Tau seeds are subject to aberrant modifications resulting in distinct signatures

The prion-like spread of tau pathology could underlie a spectrum of clinical syndromes including Alzheimer’s disease (AD). Although evidence indicates that tau is transmissible, it is unclear how pathogenic tau seeds are processed in neurons. Here, we analyze fibrillar wild-type and disease-associat...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 35; no. 4; p. 109037
Main Authors Tseng, Jui-Heng, Ajit, Aditi, Tabassum, Zarin, Patel, Niyati, Tian, Xu, Chen, Youjun, Prevatte, Alex W., Ling, Karen, Rigo, Frank, Meeker, Rick B., Herring, Laura E., Cohen, Todd J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 27.04.2021
Subjects
Online AccessGet full text
ISSN2211-1247
2211-1247
DOI10.1016/j.celrep.2021.109037

Cover

Abstract The prion-like spread of tau pathology could underlie a spectrum of clinical syndromes including Alzheimer’s disease (AD). Although evidence indicates that tau is transmissible, it is unclear how pathogenic tau seeds are processed in neurons. Here, we analyze fibrillar wild-type and disease-associated P301L tau seeds by using in vitro and neuronal assays. We show that P301L seeds are uniquely modified by post-translational modifications (PTMs) within the microtubule-binding region (MTBR). Although these modifications do not alter tau seed trafficking or localization, acetylated tau variants show accelerated tau aggregation, enhanced tau PTM priming, and prion-like templating. To explain the enhanced tau seed acetylation, we demonstrate that P301L seeds undergo auto-acetylation. Moreover, tau acts generally to inhibit HDAC6 deacetylase activity by preventing HDAC6 phosphorylation, leading to increased substrate acetylation. Our study highlights complex post-translational regulation of transmissible tau seeds and provides insight into the biological properties of tau strains in AD and other tauopathies. [Display omitted] •Tau seeds are internalized and aberrantly modified in neurons•Acetylated tau seeds display pathological properties•HDAC6 is associated with and inhibited by tau seeds•Tau prevents HDAC6 phosphorylation on Ser-22 Tseng et al. show tau seeds are abnormally processed when internalized into neurons. Tau seeds undergo a series of modifications that result as a consequence of auto-acetylation events as well as inhibition of the deacetylase HDAC6. Tau acts as an HDAC6 inhibitor by preventing HDAC6 phosphorylation at Ser-22.
AbstractList The prion-like spread of tau pathology could underlie a spectrum of clinical syndromes including Alzheimer’s disease (AD). Although evidence indicates that tau is transmissible, it is unclear how pathogenic tau seeds are processed in neurons. Here, we analyze fibrillar wild-type and disease-associated P301L tau seeds by using in vitro and neuronal assays. We show that P301L seeds are uniquely modified by post-translational modifications (PTMs) within the microtubule-binding region (MTBR). Although these modifications do not alter tau seed trafficking or localization, acetylated tau variants show accelerated tau aggregation, enhanced tau PTM priming, and prion-like templating. To explain the enhanced tau seed acetylation, we demonstrate that P301L seeds undergo auto-acetylation. Moreover, tau acts generally to inhibit HDAC6 deacetylase activity by preventing HDAC6 phosphorylation, leading to increased substrate acetylation. Our study highlights complex post-translational regulation of transmissible tau seeds and provides insight into the biological properties of tau strains in AD and other tauopathies. [Display omitted] •Tau seeds are internalized and aberrantly modified in neurons•Acetylated tau seeds display pathological properties•HDAC6 is associated with and inhibited by tau seeds•Tau prevents HDAC6 phosphorylation on Ser-22 Tseng et al. show tau seeds are abnormally processed when internalized into neurons. Tau seeds undergo a series of modifications that result as a consequence of auto-acetylation events as well as inhibition of the deacetylase HDAC6. Tau acts as an HDAC6 inhibitor by preventing HDAC6 phosphorylation at Ser-22.
The prion-like spread of tau pathology could underlie a spectrum of clinical syndromes including Alzheimer's disease (AD). Although evidence indicates that tau is transmissible, it is unclear how pathogenic tau seeds are processed in neurons. Here, we analyze fibrillar wild-type and disease-associated P301L tau seeds by using in vitro and neuronal assays. We show that P301L seeds are uniquely modified by post-translational modifications (PTMs) within the microtubule-binding region (MTBR). Although these modifications do not alter tau seed trafficking or localization, acetylated tau variants show accelerated tau aggregation, enhanced tau PTM priming, and prion-like templating. To explain the enhanced tau seed acetylation, we demonstrate that P301L seeds undergo auto-acetylation. Moreover, tau acts generally to inhibit HDAC6 deacetylase activity by preventing HDAC6 phosphorylation, leading to increased substrate acetylation. Our study highlights complex post-translational regulation of transmissible tau seeds and provides insight into the biological properties of tau strains in AD and other tauopathies.
The prion-like spread of tau pathology could underlie a spectrum of clinical syndromes including Alzheimer’s disease (AD). Although evidence indicates that tau is transmissible, it is unclear how pathogenic tau seeds are processed in neurons. Here, we analyze fibrillar wild-type and disease-associated P301L tau seeds by using in vitro and neuronal assays. We show that P301L seeds are uniquely modified by post-translational modifications (PTMs) within the microtubule-binding region (MTBR). Although these modifications do not alter tau seed trafficking or localization, acetylated tau variants show accelerated tau aggregation, enhanced tau PTM priming, and prion-like templating. To explain the enhanced tau seed acetylation, we demonstrate that P301L seeds undergo auto-acetylation. Moreover, tau acts generally to inhibit HDAC6 deacetylase activity by preventing HDAC6 phosphorylation, leading to increased substrate acetylation. Our study highlights complex post-translational regulation of transmissible tau seeds and provides insight into the biological properties of tau strains in AD and other tauopathies. Tseng et al. show tau seeds are abnormally processed when internalized into neurons. Tau seeds undergo a series of modifications that result as a consequence of auto-acetylation events as well as inhibition of the deacetylase HDAC6. Tau acts as an HDAC6 inhibitor by preventing HDAC6 phosphorylation at Ser-22.
The prion-like spread of tau pathology could underlie a spectrum of clinical syndromes including Alzheimer's disease (AD). Although evidence indicates that tau is transmissible, it is unclear how pathogenic tau seeds are processed in neurons. Here, we analyze fibrillar wild-type and disease-associated P301L tau seeds by using in vitro and neuronal assays. We show that P301L seeds are uniquely modified by post-translational modifications (PTMs) within the microtubule-binding region (MTBR). Although these modifications do not alter tau seed trafficking or localization, acetylated tau variants show accelerated tau aggregation, enhanced tau PTM priming, and prion-like templating. To explain the enhanced tau seed acetylation, we demonstrate that P301L seeds undergo auto-acetylation. Moreover, tau acts generally to inhibit HDAC6 deacetylase activity by preventing HDAC6 phosphorylation, leading to increased substrate acetylation. Our study highlights complex post-translational regulation of transmissible tau seeds and provides insight into the biological properties of tau strains in AD and other tauopathies.The prion-like spread of tau pathology could underlie a spectrum of clinical syndromes including Alzheimer's disease (AD). Although evidence indicates that tau is transmissible, it is unclear how pathogenic tau seeds are processed in neurons. Here, we analyze fibrillar wild-type and disease-associated P301L tau seeds by using in vitro and neuronal assays. We show that P301L seeds are uniquely modified by post-translational modifications (PTMs) within the microtubule-binding region (MTBR). Although these modifications do not alter tau seed trafficking or localization, acetylated tau variants show accelerated tau aggregation, enhanced tau PTM priming, and prion-like templating. To explain the enhanced tau seed acetylation, we demonstrate that P301L seeds undergo auto-acetylation. Moreover, tau acts generally to inhibit HDAC6 deacetylase activity by preventing HDAC6 phosphorylation, leading to increased substrate acetylation. Our study highlights complex post-translational regulation of transmissible tau seeds and provides insight into the biological properties of tau strains in AD and other tauopathies.
ArticleNumber 109037
Author Chen, Youjun
Patel, Niyati
Meeker, Rick B.
Ajit, Aditi
Rigo, Frank
Tabassum, Zarin
Tseng, Jui-Heng
Tian, Xu
Prevatte, Alex W.
Ling, Karen
Herring, Laura E.
Cohen, Todd J.
AuthorAffiliation 5 Lead contact
4 Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
2 UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
3 Ionis Pharmaceuticals, Carlsbad, CA 92008, USA
1 Department of Neurology and the UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
AuthorAffiliation_xml – name: 1 Department of Neurology and the UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
– name: 3 Ionis Pharmaceuticals, Carlsbad, CA 92008, USA
– name: 2 UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
– name: 5 Lead contact
– name: 4 Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
Author_xml – sequence: 1
  givenname: Jui-Heng
  orcidid: 0000-0002-9036-9121
  surname: Tseng
  fullname: Tseng, Jui-Heng
  organization: Department of Neurology and the UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
– sequence: 2
  givenname: Aditi
  surname: Ajit
  fullname: Ajit, Aditi
  organization: Department of Neurology and the UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
– sequence: 3
  givenname: Zarin
  orcidid: 0000-0001-9007-2566
  surname: Tabassum
  fullname: Tabassum, Zarin
  organization: Department of Neurology and the UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
– sequence: 4
  givenname: Niyati
  surname: Patel
  fullname: Patel, Niyati
  organization: Department of Neurology and the UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
– sequence: 5
  givenname: Xu
  surname: Tian
  fullname: Tian, Xu
  organization: Department of Neurology and the UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
– sequence: 6
  givenname: Youjun
  surname: Chen
  fullname: Chen, Youjun
  organization: Department of Neurology and the UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
– sequence: 7
  givenname: Alex W.
  surname: Prevatte
  fullname: Prevatte, Alex W.
  organization: UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
– sequence: 8
  givenname: Karen
  surname: Ling
  fullname: Ling, Karen
  organization: Ionis Pharmaceuticals, Carlsbad, CA 92008, USA
– sequence: 9
  givenname: Frank
  surname: Rigo
  fullname: Rigo, Frank
  organization: Ionis Pharmaceuticals, Carlsbad, CA 92008, USA
– sequence: 10
  givenname: Rick B.
  orcidid: 0000-0002-7487-5315
  surname: Meeker
  fullname: Meeker, Rick B.
  organization: Department of Neurology and the UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
– sequence: 11
  givenname: Laura E.
  surname: Herring
  fullname: Herring, Laura E.
  organization: UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
– sequence: 12
  givenname: Todd J.
  orcidid: 0000-0002-4099-0278
  surname: Cohen
  fullname: Cohen, Todd J.
  email: toddcohen@neurology.unc.edu
  organization: Department of Neurology and the UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33910013$$D View this record in MEDLINE/PubMed
BookMark eNqFUctOHDEQtCKi8Ah_ECEfuezGbY93ZnKIhBCQSEjhAGfLj56NV7P2YnuQ-HtMdoOAQ9KXbrmrqq2qQ7IXYkBCvgCbA4PF19Xc4phwM-eMQ33qmWg_kAPOAWbAm3bv1bxPjnNesVoLBtA3n8i-ED0wBuKA3NzqiWZEl6lOSPNkVmgLLZFqgynpUOg6Oj94q4uPIdOEeRqLD0vqA3U-17His18GXaa6_Ew-DnrMeLzrR-Tu8uL2_Mfs-tfVz_Oz65mVvC8z0dqW68FhL1vBDO-GTjSSOWCWDaJB44ywaLjrFiiZlsgX3DTCyd6AA4niiHzf6m4ms0ZnMZSkR7VJfq3To4raq7eb4H-rZXxQHQgJAFXgdCeQ4v2Euai1z9XVUQeMU1ZcQt8x2TVthZ68vvVy5K-NFdBsATbFnBMOLxBg6jkwtVLbwNRzYGobWKV9e0ezvvzxuf7Yj_8j7wzA6vKDx6Sy9RgsOp9qhMpF_2-BJx_FtMg
CitedBy_id crossref_primary_10_1186_s13578_023_01133_0
crossref_primary_10_1093_brain_awad272
crossref_primary_10_1007_s12031_022_02002_0
crossref_primary_10_1002_wsbm_1591
crossref_primary_10_1186_s40035_024_00429_6
crossref_primary_10_3390_ijms252212311
crossref_primary_10_1371_journal_pone_0284062
crossref_primary_10_1172_JCI156537
crossref_primary_10_1080_15548627_2024_2431472
crossref_primary_10_1002_cm_21811
crossref_primary_10_1038_s41598_024_65104_2
crossref_primary_10_3390_ijms241915023
crossref_primary_10_1016_j_neuint_2022_105308
crossref_primary_10_1016_j_arr_2024_102486
crossref_primary_10_3390_ijms23020718
crossref_primary_10_1186_s40035_024_00432_x
crossref_primary_10_1016_j_coph_2021_07_011
crossref_primary_10_1042_BST20230596
crossref_primary_10_3390_cells11192997
Cites_doi 10.1091/mbc.e07-04-0327
10.1042/BST20120071
10.1093/brain/aws013
10.1038/nature22405
10.1159/000285516
10.1128/MCB.00393-07
10.1016/j.neuron.2020.01.038
10.1074/jbc.M113.472506
10.1242/bio.20136692
10.1038/s41467-020-19317-4
10.1074/jbc.M206236200
10.1038/ncomms1255
10.1016/j.celrep.2017.07.082
10.1016/j.chembiol.2016.11.009
10.1016/j.devcel.2020.03.010
10.1001/jamaneurol.2013.1453
10.1093/jnen/nly010
10.1038/nm.3951
10.1111/j.1471-4159.2008.05564.x
10.1523/ENEURO.0166-19.2019
10.1016/j.ajpath.2013.04.025
10.1074/jbc.M115.652693
10.1074/mcp.TIR118.001209
10.1186/1750-1326-6-39
10.7554/eLife.36584
10.1074/jbc.M113.486753
10.1093/hmg/ddt402
10.1016/j.cub.2018.05.045
10.1186/s12974-018-1309-z
10.1093/nar/gkl1071
10.7554/eLife.37813
10.1038/emboj.2011.351
10.1038/s41467-018-03461-z
10.1016/j.cell.2020.01.027
10.1093/brain/awx375
10.1371/journal.pone.0115765
10.1016/j.cmet.2015.10.013
10.1016/j.molcel.2014.03.027
10.1074/jbc.M117.794602
10.2353/ajpath.2010.100346
10.1007/s00401-018-1855-6
10.1074/jbc.M115.657924
10.1038/nn.4132
10.3389/fneur.2013.00122
10.1089/dna.2013.2300
10.1038/417455a
10.1371/journal.pone.0123191
10.1038/nsmb.2555
10.1016/j.neuron.2016.03.005
10.1126/scitranslmed.aag0481
10.1126/science.1141736
10.1038/ncomms6845
10.1523/JNEUROSCI.2642-12.2013
10.1083/jcb.201804165
10.1038/mp.2016.111
10.1016/j.neuron.2016.09.055
10.1038/srep19393
10.1038/ncomms6245
10.1146/annurev-neuro-072116-031153
10.1523/JNEUROSCI.1230-17.2017
10.1038/nature05853
10.1016/j.cell.2020.10.029
10.1111/j.1471-4159.2009.06102.x
10.1007/s00401-016-1644-z
10.1007/s00401-015-1458-4
10.1002/anie.201913001
10.1186/s40478-017-0442-8
10.1016/j.neuron.2010.08.044
10.1038/srep44102
10.1038/emboj.2009.405
10.1126/science.aah6205
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 The Author(s)
– notice: Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.celrep.2021.109037
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 109037
ExternalDocumentID PMC8135111
33910013
10_1016_j_celrep_2021_109037
S2211124721003533
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P30 CA016086
– fundername: NINDS NIH HHS
  grantid: R01 NS108808
– fundername: NIA NIH HHS
  grantid: R01 AG061188
– fundername: NIA NIH HHS
  grantid: R21 AG058080
GroupedDBID 0R~
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAMRU
AAXUO
ABMAC
ACGFO
ACGFS
ADBBV
ADEZE
ADVLN
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
O-L
O9-
OK1
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
HZ~
IPNFZ
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c529t-37c72afde95730b28f83450d10c0f34ebdb3ceb2d86e50a5e262b43d59b1d15e3
IEDL.DBID M48
ISSN 2211-1247
IngestDate Tue Sep 30 16:55:14 EDT 2025
Fri Jul 11 09:49:02 EDT 2025
Sun Jul 20 01:30:39 EDT 2025
Tue Jul 01 04:55:32 EDT 2025
Thu Apr 24 22:52:42 EDT 2025
Sat Apr 12 15:21:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c529t-37c72afde95730b28f83450d10c0f34ebdb3ceb2d86e50a5e262b43d59b1d15e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AUTHOR CONTRIBUTIONS
J.-H.T. led most aspects of the experimental study and performed the molecular, cell-based, and biochemical experiments. A.A., Z.T., and N.P. provided technical assistance with immunoblotting and mass spectrometry analysis. X.T. performed molecular cloning and lentiviral production. Y.C. assisted with plasmid preparation, mouse handling, breeding, and colony maintenance. K.L. and F.R. developed and optimized HDAC6 ASOs for use in primary mouse neuron experiments. R.B.M. performed macrophage and microglia isolation and established optimal cell culture conditions. L.E.H. and A.W.P. performed mass spectrometry analyses and analyzed HDAC6 PTM data. J.-H.T. and T.J.C. co-wrote the manuscript. This study was directed and supervised by T.J.C.
ORCID 0000-0002-4099-0278
0000-0002-9036-9121
0000-0002-7487-5315
0000-0001-9007-2566
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2211124721003533
PMID 33910013
PQID 2519805847
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8135111
proquest_miscellaneous_2519805847
pubmed_primary_33910013
crossref_primary_10_1016_j_celrep_2021_109037
crossref_citationtrail_10_1016_j_celrep_2021_109037
elsevier_sciencedirect_doi_10_1016_j_celrep_2021_109037
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-27
PublicationDateYYYYMMDD 2021-04-27
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-27
  day: 27
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Hill, Karikari, Moffat, Richardson, Wall (bib26) 2019; 6
Lee, Koga, Kawaguchi, Tang, Wong, Gao, Pandey, Kaushik, Tresse, Lu (bib39) 2010; 29
Trzeciakiewicz, Ajit, Tseng, Chen, Ajit, Tabassum, Lobrovich, Peterson, Riddick, Itano (bib59) 2020; 11
Fá, Puzzo, Piacentini, Staniszewski, Zhang, Baltrons, Li Puma, Chatterjee, Li, Saeed (bib18) 2016; 6
Haj-Yahya, Gopinath, Rajasekhar, Mirbaha, Diamond, Lashuel (bib25) 2019; 59
Ran, Liu, Feng, Li, Ma, Song, Cao, Zhou, Wu, Yang (bib52) 2020; 53
Chesser, Pritchard, Johnson (bib9) 2013; 4
Goedert, Eisenberg, Crowther (bib24) 2017; 40
Asai, Ikezu, Tsunoda, Medalla, Luebke, Haydar, Wolozin, Butovsky, Kügler, Ikezu (bib2) 2015; 18
Cheng, Yang, Zhou, Maharana, Lu, Peng, Liu, Wan, Marosi, Misiak (bib8) 2016; 23
Wang, Tan, Chen, Han, Tian, Tan, Wu, Cui, Chen, Li (bib66) 2019; 218
Kaufman, Thomas, Del Tredici, Braak, Diamond (bib36) 2017; 5
Mews, Donahue, Drake, Luczak, Abel, Berger (bib40) 2017; 546
Qiang, Sun, Austin, Muralidharan, Jean, Liu, Yu, Baas (bib51) 2018; 28
Ding, Dolan, Johnson (bib16) 2008; 106
Olzscha, Fedorov, Kessler, Knapp, La Thangue (bib47) 2017; 24
Wang, Krüger, Mandelkow, Mandelkow (bib65) 2010; 7
Zhu, Coyne, Sarkar (bib70) 2011; 30
Cohen, Friedmann, Hwang, Marmorstein, Lee (bib12) 2013; 20
Kaufman, Sanders, Thomas, Ruchinskas, Vaquer-Alicea, Sharma, Miller, Diamond (bib35) 2016; 92
Lasagna-Reeves, Castillo-Carranza, Sengupta, Clos, Jackson, Kayed (bib38) 2011; 6
Bartolotti, Bennett, Lazarov (bib3) 2016; 21
Hurtado, Molina-Porcel, Iba, Aboagye, Paul, Trojanowski, Lee (bib29) 2010; 177
Du, Seibenhener, Yan, Jiang, Wooten (bib17) 2015; 10
Povellato, Tuxworth, Hanger, Tear (bib50) 2014; 3
Williams, Zhang, Xiang, Hu, Wu, Zhang, Ryan, Cox, Der, Fang (bib68) 2013; 288
Arakhamia, Lee, Carlomagno, Duong, Kundinger, Wang, Williams, DeTure, Dickson, Cook (bib1) 2020; 180
Brademan, Riley, Kwiecien, Coon (bib5) 2019; 18
Iba, Guo, McBride, Zhang, Trojanowski, Lee (bib30) 2013; 33
Irwin, Cohen, Grossman, Arnold, Xie, Lee, Trojanowski (bib32) 2012; 135
Wesseling, Mair, Kumar, Schlaffner, Tang, Beerepoot, Fatou, Guise, Cheng, Takeda (bib67) 2020; 183
Iba, McBride, Guo, Zhang, Trojanowski, Lee (bib31) 2015; 130
Carlomagno, Chung, Yue, Castanedes-Casey, Madden, Dunmore, Tong, DeTure, Dickson, Petrucelli, Cook (bib6) 2017; 292
Wang, Mandelkow (bib64) 2012; 40
Cho, Johnson (bib10) 2003; 278
Mirbaha, Chen, Morazova, Ruff, Sharma, Liu, Goodarzi, Pappu, Colby, Mirzaei (bib44) 2018; 7
Cohen, Hwang, Restrepo, Yuan, Trojanowski, Lee (bib13) 2015; 6
Funk, Mirbaha, Jiang, Holtzman, Diamond (bib19) 2015; 290
Mirbaha, Holmes, Sanders, Bieschke, Diamond (bib43) 2015; 290
Mo, Zhao, Liu, Hu, Chen, Pham, Wei, Liu, Zhou, Burgess (bib45) 2018; 9
Irwin, Cohen, Grossman, Arnold, McCarty-Wood, Van Deerlin, Lee, Trojanowski (bib33) 2013; 183
DeVos, Miller, Schoch, Holmes, Kebodeaux, Wegener, Chen, Shen, Tran, Nichols (bib15) 2017; 9
Min, Cho, Zhou, Schroeder, Haroutunian, Seeley, Huang, Shen, Masliah, Mukherjee (bib41) 2010; 67
Min, Chen, Tracy, Li, Zhou, Wang, Shirakawa, Minami, Defensor, Mok (bib42) 2015; 21
Sharma, Thomas, Woodard, Kashmer, Diamond (bib54) 2018; 7
Swayze, Siwkowski, Wancewicz, Migawa, Wyrzykiewicz, Hung, Monia, Bennett (bib56) 2007; 35
Wagner, Payne (bib62) 2013; 288
Tai, Chang, Yu, Lopez, Yu, Wang, Guo, Mucke (bib57) 2020; 106
Yan (bib69) 2014; 33
Tseng, Xie, Song, Xie, Allen, Ajit, Hong, Chen, Meeker, Cohen (bib60) 2017; 20
Cook, Carlomagno, Gendron, Dunmore, Scheffel, Stetler, Davis, Dickson, Jarpe, DeTure, Petrucelli (bib14) 2014; 23
Perez, Santa-Maria, Gomez de Barreda, Zhu, Cuadros, Cabrero, Sanchez-Madrid, Dawson, Vitek, Perry (bib49) 2009; 109
Trzeciakiewicz, Tseng, Wander, Madden, Tripathy, Yuan, Cohen (bib71) 2017; 7
Walker, Diamond, Duff, Hyman (bib63) 2013; 70
Cohen, Guo, Hurtado, Kwong, Mills, Trojanowski, Lee (bib11) 2011; 2
Furman, Vaquer-Alicea, White, Cairns, Nelson, Diamond (bib20) 2017; 133
Ittner, Chua, Bertz, Volkerling, van der Hoven, Gladbach, Przybyla, Bi, van Hummel, Stevens (bib34) 2016; 354
Steinhilb, Dias-Santagata, Fulga, Felch, Feany (bib55) 2007; 18
Cheng, Craft, Yu, Ho, Wang, Mohan, Mangnitsky, Ponnusamy, Mucke (bib7) 2014; 9
Roberson, Scearce-Levie, Palop, Yan, Cheng, Wu, Gerstein, Yu, Mucke (bib53) 2007; 316
Godena, Brookes-Hocking, Moller, Shaw, Oswald, Sancho, Miller, Whitworth, De Vos (bib23) 2014; 5
Gao, Hubbert, Lu, Lee, Lee, Yao (bib21) 2007; 27
Narasimhan, Guo, Changolkar, Stieber, McBride, Silva, He, Zhang, Gathagan, Trojanowski, Lee (bib46) 2017; 37
Kaufman, Del Tredici, Thomas, Braak, Diamond (bib37) 2018; 136
Hopp, Lin, Oakley, Roe, DeVos, Hanlon, Hyman (bib27) 2018; 15
Tracy, Sohn, Minami, Wang, Min, Li, Zhou, Le, Lo, Ponnusamy (bib58) 2016; 90
Wagner, Hirschey (bib61) 2014; 54
Hubbert, Guardiola, Shao, Kawaguchi, Ito, Nixon, Yoshida, Wang, Yao (bib28) 2002; 417
Pandey, Nie, Batlevi, McCray, Ritson, Nedelsky, Schwartz, DiProspero, Knight, Schuldiner (bib48) 2007; 447
Benoy, Van Helleputte, Prior, d’Ydewalle, Haeck, Geens, Scheveneels, Schevenels, Cader, Talbot (bib4) 2018; 141
Gibbons, Banks, Kim, Changolkar, Riddle, Leight, Irwin, Trojanowski, Lee (bib22) 2018; 77
Carlomagno (10.1016/j.celrep.2021.109037_bib6) 2017; 292
Funk (10.1016/j.celrep.2021.109037_bib19) 2015; 290
Roberson (10.1016/j.celrep.2021.109037_bib53) 2007; 316
Tai (10.1016/j.celrep.2021.109037_bib57) 2020; 106
Min (10.1016/j.celrep.2021.109037_bib41) 2010; 67
Cohen (10.1016/j.celrep.2021.109037_bib13) 2015; 6
Hubbert (10.1016/j.celrep.2021.109037_bib28) 2002; 417
Lee (10.1016/j.celrep.2021.109037_bib39) 2010; 29
Williams (10.1016/j.celrep.2021.109037_bib68) 2013; 288
Irwin (10.1016/j.celrep.2021.109037_bib32) 2012; 135
Wagner (10.1016/j.celrep.2021.109037_bib61) 2014; 54
Povellato (10.1016/j.celrep.2021.109037_bib50) 2014; 3
Asai (10.1016/j.celrep.2021.109037_bib2) 2015; 18
Fá (10.1016/j.celrep.2021.109037_bib18) 2016; 6
Goedert (10.1016/j.celrep.2021.109037_bib24) 2017; 40
Cook (10.1016/j.celrep.2021.109037_bib14) 2014; 23
Lasagna-Reeves (10.1016/j.celrep.2021.109037_bib38) 2011; 6
Cho (10.1016/j.celrep.2021.109037_bib10) 2003; 278
Perez (10.1016/j.celrep.2021.109037_bib49) 2009; 109
Min (10.1016/j.celrep.2021.109037_bib42) 2015; 21
Bartolotti (10.1016/j.celrep.2021.109037_bib3) 2016; 21
Chesser (10.1016/j.celrep.2021.109037_bib9) 2013; 4
Trzeciakiewicz (10.1016/j.celrep.2021.109037_bib59) 2020; 11
Hill (10.1016/j.celrep.2021.109037_bib26) 2019; 6
Hurtado (10.1016/j.celrep.2021.109037_bib29) 2010; 177
Walker (10.1016/j.celrep.2021.109037_bib63) 2013; 70
Cheng (10.1016/j.celrep.2021.109037_bib7) 2014; 9
Cohen (10.1016/j.celrep.2021.109037_bib12) 2013; 20
Arakhamia (10.1016/j.celrep.2021.109037_bib1) 2020; 180
Tracy (10.1016/j.celrep.2021.109037_bib58) 2016; 90
DeVos (10.1016/j.celrep.2021.109037_bib15) 2017; 9
Hopp (10.1016/j.celrep.2021.109037_bib27) 2018; 15
Kaufman (10.1016/j.celrep.2021.109037_bib35) 2016; 92
Kaufman (10.1016/j.celrep.2021.109037_bib37) 2018; 136
Wang (10.1016/j.celrep.2021.109037_bib64) 2012; 40
Gao (10.1016/j.celrep.2021.109037_bib21) 2007; 27
Steinhilb (10.1016/j.celrep.2021.109037_bib55) 2007; 18
Wang (10.1016/j.celrep.2021.109037_bib66) 2019; 218
Kaufman (10.1016/j.celrep.2021.109037_bib36) 2017; 5
Qiang (10.1016/j.celrep.2021.109037_bib51) 2018; 28
Mirbaha (10.1016/j.celrep.2021.109037_bib43) 2015; 290
Ding (10.1016/j.celrep.2021.109037_bib16) 2008; 106
Godena (10.1016/j.celrep.2021.109037_bib23) 2014; 5
Narasimhan (10.1016/j.celrep.2021.109037_bib46) 2017; 37
Brademan (10.1016/j.celrep.2021.109037_bib5) 2019; 18
Tseng (10.1016/j.celrep.2021.109037_bib60) 2017; 20
Swayze (10.1016/j.celrep.2021.109037_bib56) 2007; 35
Furman (10.1016/j.celrep.2021.109037_bib20) 2017; 133
Trzeciakiewicz (10.1016/j.celrep.2021.109037_bib71) 2017; 7
Mirbaha (10.1016/j.celrep.2021.109037_bib44) 2018; 7
Wagner (10.1016/j.celrep.2021.109037_bib62) 2013; 288
Iba (10.1016/j.celrep.2021.109037_bib31) 2015; 130
Cohen (10.1016/j.celrep.2021.109037_bib11) 2011; 2
Mo (10.1016/j.celrep.2021.109037_bib45) 2018; 9
Pandey (10.1016/j.celrep.2021.109037_bib48) 2007; 447
Haj-Yahya (10.1016/j.celrep.2021.109037_bib25) 2019; 59
Yan (10.1016/j.celrep.2021.109037_bib69) 2014; 33
Mews (10.1016/j.celrep.2021.109037_bib40) 2017; 546
Zhu (10.1016/j.celrep.2021.109037_bib70) 2011; 30
Irwin (10.1016/j.celrep.2021.109037_bib33) 2013; 183
Wesseling (10.1016/j.celrep.2021.109037_bib67) 2020; 183
Sharma (10.1016/j.celrep.2021.109037_bib54) 2018; 7
Olzscha (10.1016/j.celrep.2021.109037_bib47) 2017; 24
Ittner (10.1016/j.celrep.2021.109037_bib34) 2016; 354
Cheng (10.1016/j.celrep.2021.109037_bib8) 2016; 23
Wang (10.1016/j.celrep.2021.109037_bib65) 2010; 7
Du (10.1016/j.celrep.2021.109037_bib17) 2015; 10
Ran (10.1016/j.celrep.2021.109037_bib52) 2020; 53
Gibbons (10.1016/j.celrep.2021.109037_bib22) 2018; 77
Iba (10.1016/j.celrep.2021.109037_bib30) 2013; 33
Benoy (10.1016/j.celrep.2021.109037_bib4) 2018; 141
References_xml – volume: 70
  start-page: 304
  year: 2013
  end-page: 310
  ident: bib63
  article-title: Mechanisms of protein seeding in neurodegenerative diseases
  publication-title: JAMA Neurol.
– volume: 354
  start-page: 904
  year: 2016
  end-page: 908
  ident: bib34
  article-title: Site-specific phosphorylation of tau inhibits amyloid-β toxicity in Alzheimer’s mice
  publication-title: Science
– volume: 40
  start-page: 189
  year: 2017
  end-page: 210
  ident: bib24
  article-title: Propagation of Tau Aggregates and Neurodegeneration
  publication-title: Annu. Rev. Neurosci.
– volume: 7
  start-page: 103
  year: 2010
  end-page: 107
  ident: bib65
  article-title: Generation of tau aggregates and clearance by autophagy in an inducible cell model of tauopathy
  publication-title: Neurodegener. Dis.
– volume: 20
  start-page: 756
  year: 2013
  end-page: 762
  ident: bib12
  article-title: The microtubule-associated tau protein has intrinsic acetyltransferase activity
  publication-title: Nat. Struct. Mol. Biol.
– volume: 417
  start-page: 455
  year: 2002
  end-page: 458
  ident: bib28
  article-title: HDAC6 is a microtubule-associated deacetylase
  publication-title: Nature
– volume: 177
  start-page: 1977
  year: 2010
  end-page: 1988
  ident: bib29
  article-title: Abeta accelerates the spatiotemporal progression of tau pathology and augments tau amyloidosis in an Alzheimer mouse model
  publication-title: Am. J. Pathol.
– volume: 218
  start-page: 267
  year: 2019
  end-page: 284
  ident: bib66
  article-title: ATP13A2 facilitates HDAC6 recruitment to lysosome to promote autophagosome-lysosome fusion
  publication-title: J. Cell Biol.
– volume: 7
  start-page: 44102
  year: 2017
  ident: bib71
  article-title: A Dual Pathogenic Mechanism Links Tau Acetylation to Sporadic Tauopathy
  publication-title: Sci. Rep.
– volume: 292
  start-page: 15277
  year: 2017
  end-page: 15286
  ident: bib6
  article-title: An acetylation-phosphorylation switch that regulates tau aggregation propensity and function
  publication-title: J. Biol. Chem.
– volume: 141
  start-page: 673
  year: 2018
  end-page: 687
  ident: bib4
  article-title: HDAC6 is a therapeutic target in mutant GARS-induced Charcot-Marie-Tooth disease
  publication-title: Brain
– volume: 2
  start-page: 252
  year: 2011
  ident: bib11
  article-title: The acetylation of tau inhibits its function and promotes pathological tau aggregation
  publication-title: Nat. Commun.
– volume: 136
  start-page: 57
  year: 2018
  end-page: 67
  ident: bib37
  article-title: Tau seeding activity begins in the transentorhinal/entorhinal regions and anticipates phospho-tau pathology in Alzheimer’s disease and PART
  publication-title: Acta Neuropathol.
– volume: 447
  start-page: 859
  year: 2007
  end-page: 863
  ident: bib48
  article-title: HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS
  publication-title: Nature
– volume: 6
  year: 2019
  ident: bib26
  article-title: Introduction of tau oligomers into cortical neurons alters action potential dynamics and disrupts synaptic transmission and plasticity
  publication-title: eNeuro
– volume: 6
  start-page: 39
  year: 2011
  ident: bib38
  article-title: Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice
  publication-title: Mol. Neurodegener.
– volume: 18
  start-page: S193
  year: 2019
  end-page: S201
  ident: bib5
  article-title: Interactive Peptide Spectral Annotator: A Versatile Web-based Tool for Proteomic Applications
  publication-title: Mol. Cell. Proteomics
– volume: 546
  start-page: 381
  year: 2017
  end-page: 386
  ident: bib40
  article-title: Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory
  publication-title: Nature
– volume: 92
  start-page: 796
  year: 2016
  end-page: 812
  ident: bib35
  article-title: Tau Prion Strains Dictate Patterns of Cell Pathology, Progression Rate, and Regional Vulnerability In Vivo
  publication-title: Neuron
– volume: 21
  start-page: 1158
  year: 2016
  end-page: 1166
  ident: bib3
  article-title: Reduced pCREB in Alzheimer’s disease prefrontal cortex is reflected in peripheral blood mononuclear cells
  publication-title: Mol. Psychiatry
– volume: 5
  start-page: 5245
  year: 2014
  ident: bib23
  article-title: Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations
  publication-title: Nat. Commun.
– volume: 7
  start-page: e37813
  year: 2018
  ident: bib54
  article-title: Tau monomer encodes strains
  publication-title: eLife
– volume: 28
  start-page: 2181
  year: 2018
  end-page: 2189.e4
  ident: bib51
  article-title: Tau Does Not Stabilize Axonal Microtubules but Rather Enables Them to Have Long Labile Domains
  publication-title: Curr. Biol.
– volume: 7
  start-page: e36584
  year: 2018
  ident: bib44
  article-title: Inert and seed-competent tau monomers suggest structural origins of aggregation
  publication-title: eLife
– volume: 24
  start-page: 9
  year: 2017
  end-page: 23
  ident: bib47
  article-title: CBP/p300 Bromodomains Regulate Amyloid-like Protein Aggregation upon Aberrant Lysine Acetylation
  publication-title: Cell Chem. Biol.
– volume: 109
  start-page: 1756
  year: 2009
  end-page: 1766
  ident: bib49
  article-title: Tau--an inhibitor of deacetylase HDAC6 function
  publication-title: J. Neurochem.
– volume: 278
  start-page: 187
  year: 2003
  end-page: 193
  ident: bib10
  article-title: Glycogen synthase kinase 3beta phosphorylates tau at both primed and unprimed sites. Differential impact on microtubule binding
  publication-title: J. Biol. Chem.
– volume: 11
  start-page: 5522
  year: 2020
  ident: bib59
  article-title: An HDAC6-dependent surveillance mechanism suppresses tau-mediated neurodegeneration and cognitive decline
  publication-title: Nat. Commun.
– volume: 29
  start-page: 969
  year: 2010
  end-page: 980
  ident: bib39
  article-title: HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy
  publication-title: EMBO J.
– volume: 290
  start-page: 21652
  year: 2015
  end-page: 21662
  ident: bib19
  article-title: Distinct Therapeutic Mechanisms of Tau Antibodies: Promoting Microglial Clearance Versus Blocking Neuronal Uptake
  publication-title: J. Biol. Chem.
– volume: 180
  start-page: 633
  year: 2020
  end-page: 644.e12
  ident: bib1
  article-title: Posttranslational Modifications Mediate the Structural Diversity of Tauopathy Strains
  publication-title: Cell
– volume: 90
  start-page: 245
  year: 2016
  end-page: 260
  ident: bib58
  article-title: Acetylated Tau Obstructs KIBRA-Mediated Signaling in Synaptic Plasticity and Promotes Tauopathy-Related Memory Loss
  publication-title: Neuron
– volume: 106
  start-page: 421
  year: 2020
  end-page: 437.e11
  ident: bib57
  article-title: Tau Reduction Prevents Key Features of Autism in Mouse Models
  publication-title: Neuron
– volume: 290
  start-page: 14893
  year: 2015
  end-page: 14903
  ident: bib43
  article-title: Tau Trimers Are the Minimal Propagation Unit Spontaneously Internalized to Seed Intracellular Aggregation
  publication-title: J. Biol. Chem.
– volume: 23
  start-page: 104
  year: 2014
  end-page: 116
  ident: bib14
  article-title: Acetylation of the KXGS motifs in tau is a critical determinant in modulation of tau aggregation and clearance
  publication-title: Hum. Mol. Genet.
– volume: 15
  start-page: 269
  year: 2018
  ident: bib27
  article-title: The role of microglia in processing and spreading of bioactive tau seeds in Alzheimer’s disease
  publication-title: J. Neuroinflammation
– volume: 183
  start-page: 344
  year: 2013
  end-page: 351
  ident: bib33
  article-title: Acetylated tau neuropathology in sporadic and hereditary tauopathies
  publication-title: Am. J. Pathol.
– volume: 54
  start-page: 5
  year: 2014
  end-page: 16
  ident: bib61
  article-title: Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases
  publication-title: Mol. Cell
– volume: 133
  start-page: 91
  year: 2017
  end-page: 100
  ident: bib20
  article-title: Widespread tau seeding activity at early Braak stages
  publication-title: Acta Neuropathol.
– volume: 288
  start-page: 33156
  year: 2013
  end-page: 33170
  ident: bib68
  article-title: Extracellular signal-regulated kinase (ERK) phosphorylates histone deacetylase 6 (HDAC6) at serine 1035 to stimulate cell migration
  publication-title: J. Biol. Chem.
– volume: 6
  start-page: 5845
  year: 2015
  ident: bib13
  article-title: An acetylation switch controls TDP-43 function and aggregation propensity
  publication-title: Nat. Commun.
– volume: 40
  start-page: 644
  year: 2012
  end-page: 652
  ident: bib64
  article-title: Degradation of tau protein by autophagy and proteasomal pathways
  publication-title: Biochem. Soc. Trans.
– volume: 10
  start-page: e0123191
  year: 2015
  ident: bib17
  article-title: aPKC phosphorylation of HDAC6 results in increased deacetylation activity
  publication-title: PLoS One
– volume: 20
  start-page: 2169
  year: 2017
  end-page: 2183
  ident: bib60
  article-title: The Deacetylase HDAC6 Mediates Endogenous Neuritic Tau Pathology
  publication-title: Cell Rep.
– volume: 288
  start-page: 29036
  year: 2013
  end-page: 29045
  ident: bib62
  article-title: Widespread and enzyme-independent Nε-acetylation and Nε-succinylation of proteins in the chemical conditions of the mitochondrial matrix
  publication-title: J. Biol. Chem.
– volume: 106
  start-page: 2119
  year: 2008
  end-page: 2130
  ident: bib16
  article-title: Histone deacetylase 6 interacts with the microtubule-associated protein tau
  publication-title: J. Neurochem.
– volume: 18
  start-page: 1584
  year: 2015
  end-page: 1593
  ident: bib2
  article-title: Depletion of microglia and inhibition of exosome synthesis halt tau propagation
  publication-title: Nat. Neurosci.
– volume: 18
  start-page: 5060
  year: 2007
  end-page: 5068
  ident: bib55
  article-title: Tau phosphorylation sites work in concert to promote neurotoxicity in vivo
  publication-title: Mol. Biol. Cell
– volume: 23
  start-page: 128
  year: 2016
  end-page: 142
  ident: bib8
  article-title: Mitochondrial SIRT3 Mediates Adaptive Responses of Neurons to Exercise and Metabolic and Excitatory Challenges
  publication-title: Cell Metab.
– volume: 9
  start-page: eaag0481
  year: 2017
  ident: bib15
  article-title: Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy
  publication-title: Sci. Transl. Med.
– volume: 37
  start-page: 11406
  year: 2017
  end-page: 11423
  ident: bib46
  article-title: Pathological Tau Strains from Human Brains Recapitulate the Diversity of Tauopathies in Nontransgenic Mouse Brain
  publication-title: J. Neurosci.
– volume: 77
  start-page: 216
  year: 2018
  end-page: 228
  ident: bib22
  article-title: Detection of Alzheimer Disease (AD)-Specific Tau Pathology in AD and NonAD Tauopathies by Immunohistochemistry With Novel Conformation-Selective Tau Antibodies
  publication-title: J. Neuropathol. Exp. Neurol.
– volume: 9
  start-page: e115765
  year: 2014
  ident: bib7
  article-title: Tau reduction diminishes spatial learning and memory deficits after mild repetitive traumatic brain injury in mice
  publication-title: PLoS One
– volume: 30
  start-page: 4838
  year: 2011
  end-page: 4849
  ident: bib70
  article-title: PKC alpha regulates Sendai virus-mediated interferon induction through HDAC6 and β-catenin
  publication-title: EMBO J.
– volume: 3
  start-page: 1
  year: 2014
  end-page: 11
  ident: bib50
  article-title: Modification of the Drosophila model of in vivo Tau toxicity reveals protective phosphorylation by GSK3β
  publication-title: Biol. Open
– volume: 135
  start-page: 807
  year: 2012
  end-page: 818
  ident: bib32
  article-title: Acetylated tau, a novel pathological signature in Alzheimer’s disease and other tauopathies
  publication-title: Brain
– volume: 316
  start-page: 750
  year: 2007
  end-page: 754
  ident: bib53
  article-title: Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model
  publication-title: Science
– volume: 33
  start-page: 567
  year: 2014
  end-page: 580
  ident: bib69
  article-title: Interplay between HDAC6 and its interacting partners: essential roles in the aggresome-autophagy pathway and neurodegenerative diseases
  publication-title: DNA Cell Biol.
– volume: 59
  start-page: 4059
  year: 2019
  end-page: 4067
  ident: bib25
  article-title: Site-specific hyperphosphorylation inhibits, rather than promotes, tau fibrillization, seeding capacity and its microtubule binding
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 21
  start-page: 1154
  year: 2015
  end-page: 1162
  ident: bib42
  article-title: Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits
  publication-title: Nat. Med.
– volume: 183
  start-page: 1699
  year: 2020
  end-page: 1713.e1613
  ident: bib67
  article-title: Tau PTM Profiles Identify Patient Heterogeneity and Stages of Alzheimer’s Disease
  publication-title: Cell
– volume: 130
  start-page: 349
  year: 2015
  end-page: 362
  ident: bib31
  article-title: Tau pathology spread in PS19 tau transgenic mice following locus coeruleus (LC) injections of synthetic tau fibrils is determined by the LC’s afferent and efferent connections
  publication-title: Acta Neuropathol.
– volume: 35
  start-page: 687
  year: 2007
  end-page: 700
  ident: bib56
  article-title: Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals
  publication-title: Nucleic Acids Res.
– volume: 67
  start-page: 953
  year: 2010
  end-page: 966
  ident: bib41
  article-title: Acetylation of tau inhibits its degradation and contributes to tauopathy
  publication-title: Neuron
– volume: 9
  start-page: 1007
  year: 2018
  ident: bib45
  article-title: Aberrant GlyRS-HDAC6 interaction linked to axonal transport deficits in Charcot-Marie-Tooth neuropathy
  publication-title: Nat. Commun.
– volume: 53
  start-page: 287
  year: 2020
  end-page: 299.e5
  ident: bib52
  article-title: ASK1-Mediated Phosphorylation Blocks HDAC6 Ubiquitination and Degradation to Drive the Disassembly of Photoreceptor Connecting Cilia
  publication-title: Dev. Cell
– volume: 33
  start-page: 1024
  year: 2013
  end-page: 1037
  ident: bib30
  article-title: Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer’s-like tauopathy
  publication-title: J. Neurosci.
– volume: 5
  start-page: 41
  year: 2017
  ident: bib36
  article-title: Characterization of tau prion seeding activity and strains from formaldehyde-fixed tissue
  publication-title: Acta Neuropathol. Commun.
– volume: 6
  start-page: 19393
  year: 2016
  ident: bib18
  article-title: Extracellular Tau Oligomers Produce An Immediate Impairment of LTP and Memory
  publication-title: Sci. Rep.
– volume: 27
  start-page: 8637
  year: 2007
  end-page: 8647
  ident: bib21
  article-title: Histone deacetylase 6 regulates growth factor-induced actin remodeling and endocytosis
  publication-title: Mol. Cell. Biol.
– volume: 4
  start-page: 122
  year: 2013
  ident: bib9
  article-title: Tau clearance mechanisms and their possible role in the pathogenesis of Alzheimer disease
  publication-title: Front. Neurol.
– volume: 18
  start-page: 5060
  year: 2007
  ident: 10.1016/j.celrep.2021.109037_bib55
  article-title: Tau phosphorylation sites work in concert to promote neurotoxicity in vivo
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e07-04-0327
– volume: 40
  start-page: 644
  year: 2012
  ident: 10.1016/j.celrep.2021.109037_bib64
  article-title: Degradation of tau protein by autophagy and proteasomal pathways
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST20120071
– volume: 135
  start-page: 807
  year: 2012
  ident: 10.1016/j.celrep.2021.109037_bib32
  article-title: Acetylated tau, a novel pathological signature in Alzheimer’s disease and other tauopathies
  publication-title: Brain
  doi: 10.1093/brain/aws013
– volume: 546
  start-page: 381
  year: 2017
  ident: 10.1016/j.celrep.2021.109037_bib40
  article-title: Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory
  publication-title: Nature
  doi: 10.1038/nature22405
– volume: 7
  start-page: 103
  year: 2010
  ident: 10.1016/j.celrep.2021.109037_bib65
  article-title: Generation of tau aggregates and clearance by autophagy in an inducible cell model of tauopathy
  publication-title: Neurodegener. Dis.
  doi: 10.1159/000285516
– volume: 27
  start-page: 8637
  year: 2007
  ident: 10.1016/j.celrep.2021.109037_bib21
  article-title: Histone deacetylase 6 regulates growth factor-induced actin remodeling and endocytosis
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00393-07
– volume: 106
  start-page: 421
  year: 2020
  ident: 10.1016/j.celrep.2021.109037_bib57
  article-title: Tau Reduction Prevents Key Features of Autism in Mouse Models
  publication-title: Neuron
  doi: 10.1016/j.neuron.2020.01.038
– volume: 288
  start-page: 33156
  year: 2013
  ident: 10.1016/j.celrep.2021.109037_bib68
  article-title: Extracellular signal-regulated kinase (ERK) phosphorylates histone deacetylase 6 (HDAC6) at serine 1035 to stimulate cell migration
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.472506
– volume: 3
  start-page: 1
  year: 2014
  ident: 10.1016/j.celrep.2021.109037_bib50
  article-title: Modification of the Drosophila model of in vivo Tau toxicity reveals protective phosphorylation by GSK3β
  publication-title: Biol. Open
  doi: 10.1242/bio.20136692
– volume: 11
  start-page: 5522
  year: 2020
  ident: 10.1016/j.celrep.2021.109037_bib59
  article-title: An HDAC6-dependent surveillance mechanism suppresses tau-mediated neurodegeneration and cognitive decline
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19317-4
– volume: 278
  start-page: 187
  year: 2003
  ident: 10.1016/j.celrep.2021.109037_bib10
  article-title: Glycogen synthase kinase 3beta phosphorylates tau at both primed and unprimed sites. Differential impact on microtubule binding
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M206236200
– volume: 2
  start-page: 252
  year: 2011
  ident: 10.1016/j.celrep.2021.109037_bib11
  article-title: The acetylation of tau inhibits its function and promotes pathological tau aggregation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1255
– volume: 20
  start-page: 2169
  year: 2017
  ident: 10.1016/j.celrep.2021.109037_bib60
  article-title: The Deacetylase HDAC6 Mediates Endogenous Neuritic Tau Pathology
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.07.082
– volume: 24
  start-page: 9
  year: 2017
  ident: 10.1016/j.celrep.2021.109037_bib47
  article-title: CBP/p300 Bromodomains Regulate Amyloid-like Protein Aggregation upon Aberrant Lysine Acetylation
  publication-title: Cell Chem. Biol.
  doi: 10.1016/j.chembiol.2016.11.009
– volume: 53
  start-page: 287
  year: 2020
  ident: 10.1016/j.celrep.2021.109037_bib52
  article-title: ASK1-Mediated Phosphorylation Blocks HDAC6 Ubiquitination and Degradation to Drive the Disassembly of Photoreceptor Connecting Cilia
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2020.03.010
– volume: 70
  start-page: 304
  year: 2013
  ident: 10.1016/j.celrep.2021.109037_bib63
  article-title: Mechanisms of protein seeding in neurodegenerative diseases
  publication-title: JAMA Neurol.
  doi: 10.1001/jamaneurol.2013.1453
– volume: 77
  start-page: 216
  year: 2018
  ident: 10.1016/j.celrep.2021.109037_bib22
  article-title: Detection of Alzheimer Disease (AD)-Specific Tau Pathology in AD and NonAD Tauopathies by Immunohistochemistry With Novel Conformation-Selective Tau Antibodies
  publication-title: J. Neuropathol. Exp. Neurol.
  doi: 10.1093/jnen/nly010
– volume: 21
  start-page: 1154
  year: 2015
  ident: 10.1016/j.celrep.2021.109037_bib42
  article-title: Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits
  publication-title: Nat. Med.
  doi: 10.1038/nm.3951
– volume: 106
  start-page: 2119
  year: 2008
  ident: 10.1016/j.celrep.2021.109037_bib16
  article-title: Histone deacetylase 6 interacts with the microtubule-associated protein tau
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2008.05564.x
– volume: 6
  year: 2019
  ident: 10.1016/j.celrep.2021.109037_bib26
  article-title: Introduction of tau oligomers into cortical neurons alters action potential dynamics and disrupts synaptic transmission and plasticity
  publication-title: eNeuro
  doi: 10.1523/ENEURO.0166-19.2019
– volume: 183
  start-page: 344
  year: 2013
  ident: 10.1016/j.celrep.2021.109037_bib33
  article-title: Acetylated tau neuropathology in sporadic and hereditary tauopathies
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2013.04.025
– volume: 290
  start-page: 14893
  year: 2015
  ident: 10.1016/j.celrep.2021.109037_bib43
  article-title: Tau Trimers Are the Minimal Propagation Unit Spontaneously Internalized to Seed Intracellular Aggregation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.652693
– volume: 18
  start-page: S193
  year: 2019
  ident: 10.1016/j.celrep.2021.109037_bib5
  article-title: Interactive Peptide Spectral Annotator: A Versatile Web-based Tool for Proteomic Applications
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.TIR118.001209
– volume: 6
  start-page: 39
  year: 2011
  ident: 10.1016/j.celrep.2021.109037_bib38
  article-title: Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice
  publication-title: Mol. Neurodegener.
  doi: 10.1186/1750-1326-6-39
– volume: 7
  start-page: e36584
  year: 2018
  ident: 10.1016/j.celrep.2021.109037_bib44
  article-title: Inert and seed-competent tau monomers suggest structural origins of aggregation
  publication-title: eLife
  doi: 10.7554/eLife.36584
– volume: 288
  start-page: 29036
  year: 2013
  ident: 10.1016/j.celrep.2021.109037_bib62
  article-title: Widespread and enzyme-independent Nε-acetylation and Nε-succinylation of proteins in the chemical conditions of the mitochondrial matrix
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.486753
– volume: 23
  start-page: 104
  year: 2014
  ident: 10.1016/j.celrep.2021.109037_bib14
  article-title: Acetylation of the KXGS motifs in tau is a critical determinant in modulation of tau aggregation and clearance
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddt402
– volume: 28
  start-page: 2181
  year: 2018
  ident: 10.1016/j.celrep.2021.109037_bib51
  article-title: Tau Does Not Stabilize Axonal Microtubules but Rather Enables Them to Have Long Labile Domains
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2018.05.045
– volume: 15
  start-page: 269
  year: 2018
  ident: 10.1016/j.celrep.2021.109037_bib27
  article-title: The role of microglia in processing and spreading of bioactive tau seeds in Alzheimer’s disease
  publication-title: J. Neuroinflammation
  doi: 10.1186/s12974-018-1309-z
– volume: 35
  start-page: 687
  year: 2007
  ident: 10.1016/j.celrep.2021.109037_bib56
  article-title: Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl1071
– volume: 7
  start-page: e37813
  year: 2018
  ident: 10.1016/j.celrep.2021.109037_bib54
  article-title: Tau monomer encodes strains
  publication-title: eLife
  doi: 10.7554/eLife.37813
– volume: 30
  start-page: 4838
  year: 2011
  ident: 10.1016/j.celrep.2021.109037_bib70
  article-title: PKC alpha regulates Sendai virus-mediated interferon induction through HDAC6 and β-catenin
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.351
– volume: 9
  start-page: 1007
  year: 2018
  ident: 10.1016/j.celrep.2021.109037_bib45
  article-title: Aberrant GlyRS-HDAC6 interaction linked to axonal transport deficits in Charcot-Marie-Tooth neuropathy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03461-z
– volume: 180
  start-page: 633
  year: 2020
  ident: 10.1016/j.celrep.2021.109037_bib1
  article-title: Posttranslational Modifications Mediate the Structural Diversity of Tauopathy Strains
  publication-title: Cell
  doi: 10.1016/j.cell.2020.01.027
– volume: 141
  start-page: 673
  year: 2018
  ident: 10.1016/j.celrep.2021.109037_bib4
  article-title: HDAC6 is a therapeutic target in mutant GARS-induced Charcot-Marie-Tooth disease
  publication-title: Brain
  doi: 10.1093/brain/awx375
– volume: 9
  start-page: e115765
  year: 2014
  ident: 10.1016/j.celrep.2021.109037_bib7
  article-title: Tau reduction diminishes spatial learning and memory deficits after mild repetitive traumatic brain injury in mice
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0115765
– volume: 23
  start-page: 128
  year: 2016
  ident: 10.1016/j.celrep.2021.109037_bib8
  article-title: Mitochondrial SIRT3 Mediates Adaptive Responses of Neurons to Exercise and Metabolic and Excitatory Challenges
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.10.013
– volume: 54
  start-page: 5
  year: 2014
  ident: 10.1016/j.celrep.2021.109037_bib61
  article-title: Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.03.027
– volume: 292
  start-page: 15277
  year: 2017
  ident: 10.1016/j.celrep.2021.109037_bib6
  article-title: An acetylation-phosphorylation switch that regulates tau aggregation propensity and function
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M117.794602
– volume: 177
  start-page: 1977
  year: 2010
  ident: 10.1016/j.celrep.2021.109037_bib29
  article-title: Abeta accelerates the spatiotemporal progression of tau pathology and augments tau amyloidosis in an Alzheimer mouse model
  publication-title: Am. J. Pathol.
  doi: 10.2353/ajpath.2010.100346
– volume: 136
  start-page: 57
  year: 2018
  ident: 10.1016/j.celrep.2021.109037_bib37
  article-title: Tau seeding activity begins in the transentorhinal/entorhinal regions and anticipates phospho-tau pathology in Alzheimer’s disease and PART
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-018-1855-6
– volume: 290
  start-page: 21652
  year: 2015
  ident: 10.1016/j.celrep.2021.109037_bib19
  article-title: Distinct Therapeutic Mechanisms of Tau Antibodies: Promoting Microglial Clearance Versus Blocking Neuronal Uptake
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.657924
– volume: 18
  start-page: 1584
  year: 2015
  ident: 10.1016/j.celrep.2021.109037_bib2
  article-title: Depletion of microglia and inhibition of exosome synthesis halt tau propagation
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4132
– volume: 4
  start-page: 122
  year: 2013
  ident: 10.1016/j.celrep.2021.109037_bib9
  article-title: Tau clearance mechanisms and their possible role in the pathogenesis of Alzheimer disease
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2013.00122
– volume: 33
  start-page: 567
  year: 2014
  ident: 10.1016/j.celrep.2021.109037_bib69
  article-title: Interplay between HDAC6 and its interacting partners: essential roles in the aggresome-autophagy pathway and neurodegenerative diseases
  publication-title: DNA Cell Biol.
  doi: 10.1089/dna.2013.2300
– volume: 417
  start-page: 455
  year: 2002
  ident: 10.1016/j.celrep.2021.109037_bib28
  article-title: HDAC6 is a microtubule-associated deacetylase
  publication-title: Nature
  doi: 10.1038/417455a
– volume: 10
  start-page: e0123191
  year: 2015
  ident: 10.1016/j.celrep.2021.109037_bib17
  article-title: aPKC phosphorylation of HDAC6 results in increased deacetylation activity
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0123191
– volume: 20
  start-page: 756
  year: 2013
  ident: 10.1016/j.celrep.2021.109037_bib12
  article-title: The microtubule-associated tau protein has intrinsic acetyltransferase activity
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2555
– volume: 90
  start-page: 245
  year: 2016
  ident: 10.1016/j.celrep.2021.109037_bib58
  article-title: Acetylated Tau Obstructs KIBRA-Mediated Signaling in Synaptic Plasticity and Promotes Tauopathy-Related Memory Loss
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.03.005
– volume: 9
  start-page: eaag0481
  year: 2017
  ident: 10.1016/j.celrep.2021.109037_bib15
  article-title: Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aag0481
– volume: 316
  start-page: 750
  year: 2007
  ident: 10.1016/j.celrep.2021.109037_bib53
  article-title: Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model
  publication-title: Science
  doi: 10.1126/science.1141736
– volume: 6
  start-page: 5845
  year: 2015
  ident: 10.1016/j.celrep.2021.109037_bib13
  article-title: An acetylation switch controls TDP-43 function and aggregation propensity
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6845
– volume: 33
  start-page: 1024
  year: 2013
  ident: 10.1016/j.celrep.2021.109037_bib30
  article-title: Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer’s-like tauopathy
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2642-12.2013
– volume: 218
  start-page: 267
  year: 2019
  ident: 10.1016/j.celrep.2021.109037_bib66
  article-title: ATP13A2 facilitates HDAC6 recruitment to lysosome to promote autophagosome-lysosome fusion
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201804165
– volume: 21
  start-page: 1158
  year: 2016
  ident: 10.1016/j.celrep.2021.109037_bib3
  article-title: Reduced pCREB in Alzheimer’s disease prefrontal cortex is reflected in peripheral blood mononuclear cells
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2016.111
– volume: 92
  start-page: 796
  year: 2016
  ident: 10.1016/j.celrep.2021.109037_bib35
  article-title: Tau Prion Strains Dictate Patterns of Cell Pathology, Progression Rate, and Regional Vulnerability In Vivo
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.09.055
– volume: 6
  start-page: 19393
  year: 2016
  ident: 10.1016/j.celrep.2021.109037_bib18
  article-title: Extracellular Tau Oligomers Produce An Immediate Impairment of LTP and Memory
  publication-title: Sci. Rep.
  doi: 10.1038/srep19393
– volume: 5
  start-page: 5245
  year: 2014
  ident: 10.1016/j.celrep.2021.109037_bib23
  article-title: Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6245
– volume: 40
  start-page: 189
  year: 2017
  ident: 10.1016/j.celrep.2021.109037_bib24
  article-title: Propagation of Tau Aggregates and Neurodegeneration
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-072116-031153
– volume: 37
  start-page: 11406
  year: 2017
  ident: 10.1016/j.celrep.2021.109037_bib46
  article-title: Pathological Tau Strains from Human Brains Recapitulate the Diversity of Tauopathies in Nontransgenic Mouse Brain
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1230-17.2017
– volume: 447
  start-page: 859
  year: 2007
  ident: 10.1016/j.celrep.2021.109037_bib48
  article-title: HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS
  publication-title: Nature
  doi: 10.1038/nature05853
– volume: 183
  start-page: 1699
  year: 2020
  ident: 10.1016/j.celrep.2021.109037_bib67
  article-title: Tau PTM Profiles Identify Patient Heterogeneity and Stages of Alzheimer’s Disease
  publication-title: Cell
  doi: 10.1016/j.cell.2020.10.029
– volume: 109
  start-page: 1756
  year: 2009
  ident: 10.1016/j.celrep.2021.109037_bib49
  article-title: Tau--an inhibitor of deacetylase HDAC6 function
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2009.06102.x
– volume: 133
  start-page: 91
  year: 2017
  ident: 10.1016/j.celrep.2021.109037_bib20
  article-title: Widespread tau seeding activity at early Braak stages
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-016-1644-z
– volume: 130
  start-page: 349
  year: 2015
  ident: 10.1016/j.celrep.2021.109037_bib31
  article-title: Tau pathology spread in PS19 tau transgenic mice following locus coeruleus (LC) injections of synthetic tau fibrils is determined by the LC’s afferent and efferent connections
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-015-1458-4
– volume: 59
  start-page: 4059
  year: 2019
  ident: 10.1016/j.celrep.2021.109037_bib25
  article-title: Site-specific hyperphosphorylation inhibits, rather than promotes, tau fibrillization, seeding capacity and its microtubule binding
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201913001
– volume: 5
  start-page: 41
  year: 2017
  ident: 10.1016/j.celrep.2021.109037_bib36
  article-title: Characterization of tau prion seeding activity and strains from formaldehyde-fixed tissue
  publication-title: Acta Neuropathol. Commun.
  doi: 10.1186/s40478-017-0442-8
– volume: 67
  start-page: 953
  year: 2010
  ident: 10.1016/j.celrep.2021.109037_bib41
  article-title: Acetylation of tau inhibits its degradation and contributes to tauopathy
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.08.044
– volume: 7
  start-page: 44102
  year: 2017
  ident: 10.1016/j.celrep.2021.109037_bib71
  article-title: A Dual Pathogenic Mechanism Links Tau Acetylation to Sporadic Tauopathy
  publication-title: Sci. Rep.
  doi: 10.1038/srep44102
– volume: 29
  start-page: 969
  year: 2010
  ident: 10.1016/j.celrep.2021.109037_bib39
  article-title: HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy
  publication-title: EMBO J.
  doi: 10.1038/emboj.2009.405
– volume: 354
  start-page: 904
  year: 2016
  ident: 10.1016/j.celrep.2021.109037_bib34
  article-title: Site-specific phosphorylation of tau inhibits amyloid-β toxicity in Alzheimer’s mice
  publication-title: Science
  doi: 10.1126/science.aah6205
SSID ssj0000601194
Score 2.4119656
Snippet The prion-like spread of tau pathology could underlie a spectrum of clinical syndromes including Alzheimer’s disease (AD). Although evidence indicates that tau...
The prion-like spread of tau pathology could underlie a spectrum of clinical syndromes including Alzheimer's disease (AD). Although evidence indicates that tau...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 109037
SubjectTerms Alzheimer Disease - pathology
Animals
Humans
Mice
tau Proteins - metabolism
SummonAdditionalLinks – databaseName: ScienceDirect Free and Delayed Access Journal
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEA8iCPdynHofq6dE8LVskzRN-3gnJyIoggr7FpJmcreH15Vt98H_3pl-LLeeINxLoe2Ehpl0JpmP3zB2mpmoow4hycBrvIQicTGLidTBaemNzwO5Bq6u84v77HKmZ1vsbKyFobTKQff3Or3T1sOT6cDN6eN8Pr2VeHZB64RHGAqHKUL8VJnpivhm39d-FsIbEV0_RKJPaMBYQdeleVXwsAQCrpSCoJVSaoj-uoX6dwf6MpHyL8t0_oG9H7aU_Fs_6122BfUe2-mbTD7ts5s7t-INGqmGuyXwZuXJ9cLbBXcelmiqWv5nEShjqHfecTyAU5Zh_ZPPax5IB9RIT4keHQho85Hdn_-4O7tIhj4KSaVl2aIOqYx0MUCp8X_2soiFynQaRFqlUaGQglcVnrBDkYNOnQaZS5-poEsvgtCgPrHtelHDF8ZlHkUEEyuPGxeVR1cY4wsVpCxBQAkTpkbe2WoAGadeFw92zCb7bXuOW-K47Tk-Ycl61GMPsvEGvRnFYjcWi0U78MbIk1GKFv8jCo64GharxlIFb5FS0HjCPvdSXc9FqZKgqhR-d0PeawLC6N58U89_dVjdBXVAFOLgv2d8yN7RHQWwpPnKttvlCo5wH9T6426hPwPA_QhW
  priority: 102
  providerName: Elsevier
Title Tau seeds are subject to aberrant modifications resulting in distinct signatures
URI https://dx.doi.org/10.1016/j.celrep.2021.109037
https://www.ncbi.nlm.nih.gov/pubmed/33910013
https://www.proquest.com/docview/2519805847
https://pubmed.ncbi.nlm.nih.gov/PMC8135111
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2211-1247
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000601194
  issn: 2211-1247
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2211-1247
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000601194
  issn: 2211-1247
  databaseCode: KQ8
  dateStart: 20120126
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2211-1247
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000601194
  issn: 2211-1247
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: ScienceDirect Free and Delayed Access Journal
  customDbUrl:
  eissn: 2211-1247
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000601194
  issn: 2211-1247
  databaseCode: IXB
  dateStart: 20120126
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2211-1247
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000601194
  issn: 2211-1247
  databaseCode: DIK
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2211-1247
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000601194
  issn: 2211-1247
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2211-1247
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000601194
  issn: 2211-1247
  databaseCode: AKRWK
  dateStart: 20120126
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2211-1247
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0000601194
  issn: 2211-1247
  databaseCode: M48
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Nb9QwELVKEagXVL4X2spIXIMSO46TA6pK1aogFXHoSnuz7HgMrZYsJFmJ_ntm1slCoatecomdWDNjz_N4_Iaxt7kOKijvkxycwocvExvykAjlrRJOu8JTaOD8c3E2zT_N1GyLjTVbBwF2t27tqJ7UtJ2_-_Xz-hAn_Ps_uVo1zFsg9kmRET9SKvU9dh99kyA7Px8Af1ybieMsH-_Qbei8wx5KWRE7kdzkrv6Ho_9mVf7lpk532aMBX_KjaBCP2RY0T9iDWHHy-in7cmGXvEOP1XHbAu-WjuIwvF9w66BFv9Xz7wtP6UMxksdxN04ph81XftlwTwtCg-0p62PFCNo9Y9PTk4vjs2QoqpDUSlQ9Lii1FjZ4qBRObifKUMpcpT5L6zRI1Jh3ssbtti8LUKlVIArhculV5TKfKZDP2XazaOAl46IIWQAdaocoRhbBllq7UnohKsigggmTo-xMPTCOU-GLuRlTy65MFL4h4Zso_AlL1r1-RMaNO9rrUS1mQA0RDRi0kTt6vhm1aHBS0UmJbWCx7Axd5y1TOkGesBdRq-uxjJaB_72h73UDIuy--aa5_LYi7i6pHGKWvdr4zddsh8ZHp1VC77Htvl3CPoKe3h2sggX4_Dj7cLCy6d8P1wOJ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9wwDI8Y07S9IPbFDsaWSXutrkmafjwCGjo2QJN2SPcWJY2zHWI9dO097L_H7sdpN5CQ9tKHNlYjO7Ed2_mZsc9JFnTQ3kcJOI0Pn0c2JCGS2lstXeZST6GBi8t0cpV8nenZFjsZ7sJQWWWv-zud3mrr_s245-b4dj4f_5B4dkHrhEcYSocp9YQ9RW8gprqus9nxOtBCgCOibYhIBBFRDFfo2jqvEm6WQMiVUhC2Ukwd0R82Ufdd0H8rKf8yTae7bKf3KflRN-2XbAuqV-xZ12Xyz2v2fWpXvEYrVXO7BF6vHMVeeLPg1sESbVXDfy88lQx10TuOJ3AqM6x-8nnFPSmBCsdTpUeLAlq_YVenX6Ynk6hvpBCVWhYNKpEykzZ4KDRuaCfzkKtEx17EZRwUSsk7VeIR2-cp6NhqkKl0ifK6cMILDeot264WFbxjXKZBBMhC6dBzUWmweZa5XHkpCxBQwIipgXem7FHGqdnFjRnKya5Nx3FDHDcdx0csWlPddigbj4zPBrGYjdVi0BA8QvlpkKLBjUTZEVvBYlUbusKbx5Q1HrG9TqrruShVEFaVwv9uyHs9gEC6N79U818tWHdOLRCF2P_vGX9kzyfTi3Nzfnb57YC9oC-UzZLZe7bdLFdwiE5R4z60i_4ODmQLdw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tau+seeds+are+subject+to+aberrant+modifications+resulting+in+distinct+signatures&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Tseng%2C+Jui-Heng&rft.au=Ajit%2C+Aditi&rft.au=Tabassum%2C+Zarin&rft.au=Patel%2C+Niyati&rft.date=2021-04-27&rft.eissn=2211-1247&rft.volume=35&rft.issue=4&rft.spage=109037&rft_id=info:doi/10.1016%2Fj.celrep.2021.109037&rft_id=info%3Apmid%2F33910013&rft.externalDocID=33910013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon