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2010-3408
– volume: 103
  start-page: 3264
  year: 2020
  ident: ref_30
  article-title: Diagnosing the pregnancy status of dairy cows: How useful is milk mid-infrared spectroscopy?
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2019-17473
– ident: ref_32
– volume: 227
  start-page: 82
  year: 2019
  ident: ref_21
  article-title: Contribution of milk mid-infrared spectrum to improve the accuracy of test-day body weight predicted from stage, lactation number, month of test and milk yield
  publication-title: Livest. Sci.
  doi: 10.1016/j.livsci.2019.07.007
– ident: ref_34
– ident: ref_36
  doi: 10.1007/978-0-387-21706-2
– volume: 123
  start-page: 127
  year: 2011
  ident: ref_5
  article-title: A review of the causes of poor fertility in high milk producing dairy cows
  publication-title: Anim. Reprod. Sci.
  doi: 10.1016/j.anireprosci.2010.12.001
– volume: 100
  start-page: 253
  year: 2017
  ident: ref_11
  article-title: Prediction and validation of residual feed intake and dry matter intake in Danish lactating dairy cows using mid-infrared spectroscopy of milk
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2016-11609
– volume: 103
  start-page: 11585
  year: 2020
  ident: ref_20
  article-title: A comparison of 4 different machine learning algorithms to predict lactoferrin content in bovine milk from mid-infrared spectra
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2020-18870
– volume: 80
  start-page: 1988
  year: 1997
  ident: ref_43
  article-title: Estimation of Body Weight from Body Size Measurements and Body Condition Scores in Dairy Cows
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(97)76142-3
– volume: 92
  start-page: 5769
  year: 2009
  ident: ref_9
  article-title: Invited review: Body condition score and its association with dairy cow productivity, health, and welfare
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2009-2431
– volume: 94
  start-page: 2108
  year: 2011
  ident: ref_4
  article-title: Short communication: Heritability of gross feed efficiency and associations with yield, intake, residual intake, body weight, and body condition score in 11 commercial Pennsylvania tie stalls
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2010-3888
– volume: 102
  start-page: 8907
  year: 2019
  ident: ref_14
  article-title: Predicting the dry matter intake of grazing dairy cows using infrared reflectance spectroscopy analysis
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2019-16363
– ident: ref_37
– ident: ref_1
– volume: 103
  start-page: 4435
  year: 2020
  ident: ref_16
  article-title: Potential of milk mid-infrared spectra to predict nitrogen use efficiency of individual dairy cows in early lactation
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2019-17910
– ident: ref_35
– volume: 90
  start-page: 1687
  year: 2012
  ident: ref_10
  article-title: TRIENNIAL LACTATION SYMPOSIUM: Opportunities for improving milk production efficiency in dairy cattle1,2
  publication-title: J. Anim. Sci.
  doi: 10.2527/jas.2011-4528
– volume: 98
  start-page: 2150
  year: 2015
  ident: ref_26
  article-title: Standardization of milk mid-infrared spectra from a European dairy network
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2014-8764
– volume: 27
  start-page: 253
  year: 2019
  ident: ref_29
  article-title: A note on Mahalanobis and related distance measures in WinISI and The Unscrambler
  publication-title: J. Near Infrared Spectrosc.
  doi: 10.1177/0967033519848296
– volume: 90
  start-page: 637
  year: 2007
  ident: ref_2
  article-title: Associations Among Body Condition Score, Body Weight, Somatic Cell Count, and Clinical Mastitis in Seasonally Calving Dairy Cattle
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(07)71546-1
– volume: 78
  start-page: 479
  year: 2011
  ident: ref_23
  article-title: Milk fatty acid profile related to energy balance in dairy cows
  publication-title: J. Dairy Res.
  doi: 10.1017/S0022029911000550
– volume: 81
  start-page: 1403
  year: 1998
  ident: ref_39
  article-title: Performance and Nutrient Intake of High Producing Holstein Cows Consuming Pasture or a Total Mixed Ration
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(98)75704-2
– volume: 101
  start-page: 6232
  year: 2018
  ident: ref_15
  article-title: Milk mid-infrared spectral data as a tool to predict feed intake in lactating Norwegian Red dairy cows
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2017-13874
– volume: 186
  start-page: 97
  year: 2021
  ident: ref_17
  article-title: Large-scale phenotyping in dairy sector using milk MIR spectra: Key factors affecting the quality of predictions
  publication-title: Methods
  doi: 10.1016/j.ymeth.2020.07.012
– ident: ref_31
– ident: ref_33
– volume: 7
  start-page: 303
  year: 2013
  ident: ref_12
  article-title: Reducing GHG emissions through genetic improvement for feed efficiency: Effects on economically important traits and enteric methane production
  publication-title: Animals
– volume: 12
  start-page: 49
  year: 1936
  ident: ref_27
  article-title: On the generalised distance in statistics
  publication-title: Proc. Natl. Inst. Sci. India
– volume: 107
  start-page: 161
  year: 1986
  ident: ref_42
  article-title: The use of dosed and herbage n-alkanes as markers for the determination of herbage intake
  publication-title: J. Agric. Sci.
  doi: 10.1017/S0021859600066910
– volume: 45
  start-page: 665
  year: 2005
  ident: ref_7
  article-title: Effect of dietary energy source on energy balance, production, metabolic disorders and reproduction in lactating dairy cattle
  publication-title: Reprod. Nutr. Dev.
  doi: 10.1051/rnd:2005059
– ident: ref_44
  doi: 10.1007/978-1-4614-6849-3
– volume: 50
  start-page: 1
  year: 2000
  ident: ref_28
  article-title: The Mahalanobis distance
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(99)00047-7
– volume: 92
  start-page: 2444
  year: 2009
  ident: ref_22
  article-title: Potential estimation of major mineral contents in cow milk using mid-infrared spectrometry
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2008-1734
– volume: 5
  start-page: 115
  year: 1943
  ident: ref_24
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull. Math. Biol.
– ident: ref_13
– ident: ref_38
– volume: 85
  start-page: 3225
  year: 2002
  ident: ref_3
  article-title: Factors Influencing Fertility of Holstein Dairy Cows: A Multivariate Description
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(02)74411-1
– volume: 21
  start-page: 8
  year: 2010
  ident: ref_41
  article-title: Some Considerations about NIR Spectroscopy: Closing Speech at NIR-2009
  publication-title: NIR News
  doi: 10.1255/nirn.1165
– volume: 101
  start-page: 2710
  year: 2018
  ident: ref_45
  article-title: Outdoor grazing of dairy cows on pasture versus indoor feeding on total mixed ration: Effects on gross composition and mineral content of milk during lactation
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2017-13338
– volume: 68
  start-page: S281
  year: 2007
  ident: ref_6
  article-title: Strategies to improve fertility of high yielding dairy farms: Management of the dry period
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2007.04.031
– ident: ref_18
  doi: 10.1002/jsfa.10969
– volume: 85
  start-page: 717
  year: 2007
  ident: ref_8
  article-title: Effects of postpartum dietary fat and body condition score at parturition on plasma, adipose tissue, and milk fatty acid composition of lactating beef cows1
  publication-title: J. Anim. Sci.
  doi: 10.2527/jas.2006-353
– volume: 60
  start-page: 164
  year: 2020
  ident: ref_25
  article-title: Predicting milk fatty acids and energy balance of dairy cows in Australia using milk mid-infrared spectroscopy
  publication-title: Anim. Prod. Sci.
  doi: 10.1071/AN18532
RestrictionsOnAccess open access
SSID ssj0000753151
Score 2.2955778
Snippet We predicted dry matter intake of dairy cows using parity, week of lactation, milk yield, milk mid-infrared (MIR) spectrum, and MIR-based predictions of...
Simple SummaryDry matter intake, related to the number of nutrients available to an animal to meet its production and health needs, is crucial for the...
SourceID doaj
pubmedcentral
liege
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1316
SubjectTerms Accuracy
Agriculture & agronomie
Agriculture & agronomy
Animal lactation
Animal Science and Zoology
artificial neural network
Australia
body weight
Canada
Councils
Dairy cattle
dairy cows
data collection
Datasets
Denmark
Diet
Dimensionality reduc-tion
dimensionality reduction
dry matter intake
equations
Farms
Fatty acids
feed efficiency
feed intake
Feeds
General Veterinary
Ireland
lactation
lactose
Life sciences
machine learning
mid infrared spectra
Milk
milk yield
neural networks
partial least square
prediction
Sciences du vivant
Variables
Veterinary (all)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Pi9UwEA-yIHgR_2J1lQh7Ess2_9r0uO5zWYUnHnZh8RKSdIJPH-3ytk_Zm1_Dr-cncZJ2Hy0Ie_FW2mnSTibMb5LJbwg54IGxOnidY6jhclkBy22hZc684KzUjjVNDBSXn8rTc_nxQl1MSn3FnLCBHnhQ3CE03JYBZKihlBoKBxAsNFVQiMRBpnPkRV1Mgqlvw_acQF82HMgTGNcf2naFnk4xESubT1xQYupHZLqOe9QzmDlPkpx4nZMH5P4IF-nR8JkPyR1oH5G7X7q0GP6YmOWYD0jj2fJ-c02PRo5w2nd0WDAAihiPnmFn-cJe08-buDUTh4N2gS7sCl867n5e_fn1my7wepkIN-mHtrff4Qk5P3l_dnyajyUTcq943eeVQ504VVoblBY-8gPaWN88qBDQlSNYQXzgG-W0Q12yIGtdiFB4WzKHsUwhnpK9tmvhGaGVKzkPTbAOhLRcal9jKIIOzwsZoFIZeXOjReNHPvFY1mJtMK6IKjcTlWfkYCd8OdBo_FvsXRyOnUjkvk430CLMaBHmNovIyNs0mPiSW5kfPLWSrrdrbMUbBwZBpzZcR_L5jOzfjLkZ5--V4Wg-okb3zjLyevcYZ17cTrEtdNskg_2zW2QUH44HZ6Sa2dPsH-dP2tXXxPOtmay0EM__h1JekHs8ZuPEVE25T_b6zRZeIpzq3as0c_4CgvYhTQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3daxQxEA-1RfBF_MTVKhH6JC7dfO1mH0TaXksV7ijSQvElJNlED4_det1T-ua_4b_nX-Iku3veguhb2J18TpKZSSa_QWiPekJKb2UKpoZJeeFIqjPJU2IZJbk0pKqCoTid5acX_P2luNxCs-EtTHCrHPbEuFFXjQ1n5PsUJgsrYcMlb6--piFqVLhdHUJo6D60QvUmQozdQjuwJUuY9zuHx7OzD-tTFxCQDGRc91CPgb2_r-s5SEBBWIh4viGaIoI_aKyLcHc9Uj_HzpMb0ujkHrrbq5H4oOP7fbTl6gfo9scmHpI_RGra-wni8Oa8Xd7ggx47HLcN7g4SHAbdD59DZelE3-CzZbiyCWzCjccTPYdMR833618_fuIJpKcRiBO_q1v9xT1CFyfH50enaR9KIbWClm1amMxxI3KtvZDMBtxAHeKee-E9iHhQYkBvsJUw0kiXEc9LmTGfWZ0TAzZOxh6j7bqp3ROEC5NT6iuvjWNcUy5tCSYKCELLuHeFSNCrYRSV7XHGQ7iLhQJ7Iwy52hjyBO2tia86eI2_kx0GdqxJAiZ2_NAsP6l-iSlXUZ17x33pcg69MM557arCC2ie40WCXkdmQiYzV99oLCWmVwsoxSrjFCijUlEZQOkTtDvwXPXr-lr9mYUJern-DSsyXLPo2jWrSAP1k__QCNo9G05QMZpPoz6O_9TzzxH_WxJeSMae_ruBz9AdGvxvgnMm30Xb7XLlnoMC1ZoX_ar4DYiDHTA
  priority: 102
  providerName: ProQuest
Title Multiple Country Approach to Improve the Test-Day Prediction of Dairy Cows’ Dry Matter Intake
URI https://www.proquest.com/docview/2531393031
https://www.proquest.com/docview/2536481031
https://www.proquest.com/docview/2552028251
http://orbi.ulg.ac.be/handle/2268/288943
https://pubmed.ncbi.nlm.nih.gov/PMC8147833
https://doaj.org/article/ed2a6fe4f9e648e0beefaed7f5260e47
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtQwFLVKKyQ2FU8RKCMjdYUIxK_EWSDUdloVpKkq1JEqNpad2GVglJQ0A8yO3-D3-BKuncyoQZVgFyXXTuJr657jx7kI7VJHSO4KGQPVMDHPLIl1InlMCkZJKg0pS08UJyfp8ZS_PxfnG2iVjLNvwKsbqZ3PJzVt5q9-fF2-hQH_xjNOoOyvdTWDICYII-kttAUhKfUsbNLj_M_dah0jIRUjBd4eA2sQ3Vm9v8sPolMQ8QfQOvfL1wMEOtw_eS0gHd1F2z2SxHud6--hDVvdR7c_1mGe_AFSk36rIPbHzttmifd6-XDc1ribS7AY4B8-g5fFY73Ep41ftfGewrXDYz2DQgf196vfP3_hMVxPghYnfle1-ot9iKZHh2cHx3GfTSEuBM3bODOJ5UakWjshWeGlA7VPfe6EcxDlAccAdChKYaSRNiGO5zJhLil0SgzQnIQ9QptVXdnHCGcmpdSVThvLuKZcFjmwFIiFBePOZiJCL1atqIpeatxnvJgroBy-ydW1Jo_Q7tr4slPYuNls37tjbeJlscONurlQ_ShTtqQ6dZa73KYc_sJY67QtMyfg8yzPIvQyOBMKmZn6RkMt4Xoxh1oKZawCPCoVlV6XPkI7K5-rVc9UFLoSyyHykwg9Xz-GQelXWnRl60WwgfeTf9gI2p0cjlA26E-Dfxw-qWafggS4JDyTjD35j9qfojvU78PxmzT5Dtpsm4V9BkCqNSO0tX94cvphFCYiRmHI_AG9hx9J
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLZGJwQ3iF8RGGCkcYOIFv8kcS4mtK2bWrZWE-qkiRtjOzarViWjTZl6x2vwMjwMT8JxmpZWQnC1uyg5cRz7-Hzn2OcHoW3qCMmcESGYGjrkqSWhigQPiWGUJEKTPPeGYq-fdM74h_P4fAP9XMTCeLfKhUysBXVeGr9HvkOBWVgGApe8v_oa-qpR_nR1UUJDNaUV8t06xVgT2HFsZ9dgwk12u22Y7zeUHh0ODjphU2UgNDHNqjDVkeU6TpRysWDGp9RTviS4i50D9AN8B0g1eayFFjYijmciYi4yKiEa1P-IQbu30CaoHRlvoc39w_7px-UuDwAyA0ydBwYylkU7qhgC4saE-QrrK1BYVwwADXnkz8rX1N11Z80V9Du6j-41aivem_PZA7Rhi4fo9qey3pR_hGSv8UvEPsa9Gs_wXpOrHFclnm9cWAy6Jh7Ax8K2muHTsT8i8myBS4fbaggvHZTXk1_ff-A2XPfqxJ-4W1Tq0j5GZzcyqE9QqygL-xThVCeUutwpbRlXlAuTgUkEwGsYdzaNA_R2MYrSNHnNfXmNkQT7xg-5XBnyAG0via_m6Tz-Trbvp2NJ4nNw1zfK8RfZLGlpc6oSZ7nLbMLhL7S1Ttk8dTF0z_I0QO_qyYSX9FB-o3Ur9fV0BK0Yqa0E5VdIKnwS_ABtLeZcNnJkIv9wfYBeLx-DBPDHOqqw5bSmge-T_9DEdB6mHKB0jZ_W_nH9STG8qPONC8JTwdizf3fwFbrTGfRO5Em3f_wc3aXe98c7hvIt1KrGU_sClLdKv2xWCEafb3pR_gbMfljA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLZGJxA3iF8RGGCkcYOIGv8kcS4mtK2rVkarCm3SxI1nOzZUVMloU6be8Rq8Eo_Bk3CcpqWVEFztLkpOHMf2Od859vlBaJc6QjJnRAimhg55akmoIsFDYhglidAkz72h2B8kx2f83Xl8voV-LmNhvFvlUibWgjovjd8jb1NYLCwDgUvarnGLGHa6by-_hr6ClD9pXZbTUE2ZhXyvTjfWBHmc2PkVmHPTvV4H5v4Vpd2j08PjsKk4EJqYZlWY6shyHSdKuVgw49PrKV8e3MXOARIC1gO8mjzWQgsbEcczETEXGZUQDaZAxKDdG2g7BZSkLbR9cDQYfljt-AA4M8DXRZAgY1nUVsUI0DcmzFdbX4PFunoAaMtjf26-ofpuOm6uIWH3LrrTqLB4f7Hm7qEtW9xHNz-W9Qb9AyT7jY8i9vHu1WSO95u85bgq8WITw2LQO_EpfCzsqDkeTvxxkV8iuHS4o0bw0mF5Nf31_QfuwHW_TgKKe0WlvtiH6OxaBvURahVlYR8jnOqEUpc7pS3jinJhMjCPAIQN486mcYBeL0dRmibHuS-1MZZg6_ghl2tDHqDdFfHlIrXH38kO_HSsSHw-7vpGOfkkG_aWNqcqcZa7zCYc_kJb65TNUxdD9yxPA_Smnkx4SY_kN1q3Ul_PxtCKkdpKUISFpMInxA_QznLOZSNTpvIPBwTo5eoxSAN_xKMKW85qGvg--Q9NTBchywFKN9bTxj9uPilGn-vc44LwVDD25N8dfIFuAXPK973ByVN0m3o3IO8jyndQq5rM7DPQ4yr9vGEQjC6umyd_A55XXOs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Country+Approach+to+Improve+the+Test-Day+Prediction+of+Dairy+Cows%E2%80%99+Dry+Matter+Intake&rft.jtitle=Animals+%28Basel%29&rft.au=Tedde%2C+Anthony&rft.au=Grelet%2C+Cl%C3%A9ment&rft.au=Ho%2C+Phuong+N&rft.au=Pryce%2C+Jennie+E&rft.date=2021-05-04&rft.issn=2076-2615&rft.eissn=2076-2615&rft.volume=11&rft.issue=5&rft_id=info:doi/10.3390%2Fani11051316&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-2615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-2615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-2615&client=summon