Acute myeloid leukemia creates an arginase-dependent immunosuppressive microenvironment

Acute myeloid leukemia (AML) is the most common acute leukemia in adults and the second most common frequent leukemia of childhood. Patients may present with lymphopenia or pancytopenia at diagnosis. We investigated the mechanisms by which AML causes pancytopenia and suppresses patients' immune...

Full description

Saved in:
Bibliographic Details
Published inBlood Vol. 122; no. 5; pp. 749 - 758
Main Authors Mussai, Francis, De Santo, Carmela, Abu-Dayyeh, Issa, Booth, Sarah, Quek, Lynn, McEwen-Smith, Rosanna M., Qureshi, Amrana, Dazzi, Francesco, Vyas, Paresh, Cerundolo, Vincenzo
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.08.2013
American Society of Hematology
Subjects
Online AccessGet full text
ISSN0006-4971
1528-0020
1528-0020
DOI10.1182/blood-2013-01-480129

Cover

Abstract Acute myeloid leukemia (AML) is the most common acute leukemia in adults and the second most common frequent leukemia of childhood. Patients may present with lymphopenia or pancytopenia at diagnosis. We investigated the mechanisms by which AML causes pancytopenia and suppresses patients' immune response. This study identified for the first time that AML blasts alter the immune microenvironment through enhanced arginine metabolism. Arginase II is expressed and released from AML blasts and is present at high concentrations in the plasma of patients with AML, resulting in suppression of T-cell proliferation. We extended these results by demonstrating an arginase-dependent ability of AML blasts to polarize surrounding monocytes into a suppressive M2-like phenotype in vitro and in engrafted nonobese diabetic–severe combined immunodeficiency mice. In addition, AML blasts can suppress the proliferation and differentiation of murine granulocyte-monocyte progenitors and human CD34+ progenitors. Finally, the study showed that the immunosuppressive activity of AML blasts can be modulated through small-molecule inhibitors of arginase and inducible nitric oxide synthase, suggesting a novel therapeutic target in AML. The results strongly support the hypothesis that AML creates an immunosuppressive microenvironment that contributes to the pancytopenia observed at diagnosis. •AML blasts have an arginase-dependent ability to inhibit T-cell proliferation and hematopoietic stem cells.•AML blasts have an arginase-dependent ability to modulate the polarization of monocytes.
AbstractList AML blasts have an arginase-dependent ability to inhibit T-cell proliferation and hematopoietic stem cells. AML blasts have an arginase-dependent ability to modulate the polarization of monocytes. Acute myeloid leukemia (AML) is the most common acute leukemia in adults and the second most common frequent leukemia of childhood. Patients may present with lymphopenia or pancytopenia at diagnosis. We investigated the mechanisms by which AML causes pancytopenia and suppresses patients’ immune response. This study identified for the first time that AML blasts alter the immune microenvironment through enhanced arginine metabolism. Arginase II is expressed and released from AML blasts and is present at high concentrations in the plasma of patients with AML, resulting in suppression of T-cell proliferation. We extended these results by demonstrating an arginase-dependent ability of AML blasts to polarize surrounding monocytes into a suppressive M2-like phenotype in vitro and in engrafted nonobese diabetic–severe combined immunodeficiency mice. In addition, AML blasts can suppress the proliferation and differentiation of murine granulocyte-monocyte progenitors and human CD34 + progenitors. Finally, the study showed that the immunosuppressive activity of AML blasts can be modulated through small-molecule inhibitors of arginase and inducible nitric oxide synthase, suggesting a novel therapeutic target in AML. The results strongly support the hypothesis that AML creates an immunosuppressive microenvironment that contributes to the pancytopenia observed at diagnosis.
Acute myeloid leukemia (AML) is the most common acute leukemia in adults and the second most common frequent leukemia of childhood. Patients may present with lymphopenia or pancytopenia at diagnosis. We investigated the mechanisms by which AML causes pancytopenia and suppresses patients' immune response. This study identified for the first time that AML blasts alter the immune microenvironment through enhanced arginine metabolism. Arginase II is expressed and released from AML blasts and is present at high concentrations in the plasma of patients with AML, resulting in suppression of T-cell proliferation. We extended these results by demonstrating an arginase-dependent ability of AML blasts to polarize surrounding monocytes into a suppressive M2-like phenotype in vitro and in engrafted nonobese diabetic-severe combined immunodeficiency mice. In addition, AML blasts can suppress the proliferation and differentiation of murine granulocyte-monocyte progenitors and human CD34(+) progenitors. Finally, the study showed that the immunosuppressive activity of AML blasts can be modulated through small-molecule inhibitors of arginase and inducible nitric oxide synthase, suggesting a novel therapeutic target in AML. The results strongly support the hypothesis that AML creates an immunosuppressive microenvironment that contributes to the pancytopenia observed at diagnosis.Acute myeloid leukemia (AML) is the most common acute leukemia in adults and the second most common frequent leukemia of childhood. Patients may present with lymphopenia or pancytopenia at diagnosis. We investigated the mechanisms by which AML causes pancytopenia and suppresses patients' immune response. This study identified for the first time that AML blasts alter the immune microenvironment through enhanced arginine metabolism. Arginase II is expressed and released from AML blasts and is present at high concentrations in the plasma of patients with AML, resulting in suppression of T-cell proliferation. We extended these results by demonstrating an arginase-dependent ability of AML blasts to polarize surrounding monocytes into a suppressive M2-like phenotype in vitro and in engrafted nonobese diabetic-severe combined immunodeficiency mice. In addition, AML blasts can suppress the proliferation and differentiation of murine granulocyte-monocyte progenitors and human CD34(+) progenitors. Finally, the study showed that the immunosuppressive activity of AML blasts can be modulated through small-molecule inhibitors of arginase and inducible nitric oxide synthase, suggesting a novel therapeutic target in AML. The results strongly support the hypothesis that AML creates an immunosuppressive microenvironment that contributes to the pancytopenia observed at diagnosis.
AML blasts have an arginase-dependent ability to inhibit T-cell proliferation and hematopoietic stem cells. AML blasts have an arginase-dependent ability to modulate the polarization of monocytes.
Acute myeloid leukemia (AML) is the most common acute leukemia in adults and the second most common frequent leukemia of childhood. Patients may present with lymphopenia or pancytopenia at diagnosis. We investigated the mechanisms by which AML causes pancytopenia and suppresses patients' immune response. This study identified for the first time that AML blasts alter the immune microenvironment through enhanced arginine metabolism. Arginase II is expressed and released from AML blasts and is present at high concentrations in the plasma of patients with AML, resulting in suppression of T-cell proliferation. We extended these results by demonstrating an arginase-dependent ability of AML blasts to polarize surrounding monocytes into a suppressive M2-like phenotype in vitro and in engrafted nonobese diabetic-severe combined immunodeficiency mice. In addition, AML blasts can suppress the proliferation and differentiation of murine granulocyte-monocyte progenitors and human CD34(+) progenitors. Finally, the study showed that the immunosuppressive activity of AML blasts can be modulated through small-molecule inhibitors of arginase and inducible nitric oxide synthase, suggesting a novel therapeutic target in AML. The results strongly support the hypothesis that AML creates an immunosuppressive microenvironment that contributes to the pancytopenia observed at diagnosis.
Acute myeloid leukemia (AML) is the most common acute leukemia in adults and the second most common frequent leukemia of childhood. Patients may present with lymphopenia or pancytopenia at diagnosis. We investigated the mechanisms by which AML causes pancytopenia and suppresses patients' immune response. This study identified for the first time that AML blasts alter the immune microenvironment through enhanced arginine metabolism. Arginase II is expressed and released from AML blasts and is present at high concentrations in the plasma of patients with AML, resulting in suppression of T-cell proliferation. We extended these results by demonstrating an arginase-dependent ability of AML blasts to polarize surrounding monocytes into a suppressive M2-like phenotype in vitro and in engrafted nonobese diabetic–severe combined immunodeficiency mice. In addition, AML blasts can suppress the proliferation and differentiation of murine granulocyte-monocyte progenitors and human CD34+ progenitors. Finally, the study showed that the immunosuppressive activity of AML blasts can be modulated through small-molecule inhibitors of arginase and inducible nitric oxide synthase, suggesting a novel therapeutic target in AML. The results strongly support the hypothesis that AML creates an immunosuppressive microenvironment that contributes to the pancytopenia observed at diagnosis. •AML blasts have an arginase-dependent ability to inhibit T-cell proliferation and hematopoietic stem cells.•AML blasts have an arginase-dependent ability to modulate the polarization of monocytes.
Author Vyas, Paresh
Cerundolo, Vincenzo
Booth, Sarah
Qureshi, Amrana
Abu-Dayyeh, Issa
Quek, Lynn
Dazzi, Francesco
Mussai, Francis
McEwen-Smith, Rosanna M.
De Santo, Carmela
Author_xml – sequence: 1
  givenname: Francis
  surname: Mussai
  fullname: Mussai, Francis
  organization: Medical Research Council Human Immunology Unit, University of Oxford, Oxford, United Kingdom
– sequence: 2
  givenname: Carmela
  surname: De Santo
  fullname: De Santo, Carmela
  organization: Medical Research Council Human Immunology Unit, University of Oxford, Oxford, United Kingdom
– sequence: 3
  givenname: Issa
  surname: Abu-Dayyeh
  fullname: Abu-Dayyeh, Issa
  organization: Medical Research Council Human Immunology Unit, University of Oxford, Oxford, United Kingdom
– sequence: 4
  givenname: Sarah
  surname: Booth
  fullname: Booth, Sarah
  organization: Medical Research Council Human Immunology Unit, University of Oxford, Oxford, United Kingdom
– sequence: 5
  givenname: Lynn
  surname: Quek
  fullname: Quek, Lynn
  organization: Medical Research Council Molecular Haematology Unit, Radcliffe Department of Medicine, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
– sequence: 6
  givenname: Rosanna M.
  surname: McEwen-Smith
  fullname: McEwen-Smith, Rosanna M.
  organization: Medical Research Council Human Immunology Unit, University of Oxford, Oxford, United Kingdom
– sequence: 7
  givenname: Amrana
  surname: Qureshi
  fullname: Qureshi, Amrana
  organization: Department of Paediatric Oncology, Children's Hospital, John Radcliffe Hospital, Oxford, United Kingdom
– sequence: 8
  givenname: Francesco
  surname: Dazzi
  fullname: Dazzi, Francesco
  organization: Department of Haematology, Hammersmith Hospital, London, United Kingdom
– sequence: 9
  givenname: Paresh
  surname: Vyas
  fullname: Vyas, Paresh
  organization: Medical Research Council Molecular Haematology Unit, Radcliffe Department of Medicine, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
– sequence: 10
  givenname: Vincenzo
  surname: Cerundolo
  fullname: Cerundolo, Vincenzo
  email: vincenzo.cerundolo@ndm.ox.ac.uk
  organization: Medical Research Council Human Immunology Unit, University of Oxford, Oxford, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23733335$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9rFTEUxYO02NfqNxCZpZvUm8zfuBBKUSsUuqm4DJnkTr06k4zJzIN---b5XkVd2GwSyDm_A-ecsiMfPDL2SsC5EJ18248hOC5BlBwErzoQUj1jG1HLjgNIOGIbAGh4pVpxwk5T-g4gqlLWz9mJLNsyn3rDvl7YdcFiuscxkCtGXH_gRKawEc2CqTC-MPGOvEnIHc7oHfqloGlafUjrPEdMibYZQDYG9FuKwU9Z8oIdD2ZM-PJwn7EvHz_cXl7x65tPny8vrrmtpVp41TvXtQ4RO2GhGRpslOvdoESrTIdWGWjsAJhfqBpTybpXpbQOemuxwb48Y-_33HntJ3Q2R0cz6jnSZOK9Dob03z-evum7sNW5AaFKyIA3B0AMP1dMi54oWRxH4zGsSYtKtHVZ1dBl6es_s36HPLaZBe_2gtxFShEHbWkxC4VdNI1agN5Np39Np3fTaRB6P102V_-YH_lP2A4FYG55Sxh1soTeoqOIdtEu0P8BD1aSt8o
CitedBy_id crossref_primary_10_3390_cancers13061423
crossref_primary_10_1101_cshperspect_a037044
crossref_primary_10_3390_cancers12082030
crossref_primary_10_3389_fonc_2019_01162
crossref_primary_10_3390_biomedicines12102306
crossref_primary_10_1155_2020_8765028
crossref_primary_10_3389_fonc_2022_855570
crossref_primary_10_3390_diseases10020033
crossref_primary_10_1182_blood_2013_06_508499
crossref_primary_10_3389_fonc_2019_01166
crossref_primary_10_3389_frhem_2023_1353994
crossref_primary_10_1016_j_celrep_2024_113995
crossref_primary_10_1016_j_it_2017_04_004
crossref_primary_10_1002_cncr_33690
crossref_primary_10_1186_s12974_024_03206_4
crossref_primary_10_1101_cshperspect_a041538
crossref_primary_10_1136_jitc_2022_004794
crossref_primary_10_1007_s00262_015_1744_y
crossref_primary_10_1007_s00277_024_05706_y
crossref_primary_10_1016_j_ccm_2017_04_009
crossref_primary_10_1016_j_critrevonc_2016_04_020
crossref_primary_10_1080_2162402X_2019_1683347
crossref_primary_10_1371_journal_pone_0205254
crossref_primary_10_3390_cancers15112958
crossref_primary_10_1182_blood_2018_10_846824
crossref_primary_10_1080_17474086_2024_2441962
crossref_primary_10_1186_s12974_016_0667_7
crossref_primary_10_20473_jbe_V9I12021_1_9
crossref_primary_10_3389_fimmu_2017_00573
crossref_primary_10_3390_ijms241713069
crossref_primary_10_1111_eci_14342
crossref_primary_10_3390_cancers13215319
crossref_primary_10_1002_cam4_6804
crossref_primary_10_1007_s00277_024_06117_9
crossref_primary_10_1016_j_critrevonc_2020_103164
crossref_primary_10_3390_ijms26010045
crossref_primary_10_1200_JCO_20_00475
crossref_primary_10_3389_fimmu_2020_01710
crossref_primary_10_1172_JCI145296
crossref_primary_10_1016_j_imlet_2015_11_007
crossref_primary_10_1172_JCI129204
crossref_primary_10_1172_JCI159579
crossref_primary_10_1126_sciadv_adf8522
crossref_primary_10_1016_j_leukres_2013_08_007
crossref_primary_10_1002_ijc_32028
crossref_primary_10_1021_acsmedchemlett_9b00508
crossref_primary_10_18632_oncotarget_16060
crossref_primary_10_1158_1078_0432_CCR_17_3016
crossref_primary_10_1158_2159_8290_CD_20_1211
crossref_primary_10_7314_APJCP_2015_16_16_7031
crossref_primary_10_1007_s11033_022_08041_5
crossref_primary_10_1517_14712598_2015_1051028
crossref_primary_10_1038_s41409_018_0244_z
crossref_primary_10_1158_0008_5472_CAN_20_0024
crossref_primary_10_1002_ijc_31170
crossref_primary_10_1016_j_ejmech_2021_113356
crossref_primary_10_1182_blood_2014_10_608133
crossref_primary_10_1182_bloodadvances_2022008272
crossref_primary_10_3389_fcell_2020_603837
crossref_primary_10_1002_eji_201546047
crossref_primary_10_1016_j_bbrc_2022_02_022
crossref_primary_10_1093_carcin_bgaa063
crossref_primary_10_1111_jcmm_17576
crossref_primary_10_3390_cancers14030497
crossref_primary_10_3389_fimmu_2021_791453
crossref_primary_10_4236_ojbd_2015_53004
crossref_primary_10_3390_jcm9103334
crossref_primary_10_3390_cancers16061171
crossref_primary_10_1016_j_omto_2022_05_011
crossref_primary_10_3389_fphar_2023_1151032
crossref_primary_10_37349_etat_2024_00262
crossref_primary_10_2217_imt_2019_0215
crossref_primary_10_1080_19420862_2020_1801230
crossref_primary_10_3390_cancers13102385
crossref_primary_10_3389_fimmu_2024_1347492
crossref_primary_10_1007_s11912_020_0885_0
crossref_primary_10_2174_0929867326666190325095853
crossref_primary_10_1182_blood_2014_09_600643
crossref_primary_10_1155_2020_2134647
crossref_primary_10_1002_jcp_27735
crossref_primary_10_1016_j_exphem_2021_01_004
crossref_primary_10_3389_fcell_2021_692800
crossref_primary_10_1182_blood_2016_07_730614
crossref_primary_10_1007_s12185_023_03675_y
crossref_primary_10_3390_cancers13061203
crossref_primary_10_3390_cancers13164121
crossref_primary_10_1007_s13577_020_00437_4
crossref_primary_10_1155_2024_5539065
crossref_primary_10_2147_CMAR_S261721
crossref_primary_10_3389_fimmu_2016_00094
crossref_primary_10_1200_JCO_18_00889
crossref_primary_10_1038_s41375_021_01350_x
crossref_primary_10_3390_biomedicines11061724
crossref_primary_10_1038_nrc_2016_154
crossref_primary_10_1016_j_semcancer_2022_02_012
crossref_primary_10_3389_fonc_2020_00262
crossref_primary_10_1007_s00281_016_0593_x
crossref_primary_10_1016_j_bbmt_2019_01_016
crossref_primary_10_1016_j_semcancer_2022_02_010
crossref_primary_10_1186_s40164_020_00190_2
crossref_primary_10_1016_j_coph_2017_05_002
crossref_primary_10_3389_fonc_2022_938847
crossref_primary_10_3390_children7020014
crossref_primary_10_1007_s10637_019_00756_w
crossref_primary_10_3390_cancers13040870
crossref_primary_10_3390_cancers11020260
crossref_primary_10_3389_fimmu_2022_901277
crossref_primary_10_1097_CM9_0000000000002657
crossref_primary_10_3390_cancers12123617
crossref_primary_10_1073_pnas_1916206117
crossref_primary_10_3390_ijms25126356
crossref_primary_10_1080_14737159_2017_1381560
crossref_primary_10_1098_rsob_180037
crossref_primary_10_1038_leu_2014_108
crossref_primary_10_3389_fonc_2018_00213
crossref_primary_10_1158_0008_5472_CAN_14_3443
crossref_primary_10_3109_10428194_2014_987141
crossref_primary_10_18632_oncotarget_18843
crossref_primary_10_1101_gad_326470_119
crossref_primary_10_3389_fimmu_2024_1397005
crossref_primary_10_3389_fonc_2022_933666
crossref_primary_10_3389_fonc_2021_767026
crossref_primary_10_1182_blood_2022018092
crossref_primary_10_1016_j_bmcl_2023_129193
crossref_primary_10_3389_fimmu_2020_00121
crossref_primary_10_1016_j_molimm_2020_11_021
crossref_primary_10_1002_ijc_34139
crossref_primary_10_1177_2040620715616544
crossref_primary_10_1586_17474086_2014_958464
crossref_primary_10_1111_cas_12459
crossref_primary_10_1080_2162402X_2021_1956143
crossref_primary_10_1186_s40425_019_0504_5
crossref_primary_10_1016_j_ejmech_2023_116033
crossref_primary_10_1038_leu_2015_214
crossref_primary_10_1016_j_mgene_2020_100773
crossref_primary_10_1177_20406207241263489
crossref_primary_10_1093_carcin_bgv129
crossref_primary_10_1093_jnen_nlx072
crossref_primary_10_1007_s00281_018_0693_x
crossref_primary_10_1182_blood_2023019962
crossref_primary_10_3389_fimmu_2024_1440269
crossref_primary_10_2217_ijh_14_23
crossref_primary_10_1002_cam4_3360
crossref_primary_10_1111_imcb_12557
crossref_primary_10_3390_onco2030011
crossref_primary_10_1038_s41590_025_02096_9
crossref_primary_10_32604_or_2024_048564
crossref_primary_10_1189_jlb_3AB0214_082R
crossref_primary_10_1080_21645515_2017_1358327
crossref_primary_10_1182_blood_2019004500
crossref_primary_10_1186_s12943_023_01889_6
crossref_primary_10_1021_acs_jmedchem_4c01429
crossref_primary_10_1186_s40164_024_00481_y
crossref_primary_10_3724_abbs_2023101
crossref_primary_10_1007_s00262_022_03268_4
crossref_primary_10_3389_fcell_2021_714755
crossref_primary_10_1016_j_exphem_2019_07_005
crossref_primary_10_1097_PPO_0000000000000378
crossref_primary_10_3390_biomedicines6040110
crossref_primary_10_3390_cancers14030756
crossref_primary_10_3390_cancers14163967
crossref_primary_10_1016_j_intimp_2024_111927
crossref_primary_10_1080_17474086_2024_2420614
crossref_primary_10_1182_blood_2014_04_568956
crossref_primary_10_3389_fonc_2021_745924
crossref_primary_10_1158_0008_5472_CAN_18_2139
crossref_primary_10_3390_cells10010056
crossref_primary_10_1172_JCI137723
crossref_primary_10_1016_j_clim_2014_04_006
crossref_primary_10_3390_jcm11010253
crossref_primary_10_2217_imt_2019_0197
crossref_primary_10_1002_ajh_24312
crossref_primary_10_1016_j_canlet_2024_216730
crossref_primary_10_1038_s41408_022_00615_7
crossref_primary_10_3389_fcell_2021_621214
crossref_primary_10_1053_j_seminhematol_2015_03_003
crossref_primary_10_1038_s41598_024_74806_6
crossref_primary_10_1182_bloodadvances_2022007405
crossref_primary_10_3390_biomedicines10061410
crossref_primary_10_1111_ejh_14047
crossref_primary_10_3390_cimb45040231
crossref_primary_10_3389_fphar_2023_1129997
crossref_primary_10_1182_hematology_2024000588
crossref_primary_10_3389_fonc_2020_00697
crossref_primary_10_2217_imt_2016_0118
crossref_primary_10_1101_cshperspect_a035477
crossref_primary_10_3389_fonc_2019_01217
crossref_primary_10_1080_2162402X_2017_1304336
crossref_primary_10_3389_fimmu_2022_811144
crossref_primary_10_1016_S0007_4551_18_30392_8
crossref_primary_10_3390_cancers12123542
crossref_primary_10_1016_j_biopha_2022_112840
crossref_primary_10_1172_jci_insight_120974
crossref_primary_10_3390_ijms24010563
crossref_primary_10_1182_blood_2015_08_665604
crossref_primary_10_3109_10428194_2014_970545
crossref_primary_10_1080_17474086_2023_2268273
crossref_primary_10_3390_cancers15102713
crossref_primary_10_1021_acsbiomaterials_3c01595
crossref_primary_10_1080_2162402X_2017_1404215
crossref_primary_10_1186_s12979_021_00244_x
crossref_primary_10_1136_jitc_2022_005326
crossref_primary_10_1016_j_molcel_2021_08_005
crossref_primary_10_3390_ijms25084391
crossref_primary_10_1016_j_actatropica_2021_105966
crossref_primary_10_3389_fimmu_2021_653030
crossref_primary_10_3390_cancers11060875
crossref_primary_10_1021_acs_joc_4c02879
crossref_primary_10_1158_1535_7163_MCT_22_0721
crossref_primary_10_1038_s41375_024_02217_7
crossref_primary_10_1080_2162402X_2020_1771142
crossref_primary_10_3389_fimmu_2021_729085
crossref_primary_10_1097_HS9_0000000000000937
crossref_primary_10_1186_s12964_023_01282_2
crossref_primary_10_1182_blood_2019001034
crossref_primary_10_1038_s41586_018_0615_z
crossref_primary_10_1038_s41388_020_1239_y
crossref_primary_10_1200_JCO_20_01801
crossref_primary_10_1016_j_drudis_2018_01_046
crossref_primary_10_3389_fimmu_2020_00147
crossref_primary_10_1080_2162402X_2015_1078967
crossref_primary_10_1007_s11899_015_0253_6
crossref_primary_10_1111_jcmm_18256
crossref_primary_10_1586_17474086_2014_932687
crossref_primary_10_1038_s41423_024_01148_8
crossref_primary_10_1016_j_tice_2021_101578
crossref_primary_10_3389_fonc_2021_674720
crossref_primary_10_3390_cancers16152615
crossref_primary_10_1172_JCI133187
crossref_primary_10_3389_fonc_2023_1230934
crossref_primary_10_1038_s41467_019_10979_3
crossref_primary_10_1158_1078_0432_CCR_19_3003
crossref_primary_10_1016_j_celrep_2021_109101
crossref_primary_10_3389_fonc_2020_578933
crossref_primary_10_3389_fimmu_2020_00938
crossref_primary_10_1155_2015_162410
crossref_primary_10_1038_s41419_020_03175_5
crossref_primary_10_1021_acs_jmedchem_4c01993
crossref_primary_10_1042_ETLS20200331
crossref_primary_10_1111_bjh_12725
crossref_primary_10_3390_cancers12010069
crossref_primary_10_3390_ijms18112259
crossref_primary_10_1155_2015_718975
Cites_doi 10.1200/JCO.2010.30.2554
10.4049/jimmunol.167.10.6021
10.1084/jem.179.4.1109
10.1182/blood.V97.1.56
10.4049/jimmunol.179.2.977
10.1046/j.1365-2249.2001.01692.x
10.1189/jlb.1110644
10.1152/ajpcell.00075.2008
10.1038/sj.leu.2403924
10.1158/0008-5472.CAN-09-2587
10.1056/NEJMoa0905680
10.1182/blood-2011-04-348151
10.1073/pnas.0409783102
10.1111/j.1600-0609.2011.01580.x
10.1038/35004599
10.1158/0008-5472.CAN-08-1921
10.1084/jem.20101688
10.1371/journal.pone.0012107
10.1097/CJI.0b013e31825be926
10.1007/978-1-59745-396-7_12
10.1172/JCI113923
10.4049/jimmunol.168.2.689
10.4049/jimmunol.172.2.989
10.1016/S1471-4906(03)00132-7
10.1002/eji.200939486
10.1038/onc.2010.619
10.1016/0305-0491(95)02138-8
10.4049/jimmunol.1000475
10.1182/blood-2010-12-325753
10.1038/nm1609
10.1182/blood.V75.3.555.555
10.1074/jbc.M109.042671
ContentType Journal Article
Copyright 2013 American Society of Hematology
2013 by The American Society of Hematology 2013
Copyright_xml – notice: 2013 American Society of Hematology
– notice: 2013 by The American Society of Hematology 2013
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1182/blood-2013-01-480129
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Biology
Anatomy & Physiology
EISSN 1528-0020
EndPage 758
ExternalDocumentID PMC3731930
23733335
10_1182_blood_2013_01_480129
S0006497120560424
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_U137961146
– fundername: Wellcome Trust
– fundername: Medical Research Council
  grantid: G1000729
– fundername: Cancer Research UK
  grantid: 11331
– fundername: Cancer Research UK
  grantid: C399/A2291
GroupedDBID ---
-~X
.55
1CY
23N
2WC
34G
39C
4.4
53G
5GY
5RE
5VS
6I.
6J9
AAEDW
AAFTH
AAXUO
ABOCM
ABVKL
ACGFO
ADBBV
AENEX
AFOSN
AHPSJ
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CS3
DIK
DU5
E3Z
EBS
EJD
EX3
F5P
FDB
FRP
GS5
GX1
IH2
K-O
KQ8
L7B
LSO
MJL
N9A
OK1
P2P
R.V
RHF
RHI
ROL
SJN
THE
TR2
TWZ
W2D
W8F
WH7
WOQ
WOW
X7M
YHG
YKV
ZA5
0R~
AALRI
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AIGII
AITUG
AKBMS
AKRWK
AKYEP
AMRAJ
CITATION
H13
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c529t-4bdd87deee81c06f6e69dbdf9179a8ec9a06cf0eec9e96a425b932cd0bcce6eb3
ISSN 0006-4971
1528-0020
IngestDate Thu Aug 21 13:44:55 EDT 2025
Fri Sep 05 14:22:50 EDT 2025
Mon Jul 21 06:05:05 EDT 2025
Tue Jul 01 02:15:24 EDT 2025
Thu Apr 24 23:07:29 EDT 2025
Fri Feb 23 02:45:06 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License This article is made available under the Elsevier license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c529t-4bdd87deee81c06f6e69dbdf9179a8ec9a06cf0eec9e96a425b932cd0bcce6eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
F.M. and C.D.S. contributed equally to this study.
OpenAccessLink https://dx.doi.org/10.1182/blood-2013-01-480129
PMID 23733335
PQID 1417534508
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3731930
proquest_miscellaneous_1417534508
pubmed_primary_23733335
crossref_citationtrail_10_1182_blood_2013_01_480129
crossref_primary_10_1182_blood_2013_01_480129
elsevier_sciencedirect_doi_10_1182_blood_2013_01_480129
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-08-01
2013-Aug-01
20130801
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington, DC
PublicationTitle Blood
PublicationTitleAlternate Blood
PublicationYear 2013
Publisher Elsevier Inc
American Society of Hematology
Publisher_xml – name: Elsevier Inc
– name: American Society of Hematology
References Whyte, Bishop, Rückerl (bib21) 2011; 90
Bronte, Serafini, Mazzoni, Segal, Zanovello (bib11) 2003; 24
Nagaraj, Gupta, Pisarev (bib13) 2007; 13
Mazzoni, Bronte, Visintin (bib14) 2002; 168
Solito, Falisi, Diaz-Montero (bib25) 2011; 118
Chow, Lucas, Hidalgo (bib30) 2011; 208
Kusmartsev, Nefedova, Yoder, Gabrilovich (bib10) 2004; 172
Ho, Sly (bib29) 2009; 531
Buggins, Milojkovic, Arno, Lea, Mufti, Thomas, Hirst (bib6) 2001; 167
Srivastava, Sinha, Clements, Rodriguez, Ostrand-Rosenberg (bib15) 2010; 70
Gannon, Godin-Ethier, Hassler (bib27) 2010; 5
Steidl, Lee, Shah (bib28) 2010; 362
Orleans-Lindsay, Barber, Prentice, Lowdell (bib5) 2001; 126
Mussai, De Santo, Cerundolo (bib24) 2012; 35
Domínguez-Soto, Sierra-Filardi, Puig-Kröger (bib23) 2011; 186
Sallusto, Lanzavecchia (bib8) 1994; 179
Jenkinson, Grody, Cederbaum (bib26) 1996; 114
Gibson, Wheatley, Hann (bib4) 2005; 19
Rodriguez, Ernstoff, Hernandez, Atkins, Zabaleta, Sierra, Ochoa (bib12) 2009; 69
De Santo, Serafini, Marigo (bib32) 2005; 102
Horowitz, Gale, Sondel (bib3) 1990; 75
Greifenberg, Ribechini, Rössner, Lutz (bib17) 2009; 39
Frisch, Ashton, Xing, Becker, Jordan, Calvi (bib31) 2012; 119
Akashi, Traver, Miyamoto, Weissman (bib9) 2000; 404
Sinha, Clements, Bunt, Albelda, Ostrand-Rosenberg (bib16) 2007; 179
Hemmati, Terwey, le Coutre, Vuong, Massenkeil, Dörken, Arnold (bib7) 2011; 86
Marcucci, Haferlach, Döhner (bib1) 2011; 29
Roca, Varsos, Sud, Craig, Ying, Pienta (bib20) 2009; 284
Standiford, Kuick, Bhan, Chen, Newstead, Keshamouni (bib22) 2011; 30
Woods, Neudorf, Gold (bib2) 2001; 97
Zharikov, Krotova, Hu, Baylis, Johnson, Block, Patel (bib18) 2008; 295
Grody, Argyle, Kern (bib19) 1989; 83
Grody (2019111816475973300_B19) 1989; 83
Nagaraj (2019111816475973300_B13) 2007; 13
Domínguez-Soto (2019111816475973300_B23) 2011; 186
Buggins (2019111816475973300_B6) 2001; 167
Ho (2019111816475973300_B29) 2009; 531
Mussai (2019111816475973300_B24) 2012; 35
Kusmartsev (2019111816475973300_B10) 2004; 172
Orleans-Lindsay (2019111816475973300_B5) 2001; 126
Sallusto (2019111816475973300_B8) 1994; 179
Steidl (2019111816475973300_B28) 2010; 362
Sinha (2019111816475973300_B16) 2007; 179
Mazzoni (2019111816475973300_B14) 2002; 168
Greifenberg (2019111816475973300_B17) 2009; 39
Chow (2019111816475973300_B30) 2011; 208
Zharikov (2019111816475973300_B18) 2008; 295
Gibson (2019111816475973300_B4) 2005; 19
Marcucci (2019111816475973300_B1) 2011; 29
Gannon (2019111816475973300_B27) 2010; 5
Rodriguez (2019111816475973300_B12) 2009; 69
Woods (2019111816475973300_B2) 2001; 97
Bronte (2019111816475973300_B11) 2003; 24
Jenkinson (2019111816475973300_B26) 1996; 114
Standiford (2019111816475973300_B22) 2011; 30
Whyte (2019111816475973300_B21) 2011; 90
Hemmati (2019111816475973300_B7) 2011; 86
Solito (2019111816475973300_B25) 2011; 118
Horowitz (2019111816475973300_B3) 1990; 75
Frisch (2019111816475973300_B31) 2012; 119
Roca (2019111816475973300_B20) 2009; 284
De Santo (2019111816475973300_B32) 2005; 102
Akashi (2019111816475973300_B9) 2000; 404
Srivastava (2019111816475973300_B15) 2010; 70
23908439 - Blood. 2013 Aug 1;122(5):620-1. doi: 10.1182/blood-2013-06-508499.
References_xml – volume: 404
  start-page: 193
  year: 2000
  end-page: 197
  ident: bib9
  article-title: A clonogenic common myeloid progenitor that gives rise to all myeloid lineages
  publication-title: Nature
– volume: 39
  start-page: 2865
  year: 2009
  end-page: 2876
  ident: bib17
  article-title: Myeloid-derived suppressor cell activation by combined LPS and IFN-gamma treatment impairs DC development
  publication-title: Eur J Immunol
– volume: 179
  start-page: 977
  year: 2007
  end-page: 983
  ident: bib16
  article-title: Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response
  publication-title: J Immunol
– volume: 295
  start-page: C1183
  year: 2008
  end-page: C1190
  ident: bib18
  article-title: Uric acid decreases NO production and increases arginase activity in cultured pulmonary artery endothelial cells
  publication-title: Am J Physiol Cell Physiol
– volume: 126
  start-page: 403
  year: 2001
  end-page: 411
  ident: bib5
  article-title: Acute myeloid leukaemia cells secrete a soluble factor that inhibits T and NK cell proliferation but not cytolytic function—implications for the adoptive immunotherapy of leukaemia
  publication-title: Clin Exp Immunol
– volume: 114
  start-page: 107
  year: 1996
  end-page: 132
  ident: bib26
  article-title: Comparative properties of arginases
  publication-title: Comp Biochem Physiol B Biochem Mol Biol.
– volume: 186
  start-page: 2192
  year: 2011
  end-page: 2200
  ident: bib23
  article-title: Dendritic cell-specific ICAM-3-grabbing nonintegrin expression on M2-polarized and tumor-associated macrophages is macrophage-CSF dependent and enhanced by tumor-derived IL-6 and IL-10
  publication-title: J Immunol
– volume: 102
  start-page: 4185
  year: 2005
  end-page: 4190
  ident: bib32
  article-title: Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination
  publication-title: Proc Natl Acad Sci USA
– volume: 83
  start-page: 602
  year: 1989
  end-page: 609
  ident: bib19
  article-title: Differential expression of the two human arginase genes in hyperargininemia. Enzymatic, pathologic, and molecular analysis
  publication-title: J Clin Invest
– volume: 172
  start-page: 989
  year: 2004
  end-page: 999
  ident: bib10
  article-title: Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species
  publication-title: J Immunol
– volume: 24
  start-page: 302
  year: 2003
  end-page: 306
  ident: bib11
  article-title: L-arginine metabolism in myeloid cells controls T-lymphocyte functions
  publication-title: Trends Immunol
– volume: 362
  start-page: 875
  year: 2010
  end-page: 885
  ident: bib28
  article-title: Tumor-associated macrophages and survival in classic Hodgkin's lymphoma
  publication-title: N Engl J Med
– volume: 119
  start-page: 540
  year: 2012
  end-page: 550
  ident: bib31
  article-title: Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia
  publication-title: Blood
– volume: 179
  start-page: 1109
  year: 1994
  end-page: 1118
  ident: bib8
  article-title: Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha
  publication-title: J Exp Med
– volume: 90
  start-page: 845
  year: 2011
  end-page: 854
  ident: bib21
  article-title: Suppressor of cytokine signaling (SOCS)1 is a key determinant of differential macrophage activation and function
  publication-title: J Leukoc Biol.
– volume: 30
  start-page: 2475
  year: 2011
  end-page: 2484
  ident: bib22
  article-title: TGF-β-induced IRAK-M expression in tumor-associated macrophages regulates lung tumor growth
  publication-title: Oncogene
– volume: 19
  start-page: 2130
  year: 2005
  end-page: 2138
  ident: bib4
  article-title: Treatment strategy and long-term results in paediatric patients treated in consecutive UK AML trials
  publication-title: Leukemia
– volume: 69
  start-page: 1553
  year: 2009
  end-page: 1560
  ident: bib12
  article-title: Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes
  publication-title: Cancer Res
– volume: 208
  start-page: 261
  year: 2011
  end-page: 271
  ident: bib30
  article-title: Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche
  publication-title: J Exp Med
– volume: 284
  start-page: 34342
  year: 2009
  end-page: 34354
  ident: bib20
  article-title: CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization
  publication-title: J Biol Chem
– volume: 97
  start-page: 56
  year: 2001
  end-page: 62
  ident: bib2
  article-title: A comparison of allogeneic bone marrow transplantation, autologous bone marrow transplantation, and aggressive chemotherapy in children with acute myeloid leukemia in remission
  publication-title: Blood
– volume: 167
  start-page: 6021
  year: 2001
  end-page: 6030
  ident: bib6
  article-title: Microenvironment produced by acute myeloid leukemia cells prevents T cell activation and proliferation by inhibition of NF-kappaB, c-Myc, and pRb pathways
  publication-title: J Immunol
– volume: 29
  start-page: 475
  year: 2011
  end-page: 486
  ident: bib1
  article-title: Molecular genetics of adult acute myeloid leukemia: prognostic and therapeutic implications
  publication-title: J Clin Oncol
– volume: 531
  start-page: 173
  year: 2009
  end-page: 185
  ident: bib29
  article-title: Derivation and characterization of murine alternatively activated (M2) macrophages
  publication-title: Methods Mol Biol.
– volume: 75
  start-page: 555
  year: 1990
  end-page: 562
  ident: bib3
  article-title: Graft-versus-leukemia reactions after bone marrow transplantation
  publication-title: Blood
– volume: 13
  start-page: 828
  year: 2007
  end-page: 835
  ident: bib13
  article-title: Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer
  publication-title: Nat Med
– volume: 118
  start-page: 2254
  year: 2011
  end-page: 2265
  ident: bib25
  article-title: A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells
  publication-title: Blood
– volume: 5
  start-page: e12107
  year: 2010
  ident: bib27
  article-title: Androgen-regulated expression of arginase 1, arginase 2 and interleukin-8 in human prostate cancer
  publication-title: PLoS ONE
– volume: 86
  start-page: 305
  year: 2011
  end-page: 316
  ident: bib7
  article-title: A modified EBMT risk score predicts the outcome of patients with acute myeloid leukemia receiving allogeneic stem cell transplants
  publication-title: Eur J Haematol
– volume: 35
  start-page: 449
  year: 2012
  end-page: 459
  ident: bib24
  article-title: Interaction between invariant NKT cells and myeloid-derived suppressor cells in cancer patients: evidence and therapeutic opportunities
  publication-title: J Immunother
– volume: 70
  start-page: 68
  year: 2010
  end-page: 77
  ident: bib15
  article-title: Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine
  publication-title: Cancer Res
– volume: 168
  start-page: 689
  year: 2002
  end-page: 695
  ident: bib14
  article-title: Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism
  publication-title: J Immunol
– volume: 29
  start-page: 475
  issue: 5
  year: 2011
  ident: 2019111816475973300_B1
  article-title: Molecular genetics of adult acute myeloid leukemia: prognostic and therapeutic implications.
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2010.30.2554
– volume: 167
  start-page: 6021
  issue: 10
  year: 2001
  ident: 2019111816475973300_B6
  article-title: Microenvironment produced by acute myeloid leukemia cells prevents T cell activation and proliferation by inhibition of NF-kappaB, c-Myc, and pRb pathways.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.167.10.6021
– volume: 179
  start-page: 1109
  issue: 4
  year: 1994
  ident: 2019111816475973300_B8
  article-title: Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha.
  publication-title: J Exp Med
  doi: 10.1084/jem.179.4.1109
– volume: 97
  start-page: 56
  issue: 1
  year: 2001
  ident: 2019111816475973300_B2
  article-title: A comparison of allogeneic bone marrow transplantation, autologous bone marrow transplantation, and aggressive chemotherapy in children with acute myeloid leukemia in remission.
  publication-title: Blood
  doi: 10.1182/blood.V97.1.56
– volume: 179
  start-page: 977
  issue: 2
  year: 2007
  ident: 2019111816475973300_B16
  article-title: Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.179.2.977
– volume: 126
  start-page: 403
  issue: 3
  year: 2001
  ident: 2019111816475973300_B5
  article-title: Acute myeloid leukaemia cells secrete a soluble factor that inhibits T and NK cell proliferation but not cytolytic function—implications for the adoptive immunotherapy of leukaemia.
  publication-title: Clin Exp Immunol
  doi: 10.1046/j.1365-2249.2001.01692.x
– volume: 90
  start-page: 845
  issue: 5
  year: 2011
  ident: 2019111816475973300_B21
  article-title: Suppressor of cytokine signaling (SOCS)1 is a key determinant of differential macrophage activation and function.
  publication-title: J Leukoc Biol
  doi: 10.1189/jlb.1110644
– volume: 295
  start-page: C1183
  issue: 5
  year: 2008
  ident: 2019111816475973300_B18
  article-title: Uric acid decreases NO production and increases arginase activity in cultured pulmonary artery endothelial cells.
  publication-title: Am J Physiol Cell Physiol
  doi: 10.1152/ajpcell.00075.2008
– volume: 19
  start-page: 2130
  issue: 12
  year: 2005
  ident: 2019111816475973300_B4
  article-title: Treatment strategy and long-term results in paediatric patients treated in consecutive UK AML trials.
  publication-title: Leukemia
  doi: 10.1038/sj.leu.2403924
– volume: 70
  start-page: 68
  issue: 1
  year: 2010
  ident: 2019111816475973300_B15
  article-title: Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine.
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-09-2587
– volume: 362
  start-page: 875
  issue: 10
  year: 2010
  ident: 2019111816475973300_B28
  article-title: Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma.
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0905680
– volume: 119
  start-page: 540
  issue: 2
  year: 2012
  ident: 2019111816475973300_B31
  article-title: Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia.
  publication-title: Blood
  doi: 10.1182/blood-2011-04-348151
– volume: 102
  start-page: 4185
  issue: 11
  year: 2005
  ident: 2019111816475973300_B32
  article-title: Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0409783102
– volume: 86
  start-page: 305
  issue: 4
  year: 2011
  ident: 2019111816475973300_B7
  article-title: A modified EBMT risk score predicts the outcome of patients with acute myeloid leukemia receiving allogeneic stem cell transplants.
  publication-title: Eur J Haematol
  doi: 10.1111/j.1600-0609.2011.01580.x
– volume: 404
  start-page: 193
  issue: 6774
  year: 2000
  ident: 2019111816475973300_B9
  article-title: A clonogenic common myeloid progenitor that gives rise to all myeloid lineages.
  publication-title: Nature
  doi: 10.1038/35004599
– volume: 69
  start-page: 1553
  issue: 4
  year: 2009
  ident: 2019111816475973300_B12
  article-title: Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes.
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-08-1921
– volume: 208
  start-page: 261
  issue: 2
  year: 2011
  ident: 2019111816475973300_B30
  article-title: Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche.
  publication-title: J Exp Med
  doi: 10.1084/jem.20101688
– volume: 5
  start-page: e12107
  issue: 8
  year: 2010
  ident: 2019111816475973300_B27
  article-title: Androgen-regulated expression of arginase 1, arginase 2 and interleukin-8 in human prostate cancer.
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0012107
– volume: 35
  start-page: 449
  issue: 6
  year: 2012
  ident: 2019111816475973300_B24
  article-title: Interaction between invariant NKT cells and myeloid-derived suppressor cells in cancer patients: evidence and therapeutic opportunities.
  publication-title: J Immunother
  doi: 10.1097/CJI.0b013e31825be926
– volume: 531
  start-page: 173
  year: 2009
  ident: 2019111816475973300_B29
  article-title: Derivation and characterization of murine alternatively activated (M2) macrophages.
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-59745-396-7_12
– volume: 83
  start-page: 602
  issue: 2
  year: 1989
  ident: 2019111816475973300_B19
  article-title: Differential expression of the two human arginase genes in hyperargininemia. Enzymatic, pathologic, and molecular analysis.
  publication-title: J Clin Invest
  doi: 10.1172/JCI113923
– volume: 168
  start-page: 689
  issue: 2
  year: 2002
  ident: 2019111816475973300_B14
  article-title: Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.168.2.689
– volume: 172
  start-page: 989
  issue: 2
  year: 2004
  ident: 2019111816475973300_B10
  article-title: Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.172.2.989
– volume: 24
  start-page: 302
  issue: 6
  year: 2003
  ident: 2019111816475973300_B11
  article-title: L-arginine metabolism in myeloid cells controls T-lymphocyte functions.
  publication-title: Trends Immunol
  doi: 10.1016/S1471-4906(03)00132-7
– volume: 39
  start-page: 2865
  issue: 10
  year: 2009
  ident: 2019111816475973300_B17
  article-title: Myeloid-derived suppressor cell activation by combined LPS and IFN-gamma treatment impairs DC development.
  publication-title: Eur J Immunol
  doi: 10.1002/eji.200939486
– volume: 30
  start-page: 2475
  issue: 21
  year: 2011
  ident: 2019111816475973300_B22
  article-title: TGF-β-induced IRAK-M expression in tumor-associated macrophages regulates lung tumor growth.
  publication-title: Oncogene
  doi: 10.1038/onc.2010.619
– volume: 114
  start-page: 107
  issue: 1
  year: 1996
  ident: 2019111816475973300_B26
  article-title: Comparative properties of arginases.
  publication-title: Comp Biochem Physiol B Biochem Mol Biol
  doi: 10.1016/0305-0491(95)02138-8
– volume: 186
  start-page: 2192
  issue: 4
  year: 2011
  ident: 2019111816475973300_B23
  article-title: Dendritic cell-specific ICAM-3-grabbing nonintegrin expression on M2-polarized and tumor-associated macrophages is macrophage-CSF dependent and enhanced by tumor-derived IL-6 and IL-10.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1000475
– volume: 118
  start-page: 2254
  issue: 8
  year: 2011
  ident: 2019111816475973300_B25
  article-title: A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells.
  publication-title: Blood
  doi: 10.1182/blood-2010-12-325753
– volume: 13
  start-page: 828
  issue: 7
  year: 2007
  ident: 2019111816475973300_B13
  article-title: Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer.
  publication-title: Nat Med
  doi: 10.1038/nm1609
– volume: 75
  start-page: 555
  issue: 3
  year: 1990
  ident: 2019111816475973300_B3
  article-title: Graft-versus-leukemia reactions after bone marrow transplantation.
  publication-title: Blood
  doi: 10.1182/blood.V75.3.555.555
– volume: 284
  start-page: 34342
  issue: 49
  year: 2009
  ident: 2019111816475973300_B20
  article-title: CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.042671
– reference: 23908439 - Blood. 2013 Aug 1;122(5):620-1. doi: 10.1182/blood-2013-06-508499.
SSID ssj0014325
Score 2.557903
Snippet Acute myeloid leukemia (AML) is the most common acute leukemia in adults and the second most common frequent leukemia of childhood. Patients may present with...
AML blasts have an arginase-dependent ability to inhibit T-cell proliferation and hematopoietic stem cells. AML blasts have an arginase-dependent ability to...
AML blasts have an arginase-dependent ability to inhibit T-cell proliferation and hematopoietic stem cells. AML blasts have an arginase-dependent ability to...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 749
SubjectTerms Animals
Arginase - metabolism
Arginase - physiology
Cell Proliferation
Cells, Cultured
Humans
Immune Tolerance - physiology
Leukemia, Myeloid, Acute - immunology
Leukemia, Myeloid, Acute - pathology
Mice
Mice, Inbred C57BL
Mice, Inbred NOD
Mice, SCID
Mice, Transgenic
Myeloid Neoplasia
T-Lymphocytes - immunology
T-Lymphocytes - pathology
T-Lymphocytes - physiology
Transplantation, Heterologous
Tumor Escape - physiology
Tumor Microenvironment - immunology
Tumor Microenvironment - physiology
Title Acute myeloid leukemia creates an arginase-dependent immunosuppressive microenvironment
URI https://dx.doi.org/10.1182/blood-2013-01-480129
https://www.ncbi.nlm.nih.gov/pubmed/23733335
https://www.proquest.com/docview/1417534508
https://pubmed.ncbi.nlm.nih.gov/PMC3731930
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIigXBCnQ8JKREJfI1O_HMQRQQQoC0YrerH2MRURiR02MFH4Mv5UZ79pxmqJCc7As27ve5PsyO7MzO8PYyzhOXF_50nZdzu1AKM_mcRLZ4DvS41EsA0EL-pNP0fFp8PEsPOv1fneilqqVeC1_Xbqv5Dqo4jXElXbJ_geybad4Ac8RXzwiwnj8J4xHkrz88zXMyqkazqD6AfMpH9aKIFDy5SE_p7oLS7CbYrer4ZR2hJTLaqFDYH9iBxSU19nxtuXonZlq8hqV5VKXrzb1OFo1GIZfqRqxCSGZw6yV9iNR2W_5eg31-s0H7KBdAShLvaizWZU2yw9UCiLZCuVo_EpNkCm5Hyjb7MYp0EjeiKrZ6ZZghC1lx3Y8Z0sae16HdmFHtsY6t6mZpmOd8X13Bkgoo6yO-tfjRRuZpuG0-zjiuJjXrPD82MdPuJkP2yjFz5Mx3kQN17nBbnox6mbk9P-y8VIFvqcrZJjvZrZm4hCOLhsAJZ42b_ubFrRr5VwM1u1oPyf32F1jtlgjzcH7rAdFnx2MCkRgvrZeWXUgcQ1Gn91605ztj5tygn12e2KiOA7Yt5q3luGt1fDWMry1eGHt8tba4a11kbcP2On7dyfjY9sU-LBl6KUrEg0qiRUAJK50ojyCKFVC5SnOEjwBmXInkrkDeAZpxHF6EWhuSOUIKSEC4T9ke0VZwCGzIrQ0RI72L6g8gNDlOfYiJKTKFzwN1YD5zQ-eSZP9noqwzLLaCk68rEYsI8Qyx800YgNmt60WOvvLFc_HDZaZ0WC1ZpohPa9o-aKBPkNgyGvHCyirJdrmlEw3QENqwB5pKrRjaeiE790iSfsAJY_fvlNMv9dJ5A2zH1-75RN2ZyMPnrK91XkFz1BBX4nn9b_kD4MD65E
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acute+myeloid+leukemia+creates+an+arginase-dependent+immunosuppressive+microenvironment&rft.jtitle=Blood&rft.au=Mussai%2C+Francis&rft.au=De+Santo%2C+Carmela&rft.au=Abu-Dayyeh%2C+Issa&rft.au=Booth%2C+Sarah&rft.date=2013-08-01&rft.pub=American+Society+of+Hematology&rft.issn=0006-4971&rft.eissn=1528-0020&rft.volume=122&rft.issue=5&rft.spage=749&rft.epage=758&rft_id=info:doi/10.1182%2Fblood-2013-01-480129&rft_id=info%3Apmid%2F23733335&rft.externalDocID=PMC3731930
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-4971&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-4971&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-4971&client=summon