Progenitor potential of lung epithelial organoid cells in a transplantation model
Lung progenitor cells are crucial for regeneration following injury, yet it is unclear whether lung progenitor cells can be functionally engrafted after transplantation. We transplanted organoid cells derived from alveolar type II (AT2) cells enriched by SCA1-negative status (SNO) or multipotent SCA...
Saved in:
Published in | Cell reports (Cambridge) Vol. 39; no. 2; p. 110662 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
12.04.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2211-1247 2211-1247 |
DOI | 10.1016/j.celrep.2022.110662 |
Cover
Abstract | Lung progenitor cells are crucial for regeneration following injury, yet it is unclear whether lung progenitor cells can be functionally engrafted after transplantation. We transplanted organoid cells derived from alveolar type II (AT2) cells enriched by SCA1-negative status (SNO) or multipotent SCA1-positive progenitor cells (SPO) into injured mouse lungs. Transplanted SNO cells are retained in the alveolar regions, whereas SPO cells incorporate into airway and alveolar regions. Single-cell transcriptomics demonstrate that transplanted SNO cells are comparable to native AT2 cells. Transplanted SPO cells exhibit transcriptional hallmarks of alveolar and airway cells, as well as transitional cell states identified in disease. Transplanted cells proliferate after re-injury of recipient mice and retain organoid-forming capacity. Thus, lung epithelial organoid cells exhibit progenitor cell functions after reintroduction to the lung. This study reveals methods to interrogate lung progenitor cell potential and model transitional cell states relevant to pathogenic features of lung disease in vivo.
[Display omitted]
•Alveolar organoid cells engraft into the alveolar space•Transplanted lung alveolar cells have transcriptional signature of native AT2 cells•Transplanted alveolar cells proliferate and retain organoid-forming capacity•Organoid cells undergo changes to transitional cell states upon transplantation
Upon return to the lung via transplantation, lung epithelial progenitor cells from organoid cultures restore their native transcriptional state and retain progenitor cell function. Louie et al. show future cell-based therapies, reveal methods to interrogate lung progenitor cell potential, and model transitional cell states relevant to lung disease in vivo. |
---|---|
AbstractList | Lung progenitor cells are crucial for regeneration following injury, yet it is unclear whether lung progenitor cells can be functionally engrafted after transplantation. We transplanted organoid cells derived from alveolar type II (AT2) cells enriched by SCA1-negative status (SNO) or multipotent SCA1-positive progenitor cells (SPO) into injured mouse lungs. Transplanted SNO cells are retained in the alveolar regions, whereas SPO cells incorporate into airway and alveolar regions. Single-cell transcriptomics demonstrate that transplanted SNO cells are comparable to native AT2 cells. Transplanted SPO cells exhibit transcriptional hallmarks of alveolar and airway cells, as well as transitional cell states identified in disease. Transplanted cells proliferate after re-injury of recipient mice and retain organoid-forming capacity. Thus, lung epithelial organoid cells exhibit progenitor cell functions after reintroduction to the lung. This study reveals methods to interrogate lung progenitor cell potential and model transitional cell states relevant to pathogenic features of lung disease
in vivo
.
Upon return to the lung via transplantation, lung epithelial progenitor cells from organoid cultures restore their native transcriptional state and retain progenitor cell function. Louie et al. show future cell-based therapies, reveal methods to interrogate lung progenitor cell potential, and model transitional cell states relevant to lung disease
in vivo
. Lung progenitor cells are crucial for regeneration following injury, yet it is unclear whether lung progenitor cells can be functionally engrafted after transplantation. We transplanted organoid cells derived from alveolar type II (AT2) cells enriched by SCA1-negative status (SNO) or multipotent SCA1-positive progenitor cells (SPO) into injured mouse lungs. Transplanted SNO cells are retained in the alveolar regions, whereas SPO cells incorporate into airway and alveolar regions. Single-cell transcriptomics demonstrate that transplanted SNO cells are comparable to native AT2 cells. Transplanted SPO cells exhibit transcriptional hallmarks of alveolar and airway cells, as well as transitional cell states identified in disease. Transplanted cells proliferate after re-injury of recipient mice and retain organoid-forming capacity. Thus, lung epithelial organoid cells exhibit progenitor cell functions after reintroduction to the lung. This study reveals methods to interrogate lung progenitor cell potential and model transitional cell states relevant to pathogenic features of lung disease in vivo. Lung progenitor cells are crucial for regeneration following injury, yet it is unclear whether lung progenitor cells can be functionally engrafted after transplantation. We transplanted organoid cells derived from alveolar type II (AT2) cells enriched by SCA1-negative status (SNO) or multipotent SCA1-positive progenitor cells (SPO) into injured mouse lungs. Transplanted SNO cells are retained in the alveolar regions, whereas SPO cells incorporate into airway and alveolar regions. Single-cell transcriptomics demonstrate that transplanted SNO cells are comparable to native AT2 cells. Transplanted SPO cells exhibit transcriptional hallmarks of alveolar and airway cells, as well as transitional cell states identified in disease. Transplanted cells proliferate after re-injury of recipient mice and retain organoid-forming capacity. Thus, lung epithelial organoid cells exhibit progenitor cell functions after reintroduction to the lung. This study reveals methods to interrogate lung progenitor cell potential and model transitional cell states relevant to pathogenic features of lung disease in vivo.Lung progenitor cells are crucial for regeneration following injury, yet it is unclear whether lung progenitor cells can be functionally engrafted after transplantation. We transplanted organoid cells derived from alveolar type II (AT2) cells enriched by SCA1-negative status (SNO) or multipotent SCA1-positive progenitor cells (SPO) into injured mouse lungs. Transplanted SNO cells are retained in the alveolar regions, whereas SPO cells incorporate into airway and alveolar regions. Single-cell transcriptomics demonstrate that transplanted SNO cells are comparable to native AT2 cells. Transplanted SPO cells exhibit transcriptional hallmarks of alveolar and airway cells, as well as transitional cell states identified in disease. Transplanted cells proliferate after re-injury of recipient mice and retain organoid-forming capacity. Thus, lung epithelial organoid cells exhibit progenitor cell functions after reintroduction to the lung. This study reveals methods to interrogate lung progenitor cell potential and model transitional cell states relevant to pathogenic features of lung disease in vivo. Lung progenitor cells are crucial for regeneration following injury, yet it is unclear whether lung progenitor cells can be functionally engrafted after transplantation. We transplanted organoid cells derived from alveolar type II (AT2) cells enriched by SCA1-negative status (SNO) or multipotent SCA1-positive progenitor cells (SPO) into injured mouse lungs. Transplanted SNO cells are retained in the alveolar regions, whereas SPO cells incorporate into airway and alveolar regions. Single-cell transcriptomics demonstrate that transplanted SNO cells are comparable to native AT2 cells. Transplanted SPO cells exhibit transcriptional hallmarks of alveolar and airway cells, as well as transitional cell states identified in disease. Transplanted cells proliferate after re-injury of recipient mice and retain organoid-forming capacity. Thus, lung epithelial organoid cells exhibit progenitor cell functions after reintroduction to the lung. This study reveals methods to interrogate lung progenitor cell potential and model transitional cell states relevant to pathogenic features of lung disease in vivo. [Display omitted] •Alveolar organoid cells engraft into the alveolar space•Transplanted lung alveolar cells have transcriptional signature of native AT2 cells•Transplanted alveolar cells proliferate and retain organoid-forming capacity•Organoid cells undergo changes to transitional cell states upon transplantation Upon return to the lung via transplantation, lung epithelial progenitor cells from organoid cultures restore their native transcriptional state and retain progenitor cell function. Louie et al. show future cell-based therapies, reveal methods to interrogate lung progenitor cell potential, and model transitional cell states relevant to lung disease in vivo. |
ArticleNumber | 110662 |
Author | Lu, Emery Garcia-de-Alba, Carolina Shehaj, Andrea Paschini, Margherita Louie, Sharon M. Raby, Benjamin A. Moye, Aaron L. Bronson, Roderick T. Kim, Carla F. Wong, Irene G. Ararat, Erhan Lu, Bao |
AuthorAffiliation | 2 Harvard Stem Cell Institute, Cambridge, MA 02138, USA 4 Division of Pulmonary Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA 3 Department of Genetics, Harvard Medical School, Boston, MA 02115, USA 1 Stem Cell Program and Divisions of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA 5 Rodent Histopathology Core, Harvard Medical School, Boston, MA 02115, USA 6 These authors contributed equally 7 Lead contact |
AuthorAffiliation_xml | – name: 5 Rodent Histopathology Core, Harvard Medical School, Boston, MA 02115, USA – name: 4 Division of Pulmonary Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA – name: 3 Department of Genetics, Harvard Medical School, Boston, MA 02115, USA – name: 7 Lead contact – name: 1 Stem Cell Program and Divisions of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA – name: 6 These authors contributed equally – name: 2 Harvard Stem Cell Institute, Cambridge, MA 02138, USA |
Author_xml | – sequence: 1 givenname: Sharon M. surname: Louie fullname: Louie, Sharon M. organization: Stem Cell Program and Divisions of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA – sequence: 2 givenname: Aaron L. surname: Moye fullname: Moye, Aaron L. organization: Stem Cell Program and Divisions of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA – sequence: 3 givenname: Irene G. orcidid: 0000-0001-5229-2111 surname: Wong fullname: Wong, Irene G. organization: Stem Cell Program and Divisions of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA – sequence: 4 givenname: Emery surname: Lu fullname: Lu, Emery organization: Stem Cell Program and Divisions of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA – sequence: 5 givenname: Andrea surname: Shehaj fullname: Shehaj, Andrea organization: Stem Cell Program and Divisions of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA – sequence: 6 givenname: Carolina orcidid: 0000-0001-9774-445X surname: Garcia-de-Alba fullname: Garcia-de-Alba, Carolina organization: Stem Cell Program and Divisions of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA – sequence: 7 givenname: Erhan orcidid: 0000-0003-1880-4827 surname: Ararat fullname: Ararat, Erhan organization: Stem Cell Program and Divisions of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA – sequence: 8 givenname: Benjamin A. surname: Raby fullname: Raby, Benjamin A. organization: Division of Pulmonary Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA – sequence: 9 givenname: Bao surname: Lu fullname: Lu, Bao organization: Division of Pulmonary Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA – sequence: 10 givenname: Margherita surname: Paschini fullname: Paschini, Margherita organization: Stem Cell Program and Divisions of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA – sequence: 11 givenname: Roderick T. surname: Bronson fullname: Bronson, Roderick T. organization: Rodent Histopathology Core, Harvard Medical School, Boston, MA 02115, USA – sequence: 12 givenname: Carla F. orcidid: 0000-0002-2366-9538 surname: Kim fullname: Kim, Carla F. email: carla.kim@childrens.harvard.edu organization: Stem Cell Program and Divisions of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35417699$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUctuGyEURVWiJnX9B1XEMhs7gAdm6KJSZDVppEhNpewRw9xxsDBMAFvK3xd37CrJomXDFZwHnPMJnfjgAaEvlMwpoeJqPTfgIgxzRhibU0qEYB_QOWOUziir6pNX8xmaprQmZQlCqaw-orMFr2gtpDxHvx5iWIG3OUQ8hAw-W-1w6LHb-hWGweYncH-O4kr7YDtcjF3C1mONc9Q-DU77rLMNHm9CB-4zOu21SzA97BP0ePP9cfljdv_z9m55fT8znMk8q5qmNb1kDTOcG6a5JjXXsqecEwDZNUaLpm47A7rMfUU1bdu2aeWCUJDVYoK-jbLDtt1AgfnyGqeGaDc6vqigrXp74-2TWoWdkkQsGk6KwOVBIIbnLaSsNjbtP6c9hG1STHDCOBO1KNCL115_TY4xFsDXEWBiSClCr4wdMynW1ilK1L42tVZjbWpfmxprK-TqHfmo_x_aIQAoIe8sRJWMBW-gsxFMVl2w_xb4DXbJtYw |
CitedBy_id | crossref_primary_10_3389_fbioe_2024_1449955 crossref_primary_10_1016_j_tibtech_2023_10_008 crossref_primary_10_1038_s42255_023_00916_6 crossref_primary_10_3390_bios14040189 crossref_primary_10_1089_cell_2024_0054 crossref_primary_10_1183_23120541_00561_2022 crossref_primary_10_1016_j_stem_2023_07_014 crossref_primary_10_1016_j_earlhumdev_2023_105930 crossref_primary_10_3389_fbioe_2022_1066869 crossref_primary_10_1038_s41467_025_56501_w crossref_primary_10_1016_j_bprint_2024_e00342 crossref_primary_10_1016_j_medj_2024_08_010 crossref_primary_10_1038_s41536_023_00295_2 crossref_primary_10_1165_rcmb_2023_0078OC crossref_primary_10_1016_j_stemcr_2022_11_002 crossref_primary_10_1038_s44318_025_00376_6 crossref_primary_10_1016_j_stem_2023_08_008 crossref_primary_10_1038_s41596_024_01067_y crossref_primary_10_1172_JCI165612 crossref_primary_10_1007_s13770_024_00628_2 crossref_primary_10_1016_j_devcel_2023_10_011 crossref_primary_10_1016_j_mocell_2024_100140 crossref_primary_10_26508_lsa_202201853 crossref_primary_10_3390_biomedicines11113034 crossref_primary_10_1242_dev_201873 crossref_primary_10_1002_ppul_26490 crossref_primary_10_1016_j_stem_2023_07_016 crossref_primary_10_1242_bio_059423 crossref_primary_10_1016_j_jtcvs_2023_03_009 |
Cites_doi | 10.1183/09031936.00073005 10.1016/0014-4800(75)90059-3 10.1038/nature25786 10.1183/09031936.01.00074101 10.1016/j.cels.2015.12.004 10.1165/ajrcmb.24.6.4498 10.1165/rcmb.2008-0485TR 10.1186/s13059-017-1382-0 10.1242/dev.029249 10.1109/MCSE.2007.55 10.1002/sctm.17-0149 10.1126/science.aam6603 10.1172/JCI68782 10.1242/dev.006221 10.1242/dev.163014 10.2144/000112729 10.1016/j.cell.2005.03.032 10.1172/JCI57673 10.1016/j.stem.2020.06.020 10.1016/j.cell.2013.12.039 10.1038/nmeth.4498 10.1038/modpathol.3880259 10.1073/pnas.1719474115 10.1093/database/baz046 10.1016/j.stem.2019.12.014 10.1073/pnas.0906850106 10.1038/nm.3889 10.1038/nmeth.2089 10.1038/nature22334 10.1016/j.pharmthera.2017.11.004 10.1038/75556 10.1093/bioinformatics/btr260 10.1016/j.cell.2018.05.061 10.1038/s41587-019-0113-3 10.1038/s41467-020-17358-3 10.1038/nature14112 10.1016/j.stem.2020.03.009 10.1016/j.stem.2016.05.016 10.1016/j.stem.2009.04.002 10.1038/s41586-018-0414-6 10.1038/s41536-019-0080-9 10.1038/nature13903 10.1038/s41580-019-0141-3 10.1513/pats.201203-023AW 10.1016/j.stem.2015.01.002 10.1016/S2213-2600(20)30105-3 10.1073/pnas.0506580102 10.1111/ajt.13940 10.1038/s41598-019-41695-z 10.1126/scitranslmed.aai8710 10.1016/j.cell.2017.07.028 10.1038/s41598-018-31214-x |
ContentType | Journal Article |
Copyright | 2022 The Authors Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2022 The Authors – notice: Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.celrep.2022.110662 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 110662 |
ExternalDocumentID | PMC9063850 35417699 10_1016_j_celrep_2022_110662 S2211124722004144 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ RIG CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c529t-488bcf9282c55c2a5a075a9f1550ee9d8ca687bdcead8cf41a1bbb8b9301e943 |
IEDL.DBID | M48 |
ISSN | 2211-1247 |
IngestDate | Thu Aug 21 14:00:00 EDT 2025 Thu Jul 10 17:24:33 EDT 2025 Thu Jan 02 22:53:48 EST 2025 Tue Jul 01 02:59:26 EDT 2025 Thu Apr 24 23:07:52 EDT 2025 Tue Jul 25 20:58:37 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | single-cell RNA sequencing CP: Stem cell research organoids airway transplantation alveolar lung epithelial cells lung progenitor cells lung stem cells lung regeneration |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c529t-488bcf9282c55c2a5a075a9f1550ee9d8ca687bdcead8cf41a1bbb8b9301e943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AUTHOR CONTRIBUTIONS Conceptualization, S.M.L., A.L.M., I.G.W., and C.F.K.; methodology, S.M.L., A.L.M., I.G.W., and C.F.K.; software, A.L.M.; investigation, S.M.L., A.L.M., I.G.W., E.L., A.S., C.G.d.A., E.A., M.P., R.T.B., B.L., and B.A.R.; writing – original draft, S.M.L. and C.F.K.; writing – review & editing, S.M.L., A.L.M., I.G.W., E.L., and C.F.K.; visualization, S.M.L. and A.L.M.; funding acquisition, S.M.L., A.L.M., I.G.W., and C.F.K.; supervision, C.F.K. |
ORCID | 0000-0002-2366-9538 0000-0001-5229-2111 0000-0003-1880-4827 0000-0001-9774-445X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.celrep.2022.110662 |
PMID | 35417699 |
PQID | 2650252676 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9063850 proquest_miscellaneous_2650252676 pubmed_primary_35417699 crossref_citationtrail_10_1016_j_celrep_2022_110662 crossref_primary_10_1016_j_celrep_2022_110662 elsevier_sciencedirect_doi_10_1016_j_celrep_2022_110662 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-12 |
PublicationDateYYYYMMDD | 2022-04-12 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Subramanian, Tamayo, Mootha, Mukherjee, Ebert, Gillette, Paulovich, Pomeroy, Golub, Lander (bib46) 2005; 102 Strunz, Simon, Ansari, Kathiriya, Angelidis, Mayr, Tsidiridis, Lange, Mattner, Yee (bib45) 2020; 11 Lee, Bhang, Beede, Huang, Stripp, Bloch, Wagers, Tseng, Ryeom, Kim (bib24) 2014; 156 Scozzi, Ibrahim, Menna, Krupnick, Kreisel, Gelman (bib43) 2017; 17 Cao, Ye, Sun, Ji, Shido, Chen, Luo, Na, Li, Huang (bib5) 2017; 9 Zuo, Zhang, Wu, Guan, Liew, Yamamoto, Wang, Lim, Vincent, Lessard (bib55) 2015; 517 Rock, Onaitis, Rawlins, Lu, Clark, Xue, Randell, Hogan (bib39) 2009; 106 Chung, Bujnis, Barkauskas, Kobayashi, Hogan (bib9) 2018; 145 Nichane, Javed, Sivakamasundari, Ganesan, Ang, Kraus, Lufkin, Loh, Lim (bib33) 2017; 14 Ota, Ng-Blichfeldt, Korfei, Alsafadi, Lehmann, Skronska-Wasek, M De Santis, Guenther, Wagner, Königshoff (bib34) 2018; 8 Franzén, Gan, Björkegren (bib15) 2019; 2019 Lee, Tammela, Hofree, Choi, Marjanovic, Han, Canner, Wu, Paschini, Bhang (bib25) 2017; 170 Hübner, Gitter, El Mokhtari, Mathiak, Both, Bolte, Freitag-Wolf, Bewig (bib19) 2008; 44 Liberzon, Birger, Thorvaldsdóttir, Ghandi, Mesirov, Tamayo (bib27) 2015; 1 La Manno, Soldatov, Zeisel, Braun, Hochgerner, Petukhov, Lidschreiber, Kastriti, Lönnerberg, Furlan (bib28) 2018; 560 Daly, Baecher-Allan, Paxhia, Ryan, Barth, Finkelstein (bib10) 1998; 78 Nabhan, Brownfield, Harbury, Krasnow, Desai (bib32) 2018; 359 Vaughan, Brumwell, Xi, Gotts, Brownfield, Treutlein, Tan, Tan, Liu, Looney (bib49) 2015; 517 Evans, Cabral, Stephens, Freeman (bib13) 1975; 22 van Dijk, Sharma, Nainys, Yim, Kathail, Carr, Burdziak, Moon, Chaffer, Pattabiraman (bib11) 2018; 174 Ashburner, Ball, Blake, Botstein, Butler, Cherry, Davis, Dolinski, Dwight, Eppig (bib2) 2000; 25 Soriano, Kendrick, Paulson, Gupta, Abrams, Adedoyin, Adhikari, Advani, Agrawal, Ahmadian (bib44) 2020; 8 Schneider, Rasband, Eliceiri (bib42) 2012; 9 Chapman, Li, Alexander, Brumwell, Lorizio, Tan, Sonnenberg, Wei, Vu (bib6) 2011; 121 Chen, Desai, Qian, Niederreither, Lu, Cardoso (bib7) 2007; 134 McInnes, Healy, Melville (bib29) 2020 Kathiriya, Brumwell, Jackson, Tang, Chapman (bib21) 2020; 26 Kim, Jackson, Woolfenden, Lawrence, Babar, Vogel, Crowley, Bronson, Jacks (bib22) 2005; 121 Milman Krentsis, Rosen, Shezen, Aronovich, Nathanson, Bachar-Lustig, Berkman, Assayag, Shakhar, Feferman (bib30) 2018; 7 Traag, Waltman, van Eck (bib48) 2019; 9 Barkauskas, Cronce, Rackley, Bowie, Keene, Stripp, Randell, Noble, Hogan (bib3) 2013; 123 Wang, Tang, Huang, Li, Wang, Yu, Zhang, Li, Dai, Wang (bib50) 2018; 115 Wolf, Angerer, Theis (bib52) 2018; 19 Hunter (bib20) 2007; 9 Rawlins, Okubo, Xue, Brass, Auten, Hasegawa, Wang, Hogan (bib38) 2009; 4 Zepp, Morrisey (bib54) 2019; 20 Eser, Jänne (bib12) 2018; 184 Tammela, Sanchez-Rivera, Cetinbas, Wu, Joshi, Helenius, Park, Azimi, Kerper, Wesselhoeft (bib47) 2017; 545 Fernandez, Eickelberg (bib14) 2012; 9 Basil, Katzen, Engler, Guo, Herriges, Kathiriya, Windmueller, Ysasi, Zacharias, Chapman (bib4) 2020; 26 Königshoff, Eickelberg (bib23) 2010; 42 Choi, Park, Tsagkogeorga, Yanagita, Koo, Han, Lee (bib8) 2020; 27 Pan, Yamauchi, Uzuki, Nakanishi, Takigawa, Inoue, Sawai (bib35) 2001; 17 Rosen, Shezen, Aronovich, Klionsky, Yaakov, Assayag, Biton, Tal, Shakhar, Ben-Hur (bib40) 2015; 21 Hong, Reynolds, Giangreco, Hurley, Stripp (bib18) 2001; 24 Weiner, Jackson, Zhao, Quansah, Farshchian, Neupauer, Littauer, Paris, Liberti, Scott Worthen (bib51) 2019; 4 Adamson, Bowden (bib1) 1975; 32 Liberzon, Subramanian, Pinchback, Thorvaldsdóttir, Tamayo, Mesirov (bib26) 2011; 27 Pilette, Colinet, Kiss, André, Kaltner, Gabius, Delos, Vaerman, Decramer, Sibille (bib37) 2007; 29 Mori, Rao, Popper, Cagle, Fraire (bib31) 2001; 14 Zacharias, Frank, Zepp, Morley, Alkhaleel, Kong, Zhou, Cantu, Morrisey (bib53) 2018; 555 Guseh, Bores, Stanger, Zhou, Anderson, Melton, Rajagopal (bib16) 2009; 136 Hie, Bryson, Berger (bib17) 2019; 37 Rowe, Mandelbaum, Zon, Daley (bib41) 2016; 18 Pardo-Saganta, Law, Tata, Villoria, Saez, Mou, Zhao, Rajagopal (bib36) 2015; 16 Rawlins (10.1016/j.celrep.2022.110662_bib38) 2009; 4 Tammela (10.1016/j.celrep.2022.110662_bib47) 2017; 545 Pardo-Saganta (10.1016/j.celrep.2022.110662_bib36) 2015; 16 Strunz (10.1016/j.celrep.2022.110662_bib45) 2020; 11 Traag (10.1016/j.celrep.2022.110662_bib48) 2019; 9 Evans (10.1016/j.celrep.2022.110662_bib13) 1975; 22 Zepp (10.1016/j.celrep.2022.110662_bib54) 2019; 20 Nichane (10.1016/j.celrep.2022.110662_bib33) 2017; 14 Pan (10.1016/j.celrep.2022.110662_bib35) 2001; 17 Chung (10.1016/j.celrep.2022.110662_bib9) 2018; 145 Pilette (10.1016/j.celrep.2022.110662_bib37) 2007; 29 Eser (10.1016/j.celrep.2022.110662_bib12) 2018; 184 Chen (10.1016/j.celrep.2022.110662_bib7) 2007; 134 Vaughan (10.1016/j.celrep.2022.110662_bib49) 2015; 517 Rosen (10.1016/j.celrep.2022.110662_bib40) 2015; 21 Lee (10.1016/j.celrep.2022.110662_bib24) 2014; 156 Soriano (10.1016/j.celrep.2022.110662_bib44) 2020; 8 Hübner (10.1016/j.celrep.2022.110662_bib19) 2008; 44 van Dijk (10.1016/j.celrep.2022.110662_bib11) 2018; 174 Barkauskas (10.1016/j.celrep.2022.110662_bib3) 2013; 123 Fernandez (10.1016/j.celrep.2022.110662_bib14) 2012; 9 Wolf (10.1016/j.celrep.2022.110662_bib52) 2018; 19 Franzén (10.1016/j.celrep.2022.110662_bib15) 2019; 2019 Guseh (10.1016/j.celrep.2022.110662_bib16) 2009; 136 Wang (10.1016/j.celrep.2022.110662_bib50) 2018; 115 La Manno (10.1016/j.celrep.2022.110662_bib28) 2018; 560 Zuo (10.1016/j.celrep.2022.110662_bib55) 2015; 517 Daly (10.1016/j.celrep.2022.110662_bib10) 1998; 78 Königshoff (10.1016/j.celrep.2022.110662_bib23) 2010; 42 Rowe (10.1016/j.celrep.2022.110662_bib41) 2016; 18 Weiner (10.1016/j.celrep.2022.110662_bib51) 2019; 4 Zacharias (10.1016/j.celrep.2022.110662_bib53) 2018; 555 Milman Krentsis (10.1016/j.celrep.2022.110662_bib30) 2018; 7 Subramanian (10.1016/j.celrep.2022.110662_bib46) 2005; 102 McInnes (10.1016/j.celrep.2022.110662_bib29) 2020 Lee (10.1016/j.celrep.2022.110662_bib25) 2017; 170 Scozzi (10.1016/j.celrep.2022.110662_bib43) 2017; 17 Mori (10.1016/j.celrep.2022.110662_bib31) 2001; 14 Schneider (10.1016/j.celrep.2022.110662_bib42) 2012; 9 Liberzon (10.1016/j.celrep.2022.110662_bib26) 2011; 27 Hunter (10.1016/j.celrep.2022.110662_bib20) 2007; 9 Rock (10.1016/j.celrep.2022.110662_bib39) 2009; 106 Ota (10.1016/j.celrep.2022.110662_bib34) 2018; 8 Ashburner (10.1016/j.celrep.2022.110662_bib2) 2000; 25 Nabhan (10.1016/j.celrep.2022.110662_bib32) 2018; 359 Liberzon (10.1016/j.celrep.2022.110662_bib27) 2015; 1 Basil (10.1016/j.celrep.2022.110662_bib4) 2020; 26 Adamson (10.1016/j.celrep.2022.110662_bib1) 1975; 32 Kim (10.1016/j.celrep.2022.110662_bib22) 2005; 121 Chapman (10.1016/j.celrep.2022.110662_bib6) 2011; 121 Choi (10.1016/j.celrep.2022.110662_bib8) 2020; 27 Hong (10.1016/j.celrep.2022.110662_bib18) 2001; 24 Kathiriya (10.1016/j.celrep.2022.110662_bib21) 2020; 26 Hie (10.1016/j.celrep.2022.110662_bib17) 2019; 37 Cao (10.1016/j.celrep.2022.110662_bib5) 2017; 9 |
References_xml | – volume: 145 start-page: dev163014 year: 2018 ident: bib9 article-title: Niche-mediated BMP/SMAD signaling regulates lung alveolar stem cell proliferation and differentiation publication-title: Development – volume: 16 start-page: 184 year: 2015 end-page: 197 ident: bib36 article-title: Injury induces direct lineage segregation of functionally distinct airway basal stem/progenitor cell subpopulations publication-title: Cell Stem Cell – volume: 18 start-page: 707 year: 2016 end-page: 720 ident: bib41 article-title: Engineering hematopoietic stem cells: lessons from development publication-title: Cell Stem Cell – volume: 156 start-page: 440 year: 2014 end-page: 455 ident: bib24 article-title: Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis publication-title: Cell – volume: 17 start-page: 1220 year: 2001 end-page: 1227 ident: bib35 article-title: Type II alveolar epithelial cells and interstitial fibroblasts express connective tissue growth factor in IPF publication-title: Eur. Respir. J. – volume: 8 start-page: 585 year: 2020 end-page: 596 ident: bib44 article-title: Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017 publication-title: Lancet Respir. Med. – volume: 517 start-page: 621 year: 2015 end-page: 625 ident: bib49 article-title: Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury publication-title: Nature – volume: 174 start-page: 716 year: 2018 end-page: 729.e27 ident: bib11 article-title: Recovering gene interactions from single-cell data using data diffusion publication-title: Cell – volume: 9 start-page: 671 year: 2012 end-page: 675 ident: bib42 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nat. Methods – volume: 4 start-page: 525 year: 2009 end-page: 534 ident: bib38 article-title: The role of Scgb1a1+ Clara cells in the long-term maintenance and repair of lung airway, but not alveolar, epithelium publication-title: Cell Stem Cell – volume: 9 start-page: 90 year: 2007 end-page: 95 ident: bib20 article-title: Matplotlib: a 2D graphics environment publication-title: Comput. Sci. Eng. – volume: 184 start-page: 112 year: 2018 end-page: 130 ident: bib12 article-title: TGFβ pathway inhibition in the treatment of non-small cell lung cancer publication-title: Pharmacol. Ther. – volume: 42 start-page: 21 year: 2010 end-page: 31 ident: bib23 article-title: WNT signaling in lung disease: a failure or a regeneration signal? publication-title: Am. J. Respir. Cell Mol. Biol. – volume: 9 start-page: 111 year: 2012 end-page: 116 ident: bib14 article-title: The impact of TGF-β on lung fibrosis: from targeting to biomarkers publication-title: Proc. Am. Thorac. Soc. – volume: 1 start-page: 417 year: 2015 end-page: 425 ident: bib27 article-title: The Molecular Signatures Database (MSigDB) hallmark gene set collection publication-title: Cell Syst – volume: 25 start-page: 25 year: 2000 end-page: 29 ident: bib2 article-title: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium publication-title: Nat. Genet. – volume: 102 start-page: 15545 year: 2005 end-page: 15550 ident: bib46 article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles publication-title: Proc. Natl. Acad. Sci. U S A – volume: 4 start-page: 17 year: 2019 ident: bib51 article-title: Mesenchyme-free expansion and transplantation of adult alveolar progenitor cells: steps toward cell-based regenerative therapies publication-title: Npj Regen. Med. – volume: 517 start-page: 616 year: 2015 end-page: 620 ident: bib55 article-title: p63(+)Krt5(+) distal airway stem cells are essential for lung regeneration publication-title: Nature – volume: 26 start-page: 346 year: 2020 end-page: 358.e4 ident: bib21 article-title: Distinct airway epithelial stem cells hide among club cells but mobilize to promote alveolar regeneration publication-title: Cell Stem Cell – volume: 2019 start-page: baz046 year: 2019 ident: bib15 article-title: PanglaoDB: a web server for exploration of mouse and human single-cell RNA sequencing data publication-title: Database – volume: 560 start-page: 494 year: 2018 end-page: 498 ident: bib28 article-title: RNA velocity of single cells publication-title: Nature – volume: 22 start-page: 142 year: 1975 end-page: 150 ident: bib13 article-title: Transformation of alveolar Type 2 cells to Type 1 cells following exposure to NO2 publication-title: Exp. Mol. Pathol. – volume: 21 start-page: 869 year: 2015 end-page: 879 ident: bib40 article-title: Preconditioning allows engraftment of mouse and human embryonic lung cells, enabling lung repair in mice publication-title: Nat. Med. – volume: 20 start-page: 551 year: 2019 end-page: 566 ident: bib54 article-title: Cellular crosstalk in the development and regeneration of the respiratory system publication-title: Nat. Rev. Mol. Cell Biol. – volume: 545 start-page: 355 year: 2017 end-page: 359 ident: bib47 article-title: A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma publication-title: Nature – volume: 11 start-page: 3559 year: 2020 ident: bib45 article-title: Alveolar regeneration through a Krt8+ transitional stem cell state that persists in human lung fibrosis publication-title: Nat. Commun. – volume: 106 start-page: 12771 year: 2009 end-page: 12775 ident: bib39 article-title: Basal cells as stem cells of the mouse trachea and human airway epithelium publication-title: Proc. Natl. Acad. Sci. U S A – volume: 170 start-page: 1149 year: 2017 end-page: 1163.e12 ident: bib25 article-title: Anatomically and functionally distinct lung mesenchymal populations marked by Lgr5 and Lgr6 publication-title: Cell – volume: 136 start-page: 1751 year: 2009 end-page: 1759 ident: bib16 article-title: Notch signaling promotes airway mucous metaplasia and inhibits alveolar development publication-title: Development – year: 2020 ident: bib29 article-title: UMAP: uniform manifold approximation and projection for dimension reduction publication-title: arXiv – volume: 29 start-page: 914 year: 2007 end-page: 922 ident: bib37 article-title: Increased galectin-3 expression and intra-epithelial neutrophils in small airways in severe COPD publication-title: Eur. Respir. J. – volume: 19 start-page: 15 year: 2018 ident: bib52 article-title: SCANPY: large-scale single-cell gene expression data analysis publication-title: Genome Biol. – volume: 37 start-page: 685 year: 2019 end-page: 691 ident: bib17 article-title: Efficient integration of heterogeneous single-cell transcriptomes using Scanorama publication-title: Nat. Biotechnol. – volume: 27 start-page: 1739 year: 2011 end-page: 1740 ident: bib26 article-title: Molecular signatures database (MSigDB) 3.0 publication-title: Bioinforma. Oxf. Engl. – volume: 7 start-page: 68 year: 2018 end-page: 77 ident: bib30 article-title: Lung injury repair by transplantation of adult lung cells following preconditioning of recipient mice publication-title: Stem Cells Transl. Med. – volume: 9 start-page: 5233 year: 2019 ident: bib48 article-title: From Louvain to Leiden: guaranteeing well-connected communities publication-title: Sci. Rep. – volume: 121 start-page: 823 year: 2005 end-page: 835 ident: bib22 article-title: Identification of bronchioalveolar stem cells in normal lung and lung cancer publication-title: Cell – volume: 14 start-page: 72 year: 2001 end-page: 84 ident: bib31 article-title: Atypical adenomatous hyperplasia of the lung: a probable forerunner in the development of adenocarcinoma of the lung publication-title: Mod. Pathol. – volume: 121 start-page: 2855 year: 2011 end-page: 2862 ident: bib6 article-title: Integrin α6β4 identifies an adult distal lung epithelial population with regenerative potential in mice publication-title: J. Clin. Invest. – volume: 14 start-page: 1205 year: 2017 end-page: 1212 ident: bib33 article-title: Isolation and 3D expansion of multipotent Sox9+ mouse lung progenitors publication-title: Nat. Methods – volume: 24 start-page: 671 year: 2001 end-page: 681 ident: bib18 article-title: Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion publication-title: Am. J. Respir. Cell Mol. Biol. – volume: 123 start-page: 3025 year: 2013 end-page: 3036 ident: bib3 article-title: Type 2 alveolar cells are stem cells in adult lung publication-title: J. Clin. Invest. – volume: 26 start-page: 482 year: 2020 end-page: 502 ident: bib4 article-title: The cellular and physiological basis for lung repair and regeneration: past, present, and future publication-title: Cell Stem Cell – volume: 555 start-page: 251 year: 2018 end-page: 255 ident: bib53 article-title: Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor publication-title: Nature – volume: 8 start-page: 12983 year: 2018 ident: bib34 article-title: Dynamic expression of HOPX in alveolar epithelial cells reflects injury and repair during the progression of pulmonary fibrosis publication-title: Sci. Rep. – volume: 115 start-page: 2407 year: 2018 end-page: 2412 ident: bib50 article-title: Pulmonary alveolar type I cell population consists of two distinct subtypes that differ in cell fate publication-title: Proc. Natl. Acad. Sci. U S A – volume: 32 start-page: 736 year: 1975 end-page: 745 ident: bib1 article-title: Derivation of type 1 epithelium from type 2 cells in the developing rat lung publication-title: Lab. Investig. J. Tech. Methods Pathol. – volume: 359 start-page: 1118 year: 2018 end-page: 1123 ident: bib32 article-title: Single-cell Wnt signaling niches maintain stemness of alveolar type 2 cells publication-title: Science – volume: 27 start-page: 366 year: 2020 end-page: 382.e7 ident: bib8 article-title: Inflammatory signals induce AT2 cell-derived damage-associated transient progenitors that mediate alveolar regeneration publication-title: Cell Stem Cell – volume: 78 start-page: 393 year: 1998 end-page: 400 ident: bib10 article-title: Cell-specific gene expression reveals changes in epithelial cell populations after bleomycin treatment publication-title: Lab. Investig. J. Tech. Methods Pathol. – volume: 134 start-page: 2969 year: 2007 end-page: 2979 ident: bib7 article-title: Inhibition of Tgf signaling by endogenous retinoic acid is essential for primary lung bud induction publication-title: Development – volume: 9 start-page: eaai8710 year: 2017 ident: bib5 article-title: Targeting the vascular and perivascular niches as a regenerative therapy for lung and liver fibrosis publication-title: Sci. Transl. Med. – volume: 17 start-page: 328 year: 2017 end-page: 335 ident: bib43 article-title: The role of neutrophils in transplanted organs publication-title: Am. J. Transpl. – volume: 44 start-page: 507 year: 2008 end-page: 511 ident: bib19 article-title: Standardized quantification of pulmonary fibrosis in histological samples publication-title: BioTechniques – volume: 29 start-page: 914 year: 2007 ident: 10.1016/j.celrep.2022.110662_bib37 article-title: Increased galectin-3 expression and intra-epithelial neutrophils in small airways in severe COPD publication-title: Eur. Respir. J. doi: 10.1183/09031936.00073005 – volume: 22 start-page: 142 year: 1975 ident: 10.1016/j.celrep.2022.110662_bib13 article-title: Transformation of alveolar Type 2 cells to Type 1 cells following exposure to NO2 publication-title: Exp. Mol. Pathol. doi: 10.1016/0014-4800(75)90059-3 – volume: 555 start-page: 251 year: 2018 ident: 10.1016/j.celrep.2022.110662_bib53 article-title: Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor publication-title: Nature doi: 10.1038/nature25786 – volume: 17 start-page: 1220 year: 2001 ident: 10.1016/j.celrep.2022.110662_bib35 article-title: Type II alveolar epithelial cells and interstitial fibroblasts express connective tissue growth factor in IPF publication-title: Eur. Respir. J. doi: 10.1183/09031936.01.00074101 – volume: 1 start-page: 417 year: 2015 ident: 10.1016/j.celrep.2022.110662_bib27 article-title: The Molecular Signatures Database (MSigDB) hallmark gene set collection publication-title: Cell Syst doi: 10.1016/j.cels.2015.12.004 – volume: 24 start-page: 671 year: 2001 ident: 10.1016/j.celrep.2022.110662_bib18 article-title: Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion publication-title: Am. J. Respir. Cell Mol. Biol. doi: 10.1165/ajrcmb.24.6.4498 – volume: 42 start-page: 21 year: 2010 ident: 10.1016/j.celrep.2022.110662_bib23 article-title: WNT signaling in lung disease: a failure or a regeneration signal? publication-title: Am. J. Respir. Cell Mol. Biol. doi: 10.1165/rcmb.2008-0485TR – volume: 19 start-page: 15 year: 2018 ident: 10.1016/j.celrep.2022.110662_bib52 article-title: SCANPY: large-scale single-cell gene expression data analysis publication-title: Genome Biol. doi: 10.1186/s13059-017-1382-0 – volume: 136 start-page: 1751 year: 2009 ident: 10.1016/j.celrep.2022.110662_bib16 article-title: Notch signaling promotes airway mucous metaplasia and inhibits alveolar development publication-title: Development doi: 10.1242/dev.029249 – volume: 9 start-page: 90 year: 2007 ident: 10.1016/j.celrep.2022.110662_bib20 article-title: Matplotlib: a 2D graphics environment publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – volume: 7 start-page: 68 year: 2018 ident: 10.1016/j.celrep.2022.110662_bib30 article-title: Lung injury repair by transplantation of adult lung cells following preconditioning of recipient mice publication-title: Stem Cells Transl. Med. doi: 10.1002/sctm.17-0149 – volume: 359 start-page: 1118 year: 2018 ident: 10.1016/j.celrep.2022.110662_bib32 article-title: Single-cell Wnt signaling niches maintain stemness of alveolar type 2 cells publication-title: Science doi: 10.1126/science.aam6603 – volume: 123 start-page: 3025 year: 2013 ident: 10.1016/j.celrep.2022.110662_bib3 article-title: Type 2 alveolar cells are stem cells in adult lung publication-title: J. Clin. Invest. doi: 10.1172/JCI68782 – volume: 134 start-page: 2969 year: 2007 ident: 10.1016/j.celrep.2022.110662_bib7 article-title: Inhibition of Tgf signaling by endogenous retinoic acid is essential for primary lung bud induction publication-title: Development doi: 10.1242/dev.006221 – volume: 145 start-page: dev163014 year: 2018 ident: 10.1016/j.celrep.2022.110662_bib9 article-title: Niche-mediated BMP/SMAD signaling regulates lung alveolar stem cell proliferation and differentiation publication-title: Development doi: 10.1242/dev.163014 – volume: 44 start-page: 507 year: 2008 ident: 10.1016/j.celrep.2022.110662_bib19 article-title: Standardized quantification of pulmonary fibrosis in histological samples publication-title: BioTechniques doi: 10.2144/000112729 – volume: 121 start-page: 823 year: 2005 ident: 10.1016/j.celrep.2022.110662_bib22 article-title: Identification of bronchioalveolar stem cells in normal lung and lung cancer publication-title: Cell doi: 10.1016/j.cell.2005.03.032 – volume: 121 start-page: 2855 year: 2011 ident: 10.1016/j.celrep.2022.110662_bib6 article-title: Integrin α6β4 identifies an adult distal lung epithelial population with regenerative potential in mice publication-title: J. Clin. Invest. doi: 10.1172/JCI57673 – volume: 27 start-page: 366 year: 2020 ident: 10.1016/j.celrep.2022.110662_bib8 article-title: Inflammatory signals induce AT2 cell-derived damage-associated transient progenitors that mediate alveolar regeneration publication-title: Cell Stem Cell doi: 10.1016/j.stem.2020.06.020 – volume: 156 start-page: 440 year: 2014 ident: 10.1016/j.celrep.2022.110662_bib24 article-title: Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis publication-title: Cell doi: 10.1016/j.cell.2013.12.039 – volume: 14 start-page: 1205 year: 2017 ident: 10.1016/j.celrep.2022.110662_bib33 article-title: Isolation and 3D expansion of multipotent Sox9+ mouse lung progenitors publication-title: Nat. Methods doi: 10.1038/nmeth.4498 – volume: 14 start-page: 72 year: 2001 ident: 10.1016/j.celrep.2022.110662_bib31 article-title: Atypical adenomatous hyperplasia of the lung: a probable forerunner in the development of adenocarcinoma of the lung publication-title: Mod. Pathol. doi: 10.1038/modpathol.3880259 – volume: 115 start-page: 2407 year: 2018 ident: 10.1016/j.celrep.2022.110662_bib50 article-title: Pulmonary alveolar type I cell population consists of two distinct subtypes that differ in cell fate publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1719474115 – volume: 2019 start-page: baz046 year: 2019 ident: 10.1016/j.celrep.2022.110662_bib15 article-title: PanglaoDB: a web server for exploration of mouse and human single-cell RNA sequencing data publication-title: Database doi: 10.1093/database/baz046 – volume: 26 start-page: 346 year: 2020 ident: 10.1016/j.celrep.2022.110662_bib21 article-title: Distinct airway epithelial stem cells hide among club cells but mobilize to promote alveolar regeneration publication-title: Cell Stem Cell doi: 10.1016/j.stem.2019.12.014 – volume: 106 start-page: 12771 year: 2009 ident: 10.1016/j.celrep.2022.110662_bib39 article-title: Basal cells as stem cells of the mouse trachea and human airway epithelium publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.0906850106 – volume: 21 start-page: 869 year: 2015 ident: 10.1016/j.celrep.2022.110662_bib40 article-title: Preconditioning allows engraftment of mouse and human embryonic lung cells, enabling lung repair in mice publication-title: Nat. Med. doi: 10.1038/nm.3889 – volume: 9 start-page: 671 year: 2012 ident: 10.1016/j.celrep.2022.110662_bib42 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2089 – volume: 545 start-page: 355 year: 2017 ident: 10.1016/j.celrep.2022.110662_bib47 article-title: A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma publication-title: Nature doi: 10.1038/nature22334 – volume: 78 start-page: 393 year: 1998 ident: 10.1016/j.celrep.2022.110662_bib10 article-title: Cell-specific gene expression reveals changes in epithelial cell populations after bleomycin treatment publication-title: Lab. Investig. J. Tech. Methods Pathol. – volume: 184 start-page: 112 year: 2018 ident: 10.1016/j.celrep.2022.110662_bib12 article-title: TGFβ pathway inhibition in the treatment of non-small cell lung cancer publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2017.11.004 – volume: 25 start-page: 25 year: 2000 ident: 10.1016/j.celrep.2022.110662_bib2 article-title: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium publication-title: Nat. Genet. doi: 10.1038/75556 – volume: 27 start-page: 1739 year: 2011 ident: 10.1016/j.celrep.2022.110662_bib26 article-title: Molecular signatures database (MSigDB) 3.0 publication-title: Bioinforma. Oxf. Engl. doi: 10.1093/bioinformatics/btr260 – volume: 174 start-page: 716 year: 2018 ident: 10.1016/j.celrep.2022.110662_bib11 article-title: Recovering gene interactions from single-cell data using data diffusion publication-title: Cell doi: 10.1016/j.cell.2018.05.061 – volume: 37 start-page: 685 year: 2019 ident: 10.1016/j.celrep.2022.110662_bib17 article-title: Efficient integration of heterogeneous single-cell transcriptomes using Scanorama publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0113-3 – volume: 11 start-page: 3559 year: 2020 ident: 10.1016/j.celrep.2022.110662_bib45 article-title: Alveolar regeneration through a Krt8+ transitional stem cell state that persists in human lung fibrosis publication-title: Nat. Commun. doi: 10.1038/s41467-020-17358-3 – volume: 517 start-page: 621 year: 2015 ident: 10.1016/j.celrep.2022.110662_bib49 article-title: Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury publication-title: Nature doi: 10.1038/nature14112 – volume: 26 start-page: 482 year: 2020 ident: 10.1016/j.celrep.2022.110662_bib4 article-title: The cellular and physiological basis for lung repair and regeneration: past, present, and future publication-title: Cell Stem Cell doi: 10.1016/j.stem.2020.03.009 – volume: 18 start-page: 707 year: 2016 ident: 10.1016/j.celrep.2022.110662_bib41 article-title: Engineering hematopoietic stem cells: lessons from development publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.05.016 – volume: 4 start-page: 525 year: 2009 ident: 10.1016/j.celrep.2022.110662_bib38 article-title: The role of Scgb1a1+ Clara cells in the long-term maintenance and repair of lung airway, but not alveolar, epithelium publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.04.002 – volume: 560 start-page: 494 year: 2018 ident: 10.1016/j.celrep.2022.110662_bib28 article-title: RNA velocity of single cells publication-title: Nature doi: 10.1038/s41586-018-0414-6 – volume: 4 start-page: 17 year: 2019 ident: 10.1016/j.celrep.2022.110662_bib51 article-title: Mesenchyme-free expansion and transplantation of adult alveolar progenitor cells: steps toward cell-based regenerative therapies publication-title: Npj Regen. Med. doi: 10.1038/s41536-019-0080-9 – year: 2020 ident: 10.1016/j.celrep.2022.110662_bib29 article-title: UMAP: uniform manifold approximation and projection for dimension reduction publication-title: arXiv – volume: 32 start-page: 736 year: 1975 ident: 10.1016/j.celrep.2022.110662_bib1 article-title: Derivation of type 1 epithelium from type 2 cells in the developing rat lung publication-title: Lab. Investig. J. Tech. Methods Pathol. – volume: 517 start-page: 616 year: 2015 ident: 10.1016/j.celrep.2022.110662_bib55 article-title: p63(+)Krt5(+) distal airway stem cells are essential for lung regeneration publication-title: Nature doi: 10.1038/nature13903 – volume: 20 start-page: 551 year: 2019 ident: 10.1016/j.celrep.2022.110662_bib54 article-title: Cellular crosstalk in the development and regeneration of the respiratory system publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0141-3 – volume: 9 start-page: 111 year: 2012 ident: 10.1016/j.celrep.2022.110662_bib14 article-title: The impact of TGF-β on lung fibrosis: from targeting to biomarkers publication-title: Proc. Am. Thorac. Soc. doi: 10.1513/pats.201203-023AW – volume: 16 start-page: 184 year: 2015 ident: 10.1016/j.celrep.2022.110662_bib36 article-title: Injury induces direct lineage segregation of functionally distinct airway basal stem/progenitor cell subpopulations publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.01.002 – volume: 8 start-page: 585 year: 2020 ident: 10.1016/j.celrep.2022.110662_bib44 article-title: Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017 publication-title: Lancet Respir. Med. doi: 10.1016/S2213-2600(20)30105-3 – volume: 102 start-page: 15545 year: 2005 ident: 10.1016/j.celrep.2022.110662_bib46 article-title: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.0506580102 – volume: 17 start-page: 328 year: 2017 ident: 10.1016/j.celrep.2022.110662_bib43 article-title: The role of neutrophils in transplanted organs publication-title: Am. J. Transpl. doi: 10.1111/ajt.13940 – volume: 9 start-page: 5233 year: 2019 ident: 10.1016/j.celrep.2022.110662_bib48 article-title: From Louvain to Leiden: guaranteeing well-connected communities publication-title: Sci. Rep. doi: 10.1038/s41598-019-41695-z – volume: 9 start-page: eaai8710 year: 2017 ident: 10.1016/j.celrep.2022.110662_bib5 article-title: Targeting the vascular and perivascular niches as a regenerative therapy for lung and liver fibrosis publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aai8710 – volume: 170 start-page: 1149 year: 2017 ident: 10.1016/j.celrep.2022.110662_bib25 article-title: Anatomically and functionally distinct lung mesenchymal populations marked by Lgr5 and Lgr6 publication-title: Cell doi: 10.1016/j.cell.2017.07.028 – volume: 8 start-page: 12983 year: 2018 ident: 10.1016/j.celrep.2022.110662_bib34 article-title: Dynamic expression of HOPX in alveolar epithelial cells reflects injury and repair during the progression of pulmonary fibrosis publication-title: Sci. Rep. doi: 10.1038/s41598-018-31214-x |
SSID | ssj0000601194 |
Score | 2.4921663 |
Snippet | Lung progenitor cells are crucial for regeneration following injury, yet it is unclear whether lung progenitor cells can be functionally engrafted after... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 110662 |
SubjectTerms | airway alveolar Animals Cell Differentiation Epithelial Cells Lung lung epithelial cells lung progenitor cells lung regeneration lung stem cells Mice Organoids single-cell RNA sequencing Spinocerebellar Ataxias Stem Cells transplantation |
SummonAdditionalLinks | – databaseName: ScienceDirect dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1dS8MwMIyB4Iv47fwigq9lW9qkzaMOxxAUxQl7C0mXYqW0o-se_Pfepe1wigi-temFpne5r_Q-CLlOLAuMxnM3OwcHBXSIZ4ClvNDXA27xx1eI2cgPj2LyGtzP-KxDRm0uDIZVNrK_lulOWjcj_Qab_UWa9l8Y-C6gnUKGhAa_AOQwZpViEt_sdn3OgvVGhq4fIsJ7OKHNoHNhXrHNSouFKxnDkHgh2G8a6qcF-j2Q8otmGu-SncakpDf1qvdIx-b7ZKtuMvlxQJ6fygJ2CXBuSRdFhdFBAF0kNAM-p3aBSRmZG8K0zCKdUzzMX9I0p5pWrvZ5pusEpZy6xjmHZDq-m44mXtNIwYs5k5UHTGriRIJ3FXMeM801GApaJuieWCvnUaxFFBr4DA3XSTDUQ2NMZCRwv5WBf0S6eZHbE0Kl1sLw0ASRbwIOxqUJ5lpyZGxsHhr3iN_iTsVNkXHsdZGpNprsXdUYV4hxVWO8R7z1rEVdZOMP-LAli9rYLAr0wB8zr1oqKuAjxKfObbFaKgamKuNMhKJHjmuqrtfi82AYCinhvRv0XgNgje7NJ3n65mp1SzQJ-eD03ys-I9t457nykuekW5UrewF2UGUu3Ub_BIJABus priority: 102 providerName: Elsevier |
Title | Progenitor potential of lung epithelial organoid cells in a transplantation model |
URI | https://dx.doi.org/10.1016/j.celrep.2022.110662 https://www.ncbi.nlm.nih.gov/pubmed/35417699 https://www.proquest.com/docview/2650252676 https://pubmed.ncbi.nlm.nih.gov/PMC9063850 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA-iKL6I386PEcHXikuTdnkQUVFUmChssLeQdClOSju7Cvrfe9e00-lE8KWUNqHt5S75XXr3O0KOYsu40bjvZgfgoMAa4hkwKS_09Ymw-OMrxGzkzn1w0-N3fdGfI3XN1kqA45muHdaT6uXJ8dvL-xkY_OlnrFZkk9wi-yRjGNce4KS8AGsTQz3vVIDfzc3IccbrHLpfOi-TJV_wVhiUjLAzl6ufcPR7VOWXZep6laxU-JKeO4VYI3M2XSeLruLk-wZ5fMgzUBkw45yOsgJDhaB1FtMEjJ7aEWZoJOUlzNHMhgOKO_tjOkyppkVJhJ5ol62U0rKKzibpXl91L2-8qqqCFwkmCw8s1kSxBFcrEiJiWmhADVrG6KtYKwftSAft0MBnaDiPeUu3jDFtI2EqsJL7W2Q-zVK7Q6jUOjAiNLztGy4AaRo-0FKglWMl0ahB_Fp2KqoYx7HwRaLq0LJn5YSvUPjKCb9BvEmvkWPc-KN9WA-LqlCDQwMKdOSPnof1KCowKpSnTm32OlYMcCsTLAiDBtl2ozp5l1oz4LlT4z1pgITd03fS4VNJ3C0RH4qT3X_33CPL-P5eyTW5T-aL_NUeACgqTLPcTIDjbf-iWer8B8OZD8E |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT-MwDLd2IHS8IDjuYHxdkHittqVNuzwCAm18CcSQ9hYlXSqKqnYa5YH_HjttJwZCSLxV-VBTO47t1P4Z4CixPDCa7t3sBB0U1CGeQZHyIl93haUfXxFlI1_fhIOH4GIsxi04bXJhKKyyPvurM92d1nVLp6ZmZ5qmnXuOvgtqp4gTo9Ev-AXLaA10Ka5rOD6ZX7QQ4EjPFUSkCR7NaFLoXJxXbLOZJeRKzikmPgz5Vyrqswn6MZLynWo6X4e12qZkx9WyN6Bl8z-wUlWZfN2Eu9tZgdsERXfGpkVJ4UE4ukhYhoLO7JSyMjLXRHmZRTphdJv_zNKcaVY68PNMVxlKOXOVc_7C6PxsdDrw6koKXiy4LD2UUhMnEt2rWIiYa6HRUtAyIf_EWjnpxzrsRwY_Q-NzEvR0zxjTNxLF38rA_wdLeZHbbWBS69CIyAR93wQCrUsTTLQUJNlUPTRug9_QTsU1yjgVu8hUE072pCqKK6K4qijeBm8-a1qhbHwzPmrYohZ2i0JF8M3Mw4aLCgWJ6KlzW7w8K462Khc8jMI2bFVcna_FF0EvCqXE9y7wez6AQLoXe_L00YF1S7IJRXfnxyv-D78Ho-srdTW8udyFVerxHNbkHiyVsxe7j0ZRaQ7cpn8DwIgKDQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progenitor+potential+of+lung+epithelial+organoid+cells+in+a+transplantation+model&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Louie%2C+Sharon+M.&rft.au=Moye%2C+Aaron+L.&rft.au=Wong%2C+Irene+G.&rft.au=Lu%2C+Emery&rft.date=2022-04-12&rft.eissn=2211-1247&rft.volume=39&rft.issue=2&rft.spage=110662&rft.epage=110662&rft_id=info:doi/10.1016%2Fj.celrep.2022.110662&rft_id=info%3Apmid%2F35417699&rft.externalDocID=PMC9063850 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |