Acute myeloid leukemia creates an arginase-dependent immunosuppressive microenvironment
Acute myeloid leukemia (AML) is the most common acute leukemia in adults and the second most common frequent leukemia of childhood. Patients may present with lymphopenia or pancytopenia at diagnosis. We investigated the mechanisms by which AML causes pancytopenia and suppresses patients' immune...
Saved in:
Published in | Blood Vol. 122; no. 5; pp. 749 - 758 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.08.2013
American Society of Hematology |
Subjects | |
Online Access | Get full text |
ISSN | 0006-4971 1528-0020 1528-0020 |
DOI | 10.1182/blood-2013-01-480129 |
Cover
Abstract | Acute myeloid leukemia (AML) is the most common acute leukemia in adults and the second most common frequent leukemia of childhood. Patients may present with lymphopenia or pancytopenia at diagnosis. We investigated the mechanisms by which AML causes pancytopenia and suppresses patients' immune response. This study identified for the first time that AML blasts alter the immune microenvironment through enhanced arginine metabolism. Arginase II is expressed and released from AML blasts and is present at high concentrations in the plasma of patients with AML, resulting in suppression of T-cell proliferation. We extended these results by demonstrating an arginase-dependent ability of AML blasts to polarize surrounding monocytes into a suppressive M2-like phenotype in vitro and in engrafted nonobese diabetic–severe combined immunodeficiency mice. In addition, AML blasts can suppress the proliferation and differentiation of murine granulocyte-monocyte progenitors and human CD34+ progenitors. Finally, the study showed that the immunosuppressive activity of AML blasts can be modulated through small-molecule inhibitors of arginase and inducible nitric oxide synthase, suggesting a novel therapeutic target in AML. The results strongly support the hypothesis that AML creates an immunosuppressive microenvironment that contributes to the pancytopenia observed at diagnosis.
•AML blasts have an arginase-dependent ability to inhibit T-cell proliferation and hematopoietic stem cells.•AML blasts have an arginase-dependent ability to modulate the polarization of monocytes. |
---|---|
AbstractList | AML blasts have an arginase-dependent ability to inhibit T-cell proliferation and hematopoietic stem cells.
AML blasts have an arginase-dependent ability to modulate the polarization of monocytes.
Acute myeloid leukemia (AML) is the most common acute leukemia in adults and the second most common frequent leukemia of childhood. Patients may present with lymphopenia or pancytopenia at diagnosis. We investigated the mechanisms by which AML causes pancytopenia and suppresses patients’ immune response. This study identified for the first time that AML blasts alter the immune microenvironment through enhanced arginine metabolism. Arginase II is expressed and released from AML blasts and is present at high concentrations in the plasma of patients with AML, resulting in suppression of T-cell proliferation. We extended these results by demonstrating an arginase-dependent ability of AML blasts to polarize surrounding monocytes into a suppressive M2-like phenotype in vitro and in engrafted nonobese diabetic–severe combined immunodeficiency mice. In addition, AML blasts can suppress the proliferation and differentiation of murine granulocyte-monocyte progenitors and human CD34
+
progenitors. Finally, the study showed that the immunosuppressive activity of AML blasts can be modulated through small-molecule inhibitors of arginase and inducible nitric oxide synthase, suggesting a novel therapeutic target in AML. The results strongly support the hypothesis that AML creates an immunosuppressive microenvironment that contributes to the pancytopenia observed at diagnosis. Acute myeloid leukemia (AML) is the most common acute leukemia in adults and the second most common frequent leukemia of childhood. Patients may present with lymphopenia or pancytopenia at diagnosis. We investigated the mechanisms by which AML causes pancytopenia and suppresses patients' immune response. This study identified for the first time that AML blasts alter the immune microenvironment through enhanced arginine metabolism. Arginase II is expressed and released from AML blasts and is present at high concentrations in the plasma of patients with AML, resulting in suppression of T-cell proliferation. We extended these results by demonstrating an arginase-dependent ability of AML blasts to polarize surrounding monocytes into a suppressive M2-like phenotype in vitro and in engrafted nonobese diabetic-severe combined immunodeficiency mice. In addition, AML blasts can suppress the proliferation and differentiation of murine granulocyte-monocyte progenitors and human CD34(+) progenitors. Finally, the study showed that the immunosuppressive activity of AML blasts can be modulated through small-molecule inhibitors of arginase and inducible nitric oxide synthase, suggesting a novel therapeutic target in AML. The results strongly support the hypothesis that AML creates an immunosuppressive microenvironment that contributes to the pancytopenia observed at diagnosis.Acute myeloid leukemia (AML) is the most common acute leukemia in adults and the second most common frequent leukemia of childhood. Patients may present with lymphopenia or pancytopenia at diagnosis. We investigated the mechanisms by which AML causes pancytopenia and suppresses patients' immune response. This study identified for the first time that AML blasts alter the immune microenvironment through enhanced arginine metabolism. Arginase II is expressed and released from AML blasts and is present at high concentrations in the plasma of patients with AML, resulting in suppression of T-cell proliferation. We extended these results by demonstrating an arginase-dependent ability of AML blasts to polarize surrounding monocytes into a suppressive M2-like phenotype in vitro and in engrafted nonobese diabetic-severe combined immunodeficiency mice. In addition, AML blasts can suppress the proliferation and differentiation of murine granulocyte-monocyte progenitors and human CD34(+) progenitors. Finally, the study showed that the immunosuppressive activity of AML blasts can be modulated through small-molecule inhibitors of arginase and inducible nitric oxide synthase, suggesting a novel therapeutic target in AML. The results strongly support the hypothesis that AML creates an immunosuppressive microenvironment that contributes to the pancytopenia observed at diagnosis. AML blasts have an arginase-dependent ability to inhibit T-cell proliferation and hematopoietic stem cells. AML blasts have an arginase-dependent ability to modulate the polarization of monocytes. Acute myeloid leukemia (AML) is the most common acute leukemia in adults and the second most common frequent leukemia of childhood. Patients may present with lymphopenia or pancytopenia at diagnosis. We investigated the mechanisms by which AML causes pancytopenia and suppresses patients' immune response. This study identified for the first time that AML blasts alter the immune microenvironment through enhanced arginine metabolism. Arginase II is expressed and released from AML blasts and is present at high concentrations in the plasma of patients with AML, resulting in suppression of T-cell proliferation. We extended these results by demonstrating an arginase-dependent ability of AML blasts to polarize surrounding monocytes into a suppressive M2-like phenotype in vitro and in engrafted nonobese diabetic-severe combined immunodeficiency mice. In addition, AML blasts can suppress the proliferation and differentiation of murine granulocyte-monocyte progenitors and human CD34(+) progenitors. Finally, the study showed that the immunosuppressive activity of AML blasts can be modulated through small-molecule inhibitors of arginase and inducible nitric oxide synthase, suggesting a novel therapeutic target in AML. The results strongly support the hypothesis that AML creates an immunosuppressive microenvironment that contributes to the pancytopenia observed at diagnosis. Acute myeloid leukemia (AML) is the most common acute leukemia in adults and the second most common frequent leukemia of childhood. Patients may present with lymphopenia or pancytopenia at diagnosis. We investigated the mechanisms by which AML causes pancytopenia and suppresses patients' immune response. This study identified for the first time that AML blasts alter the immune microenvironment through enhanced arginine metabolism. Arginase II is expressed and released from AML blasts and is present at high concentrations in the plasma of patients with AML, resulting in suppression of T-cell proliferation. We extended these results by demonstrating an arginase-dependent ability of AML blasts to polarize surrounding monocytes into a suppressive M2-like phenotype in vitro and in engrafted nonobese diabetic–severe combined immunodeficiency mice. In addition, AML blasts can suppress the proliferation and differentiation of murine granulocyte-monocyte progenitors and human CD34+ progenitors. Finally, the study showed that the immunosuppressive activity of AML blasts can be modulated through small-molecule inhibitors of arginase and inducible nitric oxide synthase, suggesting a novel therapeutic target in AML. The results strongly support the hypothesis that AML creates an immunosuppressive microenvironment that contributes to the pancytopenia observed at diagnosis. •AML blasts have an arginase-dependent ability to inhibit T-cell proliferation and hematopoietic stem cells.•AML blasts have an arginase-dependent ability to modulate the polarization of monocytes. |
Author | Vyas, Paresh Cerundolo, Vincenzo Booth, Sarah Qureshi, Amrana Abu-Dayyeh, Issa Quek, Lynn Dazzi, Francesco Mussai, Francis McEwen-Smith, Rosanna M. De Santo, Carmela |
Author_xml | – sequence: 1 givenname: Francis surname: Mussai fullname: Mussai, Francis organization: Medical Research Council Human Immunology Unit, University of Oxford, Oxford, United Kingdom – sequence: 2 givenname: Carmela surname: De Santo fullname: De Santo, Carmela organization: Medical Research Council Human Immunology Unit, University of Oxford, Oxford, United Kingdom – sequence: 3 givenname: Issa surname: Abu-Dayyeh fullname: Abu-Dayyeh, Issa organization: Medical Research Council Human Immunology Unit, University of Oxford, Oxford, United Kingdom – sequence: 4 givenname: Sarah surname: Booth fullname: Booth, Sarah organization: Medical Research Council Human Immunology Unit, University of Oxford, Oxford, United Kingdom – sequence: 5 givenname: Lynn surname: Quek fullname: Quek, Lynn organization: Medical Research Council Molecular Haematology Unit, Radcliffe Department of Medicine, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom – sequence: 6 givenname: Rosanna M. surname: McEwen-Smith fullname: McEwen-Smith, Rosanna M. organization: Medical Research Council Human Immunology Unit, University of Oxford, Oxford, United Kingdom – sequence: 7 givenname: Amrana surname: Qureshi fullname: Qureshi, Amrana organization: Department of Paediatric Oncology, Children's Hospital, John Radcliffe Hospital, Oxford, United Kingdom – sequence: 8 givenname: Francesco surname: Dazzi fullname: Dazzi, Francesco organization: Department of Haematology, Hammersmith Hospital, London, United Kingdom – sequence: 9 givenname: Paresh surname: Vyas fullname: Vyas, Paresh organization: Medical Research Council Molecular Haematology Unit, Radcliffe Department of Medicine, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom – sequence: 10 givenname: Vincenzo surname: Cerundolo fullname: Cerundolo, Vincenzo email: vincenzo.cerundolo@ndm.ox.ac.uk organization: Medical Research Council Human Immunology Unit, University of Oxford, Oxford, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23733335$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9rFTEUxYO02NfqNxCZpZvUm8zfuBBKUSsUuqm4DJnkTr06k4zJzIN---b5XkVd2GwSyDm_A-ecsiMfPDL2SsC5EJ18248hOC5BlBwErzoQUj1jG1HLjgNIOGIbAGh4pVpxwk5T-g4gqlLWz9mJLNsyn3rDvl7YdcFiuscxkCtGXH_gRKawEc2CqTC-MPGOvEnIHc7oHfqloGlafUjrPEdMibYZQDYG9FuKwU9Z8oIdD2ZM-PJwn7EvHz_cXl7x65tPny8vrrmtpVp41TvXtQ4RO2GhGRpslOvdoESrTIdWGWjsAJhfqBpTybpXpbQOemuxwb48Y-_33HntJ3Q2R0cz6jnSZOK9Dob03z-evum7sNW5AaFKyIA3B0AMP1dMi54oWRxH4zGsSYtKtHVZ1dBl6es_s36HPLaZBe_2gtxFShEHbWkxC4VdNI1agN5Np39Np3fTaRB6P102V_-YH_lP2A4FYG55Sxh1soTeoqOIdtEu0P8BD1aSt8o |
CitedBy_id | crossref_primary_10_3390_cancers13061423 crossref_primary_10_1101_cshperspect_a037044 crossref_primary_10_3390_cancers12082030 crossref_primary_10_3389_fonc_2019_01162 crossref_primary_10_3390_biomedicines12102306 crossref_primary_10_1155_2020_8765028 crossref_primary_10_3389_fonc_2022_855570 crossref_primary_10_3390_diseases10020033 crossref_primary_10_1182_blood_2013_06_508499 crossref_primary_10_3389_fonc_2019_01166 crossref_primary_10_3389_frhem_2023_1353994 crossref_primary_10_1016_j_celrep_2024_113995 crossref_primary_10_1016_j_it_2017_04_004 crossref_primary_10_1002_cncr_33690 crossref_primary_10_1186_s12974_024_03206_4 crossref_primary_10_1101_cshperspect_a041538 crossref_primary_10_1136_jitc_2022_004794 crossref_primary_10_1007_s00262_015_1744_y crossref_primary_10_1007_s00277_024_05706_y crossref_primary_10_1016_j_ccm_2017_04_009 crossref_primary_10_1016_j_critrevonc_2016_04_020 crossref_primary_10_1080_2162402X_2019_1683347 crossref_primary_10_1371_journal_pone_0205254 crossref_primary_10_3390_cancers15112958 crossref_primary_10_1182_blood_2018_10_846824 crossref_primary_10_1080_17474086_2024_2441962 crossref_primary_10_1186_s12974_016_0667_7 crossref_primary_10_20473_jbe_V9I12021_1_9 crossref_primary_10_3389_fimmu_2017_00573 crossref_primary_10_3390_ijms241713069 crossref_primary_10_1111_eci_14342 crossref_primary_10_3390_cancers13215319 crossref_primary_10_1002_cam4_6804 crossref_primary_10_1007_s00277_024_06117_9 crossref_primary_10_1016_j_critrevonc_2020_103164 crossref_primary_10_3390_ijms26010045 crossref_primary_10_1200_JCO_20_00475 crossref_primary_10_3389_fimmu_2020_01710 crossref_primary_10_1172_JCI145296 crossref_primary_10_1016_j_imlet_2015_11_007 crossref_primary_10_1172_JCI129204 crossref_primary_10_1172_JCI159579 crossref_primary_10_1126_sciadv_adf8522 crossref_primary_10_1016_j_leukres_2013_08_007 crossref_primary_10_1002_ijc_32028 crossref_primary_10_1021_acsmedchemlett_9b00508 crossref_primary_10_18632_oncotarget_16060 crossref_primary_10_1158_1078_0432_CCR_17_3016 crossref_primary_10_1158_2159_8290_CD_20_1211 crossref_primary_10_7314_APJCP_2015_16_16_7031 crossref_primary_10_1007_s11033_022_08041_5 crossref_primary_10_1517_14712598_2015_1051028 crossref_primary_10_1038_s41409_018_0244_z crossref_primary_10_1158_0008_5472_CAN_20_0024 crossref_primary_10_1002_ijc_31170 crossref_primary_10_1016_j_ejmech_2021_113356 crossref_primary_10_1182_blood_2014_10_608133 crossref_primary_10_1182_bloodadvances_2022008272 crossref_primary_10_3389_fcell_2020_603837 crossref_primary_10_1002_eji_201546047 crossref_primary_10_1016_j_bbrc_2022_02_022 crossref_primary_10_1093_carcin_bgaa063 crossref_primary_10_1111_jcmm_17576 crossref_primary_10_3390_cancers14030497 crossref_primary_10_3389_fimmu_2021_791453 crossref_primary_10_4236_ojbd_2015_53004 crossref_primary_10_3390_jcm9103334 crossref_primary_10_3390_cancers16061171 crossref_primary_10_1016_j_omto_2022_05_011 crossref_primary_10_3389_fphar_2023_1151032 crossref_primary_10_37349_etat_2024_00262 crossref_primary_10_2217_imt_2019_0215 crossref_primary_10_1080_19420862_2020_1801230 crossref_primary_10_3390_cancers13102385 crossref_primary_10_3389_fimmu_2024_1347492 crossref_primary_10_1007_s11912_020_0885_0 crossref_primary_10_2174_0929867326666190325095853 crossref_primary_10_1182_blood_2014_09_600643 crossref_primary_10_1155_2020_2134647 crossref_primary_10_1002_jcp_27735 crossref_primary_10_1016_j_exphem_2021_01_004 crossref_primary_10_3389_fcell_2021_692800 crossref_primary_10_1182_blood_2016_07_730614 crossref_primary_10_1007_s12185_023_03675_y crossref_primary_10_3390_cancers13061203 crossref_primary_10_3390_cancers13164121 crossref_primary_10_1007_s13577_020_00437_4 crossref_primary_10_1155_2024_5539065 crossref_primary_10_2147_CMAR_S261721 crossref_primary_10_3389_fimmu_2016_00094 crossref_primary_10_1200_JCO_18_00889 crossref_primary_10_1038_s41375_021_01350_x crossref_primary_10_3390_biomedicines11061724 crossref_primary_10_1038_nrc_2016_154 crossref_primary_10_1016_j_semcancer_2022_02_012 crossref_primary_10_3389_fonc_2020_00262 crossref_primary_10_1007_s00281_016_0593_x crossref_primary_10_1016_j_bbmt_2019_01_016 crossref_primary_10_1016_j_semcancer_2022_02_010 crossref_primary_10_1186_s40164_020_00190_2 crossref_primary_10_1016_j_coph_2017_05_002 crossref_primary_10_3389_fonc_2022_938847 crossref_primary_10_3390_children7020014 crossref_primary_10_1007_s10637_019_00756_w crossref_primary_10_3390_cancers13040870 crossref_primary_10_3390_cancers11020260 crossref_primary_10_3389_fimmu_2022_901277 crossref_primary_10_1097_CM9_0000000000002657 crossref_primary_10_3390_cancers12123617 crossref_primary_10_1073_pnas_1916206117 crossref_primary_10_3390_ijms25126356 crossref_primary_10_1080_14737159_2017_1381560 crossref_primary_10_1098_rsob_180037 crossref_primary_10_1038_leu_2014_108 crossref_primary_10_3389_fonc_2018_00213 crossref_primary_10_1158_0008_5472_CAN_14_3443 crossref_primary_10_3109_10428194_2014_987141 crossref_primary_10_18632_oncotarget_18843 crossref_primary_10_1101_gad_326470_119 crossref_primary_10_3389_fimmu_2024_1397005 crossref_primary_10_3389_fonc_2022_933666 crossref_primary_10_3389_fonc_2021_767026 crossref_primary_10_1182_blood_2022018092 crossref_primary_10_1016_j_bmcl_2023_129193 crossref_primary_10_3389_fimmu_2020_00121 crossref_primary_10_1016_j_molimm_2020_11_021 crossref_primary_10_1002_ijc_34139 crossref_primary_10_1177_2040620715616544 crossref_primary_10_1586_17474086_2014_958464 crossref_primary_10_1111_cas_12459 crossref_primary_10_1080_2162402X_2021_1956143 crossref_primary_10_1186_s40425_019_0504_5 crossref_primary_10_1016_j_ejmech_2023_116033 crossref_primary_10_1038_leu_2015_214 crossref_primary_10_1016_j_mgene_2020_100773 crossref_primary_10_1177_20406207241263489 crossref_primary_10_1093_carcin_bgv129 crossref_primary_10_1093_jnen_nlx072 crossref_primary_10_1007_s00281_018_0693_x crossref_primary_10_1182_blood_2023019962 crossref_primary_10_3389_fimmu_2024_1440269 crossref_primary_10_2217_ijh_14_23 crossref_primary_10_1002_cam4_3360 crossref_primary_10_1111_imcb_12557 crossref_primary_10_3390_onco2030011 crossref_primary_10_1038_s41590_025_02096_9 crossref_primary_10_32604_or_2024_048564 crossref_primary_10_1189_jlb_3AB0214_082R crossref_primary_10_1080_21645515_2017_1358327 crossref_primary_10_1182_blood_2019004500 crossref_primary_10_1186_s12943_023_01889_6 crossref_primary_10_1021_acs_jmedchem_4c01429 crossref_primary_10_1186_s40164_024_00481_y crossref_primary_10_3724_abbs_2023101 crossref_primary_10_1007_s00262_022_03268_4 crossref_primary_10_3389_fcell_2021_714755 crossref_primary_10_1016_j_exphem_2019_07_005 crossref_primary_10_1097_PPO_0000000000000378 crossref_primary_10_3390_biomedicines6040110 crossref_primary_10_3390_cancers14030756 crossref_primary_10_3390_cancers14163967 crossref_primary_10_1016_j_intimp_2024_111927 crossref_primary_10_1080_17474086_2024_2420614 crossref_primary_10_1182_blood_2014_04_568956 crossref_primary_10_3389_fonc_2021_745924 crossref_primary_10_1158_0008_5472_CAN_18_2139 crossref_primary_10_3390_cells10010056 crossref_primary_10_1172_JCI137723 crossref_primary_10_1016_j_clim_2014_04_006 crossref_primary_10_3390_jcm11010253 crossref_primary_10_2217_imt_2019_0197 crossref_primary_10_1002_ajh_24312 crossref_primary_10_1016_j_canlet_2024_216730 crossref_primary_10_1038_s41408_022_00615_7 crossref_primary_10_3389_fcell_2021_621214 crossref_primary_10_1053_j_seminhematol_2015_03_003 crossref_primary_10_1038_s41598_024_74806_6 crossref_primary_10_1182_bloodadvances_2022007405 crossref_primary_10_3390_biomedicines10061410 crossref_primary_10_1111_ejh_14047 crossref_primary_10_3390_cimb45040231 crossref_primary_10_3389_fphar_2023_1129997 crossref_primary_10_1182_hematology_2024000588 crossref_primary_10_3389_fonc_2020_00697 crossref_primary_10_2217_imt_2016_0118 crossref_primary_10_1101_cshperspect_a035477 crossref_primary_10_3389_fonc_2019_01217 crossref_primary_10_1080_2162402X_2017_1304336 crossref_primary_10_3389_fimmu_2022_811144 crossref_primary_10_1016_S0007_4551_18_30392_8 crossref_primary_10_3390_cancers12123542 crossref_primary_10_1016_j_biopha_2022_112840 crossref_primary_10_1172_jci_insight_120974 crossref_primary_10_3390_ijms24010563 crossref_primary_10_1182_blood_2015_08_665604 crossref_primary_10_3109_10428194_2014_970545 crossref_primary_10_1080_17474086_2023_2268273 crossref_primary_10_3390_cancers15102713 crossref_primary_10_1021_acsbiomaterials_3c01595 crossref_primary_10_1080_2162402X_2017_1404215 crossref_primary_10_1186_s12979_021_00244_x crossref_primary_10_1136_jitc_2022_005326 crossref_primary_10_1016_j_molcel_2021_08_005 crossref_primary_10_3390_ijms25084391 crossref_primary_10_1016_j_actatropica_2021_105966 crossref_primary_10_3389_fimmu_2021_653030 crossref_primary_10_3390_cancers11060875 crossref_primary_10_1021_acs_joc_4c02879 crossref_primary_10_1158_1535_7163_MCT_22_0721 crossref_primary_10_1038_s41375_024_02217_7 crossref_primary_10_1080_2162402X_2020_1771142 crossref_primary_10_3389_fimmu_2021_729085 crossref_primary_10_1097_HS9_0000000000000937 crossref_primary_10_1186_s12964_023_01282_2 crossref_primary_10_1182_blood_2019001034 crossref_primary_10_1038_s41586_018_0615_z crossref_primary_10_1038_s41388_020_1239_y crossref_primary_10_1200_JCO_20_01801 crossref_primary_10_1016_j_drudis_2018_01_046 crossref_primary_10_3389_fimmu_2020_00147 crossref_primary_10_1080_2162402X_2015_1078967 crossref_primary_10_1007_s11899_015_0253_6 crossref_primary_10_1111_jcmm_18256 crossref_primary_10_1586_17474086_2014_932687 crossref_primary_10_1038_s41423_024_01148_8 crossref_primary_10_1016_j_tice_2021_101578 crossref_primary_10_3389_fonc_2021_674720 crossref_primary_10_3390_cancers16152615 crossref_primary_10_1172_JCI133187 crossref_primary_10_3389_fonc_2023_1230934 crossref_primary_10_1038_s41467_019_10979_3 crossref_primary_10_1158_1078_0432_CCR_19_3003 crossref_primary_10_1016_j_celrep_2021_109101 crossref_primary_10_3389_fonc_2020_578933 crossref_primary_10_3389_fimmu_2020_00938 crossref_primary_10_1155_2015_162410 crossref_primary_10_1038_s41419_020_03175_5 crossref_primary_10_1021_acs_jmedchem_4c01993 crossref_primary_10_1042_ETLS20200331 crossref_primary_10_1111_bjh_12725 crossref_primary_10_3390_cancers12010069 crossref_primary_10_3390_ijms18112259 crossref_primary_10_1155_2015_718975 |
Cites_doi | 10.1200/JCO.2010.30.2554 10.4049/jimmunol.167.10.6021 10.1084/jem.179.4.1109 10.1182/blood.V97.1.56 10.4049/jimmunol.179.2.977 10.1046/j.1365-2249.2001.01692.x 10.1189/jlb.1110644 10.1152/ajpcell.00075.2008 10.1038/sj.leu.2403924 10.1158/0008-5472.CAN-09-2587 10.1056/NEJMoa0905680 10.1182/blood-2011-04-348151 10.1073/pnas.0409783102 10.1111/j.1600-0609.2011.01580.x 10.1038/35004599 10.1158/0008-5472.CAN-08-1921 10.1084/jem.20101688 10.1371/journal.pone.0012107 10.1097/CJI.0b013e31825be926 10.1007/978-1-59745-396-7_12 10.1172/JCI113923 10.4049/jimmunol.168.2.689 10.4049/jimmunol.172.2.989 10.1016/S1471-4906(03)00132-7 10.1002/eji.200939486 10.1038/onc.2010.619 10.1016/0305-0491(95)02138-8 10.4049/jimmunol.1000475 10.1182/blood-2010-12-325753 10.1038/nm1609 10.1182/blood.V75.3.555.555 10.1074/jbc.M109.042671 |
ContentType | Journal Article |
Copyright | 2013 American Society of Hematology 2013 by The American Society of Hematology 2013 |
Copyright_xml | – notice: 2013 American Society of Hematology – notice: 2013 by The American Society of Hematology 2013 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1182/blood-2013-01-480129 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Biology Anatomy & Physiology |
EISSN | 1528-0020 |
EndPage | 758 |
ExternalDocumentID | PMC3731930 23733335 10_1182_blood_2013_01_480129 S0006497120560424 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: MC_U137961146 – fundername: Wellcome Trust – fundername: Medical Research Council grantid: G1000729 – fundername: Cancer Research UK grantid: 11331 – fundername: Cancer Research UK grantid: C399/A2291 |
GroupedDBID | --- -~X .55 1CY 23N 2WC 34G 39C 4.4 53G 5GY 5RE 5VS 6I. 6J9 AAEDW AAFTH AAXUO ABOCM ABVKL ACGFO ADBBV AENEX AFOSN AHPSJ ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CS3 DIK DU5 E3Z EBS EJD EX3 F5P FDB FRP GS5 GX1 IH2 K-O KQ8 L7B LSO MJL N9A OK1 P2P R.V RHF RHI ROL SJN THE TR2 TWZ W2D W8F WH7 WOQ WOW X7M YHG YKV ZA5 0R~ AALRI AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AIGII AITUG AKBMS AKRWK AKYEP AMRAJ CITATION H13 CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c529t-4bdd87deee81c06f6e69dbdf9179a8ec9a06cf0eec9e96a425b932cd0bcce6eb3 |
ISSN | 0006-4971 1528-0020 |
IngestDate | Thu Aug 21 13:44:55 EDT 2025 Fri Sep 05 14:22:50 EDT 2025 Mon Jul 21 06:05:05 EDT 2025 Tue Jul 01 02:15:24 EDT 2025 Thu Apr 24 23:07:29 EDT 2025 Fri Feb 23 02:45:06 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | This article is made available under the Elsevier license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c529t-4bdd87deee81c06f6e69dbdf9179a8ec9a06cf0eec9e96a425b932cd0bcce6eb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 F.M. and C.D.S. contributed equally to this study. |
OpenAccessLink | https://dx.doi.org/10.1182/blood-2013-01-480129 |
PMID | 23733335 |
PQID | 1417534508 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3731930 proquest_miscellaneous_1417534508 pubmed_primary_23733335 crossref_citationtrail_10_1182_blood_2013_01_480129 crossref_primary_10_1182_blood_2013_01_480129 elsevier_sciencedirect_doi_10_1182_blood_2013_01_480129 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-08-01 2013-Aug-01 20130801 |
PublicationDateYYYYMMDD | 2013-08-01 |
PublicationDate_xml | – month: 08 year: 2013 text: 2013-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington, DC |
PublicationTitle | Blood |
PublicationTitleAlternate | Blood |
PublicationYear | 2013 |
Publisher | Elsevier Inc American Society of Hematology |
Publisher_xml | – name: Elsevier Inc – name: American Society of Hematology |
References | Whyte, Bishop, Rückerl (bib21) 2011; 90 Bronte, Serafini, Mazzoni, Segal, Zanovello (bib11) 2003; 24 Nagaraj, Gupta, Pisarev (bib13) 2007; 13 Mazzoni, Bronte, Visintin (bib14) 2002; 168 Solito, Falisi, Diaz-Montero (bib25) 2011; 118 Chow, Lucas, Hidalgo (bib30) 2011; 208 Kusmartsev, Nefedova, Yoder, Gabrilovich (bib10) 2004; 172 Ho, Sly (bib29) 2009; 531 Buggins, Milojkovic, Arno, Lea, Mufti, Thomas, Hirst (bib6) 2001; 167 Srivastava, Sinha, Clements, Rodriguez, Ostrand-Rosenberg (bib15) 2010; 70 Gannon, Godin-Ethier, Hassler (bib27) 2010; 5 Steidl, Lee, Shah (bib28) 2010; 362 Orleans-Lindsay, Barber, Prentice, Lowdell (bib5) 2001; 126 Mussai, De Santo, Cerundolo (bib24) 2012; 35 Domínguez-Soto, Sierra-Filardi, Puig-Kröger (bib23) 2011; 186 Sallusto, Lanzavecchia (bib8) 1994; 179 Jenkinson, Grody, Cederbaum (bib26) 1996; 114 Gibson, Wheatley, Hann (bib4) 2005; 19 Rodriguez, Ernstoff, Hernandez, Atkins, Zabaleta, Sierra, Ochoa (bib12) 2009; 69 De Santo, Serafini, Marigo (bib32) 2005; 102 Horowitz, Gale, Sondel (bib3) 1990; 75 Greifenberg, Ribechini, Rössner, Lutz (bib17) 2009; 39 Frisch, Ashton, Xing, Becker, Jordan, Calvi (bib31) 2012; 119 Akashi, Traver, Miyamoto, Weissman (bib9) 2000; 404 Sinha, Clements, Bunt, Albelda, Ostrand-Rosenberg (bib16) 2007; 179 Hemmati, Terwey, le Coutre, Vuong, Massenkeil, Dörken, Arnold (bib7) 2011; 86 Marcucci, Haferlach, Döhner (bib1) 2011; 29 Roca, Varsos, Sud, Craig, Ying, Pienta (bib20) 2009; 284 Standiford, Kuick, Bhan, Chen, Newstead, Keshamouni (bib22) 2011; 30 Woods, Neudorf, Gold (bib2) 2001; 97 Zharikov, Krotova, Hu, Baylis, Johnson, Block, Patel (bib18) 2008; 295 Grody, Argyle, Kern (bib19) 1989; 83 Grody (2019111816475973300_B19) 1989; 83 Nagaraj (2019111816475973300_B13) 2007; 13 Domínguez-Soto (2019111816475973300_B23) 2011; 186 Buggins (2019111816475973300_B6) 2001; 167 Ho (2019111816475973300_B29) 2009; 531 Mussai (2019111816475973300_B24) 2012; 35 Kusmartsev (2019111816475973300_B10) 2004; 172 Orleans-Lindsay (2019111816475973300_B5) 2001; 126 Sallusto (2019111816475973300_B8) 1994; 179 Steidl (2019111816475973300_B28) 2010; 362 Sinha (2019111816475973300_B16) 2007; 179 Mazzoni (2019111816475973300_B14) 2002; 168 Greifenberg (2019111816475973300_B17) 2009; 39 Chow (2019111816475973300_B30) 2011; 208 Zharikov (2019111816475973300_B18) 2008; 295 Gibson (2019111816475973300_B4) 2005; 19 Marcucci (2019111816475973300_B1) 2011; 29 Gannon (2019111816475973300_B27) 2010; 5 Rodriguez (2019111816475973300_B12) 2009; 69 Woods (2019111816475973300_B2) 2001; 97 Bronte (2019111816475973300_B11) 2003; 24 Jenkinson (2019111816475973300_B26) 1996; 114 Standiford (2019111816475973300_B22) 2011; 30 Whyte (2019111816475973300_B21) 2011; 90 Hemmati (2019111816475973300_B7) 2011; 86 Solito (2019111816475973300_B25) 2011; 118 Horowitz (2019111816475973300_B3) 1990; 75 Frisch (2019111816475973300_B31) 2012; 119 Roca (2019111816475973300_B20) 2009; 284 De Santo (2019111816475973300_B32) 2005; 102 Akashi (2019111816475973300_B9) 2000; 404 Srivastava (2019111816475973300_B15) 2010; 70 23908439 - Blood. 2013 Aug 1;122(5):620-1. doi: 10.1182/blood-2013-06-508499. |
References_xml | – volume: 404 start-page: 193 year: 2000 end-page: 197 ident: bib9 article-title: A clonogenic common myeloid progenitor that gives rise to all myeloid lineages publication-title: Nature – volume: 39 start-page: 2865 year: 2009 end-page: 2876 ident: bib17 article-title: Myeloid-derived suppressor cell activation by combined LPS and IFN-gamma treatment impairs DC development publication-title: Eur J Immunol – volume: 179 start-page: 977 year: 2007 end-page: 983 ident: bib16 article-title: Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response publication-title: J Immunol – volume: 295 start-page: C1183 year: 2008 end-page: C1190 ident: bib18 article-title: Uric acid decreases NO production and increases arginase activity in cultured pulmonary artery endothelial cells publication-title: Am J Physiol Cell Physiol – volume: 126 start-page: 403 year: 2001 end-page: 411 ident: bib5 article-title: Acute myeloid leukaemia cells secrete a soluble factor that inhibits T and NK cell proliferation but not cytolytic function—implications for the adoptive immunotherapy of leukaemia publication-title: Clin Exp Immunol – volume: 114 start-page: 107 year: 1996 end-page: 132 ident: bib26 article-title: Comparative properties of arginases publication-title: Comp Biochem Physiol B Biochem Mol Biol. – volume: 186 start-page: 2192 year: 2011 end-page: 2200 ident: bib23 article-title: Dendritic cell-specific ICAM-3-grabbing nonintegrin expression on M2-polarized and tumor-associated macrophages is macrophage-CSF dependent and enhanced by tumor-derived IL-6 and IL-10 publication-title: J Immunol – volume: 102 start-page: 4185 year: 2005 end-page: 4190 ident: bib32 article-title: Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination publication-title: Proc Natl Acad Sci USA – volume: 83 start-page: 602 year: 1989 end-page: 609 ident: bib19 article-title: Differential expression of the two human arginase genes in hyperargininemia. Enzymatic, pathologic, and molecular analysis publication-title: J Clin Invest – volume: 172 start-page: 989 year: 2004 end-page: 999 ident: bib10 article-title: Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species publication-title: J Immunol – volume: 24 start-page: 302 year: 2003 end-page: 306 ident: bib11 article-title: L-arginine metabolism in myeloid cells controls T-lymphocyte functions publication-title: Trends Immunol – volume: 362 start-page: 875 year: 2010 end-page: 885 ident: bib28 article-title: Tumor-associated macrophages and survival in classic Hodgkin's lymphoma publication-title: N Engl J Med – volume: 119 start-page: 540 year: 2012 end-page: 550 ident: bib31 article-title: Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia publication-title: Blood – volume: 179 start-page: 1109 year: 1994 end-page: 1118 ident: bib8 article-title: Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha publication-title: J Exp Med – volume: 90 start-page: 845 year: 2011 end-page: 854 ident: bib21 article-title: Suppressor of cytokine signaling (SOCS)1 is a key determinant of differential macrophage activation and function publication-title: J Leukoc Biol. – volume: 30 start-page: 2475 year: 2011 end-page: 2484 ident: bib22 article-title: TGF-β-induced IRAK-M expression in tumor-associated macrophages regulates lung tumor growth publication-title: Oncogene – volume: 19 start-page: 2130 year: 2005 end-page: 2138 ident: bib4 article-title: Treatment strategy and long-term results in paediatric patients treated in consecutive UK AML trials publication-title: Leukemia – volume: 69 start-page: 1553 year: 2009 end-page: 1560 ident: bib12 article-title: Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes publication-title: Cancer Res – volume: 208 start-page: 261 year: 2011 end-page: 271 ident: bib30 article-title: Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche publication-title: J Exp Med – volume: 284 start-page: 34342 year: 2009 end-page: 34354 ident: bib20 article-title: CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization publication-title: J Biol Chem – volume: 97 start-page: 56 year: 2001 end-page: 62 ident: bib2 article-title: A comparison of allogeneic bone marrow transplantation, autologous bone marrow transplantation, and aggressive chemotherapy in children with acute myeloid leukemia in remission publication-title: Blood – volume: 167 start-page: 6021 year: 2001 end-page: 6030 ident: bib6 article-title: Microenvironment produced by acute myeloid leukemia cells prevents T cell activation and proliferation by inhibition of NF-kappaB, c-Myc, and pRb pathways publication-title: J Immunol – volume: 29 start-page: 475 year: 2011 end-page: 486 ident: bib1 article-title: Molecular genetics of adult acute myeloid leukemia: prognostic and therapeutic implications publication-title: J Clin Oncol – volume: 531 start-page: 173 year: 2009 end-page: 185 ident: bib29 article-title: Derivation and characterization of murine alternatively activated (M2) macrophages publication-title: Methods Mol Biol. – volume: 75 start-page: 555 year: 1990 end-page: 562 ident: bib3 article-title: Graft-versus-leukemia reactions after bone marrow transplantation publication-title: Blood – volume: 13 start-page: 828 year: 2007 end-page: 835 ident: bib13 article-title: Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer publication-title: Nat Med – volume: 118 start-page: 2254 year: 2011 end-page: 2265 ident: bib25 article-title: A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells publication-title: Blood – volume: 5 start-page: e12107 year: 2010 ident: bib27 article-title: Androgen-regulated expression of arginase 1, arginase 2 and interleukin-8 in human prostate cancer publication-title: PLoS ONE – volume: 86 start-page: 305 year: 2011 end-page: 316 ident: bib7 article-title: A modified EBMT risk score predicts the outcome of patients with acute myeloid leukemia receiving allogeneic stem cell transplants publication-title: Eur J Haematol – volume: 35 start-page: 449 year: 2012 end-page: 459 ident: bib24 article-title: Interaction between invariant NKT cells and myeloid-derived suppressor cells in cancer patients: evidence and therapeutic opportunities publication-title: J Immunother – volume: 70 start-page: 68 year: 2010 end-page: 77 ident: bib15 article-title: Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine publication-title: Cancer Res – volume: 168 start-page: 689 year: 2002 end-page: 695 ident: bib14 article-title: Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism publication-title: J Immunol – volume: 29 start-page: 475 issue: 5 year: 2011 ident: 2019111816475973300_B1 article-title: Molecular genetics of adult acute myeloid leukemia: prognostic and therapeutic implications. publication-title: J Clin Oncol doi: 10.1200/JCO.2010.30.2554 – volume: 167 start-page: 6021 issue: 10 year: 2001 ident: 2019111816475973300_B6 article-title: Microenvironment produced by acute myeloid leukemia cells prevents T cell activation and proliferation by inhibition of NF-kappaB, c-Myc, and pRb pathways. publication-title: J Immunol doi: 10.4049/jimmunol.167.10.6021 – volume: 179 start-page: 1109 issue: 4 year: 1994 ident: 2019111816475973300_B8 article-title: Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. publication-title: J Exp Med doi: 10.1084/jem.179.4.1109 – volume: 97 start-page: 56 issue: 1 year: 2001 ident: 2019111816475973300_B2 article-title: A comparison of allogeneic bone marrow transplantation, autologous bone marrow transplantation, and aggressive chemotherapy in children with acute myeloid leukemia in remission. publication-title: Blood doi: 10.1182/blood.V97.1.56 – volume: 179 start-page: 977 issue: 2 year: 2007 ident: 2019111816475973300_B16 article-title: Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. publication-title: J Immunol doi: 10.4049/jimmunol.179.2.977 – volume: 126 start-page: 403 issue: 3 year: 2001 ident: 2019111816475973300_B5 article-title: Acute myeloid leukaemia cells secrete a soluble factor that inhibits T and NK cell proliferation but not cytolytic function—implications for the adoptive immunotherapy of leukaemia. publication-title: Clin Exp Immunol doi: 10.1046/j.1365-2249.2001.01692.x – volume: 90 start-page: 845 issue: 5 year: 2011 ident: 2019111816475973300_B21 article-title: Suppressor of cytokine signaling (SOCS)1 is a key determinant of differential macrophage activation and function. publication-title: J Leukoc Biol doi: 10.1189/jlb.1110644 – volume: 295 start-page: C1183 issue: 5 year: 2008 ident: 2019111816475973300_B18 article-title: Uric acid decreases NO production and increases arginase activity in cultured pulmonary artery endothelial cells. publication-title: Am J Physiol Cell Physiol doi: 10.1152/ajpcell.00075.2008 – volume: 19 start-page: 2130 issue: 12 year: 2005 ident: 2019111816475973300_B4 article-title: Treatment strategy and long-term results in paediatric patients treated in consecutive UK AML trials. publication-title: Leukemia doi: 10.1038/sj.leu.2403924 – volume: 70 start-page: 68 issue: 1 year: 2010 ident: 2019111816475973300_B15 article-title: Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-09-2587 – volume: 362 start-page: 875 issue: 10 year: 2010 ident: 2019111816475973300_B28 article-title: Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. publication-title: N Engl J Med doi: 10.1056/NEJMoa0905680 – volume: 119 start-page: 540 issue: 2 year: 2012 ident: 2019111816475973300_B31 article-title: Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia. publication-title: Blood doi: 10.1182/blood-2011-04-348151 – volume: 102 start-page: 4185 issue: 11 year: 2005 ident: 2019111816475973300_B32 article-title: Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0409783102 – volume: 86 start-page: 305 issue: 4 year: 2011 ident: 2019111816475973300_B7 article-title: A modified EBMT risk score predicts the outcome of patients with acute myeloid leukemia receiving allogeneic stem cell transplants. publication-title: Eur J Haematol doi: 10.1111/j.1600-0609.2011.01580.x – volume: 404 start-page: 193 issue: 6774 year: 2000 ident: 2019111816475973300_B9 article-title: A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. publication-title: Nature doi: 10.1038/35004599 – volume: 69 start-page: 1553 issue: 4 year: 2009 ident: 2019111816475973300_B12 article-title: Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-1921 – volume: 208 start-page: 261 issue: 2 year: 2011 ident: 2019111816475973300_B30 article-title: Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. publication-title: J Exp Med doi: 10.1084/jem.20101688 – volume: 5 start-page: e12107 issue: 8 year: 2010 ident: 2019111816475973300_B27 article-title: Androgen-regulated expression of arginase 1, arginase 2 and interleukin-8 in human prostate cancer. publication-title: PLoS ONE doi: 10.1371/journal.pone.0012107 – volume: 35 start-page: 449 issue: 6 year: 2012 ident: 2019111816475973300_B24 article-title: Interaction between invariant NKT cells and myeloid-derived suppressor cells in cancer patients: evidence and therapeutic opportunities. publication-title: J Immunother doi: 10.1097/CJI.0b013e31825be926 – volume: 531 start-page: 173 year: 2009 ident: 2019111816475973300_B29 article-title: Derivation and characterization of murine alternatively activated (M2) macrophages. publication-title: Methods Mol Biol doi: 10.1007/978-1-59745-396-7_12 – volume: 83 start-page: 602 issue: 2 year: 1989 ident: 2019111816475973300_B19 article-title: Differential expression of the two human arginase genes in hyperargininemia. Enzymatic, pathologic, and molecular analysis. publication-title: J Clin Invest doi: 10.1172/JCI113923 – volume: 168 start-page: 689 issue: 2 year: 2002 ident: 2019111816475973300_B14 article-title: Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. publication-title: J Immunol doi: 10.4049/jimmunol.168.2.689 – volume: 172 start-page: 989 issue: 2 year: 2004 ident: 2019111816475973300_B10 article-title: Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. publication-title: J Immunol doi: 10.4049/jimmunol.172.2.989 – volume: 24 start-page: 302 issue: 6 year: 2003 ident: 2019111816475973300_B11 article-title: L-arginine metabolism in myeloid cells controls T-lymphocyte functions. publication-title: Trends Immunol doi: 10.1016/S1471-4906(03)00132-7 – volume: 39 start-page: 2865 issue: 10 year: 2009 ident: 2019111816475973300_B17 article-title: Myeloid-derived suppressor cell activation by combined LPS and IFN-gamma treatment impairs DC development. publication-title: Eur J Immunol doi: 10.1002/eji.200939486 – volume: 30 start-page: 2475 issue: 21 year: 2011 ident: 2019111816475973300_B22 article-title: TGF-β-induced IRAK-M expression in tumor-associated macrophages regulates lung tumor growth. publication-title: Oncogene doi: 10.1038/onc.2010.619 – volume: 114 start-page: 107 issue: 1 year: 1996 ident: 2019111816475973300_B26 article-title: Comparative properties of arginases. publication-title: Comp Biochem Physiol B Biochem Mol Biol doi: 10.1016/0305-0491(95)02138-8 – volume: 186 start-page: 2192 issue: 4 year: 2011 ident: 2019111816475973300_B23 article-title: Dendritic cell-specific ICAM-3-grabbing nonintegrin expression on M2-polarized and tumor-associated macrophages is macrophage-CSF dependent and enhanced by tumor-derived IL-6 and IL-10. publication-title: J Immunol doi: 10.4049/jimmunol.1000475 – volume: 118 start-page: 2254 issue: 8 year: 2011 ident: 2019111816475973300_B25 article-title: A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. publication-title: Blood doi: 10.1182/blood-2010-12-325753 – volume: 13 start-page: 828 issue: 7 year: 2007 ident: 2019111816475973300_B13 article-title: Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. publication-title: Nat Med doi: 10.1038/nm1609 – volume: 75 start-page: 555 issue: 3 year: 1990 ident: 2019111816475973300_B3 article-title: Graft-versus-leukemia reactions after bone marrow transplantation. publication-title: Blood doi: 10.1182/blood.V75.3.555.555 – volume: 284 start-page: 34342 issue: 49 year: 2009 ident: 2019111816475973300_B20 article-title: CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization. publication-title: J Biol Chem doi: 10.1074/jbc.M109.042671 – reference: 23908439 - Blood. 2013 Aug 1;122(5):620-1. doi: 10.1182/blood-2013-06-508499. |
SSID | ssj0014325 |
Score | 2.557903 |
Snippet | Acute myeloid leukemia (AML) is the most common acute leukemia in adults and the second most common frequent leukemia of childhood. Patients may present with... AML blasts have an arginase-dependent ability to inhibit T-cell proliferation and hematopoietic stem cells. AML blasts have an arginase-dependent ability to... AML blasts have an arginase-dependent ability to inhibit T-cell proliferation and hematopoietic stem cells. AML blasts have an arginase-dependent ability to... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 749 |
SubjectTerms | Animals Arginase - metabolism Arginase - physiology Cell Proliferation Cells, Cultured Humans Immune Tolerance - physiology Leukemia, Myeloid, Acute - immunology Leukemia, Myeloid, Acute - pathology Mice Mice, Inbred C57BL Mice, Inbred NOD Mice, SCID Mice, Transgenic Myeloid Neoplasia T-Lymphocytes - immunology T-Lymphocytes - pathology T-Lymphocytes - physiology Transplantation, Heterologous Tumor Escape - physiology Tumor Microenvironment - immunology Tumor Microenvironment - physiology |
Title | Acute myeloid leukemia creates an arginase-dependent immunosuppressive microenvironment |
URI | https://dx.doi.org/10.1182/blood-2013-01-480129 https://www.ncbi.nlm.nih.gov/pubmed/23733335 https://www.proquest.com/docview/1417534508 https://pubmed.ncbi.nlm.nih.gov/PMC3731930 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIigXBCnQ8JKREJfI1O_HMQRQQQoC0YrerH2MRURiR02MFH4Mv5UZ79pxmqJCc7As27ve5PsyO7MzO8PYyzhOXF_50nZdzu1AKM_mcRLZ4DvS41EsA0EL-pNP0fFp8PEsPOv1fneilqqVeC1_Xbqv5Dqo4jXElXbJ_geybad4Ac8RXzwiwnj8J4xHkrz88zXMyqkazqD6AfMpH9aKIFDy5SE_p7oLS7CbYrer4ZR2hJTLaqFDYH9iBxSU19nxtuXonZlq8hqV5VKXrzb1OFo1GIZfqRqxCSGZw6yV9iNR2W_5eg31-s0H7KBdAShLvaizWZU2yw9UCiLZCuVo_EpNkCm5Hyjb7MYp0EjeiKrZ6ZZghC1lx3Y8Z0sae16HdmFHtsY6t6mZpmOd8X13Bkgoo6yO-tfjRRuZpuG0-zjiuJjXrPD82MdPuJkP2yjFz5Mx3kQN17nBbnox6mbk9P-y8VIFvqcrZJjvZrZm4hCOLhsAJZ42b_ubFrRr5VwM1u1oPyf32F1jtlgjzcH7rAdFnx2MCkRgvrZeWXUgcQ1Gn91605ztj5tygn12e2KiOA7Yt5q3luGt1fDWMry1eGHt8tba4a11kbcP2On7dyfjY9sU-LBl6KUrEg0qiRUAJK50ojyCKFVC5SnOEjwBmXInkrkDeAZpxHF6EWhuSOUIKSEC4T9ke0VZwCGzIrQ0RI72L6g8gNDlOfYiJKTKFzwN1YD5zQ-eSZP9noqwzLLaCk68rEYsI8Qyx800YgNmt60WOvvLFc_HDZaZ0WC1ZpohPa9o-aKBPkNgyGvHCyirJdrmlEw3QENqwB5pKrRjaeiE790iSfsAJY_fvlNMv9dJ5A2zH1-75RN2ZyMPnrK91XkFz1BBX4nn9b_kD4MD65E |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acute+myeloid+leukemia+creates+an+arginase-dependent+immunosuppressive+microenvironment&rft.jtitle=Blood&rft.au=Mussai%2C+Francis&rft.au=De+Santo%2C+Carmela&rft.au=Abu-Dayyeh%2C+Issa&rft.au=Booth%2C+Sarah&rft.date=2013-08-01&rft.pub=American+Society+of+Hematology&rft.issn=0006-4971&rft.eissn=1528-0020&rft.volume=122&rft.issue=5&rft.spage=749&rft.epage=758&rft_id=info:doi/10.1182%2Fblood-2013-01-480129&rft_id=info%3Apmid%2F23733335&rft.externalDocID=PMC3731930 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-4971&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-4971&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-4971&client=summon |