Multiple Country Approach to Improve the Test-Day Prediction of Dairy Cows’ Dry Matter Intake
We predicted dry matter intake of dairy cows using parity, week of lactation, milk yield, milk mid-infrared (MIR) spectrum, and MIR-based predictions of bodyweight, fat, protein, lactose, and fatty acids content in milk. The dataset comprised 10,711 samples of 534 dairy cows with a geographical dive...
Saved in:
Published in | Animals (Basel) Vol. 11; no. 5; p. 1316 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article Web Resource |
Language | English |
Published |
Basel
MDPI AG
04.05.2021
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2076-2615 2076-2615 |
DOI | 10.3390/ani11051316 |
Cover
Abstract | We predicted dry matter intake of dairy cows using parity, week of lactation, milk yield, milk mid-infrared (MIR) spectrum, and MIR-based predictions of bodyweight, fat, protein, lactose, and fatty acids content in milk. The dataset comprised 10,711 samples of 534 dairy cows with a geographical diversity (Australia, Canada, Denmark, and Ireland). We set up partial least square (PLS) regressions with different constructs and a one-hidden-layer artificial neural network (ANN) using the highest contribution variables. In the ANN, we replaced the spectra with their projections to the 25 first PLS factors explaining 99% of the spectral variability to reduce the model complexity. Cow-independent 10 × 10-fold cross-validation (CV) achieved the best performance with root mean square errors (RMSECV) of 3.27 ± 0.08 kg for the PLS regression and 3.25 ± 0.13 kg for ANN. Although the available data were significantly different, we also performed a country-independent validation (CIV) to measure the models’ performance fairly. We found RMSECIV varying from 3.73 to 6.03 kg for PLS and 3.69 to 5.08 kg for ANN. Ultimately, based on the country-independent validation, we discussed the developed models’ performance with those achieved by the National Research Council’s equation. |
---|---|
AbstractList | Simple SummaryDry matter intake, related to the number of nutrients available to an animal to meet its production and health needs, is crucial for the economic, environmental, and welfare management of dairy herds. Because the equipment required to weigh the ingested food at an individual level is not broadly available, we propose some new ways to approach the actual dry matter consumed by a dairy cow for a given day. To do so, we used regression models using parity (number of lactations), week of lactation, milk yield, milk mid-infrared spectrum, and prediction of bodyweight, fat, protein, lactose, and fatty acids content in milk. We chose these elements to predict individual dry matter intake because they are either easily accessible or routinely provided by regional dairy organizations (often called “dairy herd improvement” associations). We succeeded in producing a model whose dry matter intake predictions were moderately related to the actual values.AbstractWe predicted dry matter intake of dairy cows using parity, week of lactation, milk yield, milk mid-infrared (MIR) spectrum, and MIR-based predictions of bodyweight, fat, protein, lactose, and fatty acids content in milk. The dataset comprised 10,711 samples of 534 dairy cows with a geographical diversity (Australia, Canada, Denmark, and Ireland). We set up partial least square (PLS) regressions with different constructs and a one-hidden-layer artificial neural network (ANN) using the highest contribution variables. In the ANN, we replaced the spectra with their projections to the 25 first PLS factors explaining 99% of the spectral variability to reduce the model complexity. Cow-independent 10 × 10-fold cross-validation (CV) achieved the best performance with root mean square errors (RMSECV) of 3.27 ± 0.08 kg for the PLS regression and 3.25 ± 0.13 kg for ANN. Although the available data were significantly different, we also performed a country-independent validation (CIV) to measure the models’ performance fairly. We found RMSECIV varying from 3.73 to 6.03 kg for PLS and 3.69 to 5.08 kg for ANN. Ultimately, based on the country-independent validation, we discussed the developed models’ performance with those achieved by the National Research Council’s equation. We predicted dry matter intake of dairy cows using parity, week of lactation, milk yield, milk mid-infrared (MIR) spectrum, and MIR-based predictions of bodyweight, fat, protein, lactose, and fatty acids content in milk. The dataset comprised 10,711 samples of 534 dairy cows with a geographical diversity (Australia, Canada, Denmark, and Ireland). We set up partial least square (PLS) regressions with different constructs and a one-hidden-layer artificial neural network (ANN) using the highest contribution variables. In the ANN, we replaced the spectra with their projections to the 25 first PLS factors explaining 99% of the spectral variability to reduce the model complexity. Cow-independent 10 × 10-fold cross-validation (CV) achieved the best performance with root mean square errors (RMSECV) of 3.27 ± 0.08 kg for the PLS regression and 3.25 ± 0.13 kg for ANN. Although the available data were significantly different, we also performed a country-independent validation (CIV) to measure the models' performance fairly. We found RMSECIV varying from 3.73 to 6.03 kg for PLS and 3.69 to 5.08 kg for ANN. Ultimately, based on the country-independent validation, we discussed the developed models' performance with those achieved by the National Research Council's equation.We predicted dry matter intake of dairy cows using parity, week of lactation, milk yield, milk mid-infrared (MIR) spectrum, and MIR-based predictions of bodyweight, fat, protein, lactose, and fatty acids content in milk. The dataset comprised 10,711 samples of 534 dairy cows with a geographical diversity (Australia, Canada, Denmark, and Ireland). We set up partial least square (PLS) regressions with different constructs and a one-hidden-layer artificial neural network (ANN) using the highest contribution variables. In the ANN, we replaced the spectra with their projections to the 25 first PLS factors explaining 99% of the spectral variability to reduce the model complexity. Cow-independent 10 × 10-fold cross-validation (CV) achieved the best performance with root mean square errors (RMSECV) of 3.27 ± 0.08 kg for the PLS regression and 3.25 ± 0.13 kg for ANN. Although the available data were significantly different, we also performed a country-independent validation (CIV) to measure the models' performance fairly. We found RMSECIV varying from 3.73 to 6.03 kg for PLS and 3.69 to 5.08 kg for ANN. Ultimately, based on the country-independent validation, we discussed the developed models' performance with those achieved by the National Research Council's equation. We predicted dry matter intake of dairy cows using parity, week of lactation, milk yield, milk mid-infrared (MIR) spectrum, and MIR-based predictions of bodyweight, fat, protein, lactose, and fatty acids content in milk. The dataset comprised 10,711 samples of 534 dairy cows with a geographical diversity (Australia, Canada, Denmark, and Ireland). We set up partial least square (PLS) regressions with different constructs and a one-hidden-layer artificial neural network (ANN) using the highest contribution variables. In the ANN, we replaced the spectra with their projections to the 25 first PLS factors explaining 99% of the spectral variability to reduce the model complexity. Cow-independent 10 × 10-fold cross-validation (CV) achieved the best performance with root mean square errors (RMSECV) of 3.27 ± 0.08 kg for the PLS regression and 3.25 ± 0.13 kg for ANN. Although the available data were significantly different, we also performed a country-independent validation (CIV) to measure the models’ performance fairly. We found RMSECIV varying from 3.73 to 6.03 kg for PLS and 3.69 to 5.08 kg for ANN. Ultimately, based on the country-independent validation, we discussed the developed models’ performance with those achieved by the National Research Council’s equation. |
Author | Dehareng, Frédéric Froidmont, Eric Tedde, Anthony Wang, Zhiquan Ho, Phuong Hailemariam, Dagnachew Gengler, Nicolas Bertozzi, Carlo Plastow, Graham Pryce, Jennie Grelet, Clément Crowe, Mark Soyeurt, Hélène |
AuthorAffiliation | 7 Walloon Breeding Association, 5590 Ciney, Belgium; cbertozzi@awenet.be 4 Agriculture Victoria Research, Centre for AgriBioscience, AgriBio, Bundoora, VIC 3083, Australia; phuong.ho@agriculture.vic.gov.au (P.N.H.); jennie.pryce@agriculture.vic.gov.au (J.E.P.) 1 AGROBIOCHEM Department, Research and Teaching Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; Nicolas.Gengler@uliege.be (N.G.); hsoyeurt@uliege.be (H.S.) 8 UCD School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland; mark.crowe@ucd.ie 5 School of Applied Systems Biology, La Trobe University, 5 Ring Road, Bundoora, VIC 3083, Australia 2 National Funds for Scientific Research, 1000 Brussels, Belgium 6 Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; hailemar@ualberta.ca (D.H.); zhiquan.wang@ualberta.ca (Z.W.); plastow@ualberta.ca (G.P.) 3 Walloon Agricultural Research Center (CRA-W), 5030 Gembloux, Belgium; c.grelet@cra |
AuthorAffiliation_xml | – name: 2 National Funds for Scientific Research, 1000 Brussels, Belgium – name: 4 Agriculture Victoria Research, Centre for AgriBioscience, AgriBio, Bundoora, VIC 3083, Australia; phuong.ho@agriculture.vic.gov.au (P.N.H.); jennie.pryce@agriculture.vic.gov.au (J.E.P.) – name: 3 Walloon Agricultural Research Center (CRA-W), 5030 Gembloux, Belgium; c.grelet@cra.wallonie.be (C.G.); e.froidmont@cra.wallonie.be (E.F.); f.dehareng@cra.wallonie.be (F.D.) – name: 5 School of Applied Systems Biology, La Trobe University, 5 Ring Road, Bundoora, VIC 3083, Australia – name: 8 UCD School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland; mark.crowe@ucd.ie – name: 1 AGROBIOCHEM Department, Research and Teaching Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; Nicolas.Gengler@uliege.be (N.G.); hsoyeurt@uliege.be (H.S.) – name: 6 Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; hailemar@ualberta.ca (D.H.); zhiquan.wang@ualberta.ca (Z.W.); plastow@ualberta.ca (G.P.) – name: 7 Walloon Breeding Association, 5590 Ciney, Belgium; cbertozzi@awenet.be |
Author_xml | – sequence: 1 givenname: Anthony orcidid: 0000-0002-4882-3386 surname: Tedde fullname: Tedde, Anthony – sequence: 2 givenname: Clément orcidid: 0000-0003-3313-485X surname: Grelet fullname: Grelet, Clément – sequence: 3 givenname: Phuong surname: Ho fullname: Ho, Phuong – sequence: 4 givenname: Jennie surname: Pryce fullname: Pryce, Jennie – sequence: 5 givenname: Dagnachew surname: Hailemariam fullname: Hailemariam, Dagnachew – sequence: 6 givenname: Zhiquan surname: Wang fullname: Wang, Zhiquan – sequence: 7 givenname: Graham surname: Plastow fullname: Plastow, Graham – sequence: 8 givenname: Nicolas orcidid: 0000-0002-5981-5509 surname: Gengler fullname: Gengler, Nicolas – sequence: 9 givenname: Eric orcidid: 0000-0002-7950-4193 surname: Froidmont fullname: Froidmont, Eric – sequence: 10 givenname: Frédéric orcidid: 0000-0002-6733-4334 surname: Dehareng fullname: Dehareng, Frédéric – sequence: 11 givenname: Carlo surname: Bertozzi fullname: Bertozzi, Carlo – sequence: 12 givenname: Mark surname: Crowe fullname: Crowe, Mark – sequence: 13 givenname: Hélène orcidid: 0000-0001-9883-9047 surname: Soyeurt fullname: Soyeurt, Hélène |
BookMark | eNqFUstu1DAUjVARLaUrfsASG6Qq4EfsOBukaobHSK1gUdaW41zPeMjEwXEGzY7f4Pf4EpxJhdoKCW98ZJ9z7vN5dtL5DrLsJcFvGKvwW905QjAnjIgn2RnFpcipIPzkHj7NLoZhi9MpOSOcPMtOWYFFUZDyLFM3Yxtd3wJa-LGL4YCu-j54bTYoerTaJbwHFDeAbmGI-VIf0JcAjTPR-Q55i5baJdHC_xh-__yFlgnf6BghoFUX9Td4kT21uh3g4u4-z75-eH-7-JRff_64Wlxd54bTKuZljaGoudDacskMprTUBZOV5dZKQkta4oqYhteyloCJLSqJmcVGC1JXAmN2nq1m38brreqD2-lwUF47dXzwYa10iM60oKChWlgobAWiSG41gNXQlJZTkbIok9e72asf6x00BlJfdPvA9OFP5zZq7fdKkqKUjCUDNhu0DtaQgtdO7elReMRjm7IxqgZFqZCKSlkVk-r1Xdjgv4-p22rnBgNtqzvw46Ao5xRTSdOw_09lqTSC2UR99Yi69WPo0iwmFmEVm1mXM8sEPwwB7N9qCVbToql7i5bY5BHbuKinjUjtcO0_NX8AxvfVrA |
CitedBy_id | crossref_primary_10_1007_s11250_025_04295_w crossref_primary_10_3390_dairy4030028 crossref_primary_10_1016_j_atech_2023_100286 crossref_primary_10_3168_jds_2024_24701 crossref_primary_10_3390_s22010052 crossref_primary_10_3390_ani13030509 |
Cites_doi | 10.1002/ejlt.200700080 10.3168/jds.2010-3408 10.3168/jds.2019-17473 10.1016/j.livsci.2019.07.007 10.1007/978-0-387-21706-2 10.1016/j.anireprosci.2010.12.001 10.3168/jds.2016-11609 10.3168/jds.2020-18870 10.3168/jds.S0022-0302(97)76142-3 10.3168/jds.2009-2431 10.3168/jds.2010-3888 10.3168/jds.2019-16363 10.3168/jds.2019-17910 10.2527/jas.2011-4528 10.3168/jds.2014-8764 10.1177/0967033519848296 10.3168/jds.S0022-0302(07)71546-1 10.1017/S0022029911000550 10.3168/jds.S0022-0302(98)75704-2 10.3168/jds.2017-13874 10.1016/j.ymeth.2020.07.012 10.1017/S0021859600066910 10.1051/rnd:2005059 10.1007/978-1-4614-6849-3 10.1016/S0169-7439(99)00047-7 10.3168/jds.2008-1734 10.3168/jds.S0022-0302(02)74411-1 10.1255/nirn.1165 10.3168/jds.2017-13338 10.1016/j.theriogenology.2007.04.031 10.1002/jsfa.10969 10.2527/jas.2006-353 10.1071/AN18532 |
ContentType | Journal Article Web Resource |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
CorporateAuthor | on behalf of the GplusE Consortium |
CorporateAuthor_xml | – name: on behalf of the GplusE Consortium |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7X8 7S9 L.6 Q33 5PM DOA |
DOI | 10.3390/ani11051316 |
DatabaseName | CrossRef ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic Université de Liège - Open Repository and Bibliography (ORBI) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
EISSN | 2076-2615 |
ExternalDocumentID | oai_doaj_org_article_ed2a6fe4f9e648e0beefaed7f5260e47 PMC8147833 oai_orbi_ulg_ac_be_2268_288943 10_3390_ani11051316 |
GeographicLocations | Ireland Denmark Canada Australia |
GeographicLocations_xml | – name: Ireland – name: Denmark – name: Canada – name: Australia |
GroupedDBID | 5VS 7XC 8FE 8FH AAFWJ AAHBH AAYXX ABDBF ACUHS AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS APEBS BENPR CCPQU CITATION DIK EAD EAP EPL ESX GROUPED_DOAJ HYE IAO ITC LK8 M48 MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM TUS ZBA ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 7S9 L.6 Q33 5PM |
ID | FETCH-LOGICAL-c529t-7b0e4b56aaf583c0227a4389f5ff812727091cd5b8b8e01f49803f0ca61b96003 |
IEDL.DBID | M48 |
ISSN | 2076-2615 |
IngestDate | Wed Aug 27 01:28:33 EDT 2025 Thu Aug 21 18:20:56 EDT 2025 Fri Jul 18 15:34:51 EDT 2025 Fri Sep 05 13:10:53 EDT 2025 Fri Sep 05 09:37:14 EDT 2025 Mon Jun 30 11:15:52 EDT 2025 Thu Apr 24 23:05:05 EDT 2025 Tue Jul 01 02:59:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c529t-7b0e4b56aaf583c0227a4389f5ff812727091cd5b8b8e01f49803f0ca61b96003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 scopus-id:2-s2.0-85105154815 List of authors in the GplusE consortium provided in the acknowledgments. |
ORCID | 0000-0002-4882-3386 0000-0002-6733-4334 0000-0002-7950-4193 0000-0001-9883-9047 0000-0003-3313-485X 0000-0002-5981-5509 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ani11051316 |
PMID | 34064417 |
PQID | 2531393031 |
PQPubID | 2032438 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ed2a6fe4f9e648e0beefaed7f5260e47 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8147833 liege_orbi_v2_oai_orbi_ulg_ac_be_2268_288943 proquest_miscellaneous_2552028251 proquest_miscellaneous_2536481031 proquest_journals_2531393031 crossref_primary_10_3390_ani11051316 crossref_citationtrail_10_3390_ani11051316 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210504 |
PublicationDateYYYYMMDD | 2021-05-04 |
PublicationDate_xml | – month: 5 year: 2021 text: 20210504 day: 4 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Animals (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Berry (ref_2) 2007; 90 Lahart (ref_14) 2019; 102 Mayes (ref_42) 1986; 107 Walsh (ref_5) 2011; 123 Grelet (ref_16) 2020; 103 Grelet (ref_26) 2015; 98 ref_36 ref_13 ref_35 Dardenne (ref_41) 2010; 21 ref_34 ref_33 ref_32 ref_31 Grelet (ref_17) 2021; 186 Enevoldsen (ref_43) 1997; 80 Meuwissen (ref_15) 2018; 101 ref_18 Roche (ref_9) 2009; 92 Connor (ref_10) 2012; 90 Grummer (ref_6) 2007; 68 ref_38 ref_37 Soyeurt (ref_20) 2020; 103 Brand (ref_7) 2005; 45 Vallimont (ref_4) 2011; 94 Soyeurt (ref_22) 2009; 92 Gulati (ref_45) 2018; 101 Kolver (ref_39) 1998; 81 Massart (ref_28) 2000; 50 Fearn (ref_29) 2019; 27 Chilliard (ref_40) 2007; 109 ref_44 Mahalanobis (ref_27) 1936; 12 Westwood (ref_3) 2002; 85 Shetty (ref_11) 2017; 100 McCulloch (ref_24) 1943; 5 ref_1 Soyeurt (ref_19) 2011; 94 Delhez (ref_30) 2020; 103 Ho (ref_25) 2020; 60 Basarab (ref_12) 2013; 7 Lake (ref_8) 2007; 85 Gross (ref_23) 2011; 78 Soyeurt (ref_21) 2019; 227 |
References_xml | – volume: 109 start-page: 828 year: 2007 ident: ref_40 article-title: Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat publication-title: Eur. J. Lipid Sci. Technol. doi: 10.1002/ejlt.200700080 – volume: 94 start-page: 1657 year: 2011 ident: ref_19 article-title: Mid-infrared prediction of bovine milk fatty acids across multiple breeds, production systems, and countries publication-title: J. Dairy Sci. doi: 10.3168/jds.2010-3408 – volume: 103 start-page: 3264 year: 2020 ident: ref_30 article-title: Diagnosing the pregnancy status of dairy cows: How useful is milk mid-infrared spectroscopy? publication-title: J. Dairy Sci. doi: 10.3168/jds.2019-17473 – ident: ref_32 – volume: 227 start-page: 82 year: 2019 ident: ref_21 article-title: Contribution of milk mid-infrared spectrum to improve the accuracy of test-day body weight predicted from stage, lactation number, month of test and milk yield publication-title: Livest. Sci. doi: 10.1016/j.livsci.2019.07.007 – ident: ref_34 – ident: ref_36 doi: 10.1007/978-0-387-21706-2 – volume: 123 start-page: 127 year: 2011 ident: ref_5 article-title: A review of the causes of poor fertility in high milk producing dairy cows publication-title: Anim. Reprod. Sci. doi: 10.1016/j.anireprosci.2010.12.001 – volume: 100 start-page: 253 year: 2017 ident: ref_11 article-title: Prediction and validation of residual feed intake and dry matter intake in Danish lactating dairy cows using mid-infrared spectroscopy of milk publication-title: J. Dairy Sci. doi: 10.3168/jds.2016-11609 – volume: 103 start-page: 11585 year: 2020 ident: ref_20 article-title: A comparison of 4 different machine learning algorithms to predict lactoferrin content in bovine milk from mid-infrared spectra publication-title: J. Dairy Sci. doi: 10.3168/jds.2020-18870 – volume: 80 start-page: 1988 year: 1997 ident: ref_43 article-title: Estimation of Body Weight from Body Size Measurements and Body Condition Scores in Dairy Cows publication-title: J. Dairy Sci. doi: 10.3168/jds.S0022-0302(97)76142-3 – volume: 92 start-page: 5769 year: 2009 ident: ref_9 article-title: Invited review: Body condition score and its association with dairy cow productivity, health, and welfare publication-title: J. Dairy Sci. doi: 10.3168/jds.2009-2431 – volume: 94 start-page: 2108 year: 2011 ident: ref_4 article-title: Short communication: Heritability of gross feed efficiency and associations with yield, intake, residual intake, body weight, and body condition score in 11 commercial Pennsylvania tie stalls publication-title: J. Dairy Sci. doi: 10.3168/jds.2010-3888 – volume: 102 start-page: 8907 year: 2019 ident: ref_14 article-title: Predicting the dry matter intake of grazing dairy cows using infrared reflectance spectroscopy analysis publication-title: J. Dairy Sci. doi: 10.3168/jds.2019-16363 – ident: ref_37 – ident: ref_1 – volume: 103 start-page: 4435 year: 2020 ident: ref_16 article-title: Potential of milk mid-infrared spectra to predict nitrogen use efficiency of individual dairy cows in early lactation publication-title: J. Dairy Sci. doi: 10.3168/jds.2019-17910 – ident: ref_35 – volume: 90 start-page: 1687 year: 2012 ident: ref_10 article-title: TRIENNIAL LACTATION SYMPOSIUM: Opportunities for improving milk production efficiency in dairy cattle1,2 publication-title: J. Anim. Sci. doi: 10.2527/jas.2011-4528 – volume: 98 start-page: 2150 year: 2015 ident: ref_26 article-title: Standardization of milk mid-infrared spectra from a European dairy network publication-title: J. Dairy Sci. doi: 10.3168/jds.2014-8764 – volume: 27 start-page: 253 year: 2019 ident: ref_29 article-title: A note on Mahalanobis and related distance measures in WinISI and The Unscrambler publication-title: J. Near Infrared Spectrosc. doi: 10.1177/0967033519848296 – volume: 90 start-page: 637 year: 2007 ident: ref_2 article-title: Associations Among Body Condition Score, Body Weight, Somatic Cell Count, and Clinical Mastitis in Seasonally Calving Dairy Cattle publication-title: J. Dairy Sci. doi: 10.3168/jds.S0022-0302(07)71546-1 – volume: 78 start-page: 479 year: 2011 ident: ref_23 article-title: Milk fatty acid profile related to energy balance in dairy cows publication-title: J. Dairy Res. doi: 10.1017/S0022029911000550 – volume: 81 start-page: 1403 year: 1998 ident: ref_39 article-title: Performance and Nutrient Intake of High Producing Holstein Cows Consuming Pasture or a Total Mixed Ration publication-title: J. Dairy Sci. doi: 10.3168/jds.S0022-0302(98)75704-2 – volume: 101 start-page: 6232 year: 2018 ident: ref_15 article-title: Milk mid-infrared spectral data as a tool to predict feed intake in lactating Norwegian Red dairy cows publication-title: J. Dairy Sci. doi: 10.3168/jds.2017-13874 – volume: 186 start-page: 97 year: 2021 ident: ref_17 article-title: Large-scale phenotyping in dairy sector using milk MIR spectra: Key factors affecting the quality of predictions publication-title: Methods doi: 10.1016/j.ymeth.2020.07.012 – ident: ref_31 – ident: ref_33 – volume: 7 start-page: 303 year: 2013 ident: ref_12 article-title: Reducing GHG emissions through genetic improvement for feed efficiency: Effects on economically important traits and enteric methane production publication-title: Animals – volume: 12 start-page: 49 year: 1936 ident: ref_27 article-title: On the generalised distance in statistics publication-title: Proc. Natl. Inst. Sci. India – volume: 107 start-page: 161 year: 1986 ident: ref_42 article-title: The use of dosed and herbage n-alkanes as markers for the determination of herbage intake publication-title: J. Agric. Sci. doi: 10.1017/S0021859600066910 – volume: 45 start-page: 665 year: 2005 ident: ref_7 article-title: Effect of dietary energy source on energy balance, production, metabolic disorders and reproduction in lactating dairy cattle publication-title: Reprod. Nutr. Dev. doi: 10.1051/rnd:2005059 – ident: ref_44 doi: 10.1007/978-1-4614-6849-3 – volume: 50 start-page: 1 year: 2000 ident: ref_28 article-title: The Mahalanobis distance publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(99)00047-7 – volume: 92 start-page: 2444 year: 2009 ident: ref_22 article-title: Potential estimation of major mineral contents in cow milk using mid-infrared spectrometry publication-title: J. Dairy Sci. doi: 10.3168/jds.2008-1734 – volume: 5 start-page: 115 year: 1943 ident: ref_24 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull. Math. Biol. – ident: ref_13 – ident: ref_38 – volume: 85 start-page: 3225 year: 2002 ident: ref_3 article-title: Factors Influencing Fertility of Holstein Dairy Cows: A Multivariate Description publication-title: J. Dairy Sci. doi: 10.3168/jds.S0022-0302(02)74411-1 – volume: 21 start-page: 8 year: 2010 ident: ref_41 article-title: Some Considerations about NIR Spectroscopy: Closing Speech at NIR-2009 publication-title: NIR News doi: 10.1255/nirn.1165 – volume: 101 start-page: 2710 year: 2018 ident: ref_45 article-title: Outdoor grazing of dairy cows on pasture versus indoor feeding on total mixed ration: Effects on gross composition and mineral content of milk during lactation publication-title: J. Dairy Sci. doi: 10.3168/jds.2017-13338 – volume: 68 start-page: S281 year: 2007 ident: ref_6 article-title: Strategies to improve fertility of high yielding dairy farms: Management of the dry period publication-title: Theriogenology doi: 10.1016/j.theriogenology.2007.04.031 – ident: ref_18 doi: 10.1002/jsfa.10969 – volume: 85 start-page: 717 year: 2007 ident: ref_8 article-title: Effects of postpartum dietary fat and body condition score at parturition on plasma, adipose tissue, and milk fatty acid composition of lactating beef cows1 publication-title: J. Anim. Sci. doi: 10.2527/jas.2006-353 – volume: 60 start-page: 164 year: 2020 ident: ref_25 article-title: Predicting milk fatty acids and energy balance of dairy cows in Australia using milk mid-infrared spectroscopy publication-title: Anim. Prod. Sci. doi: 10.1071/AN18532 |
RestrictionsOnAccess | open access |
SSID | ssj0000753151 |
Score | 2.2955778 |
Snippet | We predicted dry matter intake of dairy cows using parity, week of lactation, milk yield, milk mid-infrared (MIR) spectrum, and MIR-based predictions of... Simple SummaryDry matter intake, related to the number of nutrients available to an animal to meet its production and health needs, is crucial for the... |
SourceID | doaj pubmedcentral liege proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 1316 |
SubjectTerms | Accuracy Agriculture & agronomie Agriculture & agronomy Animal lactation Animal Science and Zoology artificial neural network Australia body weight Canada Councils Dairy cattle dairy cows data collection Datasets Denmark Diet Dimensionality reduc-tion dimensionality reduction dry matter intake equations Farms Fatty acids feed efficiency feed intake Feeds General Veterinary Ireland lactation lactose Life sciences machine learning mid infrared spectra Milk milk yield neural networks partial least square prediction Sciences du vivant Variables Veterinary (all) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Pi9UwEA-yIHgR_2J1lQh7Ess2_9r0uO5zWYUnHnZh8RKSdIJPH-3ytk_Zm1_Dr-cncZJ2Hy0Ie_FW2mnSTibMb5LJbwg54IGxOnidY6jhclkBy22hZc684KzUjjVNDBSXn8rTc_nxQl1MSn3FnLCBHnhQ3CE03JYBZKihlBoKBxAsNFVQiMRBpnPkRV1Mgqlvw_acQF82HMgTGNcf2naFnk4xESubT1xQYupHZLqOe9QzmDlPkpx4nZMH5P4IF-nR8JkPyR1oH5G7X7q0GP6YmOWYD0jj2fJ-c02PRo5w2nd0WDAAihiPnmFn-cJe08-buDUTh4N2gS7sCl867n5e_fn1my7wepkIN-mHtrff4Qk5P3l_dnyajyUTcq943eeVQ504VVoblBY-8gPaWN88qBDQlSNYQXzgG-W0Q12yIGtdiFB4WzKHsUwhnpK9tmvhGaGVKzkPTbAOhLRcal9jKIIOzwsZoFIZeXOjReNHPvFY1mJtMK6IKjcTlWfkYCd8OdBo_FvsXRyOnUjkvk430CLMaBHmNovIyNs0mPiSW5kfPLWSrrdrbMUbBwZBpzZcR_L5jOzfjLkZ5--V4Wg-okb3zjLyevcYZ17cTrEtdNskg_2zW2QUH44HZ6Sa2dPsH-dP2tXXxPOtmay0EM__h1JekHs8ZuPEVE25T_b6zRZeIpzq3as0c_4CgvYhTQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3daxQxEA-1RfBF_MTVKhH6JC7dfO1mH0TaXksV7ijSQvElJNlED4_det1T-ua_4b_nX-Iku3veguhb2J18TpKZSSa_QWiPekJKb2UKpoZJeeFIqjPJU2IZJbk0pKqCoTid5acX_P2luNxCs-EtTHCrHPbEuFFXjQ1n5PsUJgsrYcMlb6--piFqVLhdHUJo6D60QvUmQozdQjuwJUuY9zuHx7OzD-tTFxCQDGRc91CPgb2_r-s5SEBBWIh4viGaIoI_aKyLcHc9Uj_HzpMb0ujkHrrbq5H4oOP7fbTl6gfo9scmHpI_RGra-wni8Oa8Xd7ggx47HLcN7g4SHAbdD59DZelE3-CzZbiyCWzCjccTPYdMR833618_fuIJpKcRiBO_q1v9xT1CFyfH50enaR9KIbWClm1amMxxI3KtvZDMBtxAHeKee-E9iHhQYkBvsJUw0kiXEc9LmTGfWZ0TAzZOxh6j7bqp3ROEC5NT6iuvjWNcUy5tCSYKCELLuHeFSNCrYRSV7XHGQ7iLhQJ7Iwy52hjyBO2tia86eI2_kx0GdqxJAiZ2_NAsP6l-iSlXUZ17x33pcg69MM557arCC2ie40WCXkdmQiYzV99oLCWmVwsoxSrjFCijUlEZQOkTtDvwXPXr-lr9mYUJern-DSsyXLPo2jWrSAP1k__QCNo9G05QMZpPoz6O_9TzzxH_WxJeSMae_ruBz9AdGvxvgnMm30Xb7XLlnoMC1ZoX_ar4DYiDHTA priority: 102 providerName: ProQuest |
Title | Multiple Country Approach to Improve the Test-Day Prediction of Dairy Cows’ Dry Matter Intake |
URI | https://www.proquest.com/docview/2531393031 https://www.proquest.com/docview/2536481031 https://www.proquest.com/docview/2552028251 http://orbi.ulg.ac.be/handle/2268/288943 https://pubmed.ncbi.nlm.nih.gov/PMC8147833 https://doaj.org/article/ed2a6fe4f9e648e0beefaed7f5260e47 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LbtQwFLVKKyQ2FU8RKCMjdYUIxK_EWSDUdloVpKkq1JEqNpad2GVglJQ0A8yO3-D3-BKuncyoQZVgFyXXTuJr657jx7kI7VJHSO4KGQPVMDHPLIl1InlMCkZJKg0pS08UJyfp8ZS_PxfnG2iVjLNvwKsbqZ3PJzVt5q9-fF2-hQH_xjNOoOyvdTWDICYII-kttAUhKfUsbNLj_M_dah0jIRUjBd4eA2sQ3Vm9v8sPolMQ8QfQOvfL1wMEOtw_eS0gHd1F2z2SxHud6--hDVvdR7c_1mGe_AFSk36rIPbHzttmifd6-XDc1ribS7AY4B8-g5fFY73Ep41ftfGewrXDYz2DQgf196vfP3_hMVxPghYnfle1-ot9iKZHh2cHx3GfTSEuBM3bODOJ5UakWjshWeGlA7VPfe6EcxDlAccAdChKYaSRNiGO5zJhLil0SgzQnIQ9QptVXdnHCGcmpdSVThvLuKZcFjmwFIiFBePOZiJCL1atqIpeatxnvJgroBy-ydW1Jo_Q7tr4slPYuNls37tjbeJlscONurlQ_ShTtqQ6dZa73KYc_sJY67QtMyfg8yzPIvQyOBMKmZn6RkMt4Xoxh1oKZawCPCoVlV6XPkI7K5-rVc9UFLoSyyHykwg9Xz-GQelXWnRl60WwgfeTf9gI2p0cjlA26E-Dfxw-qWafggS4JDyTjD35j9qfojvU78PxmzT5Dtpsm4V9BkCqNSO0tX94cvphFCYiRmHI_AG9hx9J |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLZGJwQ3iF8RGGCkcYOIFv8kcS4mtK2bWrZWE-qkiRtjOzarViWjTZl6x2vwMjwMT8JxmpZWQnC1uyg5cRz7-Hzn2OcHoW3qCMmcESGYGjrkqSWhigQPiWGUJEKTPPeGYq-fdM74h_P4fAP9XMTCeLfKhUysBXVeGr9HvkOBWVgGApe8v_oa-qpR_nR1UUJDNaUV8t06xVgT2HFsZ9dgwk12u22Y7zeUHh0ODjphU2UgNDHNqjDVkeU6TpRysWDGp9RTviS4i50D9AN8B0g1eayFFjYijmciYi4yKiEa1P-IQbu30CaoHRlvoc39w_7px-UuDwAyA0ydBwYylkU7qhgC4saE-QrrK1BYVwwADXnkz8rX1N11Z80V9Du6j-41aivem_PZA7Rhi4fo9qey3pR_hGSv8UvEPsa9Gs_wXpOrHFclnm9cWAy6Jh7Ax8K2muHTsT8i8myBS4fbaggvHZTXk1_ff-A2XPfqxJ-4W1Tq0j5GZzcyqE9QqygL-xThVCeUutwpbRlXlAuTgUkEwGsYdzaNA_R2MYrSNHnNfXmNkQT7xg-5XBnyAG0via_m6Tz-Trbvp2NJ4nNw1zfK8RfZLGlpc6oSZ7nLbMLhL7S1Ttk8dTF0z_I0QO_qyYSX9FB-o3Ur9fV0BK0Yqa0E5VdIKnwS_ABtLeZcNnJkIv9wfYBeLx-DBPDHOqqw5bSmge-T_9DEdB6mHKB0jZ_W_nH9STG8qPONC8JTwdizf3fwFbrTGfRO5Em3f_wc3aXe98c7hvIt1KrGU_sClLdKv2xWCEafb3pR_gbMfljA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLZGJxA3iF8RGGCkcYOIGv8kcS4mtK2rVkarCm3SxI1nOzZUVMloU6be8Rq8Eo_Bk3CcpqWVEFztLkpOHMf2Od859vlBaJc6QjJnRAimhg55akmoIsFDYhglidAkz72h2B8kx2f83Xl8voV-LmNhvFvlUibWgjovjd8jb1NYLCwDgUvarnGLGHa6by-_hr6ClD9pXZbTUE2ZhXyvTjfWBHmc2PkVmHPTvV4H5v4Vpd2j08PjsKk4EJqYZlWY6shyHSdKuVgw49PrKV8e3MXOARIC1gO8mjzWQgsbEcczETEXGZUQDaZAxKDdG2g7BZSkLbR9cDQYfljt-AA4M8DXRZAgY1nUVsUI0DcmzFdbX4PFunoAaMtjf26-ofpuOm6uIWH3LrrTqLB4f7Hm7qEtW9xHNz-W9Qb9AyT7jY8i9vHu1WSO95u85bgq8WITw2LQO_EpfCzsqDkeTvxxkV8iuHS4o0bw0mF5Nf31_QfuwHW_TgKKe0WlvtiH6OxaBvURahVlYR8jnOqEUpc7pS3jinJhMjCPAIQN486mcYBeL0dRmibHuS-1MZZg6_ghl2tDHqDdFfHlIrXH38kO_HSsSHw-7vpGOfkkG_aWNqcqcZa7zCYc_kJb65TNUxdD9yxPA_Smnkx4SY_kN1q3Ul_PxtCKkdpKUISFpMInxA_QznLOZSNTpvIPBwTo5eoxSAN_xKMKW85qGvg--Q9NTBchywFKN9bTxj9uPilGn-vc44LwVDD25N8dfIFuAXPK973ByVN0m3o3IO8jyndQq5rM7DPQ4yr9vGEQjC6umyd_A55XXOs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Country+Approach+to+Improve+the+Test-Day+Prediction+of+Dairy+Cows%E2%80%99+Dry+Matter+Intake&rft.jtitle=Animals+%28Basel%29&rft.au=Tedde%2C+Anthony&rft.au=Grelet%2C+Cl%C3%A9ment&rft.au=Ho%2C+Phuong+N&rft.au=Pryce%2C+Jennie+E&rft.date=2021-05-04&rft.issn=2076-2615&rft.eissn=2076-2615&rft.volume=11&rft.issue=5&rft_id=info:doi/10.3390%2Fani11051316&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-2615&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-2615&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-2615&client=summon |