Tau seeds are subject to aberrant modifications resulting in distinct signatures
The prion-like spread of tau pathology could underlie a spectrum of clinical syndromes including Alzheimer’s disease (AD). Although evidence indicates that tau is transmissible, it is unclear how pathogenic tau seeds are processed in neurons. Here, we analyze fibrillar wild-type and disease-associat...
Saved in:
Published in | Cell reports (Cambridge) Vol. 35; no. 4; p. 109037 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
27.04.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2211-1247 2211-1247 |
DOI | 10.1016/j.celrep.2021.109037 |
Cover
Abstract | The prion-like spread of tau pathology could underlie a spectrum of clinical syndromes including Alzheimer’s disease (AD). Although evidence indicates that tau is transmissible, it is unclear how pathogenic tau seeds are processed in neurons. Here, we analyze fibrillar wild-type and disease-associated P301L tau seeds by using in vitro and neuronal assays. We show that P301L seeds are uniquely modified by post-translational modifications (PTMs) within the microtubule-binding region (MTBR). Although these modifications do not alter tau seed trafficking or localization, acetylated tau variants show accelerated tau aggregation, enhanced tau PTM priming, and prion-like templating. To explain the enhanced tau seed acetylation, we demonstrate that P301L seeds undergo auto-acetylation. Moreover, tau acts generally to inhibit HDAC6 deacetylase activity by preventing HDAC6 phosphorylation, leading to increased substrate acetylation. Our study highlights complex post-translational regulation of transmissible tau seeds and provides insight into the biological properties of tau strains in AD and other tauopathies.
[Display omitted]
•Tau seeds are internalized and aberrantly modified in neurons•Acetylated tau seeds display pathological properties•HDAC6 is associated with and inhibited by tau seeds•Tau prevents HDAC6 phosphorylation on Ser-22
Tseng et al. show tau seeds are abnormally processed when internalized into neurons. Tau seeds undergo a series of modifications that result as a consequence of auto-acetylation events as well as inhibition of the deacetylase HDAC6. Tau acts as an HDAC6 inhibitor by preventing HDAC6 phosphorylation at Ser-22. |
---|---|
AbstractList | The prion-like spread of tau pathology could underlie a spectrum of clinical syndromes including Alzheimer’s disease (AD). Although evidence indicates that tau is transmissible, it is unclear how pathogenic tau seeds are processed in neurons. Here, we analyze fibrillar wild-type and disease-associated P301L tau seeds by using in vitro and neuronal assays. We show that P301L seeds are uniquely modified by post-translational modifications (PTMs) within the microtubule-binding region (MTBR). Although these modifications do not alter tau seed trafficking or localization, acetylated tau variants show accelerated tau aggregation, enhanced tau PTM priming, and prion-like templating. To explain the enhanced tau seed acetylation, we demonstrate that P301L seeds undergo auto-acetylation. Moreover, tau acts generally to inhibit HDAC6 deacetylase activity by preventing HDAC6 phosphorylation, leading to increased substrate acetylation. Our study highlights complex post-translational regulation of transmissible tau seeds and provides insight into the biological properties of tau strains in AD and other tauopathies.
[Display omitted]
•Tau seeds are internalized and aberrantly modified in neurons•Acetylated tau seeds display pathological properties•HDAC6 is associated with and inhibited by tau seeds•Tau prevents HDAC6 phosphorylation on Ser-22
Tseng et al. show tau seeds are abnormally processed when internalized into neurons. Tau seeds undergo a series of modifications that result as a consequence of auto-acetylation events as well as inhibition of the deacetylase HDAC6. Tau acts as an HDAC6 inhibitor by preventing HDAC6 phosphorylation at Ser-22. The prion-like spread of tau pathology could underlie a spectrum of clinical syndromes including Alzheimer's disease (AD). Although evidence indicates that tau is transmissible, it is unclear how pathogenic tau seeds are processed in neurons. Here, we analyze fibrillar wild-type and disease-associated P301L tau seeds by using in vitro and neuronal assays. We show that P301L seeds are uniquely modified by post-translational modifications (PTMs) within the microtubule-binding region (MTBR). Although these modifications do not alter tau seed trafficking or localization, acetylated tau variants show accelerated tau aggregation, enhanced tau PTM priming, and prion-like templating. To explain the enhanced tau seed acetylation, we demonstrate that P301L seeds undergo auto-acetylation. Moreover, tau acts generally to inhibit HDAC6 deacetylase activity by preventing HDAC6 phosphorylation, leading to increased substrate acetylation. Our study highlights complex post-translational regulation of transmissible tau seeds and provides insight into the biological properties of tau strains in AD and other tauopathies. The prion-like spread of tau pathology could underlie a spectrum of clinical syndromes including Alzheimer’s disease (AD). Although evidence indicates that tau is transmissible, it is unclear how pathogenic tau seeds are processed in neurons. Here, we analyze fibrillar wild-type and disease-associated P301L tau seeds by using in vitro and neuronal assays. We show that P301L seeds are uniquely modified by post-translational modifications (PTMs) within the microtubule-binding region (MTBR). Although these modifications do not alter tau seed trafficking or localization, acetylated tau variants show accelerated tau aggregation, enhanced tau PTM priming, and prion-like templating. To explain the enhanced tau seed acetylation, we demonstrate that P301L seeds undergo auto-acetylation. Moreover, tau acts generally to inhibit HDAC6 deacetylase activity by preventing HDAC6 phosphorylation, leading to increased substrate acetylation. Our study highlights complex post-translational regulation of transmissible tau seeds and provides insight into the biological properties of tau strains in AD and other tauopathies. Tseng et al. show tau seeds are abnormally processed when internalized into neurons. Tau seeds undergo a series of modifications that result as a consequence of auto-acetylation events as well as inhibition of the deacetylase HDAC6. Tau acts as an HDAC6 inhibitor by preventing HDAC6 phosphorylation at Ser-22. The prion-like spread of tau pathology could underlie a spectrum of clinical syndromes including Alzheimer's disease (AD). Although evidence indicates that tau is transmissible, it is unclear how pathogenic tau seeds are processed in neurons. Here, we analyze fibrillar wild-type and disease-associated P301L tau seeds by using in vitro and neuronal assays. We show that P301L seeds are uniquely modified by post-translational modifications (PTMs) within the microtubule-binding region (MTBR). Although these modifications do not alter tau seed trafficking or localization, acetylated tau variants show accelerated tau aggregation, enhanced tau PTM priming, and prion-like templating. To explain the enhanced tau seed acetylation, we demonstrate that P301L seeds undergo auto-acetylation. Moreover, tau acts generally to inhibit HDAC6 deacetylase activity by preventing HDAC6 phosphorylation, leading to increased substrate acetylation. Our study highlights complex post-translational regulation of transmissible tau seeds and provides insight into the biological properties of tau strains in AD and other tauopathies.The prion-like spread of tau pathology could underlie a spectrum of clinical syndromes including Alzheimer's disease (AD). Although evidence indicates that tau is transmissible, it is unclear how pathogenic tau seeds are processed in neurons. Here, we analyze fibrillar wild-type and disease-associated P301L tau seeds by using in vitro and neuronal assays. We show that P301L seeds are uniquely modified by post-translational modifications (PTMs) within the microtubule-binding region (MTBR). Although these modifications do not alter tau seed trafficking or localization, acetylated tau variants show accelerated tau aggregation, enhanced tau PTM priming, and prion-like templating. To explain the enhanced tau seed acetylation, we demonstrate that P301L seeds undergo auto-acetylation. Moreover, tau acts generally to inhibit HDAC6 deacetylase activity by preventing HDAC6 phosphorylation, leading to increased substrate acetylation. Our study highlights complex post-translational regulation of transmissible tau seeds and provides insight into the biological properties of tau strains in AD and other tauopathies. |
ArticleNumber | 109037 |
Author | Chen, Youjun Patel, Niyati Meeker, Rick B. Ajit, Aditi Rigo, Frank Tabassum, Zarin Tseng, Jui-Heng Tian, Xu Prevatte, Alex W. Ling, Karen Herring, Laura E. Cohen, Todd J. |
AuthorAffiliation | 5 Lead contact 4 Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA 2 UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA 3 Ionis Pharmaceuticals, Carlsbad, CA 92008, USA 1 Department of Neurology and the UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA |
AuthorAffiliation_xml | – name: 1 Department of Neurology and the UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA – name: 3 Ionis Pharmaceuticals, Carlsbad, CA 92008, USA – name: 2 UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA – name: 5 Lead contact – name: 4 Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA |
Author_xml | – sequence: 1 givenname: Jui-Heng orcidid: 0000-0002-9036-9121 surname: Tseng fullname: Tseng, Jui-Heng organization: Department of Neurology and the UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA – sequence: 2 givenname: Aditi surname: Ajit fullname: Ajit, Aditi organization: Department of Neurology and the UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA – sequence: 3 givenname: Zarin orcidid: 0000-0001-9007-2566 surname: Tabassum fullname: Tabassum, Zarin organization: Department of Neurology and the UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA – sequence: 4 givenname: Niyati surname: Patel fullname: Patel, Niyati organization: Department of Neurology and the UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA – sequence: 5 givenname: Xu surname: Tian fullname: Tian, Xu organization: Department of Neurology and the UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA – sequence: 6 givenname: Youjun surname: Chen fullname: Chen, Youjun organization: Department of Neurology and the UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA – sequence: 7 givenname: Alex W. surname: Prevatte fullname: Prevatte, Alex W. organization: UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA – sequence: 8 givenname: Karen surname: Ling fullname: Ling, Karen organization: Ionis Pharmaceuticals, Carlsbad, CA 92008, USA – sequence: 9 givenname: Frank surname: Rigo fullname: Rigo, Frank organization: Ionis Pharmaceuticals, Carlsbad, CA 92008, USA – sequence: 10 givenname: Rick B. orcidid: 0000-0002-7487-5315 surname: Meeker fullname: Meeker, Rick B. organization: Department of Neurology and the UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA – sequence: 11 givenname: Laura E. surname: Herring fullname: Herring, Laura E. organization: UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA – sequence: 12 givenname: Todd J. orcidid: 0000-0002-4099-0278 surname: Cohen fullname: Cohen, Todd J. email: toddcohen@neurology.unc.edu organization: Department of Neurology and the UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33910013$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUctOHDEQtCKi8Ah_ECEfuezGbY93ZnKIhBCQSEjhAGfLj56NV7P2YnuQ-HtMdoOAQ9KXbrmrqq2qQ7IXYkBCvgCbA4PF19Xc4phwM-eMQ33qmWg_kAPOAWbAm3bv1bxPjnNesVoLBtA3n8i-ED0wBuKA3NzqiWZEl6lOSPNkVmgLLZFqgynpUOg6Oj94q4uPIdOEeRqLD0vqA3U-17His18GXaa6_Ew-DnrMeLzrR-Tu8uL2_Mfs-tfVz_Oz65mVvC8z0dqW68FhL1vBDO-GTjSSOWCWDaJB44ywaLjrFiiZlsgX3DTCyd6AA4niiHzf6m4ms0ZnMZSkR7VJfq3To4raq7eb4H-rZXxQHQgJAFXgdCeQ4v2Euai1z9XVUQeMU1ZcQt8x2TVthZ68vvVy5K-NFdBsATbFnBMOLxBg6jkwtVLbwNRzYGobWKV9e0ezvvzxuf7Yj_8j7wzA6vKDx6Sy9RgsOp9qhMpF_2-BJx_FtMg |
CitedBy_id | crossref_primary_10_1186_s13578_023_01133_0 crossref_primary_10_1093_brain_awad272 crossref_primary_10_1007_s12031_022_02002_0 crossref_primary_10_1002_wsbm_1591 crossref_primary_10_1186_s40035_024_00429_6 crossref_primary_10_3390_ijms252212311 crossref_primary_10_1371_journal_pone_0284062 crossref_primary_10_1172_JCI156537 crossref_primary_10_1080_15548627_2024_2431472 crossref_primary_10_1002_cm_21811 crossref_primary_10_1038_s41598_024_65104_2 crossref_primary_10_3390_ijms241915023 crossref_primary_10_1016_j_neuint_2022_105308 crossref_primary_10_1016_j_arr_2024_102486 crossref_primary_10_3390_ijms23020718 crossref_primary_10_1186_s40035_024_00432_x crossref_primary_10_1016_j_coph_2021_07_011 crossref_primary_10_1042_BST20230596 crossref_primary_10_3390_cells11192997 |
Cites_doi | 10.1091/mbc.e07-04-0327 10.1042/BST20120071 10.1093/brain/aws013 10.1038/nature22405 10.1159/000285516 10.1128/MCB.00393-07 10.1016/j.neuron.2020.01.038 10.1074/jbc.M113.472506 10.1242/bio.20136692 10.1038/s41467-020-19317-4 10.1074/jbc.M206236200 10.1038/ncomms1255 10.1016/j.celrep.2017.07.082 10.1016/j.chembiol.2016.11.009 10.1016/j.devcel.2020.03.010 10.1001/jamaneurol.2013.1453 10.1093/jnen/nly010 10.1038/nm.3951 10.1111/j.1471-4159.2008.05564.x 10.1523/ENEURO.0166-19.2019 10.1016/j.ajpath.2013.04.025 10.1074/jbc.M115.652693 10.1074/mcp.TIR118.001209 10.1186/1750-1326-6-39 10.7554/eLife.36584 10.1074/jbc.M113.486753 10.1093/hmg/ddt402 10.1016/j.cub.2018.05.045 10.1186/s12974-018-1309-z 10.1093/nar/gkl1071 10.7554/eLife.37813 10.1038/emboj.2011.351 10.1038/s41467-018-03461-z 10.1016/j.cell.2020.01.027 10.1093/brain/awx375 10.1371/journal.pone.0115765 10.1016/j.cmet.2015.10.013 10.1016/j.molcel.2014.03.027 10.1074/jbc.M117.794602 10.2353/ajpath.2010.100346 10.1007/s00401-018-1855-6 10.1074/jbc.M115.657924 10.1038/nn.4132 10.3389/fneur.2013.00122 10.1089/dna.2013.2300 10.1038/417455a 10.1371/journal.pone.0123191 10.1038/nsmb.2555 10.1016/j.neuron.2016.03.005 10.1126/scitranslmed.aag0481 10.1126/science.1141736 10.1038/ncomms6845 10.1523/JNEUROSCI.2642-12.2013 10.1083/jcb.201804165 10.1038/mp.2016.111 10.1016/j.neuron.2016.09.055 10.1038/srep19393 10.1038/ncomms6245 10.1146/annurev-neuro-072116-031153 10.1523/JNEUROSCI.1230-17.2017 10.1038/nature05853 10.1016/j.cell.2020.10.029 10.1111/j.1471-4159.2009.06102.x 10.1007/s00401-016-1644-z 10.1007/s00401-015-1458-4 10.1002/anie.201913001 10.1186/s40478-017-0442-8 10.1016/j.neuron.2010.08.044 10.1038/srep44102 10.1038/emboj.2009.405 10.1126/science.aah6205 |
ContentType | Journal Article |
Copyright | 2021 The Author(s) Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 The Author(s) – notice: Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.celrep.2021.109037 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 109037 |
ExternalDocumentID | PMC8135111 33910013 10_1016_j_celrep_2021_109037 S2211124721003533 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: P30 CA016086 – fundername: NINDS NIH HHS grantid: R01 NS108808 – fundername: NIA NIH HHS grantid: R01 AG061188 – fundername: NIA NIH HHS grantid: R21 AG058080 |
GroupedDBID | 0R~ 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAMRU AAXUO ABMAC ACGFO ACGFS ADBBV ADEZE ADVLN AENEX AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 O-L O9- OK1 ROL SSZ AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION HZ~ IPNFZ RIG CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c529t-37c72afde95730b28f83450d10c0f34ebdb3ceb2d86e50a5e262b43d59b1d15e3 |
IEDL.DBID | M48 |
ISSN | 2211-1247 |
IngestDate | Tue Sep 30 16:55:14 EDT 2025 Fri Jul 11 09:49:02 EDT 2025 Sun Jul 20 01:30:39 EDT 2025 Tue Jul 01 04:55:32 EDT 2025 Thu Apr 24 22:52:42 EDT 2025 Sat Apr 12 15:21:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c529t-37c72afde95730b28f83450d10c0f34ebdb3ceb2d86e50a5e262b43d59b1d15e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AUTHOR CONTRIBUTIONS J.-H.T. led most aspects of the experimental study and performed the molecular, cell-based, and biochemical experiments. A.A., Z.T., and N.P. provided technical assistance with immunoblotting and mass spectrometry analysis. X.T. performed molecular cloning and lentiviral production. Y.C. assisted with plasmid preparation, mouse handling, breeding, and colony maintenance. K.L. and F.R. developed and optimized HDAC6 ASOs for use in primary mouse neuron experiments. R.B.M. performed macrophage and microglia isolation and established optimal cell culture conditions. L.E.H. and A.W.P. performed mass spectrometry analyses and analyzed HDAC6 PTM data. J.-H.T. and T.J.C. co-wrote the manuscript. This study was directed and supervised by T.J.C. |
ORCID | 0000-0002-4099-0278 0000-0002-9036-9121 0000-0002-7487-5315 0000-0001-9007-2566 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211124721003533 |
PMID | 33910013 |
PQID | 2519805847 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8135111 proquest_miscellaneous_2519805847 pubmed_primary_33910013 crossref_primary_10_1016_j_celrep_2021_109037 crossref_citationtrail_10_1016_j_celrep_2021_109037 elsevier_sciencedirect_doi_10_1016_j_celrep_2021_109037 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-27 |
PublicationDateYYYYMMDD | 2021-04-27 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Hill, Karikari, Moffat, Richardson, Wall (bib26) 2019; 6 Lee, Koga, Kawaguchi, Tang, Wong, Gao, Pandey, Kaushik, Tresse, Lu (bib39) 2010; 29 Trzeciakiewicz, Ajit, Tseng, Chen, Ajit, Tabassum, Lobrovich, Peterson, Riddick, Itano (bib59) 2020; 11 Fá, Puzzo, Piacentini, Staniszewski, Zhang, Baltrons, Li Puma, Chatterjee, Li, Saeed (bib18) 2016; 6 Haj-Yahya, Gopinath, Rajasekhar, Mirbaha, Diamond, Lashuel (bib25) 2019; 59 Ran, Liu, Feng, Li, Ma, Song, Cao, Zhou, Wu, Yang (bib52) 2020; 53 Chesser, Pritchard, Johnson (bib9) 2013; 4 Goedert, Eisenberg, Crowther (bib24) 2017; 40 Asai, Ikezu, Tsunoda, Medalla, Luebke, Haydar, Wolozin, Butovsky, Kügler, Ikezu (bib2) 2015; 18 Cheng, Yang, Zhou, Maharana, Lu, Peng, Liu, Wan, Marosi, Misiak (bib8) 2016; 23 Wang, Tan, Chen, Han, Tian, Tan, Wu, Cui, Chen, Li (bib66) 2019; 218 Kaufman, Thomas, Del Tredici, Braak, Diamond (bib36) 2017; 5 Mews, Donahue, Drake, Luczak, Abel, Berger (bib40) 2017; 546 Qiang, Sun, Austin, Muralidharan, Jean, Liu, Yu, Baas (bib51) 2018; 28 Ding, Dolan, Johnson (bib16) 2008; 106 Olzscha, Fedorov, Kessler, Knapp, La Thangue (bib47) 2017; 24 Wang, Krüger, Mandelkow, Mandelkow (bib65) 2010; 7 Zhu, Coyne, Sarkar (bib70) 2011; 30 Cohen, Friedmann, Hwang, Marmorstein, Lee (bib12) 2013; 20 Kaufman, Sanders, Thomas, Ruchinskas, Vaquer-Alicea, Sharma, Miller, Diamond (bib35) 2016; 92 Lasagna-Reeves, Castillo-Carranza, Sengupta, Clos, Jackson, Kayed (bib38) 2011; 6 Bartolotti, Bennett, Lazarov (bib3) 2016; 21 Hurtado, Molina-Porcel, Iba, Aboagye, Paul, Trojanowski, Lee (bib29) 2010; 177 Du, Seibenhener, Yan, Jiang, Wooten (bib17) 2015; 10 Povellato, Tuxworth, Hanger, Tear (bib50) 2014; 3 Williams, Zhang, Xiang, Hu, Wu, Zhang, Ryan, Cox, Der, Fang (bib68) 2013; 288 Arakhamia, Lee, Carlomagno, Duong, Kundinger, Wang, Williams, DeTure, Dickson, Cook (bib1) 2020; 180 Brademan, Riley, Kwiecien, Coon (bib5) 2019; 18 Iba, Guo, McBride, Zhang, Trojanowski, Lee (bib30) 2013; 33 Irwin, Cohen, Grossman, Arnold, Xie, Lee, Trojanowski (bib32) 2012; 135 Wesseling, Mair, Kumar, Schlaffner, Tang, Beerepoot, Fatou, Guise, Cheng, Takeda (bib67) 2020; 183 Iba, McBride, Guo, Zhang, Trojanowski, Lee (bib31) 2015; 130 Carlomagno, Chung, Yue, Castanedes-Casey, Madden, Dunmore, Tong, DeTure, Dickson, Petrucelli, Cook (bib6) 2017; 292 Wang, Mandelkow (bib64) 2012; 40 Cho, Johnson (bib10) 2003; 278 Mirbaha, Chen, Morazova, Ruff, Sharma, Liu, Goodarzi, Pappu, Colby, Mirzaei (bib44) 2018; 7 Cohen, Hwang, Restrepo, Yuan, Trojanowski, Lee (bib13) 2015; 6 Funk, Mirbaha, Jiang, Holtzman, Diamond (bib19) 2015; 290 Mirbaha, Holmes, Sanders, Bieschke, Diamond (bib43) 2015; 290 Mo, Zhao, Liu, Hu, Chen, Pham, Wei, Liu, Zhou, Burgess (bib45) 2018; 9 Irwin, Cohen, Grossman, Arnold, McCarty-Wood, Van Deerlin, Lee, Trojanowski (bib33) 2013; 183 DeVos, Miller, Schoch, Holmes, Kebodeaux, Wegener, Chen, Shen, Tran, Nichols (bib15) 2017; 9 Min, Cho, Zhou, Schroeder, Haroutunian, Seeley, Huang, Shen, Masliah, Mukherjee (bib41) 2010; 67 Min, Chen, Tracy, Li, Zhou, Wang, Shirakawa, Minami, Defensor, Mok (bib42) 2015; 21 Sharma, Thomas, Woodard, Kashmer, Diamond (bib54) 2018; 7 Swayze, Siwkowski, Wancewicz, Migawa, Wyrzykiewicz, Hung, Monia, Bennett (bib56) 2007; 35 Wagner, Payne (bib62) 2013; 288 Tai, Chang, Yu, Lopez, Yu, Wang, Guo, Mucke (bib57) 2020; 106 Yan (bib69) 2014; 33 Tseng, Xie, Song, Xie, Allen, Ajit, Hong, Chen, Meeker, Cohen (bib60) 2017; 20 Cook, Carlomagno, Gendron, Dunmore, Scheffel, Stetler, Davis, Dickson, Jarpe, DeTure, Petrucelli (bib14) 2014; 23 Perez, Santa-Maria, Gomez de Barreda, Zhu, Cuadros, Cabrero, Sanchez-Madrid, Dawson, Vitek, Perry (bib49) 2009; 109 Trzeciakiewicz, Tseng, Wander, Madden, Tripathy, Yuan, Cohen (bib71) 2017; 7 Walker, Diamond, Duff, Hyman (bib63) 2013; 70 Cohen, Guo, Hurtado, Kwong, Mills, Trojanowski, Lee (bib11) 2011; 2 Furman, Vaquer-Alicea, White, Cairns, Nelson, Diamond (bib20) 2017; 133 Ittner, Chua, Bertz, Volkerling, van der Hoven, Gladbach, Przybyla, Bi, van Hummel, Stevens (bib34) 2016; 354 Steinhilb, Dias-Santagata, Fulga, Felch, Feany (bib55) 2007; 18 Cheng, Craft, Yu, Ho, Wang, Mohan, Mangnitsky, Ponnusamy, Mucke (bib7) 2014; 9 Roberson, Scearce-Levie, Palop, Yan, Cheng, Wu, Gerstein, Yu, Mucke (bib53) 2007; 316 Godena, Brookes-Hocking, Moller, Shaw, Oswald, Sancho, Miller, Whitworth, De Vos (bib23) 2014; 5 Gao, Hubbert, Lu, Lee, Lee, Yao (bib21) 2007; 27 Narasimhan, Guo, Changolkar, Stieber, McBride, Silva, He, Zhang, Gathagan, Trojanowski, Lee (bib46) 2017; 37 Kaufman, Del Tredici, Thomas, Braak, Diamond (bib37) 2018; 136 Hopp, Lin, Oakley, Roe, DeVos, Hanlon, Hyman (bib27) 2018; 15 Tracy, Sohn, Minami, Wang, Min, Li, Zhou, Le, Lo, Ponnusamy (bib58) 2016; 90 Wagner, Hirschey (bib61) 2014; 54 Hubbert, Guardiola, Shao, Kawaguchi, Ito, Nixon, Yoshida, Wang, Yao (bib28) 2002; 417 Pandey, Nie, Batlevi, McCray, Ritson, Nedelsky, Schwartz, DiProspero, Knight, Schuldiner (bib48) 2007; 447 Benoy, Van Helleputte, Prior, d’Ydewalle, Haeck, Geens, Scheveneels, Schevenels, Cader, Talbot (bib4) 2018; 141 Gibbons, Banks, Kim, Changolkar, Riddle, Leight, Irwin, Trojanowski, Lee (bib22) 2018; 77 Carlomagno (10.1016/j.celrep.2021.109037_bib6) 2017; 292 Funk (10.1016/j.celrep.2021.109037_bib19) 2015; 290 Roberson (10.1016/j.celrep.2021.109037_bib53) 2007; 316 Tai (10.1016/j.celrep.2021.109037_bib57) 2020; 106 Min (10.1016/j.celrep.2021.109037_bib41) 2010; 67 Cohen (10.1016/j.celrep.2021.109037_bib13) 2015; 6 Hubbert (10.1016/j.celrep.2021.109037_bib28) 2002; 417 Lee (10.1016/j.celrep.2021.109037_bib39) 2010; 29 Williams (10.1016/j.celrep.2021.109037_bib68) 2013; 288 Irwin (10.1016/j.celrep.2021.109037_bib32) 2012; 135 Wagner (10.1016/j.celrep.2021.109037_bib61) 2014; 54 Povellato (10.1016/j.celrep.2021.109037_bib50) 2014; 3 Asai (10.1016/j.celrep.2021.109037_bib2) 2015; 18 Fá (10.1016/j.celrep.2021.109037_bib18) 2016; 6 Goedert (10.1016/j.celrep.2021.109037_bib24) 2017; 40 Cook (10.1016/j.celrep.2021.109037_bib14) 2014; 23 Lasagna-Reeves (10.1016/j.celrep.2021.109037_bib38) 2011; 6 Cho (10.1016/j.celrep.2021.109037_bib10) 2003; 278 Perez (10.1016/j.celrep.2021.109037_bib49) 2009; 109 Min (10.1016/j.celrep.2021.109037_bib42) 2015; 21 Bartolotti (10.1016/j.celrep.2021.109037_bib3) 2016; 21 Chesser (10.1016/j.celrep.2021.109037_bib9) 2013; 4 Trzeciakiewicz (10.1016/j.celrep.2021.109037_bib59) 2020; 11 Hill (10.1016/j.celrep.2021.109037_bib26) 2019; 6 Hurtado (10.1016/j.celrep.2021.109037_bib29) 2010; 177 Walker (10.1016/j.celrep.2021.109037_bib63) 2013; 70 Cheng (10.1016/j.celrep.2021.109037_bib7) 2014; 9 Cohen (10.1016/j.celrep.2021.109037_bib12) 2013; 20 Arakhamia (10.1016/j.celrep.2021.109037_bib1) 2020; 180 Tracy (10.1016/j.celrep.2021.109037_bib58) 2016; 90 DeVos (10.1016/j.celrep.2021.109037_bib15) 2017; 9 Hopp (10.1016/j.celrep.2021.109037_bib27) 2018; 15 Kaufman (10.1016/j.celrep.2021.109037_bib35) 2016; 92 Kaufman (10.1016/j.celrep.2021.109037_bib37) 2018; 136 Wang (10.1016/j.celrep.2021.109037_bib64) 2012; 40 Gao (10.1016/j.celrep.2021.109037_bib21) 2007; 27 Steinhilb (10.1016/j.celrep.2021.109037_bib55) 2007; 18 Wang (10.1016/j.celrep.2021.109037_bib66) 2019; 218 Kaufman (10.1016/j.celrep.2021.109037_bib36) 2017; 5 Qiang (10.1016/j.celrep.2021.109037_bib51) 2018; 28 Mirbaha (10.1016/j.celrep.2021.109037_bib43) 2015; 290 Ding (10.1016/j.celrep.2021.109037_bib16) 2008; 106 Godena (10.1016/j.celrep.2021.109037_bib23) 2014; 5 Narasimhan (10.1016/j.celrep.2021.109037_bib46) 2017; 37 Brademan (10.1016/j.celrep.2021.109037_bib5) 2019; 18 Tseng (10.1016/j.celrep.2021.109037_bib60) 2017; 20 Swayze (10.1016/j.celrep.2021.109037_bib56) 2007; 35 Furman (10.1016/j.celrep.2021.109037_bib20) 2017; 133 Trzeciakiewicz (10.1016/j.celrep.2021.109037_bib71) 2017; 7 Mirbaha (10.1016/j.celrep.2021.109037_bib44) 2018; 7 Wagner (10.1016/j.celrep.2021.109037_bib62) 2013; 288 Iba (10.1016/j.celrep.2021.109037_bib31) 2015; 130 Cohen (10.1016/j.celrep.2021.109037_bib11) 2011; 2 Mo (10.1016/j.celrep.2021.109037_bib45) 2018; 9 Pandey (10.1016/j.celrep.2021.109037_bib48) 2007; 447 Haj-Yahya (10.1016/j.celrep.2021.109037_bib25) 2019; 59 Yan (10.1016/j.celrep.2021.109037_bib69) 2014; 33 Mews (10.1016/j.celrep.2021.109037_bib40) 2017; 546 Zhu (10.1016/j.celrep.2021.109037_bib70) 2011; 30 Irwin (10.1016/j.celrep.2021.109037_bib33) 2013; 183 Wesseling (10.1016/j.celrep.2021.109037_bib67) 2020; 183 Sharma (10.1016/j.celrep.2021.109037_bib54) 2018; 7 Olzscha (10.1016/j.celrep.2021.109037_bib47) 2017; 24 Ittner (10.1016/j.celrep.2021.109037_bib34) 2016; 354 Cheng (10.1016/j.celrep.2021.109037_bib8) 2016; 23 Wang (10.1016/j.celrep.2021.109037_bib65) 2010; 7 Du (10.1016/j.celrep.2021.109037_bib17) 2015; 10 Ran (10.1016/j.celrep.2021.109037_bib52) 2020; 53 Gibbons (10.1016/j.celrep.2021.109037_bib22) 2018; 77 Iba (10.1016/j.celrep.2021.109037_bib30) 2013; 33 Benoy (10.1016/j.celrep.2021.109037_bib4) 2018; 141 |
References_xml | – volume: 70 start-page: 304 year: 2013 end-page: 310 ident: bib63 article-title: Mechanisms of protein seeding in neurodegenerative diseases publication-title: JAMA Neurol. – volume: 354 start-page: 904 year: 2016 end-page: 908 ident: bib34 article-title: Site-specific phosphorylation of tau inhibits amyloid-β toxicity in Alzheimer’s mice publication-title: Science – volume: 40 start-page: 189 year: 2017 end-page: 210 ident: bib24 article-title: Propagation of Tau Aggregates and Neurodegeneration publication-title: Annu. Rev. Neurosci. – volume: 7 start-page: 103 year: 2010 end-page: 107 ident: bib65 article-title: Generation of tau aggregates and clearance by autophagy in an inducible cell model of tauopathy publication-title: Neurodegener. Dis. – volume: 20 start-page: 756 year: 2013 end-page: 762 ident: bib12 article-title: The microtubule-associated tau protein has intrinsic acetyltransferase activity publication-title: Nat. Struct. Mol. Biol. – volume: 417 start-page: 455 year: 2002 end-page: 458 ident: bib28 article-title: HDAC6 is a microtubule-associated deacetylase publication-title: Nature – volume: 177 start-page: 1977 year: 2010 end-page: 1988 ident: bib29 article-title: Abeta accelerates the spatiotemporal progression of tau pathology and augments tau amyloidosis in an Alzheimer mouse model publication-title: Am. J. Pathol. – volume: 218 start-page: 267 year: 2019 end-page: 284 ident: bib66 article-title: ATP13A2 facilitates HDAC6 recruitment to lysosome to promote autophagosome-lysosome fusion publication-title: J. Cell Biol. – volume: 7 start-page: 44102 year: 2017 ident: bib71 article-title: A Dual Pathogenic Mechanism Links Tau Acetylation to Sporadic Tauopathy publication-title: Sci. Rep. – volume: 292 start-page: 15277 year: 2017 end-page: 15286 ident: bib6 article-title: An acetylation-phosphorylation switch that regulates tau aggregation propensity and function publication-title: J. Biol. Chem. – volume: 141 start-page: 673 year: 2018 end-page: 687 ident: bib4 article-title: HDAC6 is a therapeutic target in mutant GARS-induced Charcot-Marie-Tooth disease publication-title: Brain – volume: 2 start-page: 252 year: 2011 ident: bib11 article-title: The acetylation of tau inhibits its function and promotes pathological tau aggregation publication-title: Nat. Commun. – volume: 136 start-page: 57 year: 2018 end-page: 67 ident: bib37 article-title: Tau seeding activity begins in the transentorhinal/entorhinal regions and anticipates phospho-tau pathology in Alzheimer’s disease and PART publication-title: Acta Neuropathol. – volume: 447 start-page: 859 year: 2007 end-page: 863 ident: bib48 article-title: HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS publication-title: Nature – volume: 6 year: 2019 ident: bib26 article-title: Introduction of tau oligomers into cortical neurons alters action potential dynamics and disrupts synaptic transmission and plasticity publication-title: eNeuro – volume: 6 start-page: 39 year: 2011 ident: bib38 article-title: Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice publication-title: Mol. Neurodegener. – volume: 18 start-page: S193 year: 2019 end-page: S201 ident: bib5 article-title: Interactive Peptide Spectral Annotator: A Versatile Web-based Tool for Proteomic Applications publication-title: Mol. Cell. Proteomics – volume: 546 start-page: 381 year: 2017 end-page: 386 ident: bib40 article-title: Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory publication-title: Nature – volume: 92 start-page: 796 year: 2016 end-page: 812 ident: bib35 article-title: Tau Prion Strains Dictate Patterns of Cell Pathology, Progression Rate, and Regional Vulnerability In Vivo publication-title: Neuron – volume: 21 start-page: 1158 year: 2016 end-page: 1166 ident: bib3 article-title: Reduced pCREB in Alzheimer’s disease prefrontal cortex is reflected in peripheral blood mononuclear cells publication-title: Mol. Psychiatry – volume: 5 start-page: 5245 year: 2014 ident: bib23 article-title: Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations publication-title: Nat. Commun. – volume: 7 start-page: e37813 year: 2018 ident: bib54 article-title: Tau monomer encodes strains publication-title: eLife – volume: 28 start-page: 2181 year: 2018 end-page: 2189.e4 ident: bib51 article-title: Tau Does Not Stabilize Axonal Microtubules but Rather Enables Them to Have Long Labile Domains publication-title: Curr. Biol. – volume: 7 start-page: e36584 year: 2018 ident: bib44 article-title: Inert and seed-competent tau monomers suggest structural origins of aggregation publication-title: eLife – volume: 24 start-page: 9 year: 2017 end-page: 23 ident: bib47 article-title: CBP/p300 Bromodomains Regulate Amyloid-like Protein Aggregation upon Aberrant Lysine Acetylation publication-title: Cell Chem. Biol. – volume: 109 start-page: 1756 year: 2009 end-page: 1766 ident: bib49 article-title: Tau--an inhibitor of deacetylase HDAC6 function publication-title: J. Neurochem. – volume: 278 start-page: 187 year: 2003 end-page: 193 ident: bib10 article-title: Glycogen synthase kinase 3beta phosphorylates tau at both primed and unprimed sites. Differential impact on microtubule binding publication-title: J. Biol. Chem. – volume: 11 start-page: 5522 year: 2020 ident: bib59 article-title: An HDAC6-dependent surveillance mechanism suppresses tau-mediated neurodegeneration and cognitive decline publication-title: Nat. Commun. – volume: 29 start-page: 969 year: 2010 end-page: 980 ident: bib39 article-title: HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy publication-title: EMBO J. – volume: 290 start-page: 21652 year: 2015 end-page: 21662 ident: bib19 article-title: Distinct Therapeutic Mechanisms of Tau Antibodies: Promoting Microglial Clearance Versus Blocking Neuronal Uptake publication-title: J. Biol. Chem. – volume: 180 start-page: 633 year: 2020 end-page: 644.e12 ident: bib1 article-title: Posttranslational Modifications Mediate the Structural Diversity of Tauopathy Strains publication-title: Cell – volume: 90 start-page: 245 year: 2016 end-page: 260 ident: bib58 article-title: Acetylated Tau Obstructs KIBRA-Mediated Signaling in Synaptic Plasticity and Promotes Tauopathy-Related Memory Loss publication-title: Neuron – volume: 106 start-page: 421 year: 2020 end-page: 437.e11 ident: bib57 article-title: Tau Reduction Prevents Key Features of Autism in Mouse Models publication-title: Neuron – volume: 290 start-page: 14893 year: 2015 end-page: 14903 ident: bib43 article-title: Tau Trimers Are the Minimal Propagation Unit Spontaneously Internalized to Seed Intracellular Aggregation publication-title: J. Biol. Chem. – volume: 23 start-page: 104 year: 2014 end-page: 116 ident: bib14 article-title: Acetylation of the KXGS motifs in tau is a critical determinant in modulation of tau aggregation and clearance publication-title: Hum. Mol. Genet. – volume: 15 start-page: 269 year: 2018 ident: bib27 article-title: The role of microglia in processing and spreading of bioactive tau seeds in Alzheimer’s disease publication-title: J. Neuroinflammation – volume: 183 start-page: 344 year: 2013 end-page: 351 ident: bib33 article-title: Acetylated tau neuropathology in sporadic and hereditary tauopathies publication-title: Am. J. Pathol. – volume: 54 start-page: 5 year: 2014 end-page: 16 ident: bib61 article-title: Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases publication-title: Mol. Cell – volume: 133 start-page: 91 year: 2017 end-page: 100 ident: bib20 article-title: Widespread tau seeding activity at early Braak stages publication-title: Acta Neuropathol. – volume: 288 start-page: 33156 year: 2013 end-page: 33170 ident: bib68 article-title: Extracellular signal-regulated kinase (ERK) phosphorylates histone deacetylase 6 (HDAC6) at serine 1035 to stimulate cell migration publication-title: J. Biol. Chem. – volume: 6 start-page: 5845 year: 2015 ident: bib13 article-title: An acetylation switch controls TDP-43 function and aggregation propensity publication-title: Nat. Commun. – volume: 40 start-page: 644 year: 2012 end-page: 652 ident: bib64 article-title: Degradation of tau protein by autophagy and proteasomal pathways publication-title: Biochem. Soc. Trans. – volume: 10 start-page: e0123191 year: 2015 ident: bib17 article-title: aPKC phosphorylation of HDAC6 results in increased deacetylation activity publication-title: PLoS One – volume: 20 start-page: 2169 year: 2017 end-page: 2183 ident: bib60 article-title: The Deacetylase HDAC6 Mediates Endogenous Neuritic Tau Pathology publication-title: Cell Rep. – volume: 288 start-page: 29036 year: 2013 end-page: 29045 ident: bib62 article-title: Widespread and enzyme-independent Nε-acetylation and Nε-succinylation of proteins in the chemical conditions of the mitochondrial matrix publication-title: J. Biol. Chem. – volume: 106 start-page: 2119 year: 2008 end-page: 2130 ident: bib16 article-title: Histone deacetylase 6 interacts with the microtubule-associated protein tau publication-title: J. Neurochem. – volume: 18 start-page: 1584 year: 2015 end-page: 1593 ident: bib2 article-title: Depletion of microglia and inhibition of exosome synthesis halt tau propagation publication-title: Nat. Neurosci. – volume: 18 start-page: 5060 year: 2007 end-page: 5068 ident: bib55 article-title: Tau phosphorylation sites work in concert to promote neurotoxicity in vivo publication-title: Mol. Biol. Cell – volume: 23 start-page: 128 year: 2016 end-page: 142 ident: bib8 article-title: Mitochondrial SIRT3 Mediates Adaptive Responses of Neurons to Exercise and Metabolic and Excitatory Challenges publication-title: Cell Metab. – volume: 9 start-page: eaag0481 year: 2017 ident: bib15 article-title: Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy publication-title: Sci. Transl. Med. – volume: 37 start-page: 11406 year: 2017 end-page: 11423 ident: bib46 article-title: Pathological Tau Strains from Human Brains Recapitulate the Diversity of Tauopathies in Nontransgenic Mouse Brain publication-title: J. Neurosci. – volume: 77 start-page: 216 year: 2018 end-page: 228 ident: bib22 article-title: Detection of Alzheimer Disease (AD)-Specific Tau Pathology in AD and NonAD Tauopathies by Immunohistochemistry With Novel Conformation-Selective Tau Antibodies publication-title: J. Neuropathol. Exp. Neurol. – volume: 9 start-page: e115765 year: 2014 ident: bib7 article-title: Tau reduction diminishes spatial learning and memory deficits after mild repetitive traumatic brain injury in mice publication-title: PLoS One – volume: 30 start-page: 4838 year: 2011 end-page: 4849 ident: bib70 article-title: PKC alpha regulates Sendai virus-mediated interferon induction through HDAC6 and β-catenin publication-title: EMBO J. – volume: 3 start-page: 1 year: 2014 end-page: 11 ident: bib50 article-title: Modification of the Drosophila model of in vivo Tau toxicity reveals protective phosphorylation by GSK3β publication-title: Biol. Open – volume: 135 start-page: 807 year: 2012 end-page: 818 ident: bib32 article-title: Acetylated tau, a novel pathological signature in Alzheimer’s disease and other tauopathies publication-title: Brain – volume: 316 start-page: 750 year: 2007 end-page: 754 ident: bib53 article-title: Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model publication-title: Science – volume: 33 start-page: 567 year: 2014 end-page: 580 ident: bib69 article-title: Interplay between HDAC6 and its interacting partners: essential roles in the aggresome-autophagy pathway and neurodegenerative diseases publication-title: DNA Cell Biol. – volume: 59 start-page: 4059 year: 2019 end-page: 4067 ident: bib25 article-title: Site-specific hyperphosphorylation inhibits, rather than promotes, tau fibrillization, seeding capacity and its microtubule binding publication-title: Angew. Chem. Int. Ed. Engl. – volume: 21 start-page: 1154 year: 2015 end-page: 1162 ident: bib42 article-title: Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits publication-title: Nat. Med. – volume: 183 start-page: 1699 year: 2020 end-page: 1713.e1613 ident: bib67 article-title: Tau PTM Profiles Identify Patient Heterogeneity and Stages of Alzheimer’s Disease publication-title: Cell – volume: 130 start-page: 349 year: 2015 end-page: 362 ident: bib31 article-title: Tau pathology spread in PS19 tau transgenic mice following locus coeruleus (LC) injections of synthetic tau fibrils is determined by the LC’s afferent and efferent connections publication-title: Acta Neuropathol. – volume: 35 start-page: 687 year: 2007 end-page: 700 ident: bib56 article-title: Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals publication-title: Nucleic Acids Res. – volume: 67 start-page: 953 year: 2010 end-page: 966 ident: bib41 article-title: Acetylation of tau inhibits its degradation and contributes to tauopathy publication-title: Neuron – volume: 9 start-page: 1007 year: 2018 ident: bib45 article-title: Aberrant GlyRS-HDAC6 interaction linked to axonal transport deficits in Charcot-Marie-Tooth neuropathy publication-title: Nat. Commun. – volume: 53 start-page: 287 year: 2020 end-page: 299.e5 ident: bib52 article-title: ASK1-Mediated Phosphorylation Blocks HDAC6 Ubiquitination and Degradation to Drive the Disassembly of Photoreceptor Connecting Cilia publication-title: Dev. Cell – volume: 33 start-page: 1024 year: 2013 end-page: 1037 ident: bib30 article-title: Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer’s-like tauopathy publication-title: J. Neurosci. – volume: 5 start-page: 41 year: 2017 ident: bib36 article-title: Characterization of tau prion seeding activity and strains from formaldehyde-fixed tissue publication-title: Acta Neuropathol. Commun. – volume: 6 start-page: 19393 year: 2016 ident: bib18 article-title: Extracellular Tau Oligomers Produce An Immediate Impairment of LTP and Memory publication-title: Sci. Rep. – volume: 27 start-page: 8637 year: 2007 end-page: 8647 ident: bib21 article-title: Histone deacetylase 6 regulates growth factor-induced actin remodeling and endocytosis publication-title: Mol. Cell. Biol. – volume: 4 start-page: 122 year: 2013 ident: bib9 article-title: Tau clearance mechanisms and their possible role in the pathogenesis of Alzheimer disease publication-title: Front. Neurol. – volume: 18 start-page: 5060 year: 2007 ident: 10.1016/j.celrep.2021.109037_bib55 article-title: Tau phosphorylation sites work in concert to promote neurotoxicity in vivo publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e07-04-0327 – volume: 40 start-page: 644 year: 2012 ident: 10.1016/j.celrep.2021.109037_bib64 article-title: Degradation of tau protein by autophagy and proteasomal pathways publication-title: Biochem. Soc. Trans. doi: 10.1042/BST20120071 – volume: 135 start-page: 807 year: 2012 ident: 10.1016/j.celrep.2021.109037_bib32 article-title: Acetylated tau, a novel pathological signature in Alzheimer’s disease and other tauopathies publication-title: Brain doi: 10.1093/brain/aws013 – volume: 546 start-page: 381 year: 2017 ident: 10.1016/j.celrep.2021.109037_bib40 article-title: Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory publication-title: Nature doi: 10.1038/nature22405 – volume: 7 start-page: 103 year: 2010 ident: 10.1016/j.celrep.2021.109037_bib65 article-title: Generation of tau aggregates and clearance by autophagy in an inducible cell model of tauopathy publication-title: Neurodegener. Dis. doi: 10.1159/000285516 – volume: 27 start-page: 8637 year: 2007 ident: 10.1016/j.celrep.2021.109037_bib21 article-title: Histone deacetylase 6 regulates growth factor-induced actin remodeling and endocytosis publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00393-07 – volume: 106 start-page: 421 year: 2020 ident: 10.1016/j.celrep.2021.109037_bib57 article-title: Tau Reduction Prevents Key Features of Autism in Mouse Models publication-title: Neuron doi: 10.1016/j.neuron.2020.01.038 – volume: 288 start-page: 33156 year: 2013 ident: 10.1016/j.celrep.2021.109037_bib68 article-title: Extracellular signal-regulated kinase (ERK) phosphorylates histone deacetylase 6 (HDAC6) at serine 1035 to stimulate cell migration publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.472506 – volume: 3 start-page: 1 year: 2014 ident: 10.1016/j.celrep.2021.109037_bib50 article-title: Modification of the Drosophila model of in vivo Tau toxicity reveals protective phosphorylation by GSK3β publication-title: Biol. Open doi: 10.1242/bio.20136692 – volume: 11 start-page: 5522 year: 2020 ident: 10.1016/j.celrep.2021.109037_bib59 article-title: An HDAC6-dependent surveillance mechanism suppresses tau-mediated neurodegeneration and cognitive decline publication-title: Nat. Commun. doi: 10.1038/s41467-020-19317-4 – volume: 278 start-page: 187 year: 2003 ident: 10.1016/j.celrep.2021.109037_bib10 article-title: Glycogen synthase kinase 3beta phosphorylates tau at both primed and unprimed sites. Differential impact on microtubule binding publication-title: J. Biol. Chem. doi: 10.1074/jbc.M206236200 – volume: 2 start-page: 252 year: 2011 ident: 10.1016/j.celrep.2021.109037_bib11 article-title: The acetylation of tau inhibits its function and promotes pathological tau aggregation publication-title: Nat. Commun. doi: 10.1038/ncomms1255 – volume: 20 start-page: 2169 year: 2017 ident: 10.1016/j.celrep.2021.109037_bib60 article-title: The Deacetylase HDAC6 Mediates Endogenous Neuritic Tau Pathology publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.07.082 – volume: 24 start-page: 9 year: 2017 ident: 10.1016/j.celrep.2021.109037_bib47 article-title: CBP/p300 Bromodomains Regulate Amyloid-like Protein Aggregation upon Aberrant Lysine Acetylation publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2016.11.009 – volume: 53 start-page: 287 year: 2020 ident: 10.1016/j.celrep.2021.109037_bib52 article-title: ASK1-Mediated Phosphorylation Blocks HDAC6 Ubiquitination and Degradation to Drive the Disassembly of Photoreceptor Connecting Cilia publication-title: Dev. Cell doi: 10.1016/j.devcel.2020.03.010 – volume: 70 start-page: 304 year: 2013 ident: 10.1016/j.celrep.2021.109037_bib63 article-title: Mechanisms of protein seeding in neurodegenerative diseases publication-title: JAMA Neurol. doi: 10.1001/jamaneurol.2013.1453 – volume: 77 start-page: 216 year: 2018 ident: 10.1016/j.celrep.2021.109037_bib22 article-title: Detection of Alzheimer Disease (AD)-Specific Tau Pathology in AD and NonAD Tauopathies by Immunohistochemistry With Novel Conformation-Selective Tau Antibodies publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1093/jnen/nly010 – volume: 21 start-page: 1154 year: 2015 ident: 10.1016/j.celrep.2021.109037_bib42 article-title: Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits publication-title: Nat. Med. doi: 10.1038/nm.3951 – volume: 106 start-page: 2119 year: 2008 ident: 10.1016/j.celrep.2021.109037_bib16 article-title: Histone deacetylase 6 interacts with the microtubule-associated protein tau publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2008.05564.x – volume: 6 year: 2019 ident: 10.1016/j.celrep.2021.109037_bib26 article-title: Introduction of tau oligomers into cortical neurons alters action potential dynamics and disrupts synaptic transmission and plasticity publication-title: eNeuro doi: 10.1523/ENEURO.0166-19.2019 – volume: 183 start-page: 344 year: 2013 ident: 10.1016/j.celrep.2021.109037_bib33 article-title: Acetylated tau neuropathology in sporadic and hereditary tauopathies publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2013.04.025 – volume: 290 start-page: 14893 year: 2015 ident: 10.1016/j.celrep.2021.109037_bib43 article-title: Tau Trimers Are the Minimal Propagation Unit Spontaneously Internalized to Seed Intracellular Aggregation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.652693 – volume: 18 start-page: S193 year: 2019 ident: 10.1016/j.celrep.2021.109037_bib5 article-title: Interactive Peptide Spectral Annotator: A Versatile Web-based Tool for Proteomic Applications publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.TIR118.001209 – volume: 6 start-page: 39 year: 2011 ident: 10.1016/j.celrep.2021.109037_bib38 article-title: Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice publication-title: Mol. Neurodegener. doi: 10.1186/1750-1326-6-39 – volume: 7 start-page: e36584 year: 2018 ident: 10.1016/j.celrep.2021.109037_bib44 article-title: Inert and seed-competent tau monomers suggest structural origins of aggregation publication-title: eLife doi: 10.7554/eLife.36584 – volume: 288 start-page: 29036 year: 2013 ident: 10.1016/j.celrep.2021.109037_bib62 article-title: Widespread and enzyme-independent Nε-acetylation and Nε-succinylation of proteins in the chemical conditions of the mitochondrial matrix publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.486753 – volume: 23 start-page: 104 year: 2014 ident: 10.1016/j.celrep.2021.109037_bib14 article-title: Acetylation of the KXGS motifs in tau is a critical determinant in modulation of tau aggregation and clearance publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddt402 – volume: 28 start-page: 2181 year: 2018 ident: 10.1016/j.celrep.2021.109037_bib51 article-title: Tau Does Not Stabilize Axonal Microtubules but Rather Enables Them to Have Long Labile Domains publication-title: Curr. Biol. doi: 10.1016/j.cub.2018.05.045 – volume: 15 start-page: 269 year: 2018 ident: 10.1016/j.celrep.2021.109037_bib27 article-title: The role of microglia in processing and spreading of bioactive tau seeds in Alzheimer’s disease publication-title: J. Neuroinflammation doi: 10.1186/s12974-018-1309-z – volume: 35 start-page: 687 year: 2007 ident: 10.1016/j.celrep.2021.109037_bib56 article-title: Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl1071 – volume: 7 start-page: e37813 year: 2018 ident: 10.1016/j.celrep.2021.109037_bib54 article-title: Tau monomer encodes strains publication-title: eLife doi: 10.7554/eLife.37813 – volume: 30 start-page: 4838 year: 2011 ident: 10.1016/j.celrep.2021.109037_bib70 article-title: PKC alpha regulates Sendai virus-mediated interferon induction through HDAC6 and β-catenin publication-title: EMBO J. doi: 10.1038/emboj.2011.351 – volume: 9 start-page: 1007 year: 2018 ident: 10.1016/j.celrep.2021.109037_bib45 article-title: Aberrant GlyRS-HDAC6 interaction linked to axonal transport deficits in Charcot-Marie-Tooth neuropathy publication-title: Nat. Commun. doi: 10.1038/s41467-018-03461-z – volume: 180 start-page: 633 year: 2020 ident: 10.1016/j.celrep.2021.109037_bib1 article-title: Posttranslational Modifications Mediate the Structural Diversity of Tauopathy Strains publication-title: Cell doi: 10.1016/j.cell.2020.01.027 – volume: 141 start-page: 673 year: 2018 ident: 10.1016/j.celrep.2021.109037_bib4 article-title: HDAC6 is a therapeutic target in mutant GARS-induced Charcot-Marie-Tooth disease publication-title: Brain doi: 10.1093/brain/awx375 – volume: 9 start-page: e115765 year: 2014 ident: 10.1016/j.celrep.2021.109037_bib7 article-title: Tau reduction diminishes spatial learning and memory deficits after mild repetitive traumatic brain injury in mice publication-title: PLoS One doi: 10.1371/journal.pone.0115765 – volume: 23 start-page: 128 year: 2016 ident: 10.1016/j.celrep.2021.109037_bib8 article-title: Mitochondrial SIRT3 Mediates Adaptive Responses of Neurons to Exercise and Metabolic and Excitatory Challenges publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.10.013 – volume: 54 start-page: 5 year: 2014 ident: 10.1016/j.celrep.2021.109037_bib61 article-title: Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.03.027 – volume: 292 start-page: 15277 year: 2017 ident: 10.1016/j.celrep.2021.109037_bib6 article-title: An acetylation-phosphorylation switch that regulates tau aggregation propensity and function publication-title: J. Biol. Chem. doi: 10.1074/jbc.M117.794602 – volume: 177 start-page: 1977 year: 2010 ident: 10.1016/j.celrep.2021.109037_bib29 article-title: Abeta accelerates the spatiotemporal progression of tau pathology and augments tau amyloidosis in an Alzheimer mouse model publication-title: Am. J. Pathol. doi: 10.2353/ajpath.2010.100346 – volume: 136 start-page: 57 year: 2018 ident: 10.1016/j.celrep.2021.109037_bib37 article-title: Tau seeding activity begins in the transentorhinal/entorhinal regions and anticipates phospho-tau pathology in Alzheimer’s disease and PART publication-title: Acta Neuropathol. doi: 10.1007/s00401-018-1855-6 – volume: 290 start-page: 21652 year: 2015 ident: 10.1016/j.celrep.2021.109037_bib19 article-title: Distinct Therapeutic Mechanisms of Tau Antibodies: Promoting Microglial Clearance Versus Blocking Neuronal Uptake publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.657924 – volume: 18 start-page: 1584 year: 2015 ident: 10.1016/j.celrep.2021.109037_bib2 article-title: Depletion of microglia and inhibition of exosome synthesis halt tau propagation publication-title: Nat. Neurosci. doi: 10.1038/nn.4132 – volume: 4 start-page: 122 year: 2013 ident: 10.1016/j.celrep.2021.109037_bib9 article-title: Tau clearance mechanisms and their possible role in the pathogenesis of Alzheimer disease publication-title: Front. Neurol. doi: 10.3389/fneur.2013.00122 – volume: 33 start-page: 567 year: 2014 ident: 10.1016/j.celrep.2021.109037_bib69 article-title: Interplay between HDAC6 and its interacting partners: essential roles in the aggresome-autophagy pathway and neurodegenerative diseases publication-title: DNA Cell Biol. doi: 10.1089/dna.2013.2300 – volume: 417 start-page: 455 year: 2002 ident: 10.1016/j.celrep.2021.109037_bib28 article-title: HDAC6 is a microtubule-associated deacetylase publication-title: Nature doi: 10.1038/417455a – volume: 10 start-page: e0123191 year: 2015 ident: 10.1016/j.celrep.2021.109037_bib17 article-title: aPKC phosphorylation of HDAC6 results in increased deacetylation activity publication-title: PLoS One doi: 10.1371/journal.pone.0123191 – volume: 20 start-page: 756 year: 2013 ident: 10.1016/j.celrep.2021.109037_bib12 article-title: The microtubule-associated tau protein has intrinsic acetyltransferase activity publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2555 – volume: 90 start-page: 245 year: 2016 ident: 10.1016/j.celrep.2021.109037_bib58 article-title: Acetylated Tau Obstructs KIBRA-Mediated Signaling in Synaptic Plasticity and Promotes Tauopathy-Related Memory Loss publication-title: Neuron doi: 10.1016/j.neuron.2016.03.005 – volume: 9 start-page: eaag0481 year: 2017 ident: 10.1016/j.celrep.2021.109037_bib15 article-title: Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aag0481 – volume: 316 start-page: 750 year: 2007 ident: 10.1016/j.celrep.2021.109037_bib53 article-title: Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model publication-title: Science doi: 10.1126/science.1141736 – volume: 6 start-page: 5845 year: 2015 ident: 10.1016/j.celrep.2021.109037_bib13 article-title: An acetylation switch controls TDP-43 function and aggregation propensity publication-title: Nat. Commun. doi: 10.1038/ncomms6845 – volume: 33 start-page: 1024 year: 2013 ident: 10.1016/j.celrep.2021.109037_bib30 article-title: Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer’s-like tauopathy publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2642-12.2013 – volume: 218 start-page: 267 year: 2019 ident: 10.1016/j.celrep.2021.109037_bib66 article-title: ATP13A2 facilitates HDAC6 recruitment to lysosome to promote autophagosome-lysosome fusion publication-title: J. Cell Biol. doi: 10.1083/jcb.201804165 – volume: 21 start-page: 1158 year: 2016 ident: 10.1016/j.celrep.2021.109037_bib3 article-title: Reduced pCREB in Alzheimer’s disease prefrontal cortex is reflected in peripheral blood mononuclear cells publication-title: Mol. Psychiatry doi: 10.1038/mp.2016.111 – volume: 92 start-page: 796 year: 2016 ident: 10.1016/j.celrep.2021.109037_bib35 article-title: Tau Prion Strains Dictate Patterns of Cell Pathology, Progression Rate, and Regional Vulnerability In Vivo publication-title: Neuron doi: 10.1016/j.neuron.2016.09.055 – volume: 6 start-page: 19393 year: 2016 ident: 10.1016/j.celrep.2021.109037_bib18 article-title: Extracellular Tau Oligomers Produce An Immediate Impairment of LTP and Memory publication-title: Sci. Rep. doi: 10.1038/srep19393 – volume: 5 start-page: 5245 year: 2014 ident: 10.1016/j.celrep.2021.109037_bib23 article-title: Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations publication-title: Nat. Commun. doi: 10.1038/ncomms6245 – volume: 40 start-page: 189 year: 2017 ident: 10.1016/j.celrep.2021.109037_bib24 article-title: Propagation of Tau Aggregates and Neurodegeneration publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-072116-031153 – volume: 37 start-page: 11406 year: 2017 ident: 10.1016/j.celrep.2021.109037_bib46 article-title: Pathological Tau Strains from Human Brains Recapitulate the Diversity of Tauopathies in Nontransgenic Mouse Brain publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1230-17.2017 – volume: 447 start-page: 859 year: 2007 ident: 10.1016/j.celrep.2021.109037_bib48 article-title: HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS publication-title: Nature doi: 10.1038/nature05853 – volume: 183 start-page: 1699 year: 2020 ident: 10.1016/j.celrep.2021.109037_bib67 article-title: Tau PTM Profiles Identify Patient Heterogeneity and Stages of Alzheimer’s Disease publication-title: Cell doi: 10.1016/j.cell.2020.10.029 – volume: 109 start-page: 1756 year: 2009 ident: 10.1016/j.celrep.2021.109037_bib49 article-title: Tau--an inhibitor of deacetylase HDAC6 function publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2009.06102.x – volume: 133 start-page: 91 year: 2017 ident: 10.1016/j.celrep.2021.109037_bib20 article-title: Widespread tau seeding activity at early Braak stages publication-title: Acta Neuropathol. doi: 10.1007/s00401-016-1644-z – volume: 130 start-page: 349 year: 2015 ident: 10.1016/j.celrep.2021.109037_bib31 article-title: Tau pathology spread in PS19 tau transgenic mice following locus coeruleus (LC) injections of synthetic tau fibrils is determined by the LC’s afferent and efferent connections publication-title: Acta Neuropathol. doi: 10.1007/s00401-015-1458-4 – volume: 59 start-page: 4059 year: 2019 ident: 10.1016/j.celrep.2021.109037_bib25 article-title: Site-specific hyperphosphorylation inhibits, rather than promotes, tau fibrillization, seeding capacity and its microtubule binding publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201913001 – volume: 5 start-page: 41 year: 2017 ident: 10.1016/j.celrep.2021.109037_bib36 article-title: Characterization of tau prion seeding activity and strains from formaldehyde-fixed tissue publication-title: Acta Neuropathol. Commun. doi: 10.1186/s40478-017-0442-8 – volume: 67 start-page: 953 year: 2010 ident: 10.1016/j.celrep.2021.109037_bib41 article-title: Acetylation of tau inhibits its degradation and contributes to tauopathy publication-title: Neuron doi: 10.1016/j.neuron.2010.08.044 – volume: 7 start-page: 44102 year: 2017 ident: 10.1016/j.celrep.2021.109037_bib71 article-title: A Dual Pathogenic Mechanism Links Tau Acetylation to Sporadic Tauopathy publication-title: Sci. Rep. doi: 10.1038/srep44102 – volume: 29 start-page: 969 year: 2010 ident: 10.1016/j.celrep.2021.109037_bib39 article-title: HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy publication-title: EMBO J. doi: 10.1038/emboj.2009.405 – volume: 354 start-page: 904 year: 2016 ident: 10.1016/j.celrep.2021.109037_bib34 article-title: Site-specific phosphorylation of tau inhibits amyloid-β toxicity in Alzheimer’s mice publication-title: Science doi: 10.1126/science.aah6205 |
SSID | ssj0000601194 |
Score | 2.4119656 |
Snippet | The prion-like spread of tau pathology could underlie a spectrum of clinical syndromes including Alzheimer’s disease (AD). Although evidence indicates that tau... The prion-like spread of tau pathology could underlie a spectrum of clinical syndromes including Alzheimer's disease (AD). Although evidence indicates that tau... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 109037 |
SubjectTerms | Alzheimer Disease - pathology Animals Humans Mice tau Proteins - metabolism |
SummonAdditionalLinks | – databaseName: ScienceDirect Free and Delayed Access Journal dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEA8iCPdynHofq6dE8LVskzRN-3gnJyIoggr7FpJmcreH15Vt98H_3pl-LLeeINxLoe2Ehpl0JpmP3zB2mpmoow4hycBrvIQicTGLidTBaemNzwO5Bq6u84v77HKmZ1vsbKyFobTKQff3Or3T1sOT6cDN6eN8Pr2VeHZB64RHGAqHKUL8VJnpivhm39d-FsIbEV0_RKJPaMBYQdeleVXwsAQCrpSCoJVSaoj-uoX6dwf6MpHyL8t0_oG9H7aU_Fs_6122BfUe2-mbTD7ts5s7t-INGqmGuyXwZuXJ9cLbBXcelmiqWv5nEShjqHfecTyAU5Zh_ZPPax5IB9RIT4keHQho85Hdn_-4O7tIhj4KSaVl2aIOqYx0MUCp8X_2soiFynQaRFqlUaGQglcVnrBDkYNOnQaZS5-poEsvgtCgPrHtelHDF8ZlHkUEEyuPGxeVR1cY4wsVpCxBQAkTpkbe2WoAGadeFw92zCb7bXuOW-K47Tk-Ycl61GMPsvEGvRnFYjcWi0U78MbIk1GKFv8jCo64GharxlIFb5FS0HjCPvdSXc9FqZKgqhR-d0PeawLC6N58U89_dVjdBXVAFOLgv2d8yN7RHQWwpPnKttvlCo5wH9T6426hPwPA_QhW priority: 102 providerName: Elsevier |
Title | Tau seeds are subject to aberrant modifications resulting in distinct signatures |
URI | https://dx.doi.org/10.1016/j.celrep.2021.109037 https://www.ncbi.nlm.nih.gov/pubmed/33910013 https://www.proquest.com/docview/2519805847 https://pubmed.ncbi.nlm.nih.gov/PMC8135111 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2211-1247 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000601194 issn: 2211-1247 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2211-1247 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000601194 issn: 2211-1247 databaseCode: KQ8 dateStart: 20120126 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2211-1247 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000601194 issn: 2211-1247 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: ScienceDirect Free and Delayed Access Journal customDbUrl: eissn: 2211-1247 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000601194 issn: 2211-1247 databaseCode: IXB dateStart: 20120126 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2211-1247 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000601194 issn: 2211-1247 databaseCode: DIK dateStart: 20120101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2211-1247 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000601194 issn: 2211-1247 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2211-1247 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000601194 issn: 2211-1247 databaseCode: AKRWK dateStart: 20120126 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2211-1247 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0000601194 issn: 2211-1247 databaseCode: M48 dateStart: 20120101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Nb9QwELVKEagXVL4X2spIXIMSO46TA6pK1aogFXHoSnuz7HgMrZYsJFmJ_ntm1slCoatecomdWDNjz_N4_Iaxt7kOKijvkxycwocvExvykAjlrRJOu8JTaOD8c3E2zT_N1GyLjTVbBwF2t27tqJ7UtJ2_-_Xz-hAn_Ps_uVo1zFsg9kmRET9SKvU9dh99kyA7Px8Af1ybieMsH-_Qbei8wx5KWRE7kdzkrv6Ho_9mVf7lpk532aMBX_KjaBCP2RY0T9iDWHHy-in7cmGXvEOP1XHbAu-WjuIwvF9w66BFv9Xz7wtP6UMxksdxN04ph81XftlwTwtCg-0p62PFCNo9Y9PTk4vjs2QoqpDUSlQ9Lii1FjZ4qBRObifKUMpcpT5L6zRI1Jh3ssbtti8LUKlVIArhculV5TKfKZDP2XazaOAl46IIWQAdaocoRhbBllq7UnohKsigggmTo-xMPTCOU-GLuRlTy65MFL4h4Zso_AlL1r1-RMaNO9rrUS1mQA0RDRi0kTt6vhm1aHBS0UmJbWCx7Axd5y1TOkGesBdRq-uxjJaB_72h73UDIuy--aa5_LYi7i6pHGKWvdr4zddsh8ZHp1VC77Htvl3CPoKe3h2sggX4_Dj7cLCy6d8P1wOJ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9wwDI8Y07S9IPbFDsaWSXutrkmafjwCGjo2QJN2SPcWJY2zHWI9dO097L_H7sdpN5CQ9tKHNlYjO7Ed2_mZsc9JFnTQ3kcJOI0Pn0c2JCGS2lstXeZST6GBi8t0cpV8nenZFjsZ7sJQWWWv-zud3mrr_s245-b4dj4f_5B4dkHrhEcYSocp9YQ9RW8gprqus9nxOtBCgCOibYhIBBFRDFfo2jqvEm6WQMiVUhC2Ukwd0R82Ufdd0H8rKf8yTae7bKf3KflRN-2XbAuqV-xZ12Xyz2v2fWpXvEYrVXO7BF6vHMVeeLPg1sESbVXDfy88lQx10TuOJ3AqM6x-8nnFPSmBCsdTpUeLAlq_YVenX6Ynk6hvpBCVWhYNKpEykzZ4KDRuaCfzkKtEx17EZRwUSsk7VeIR2-cp6NhqkKl0ifK6cMILDeot264WFbxjXKZBBMhC6dBzUWmweZa5XHkpCxBQwIipgXem7FHGqdnFjRnKya5Nx3FDHDcdx0csWlPddigbj4zPBrGYjdVi0BA8QvlpkKLBjUTZEVvBYlUbusKbx5Q1HrG9TqrruShVEFaVwv9uyHs9gEC6N79U818tWHdOLRCF2P_vGX9kzyfTi3Nzfnb57YC9oC-UzZLZe7bdLFdwiE5R4z60i_4ODmQLdw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tau+seeds+are+subject+to+aberrant+modifications+resulting+in+distinct+signatures&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Tseng%2C+Jui-Heng&rft.au=Ajit%2C+Aditi&rft.au=Tabassum%2C+Zarin&rft.au=Patel%2C+Niyati&rft.date=2021-04-27&rft.eissn=2211-1247&rft.volume=35&rft.issue=4&rft.spage=109037&rft_id=info:doi/10.1016%2Fj.celrep.2021.109037&rft_id=info%3Apmid%2F33910013&rft.externalDocID=33910013 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |