A bilevel model for electricity retailers' participation in a demand response market environment
Demand response programmes are seen as one of the contributing solutions to the challenges posed to power systems by the large-scale integration of renewable power sources, mostly due to their intermittent and stochastic nature. Among demand response programmes, real-time pricing schemes for small c...
Saved in:
| Published in | Energy economics Vol. 36; pp. 182 - 197 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Amsterdam
Elsevier B.V
01.03.2013
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0140-9883 1873-6181 |
| DOI | 10.1016/j.eneco.2012.12.010 |
Cover
| Abstract | Demand response programmes are seen as one of the contributing solutions to the challenges posed to power systems by the large-scale integration of renewable power sources, mostly due to their intermittent and stochastic nature. Among demand response programmes, real-time pricing schemes for small consumers are believed to have significant potential for peak-shaving and load-shifting, thus relieving the power system while reducing costs and risk for energy retailers. This paper proposes a game theoretical model accounting for the Stackelberg relationship between retailers (leaders) and consumers (followers) in a dynamic price environment. Both players in the game solve an economic optimisation problem subject to stochasticity in prices, weather-related variables and must-serve load. The model allows the determination of the dynamic price-signal delivering maximum retailer profit, and the optimal load pattern for consumers under this pricing. The bilevel programme is reformulated as a single-level MILP, which can be solved using commercial off-the-shelf optimisation software. In an illustrative example, we simulate and compare the dynamic pricing scheme with fixed and time-of-use pricing. We find that the dynamic pricing scheme is the most effective in achieving load-shifting, thus reducing retailer costs for energy procurement and regulation in the wholesale market. Additionally, the redistribution of the saved costs between retailers and consumers is investigated, showing that real-time pricing is less convenient than fixed and time-of-use price for consumers. This implies that careful design of the retail market is needed. Finally, we carry out a sensitivity analysis to analyse the effect of different levels of consumer flexibility.
► We model the game between electricity retailers and consumers under dynamic pricing. ► The retailer cuts procurement costs by shifting demand in time via price-incentive. ► Imbalance costs for the retailer taper off when using real-time pricing. ► The additional welfare can be distributed unfairly between retailers and consumers. ► Real-time pricing encourages consumers to increase their flexibility. |
|---|---|
| AbstractList | Demand response programmes are seen as one of the contributing solutions to the challenges posed to power systems by the large-scale integration of renewable power sources, mostly due to their intermittent and stochastic nature. Among demand response programmes, real-time pricing schemes for small consumers are believed to have significant potential for peak-shaving and load-shifting, thus relieving the power system while reducing costs and risk for energy retailers. This paper proposes a game theoretical model accounting for the Stackelberg relationship between retailers (leaders) and consumers (followers) in a dynamic price environment. Both players in the game solve an economic optimisation problem subject to stochasticity in prices, weather-related variables and must-serve load. The model allows the determination of the dynamic price-signal delivering maximum retailer profit, and the optimal load pattern for consumers under this pricing. The bilevel programme is reformulated as a single-level MILP, which can be solved using commercial off-the-shelf optimisation software. In an illustrative example, we simulate and compare the dynamic pricing scheme with fixed and time-of-use pricing. We find that the dynamic pricing scheme is the most effective in achieving load-shifting, thus reducing retailer costs for energy procurement and regulation in the wholesale market. Additionally, the redistribution of the saved costs between retailers and consumers is investigated, showing that real-time pricing is less convenient than fixed and time-of-use price for consumers. This implies that careful design of the retail market is needed. Finally, we carry out a sensitivity analysis to analyse the effect of different levels of consumer flexibility. Demand response programmes are seen as one of the contributing solutions to the challenges posed to power systems by the large-scale integration of renewable power sources, mostly due to their intermittent and stochastic nature. Among demand response programmes, real-time pricing schemes for small consumers are believed to have significant potential for peak-shaving and load-shifting, thus relieving the power system while reducing costs and risk for energy retailers. This paper proposes a game theoretical model accounting for the Stackelberg relationship between retailers (leaders) and consumers (followers) in a dynamic price environment. Both players in the game solve an economic optimisation problem subject to stochasticity in prices, weather-related variables and must-serve load. The model allows the determination of the dynamic price-signal delivering maximum retailer profit, and the optimal load pattern for consumers under this pricing. The bilevel programme is reformulated as a single-level MILP, which can be solved using commercial off-the-shelf optimisation software. In an illustrative example, we simulate and compare the dynamic pricing scheme with fixed and time-of-use pricing. We find that the dynamic pricing scheme is the most effective in achieving load-shifting, thus reducing retailer costs for energy procurement and regulation in the wholesale market. Additionally, the redistribution of the saved costs between retailers and consumers is investigated, showing that real-time pricing is less convenient than fixed and time-of-use price for consumers. This implies that careful design of the retail market is needed. Finally, we carry out a sensitivity analysis to analyse the effect of different levels of consumer flexibility. [Copyright Elsevier B.V.] Demand response programmes are seen as one of the contributing solutions to the challenges posed to power systems by the large-scale integration of renewable power sources, mostly due to their intermittent and stochastic nature. Among demand response programmes, real-time pricing schemes for small consumers are believed to have significant potential for peak-shaving and load-shifting, thus relieving the power system while reducing costs and risk for energy retailers. This paper proposes a game theoretical model accounting for the Stackelberg relationship between retailers (leaders) and consumers (followers) in a dynamic price environment. Both players in the game solve an economic optimisation problem subject to stochasticity in prices, weather-related variables and must-serve load. The model allows the determination of the dynamic price-signal delivering maximum retailer profit, and the optimal load pattern for consumers under this pricing. The bilevel programme is reformulated as a single-level MILP, which can be solved using commercial off-the-shelf optimisation software. In an illustrative example, we simulate and compare the dynamic pricing scheme with fixed and time-of-use pricing. We find that the dynamic pricing scheme is the most effective in achieving load-shifting, thus reducing retailer costs for energy procurement and regulation in the wholesale market. Additionally, the redistribution of the saved costs between retailers and consumers is investigated, showing that real-time pricing is less convenient than fixed and time-of-use price for consumers. This implies that careful design of the retail market is needed. Finally, we carry out a sensitivity analysis to analyse the effect of different levels of consumer flexibility. ► We model the game between electricity retailers and consumers under dynamic pricing. ► The retailer cuts procurement costs by shifting demand in time via price-incentive. ► Imbalance costs for the retailer taper off when using real-time pricing. ► The additional welfare can be distributed unfairly between retailers and consumers. ► Real-time pricing encourages consumers to increase their flexibility. Demand response programmes are seen as one of the contributing solutions to the challenges posed to power systems by the large-scale integration of renewable power sources, mostly due to their intermittent and stochastic nature. Among demand response programmes, real-time pricing schemes for small consumers are believed to have significant potential for peak-shaving and load-shifting, thus relieving the power system while reducing costs and risk for energy retailers. This paper proposes a game theoretical model accounting for the Stackelberg relationship between retailers (leaders) and consumers (followers) in a dynamic price environment. Both players in the game solve an economic optimisation problem subject to stochasticity in prices, weather-related variables and must-serve load. The model allows the determination of the dynamic price-signal delivering maximum retailer profit, and the optimal load pattern for consumers under this pricing. The bilevel programme is reformulated as a single-level MILP, which can be solved using commercial off-the-shelf optimisation software. In an illustrative example, we simulate and compare the dynamic pricing scheme with fixed and time-of-use pricing. We find that the dynamic pricing scheme is the most effective in achieving load-shifting, thus reducing retailer costs for energy procurement and regulation in the wholesale market. Additionally, the redistribution of the saved costs between retailers and consumers is investigated, showing that real-time pricing is less convenient than fixed and time-of-use price for consumers. This implies that careful design of the retail market is needed. Finally, we carry out a sensitivity analysis to analyse the effect of different levels of consumer flexibility. All rights reserved, Elsevier |
| Author | Zugno, Marco Pinson, Pierre Madsen, Henrik Morales, Juan Miguel |
| Author_xml | – sequence: 1 givenname: Marco surname: Zugno fullname: Zugno, Marco email: mazu@imm.dtu.dk – sequence: 2 givenname: Juan Miguel surname: Morales fullname: Morales, Juan Miguel email: jmmgo@imm.dtu.dk – sequence: 3 givenname: Pierre surname: Pinson fullname: Pinson, Pierre email: pp@imm.dtu.dk – sequence: 4 givenname: Henrik surname: Madsen fullname: Madsen, Henrik email: hm@imm.dtu.dk |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27029855$$DView record in Pascal Francis |
| BookMark | eNqNkj1rHDEQhkVwIOePX5BGTUiavehbqyKFMUlsMKRxalmrnQVddqWNJB_430fnc5oUjmGQQDzPDMyrU3QSUwSE3lOypYSqz7stRPBpywhl21aEkjdoQ3vNO0V7eoI2hArSmb7n79BpKTtCiFSy36D7SzyEGfYw4yWN7ZxSxjCDrzn4UB9xhuoakMtHvLpc2-PqakgRh4gdHmFxcWxQWVMsgBeXf0HFEPchp7hArOfo7eTmAhfP9xn6-e3r3dV1d_vj-83V5W3nJTO143LqtWMaJi-Y88qRkclBiImxUVIlBgacGyk8GUA3QzoFSjWLaT8o4fgZ-nTsu-b0-wFKtUsoHubZRUgPxVLNuZSGS_1_VPBeEcKUfA2qjdKMk1egzBgqJFEN_fCMuuLdPGUXfSh2zaHt79EyTZjp5WG6OXI-p1IyTLZF8rT9mlsolhJ7iN_u7FP89hC_bdXiby7_x_3b_mXry9GCFtU-QLbFB4gexpDbn7BjCi_6fwDsW8tP |
| CODEN | EECODR |
| CitedBy_id | crossref_primary_10_1016_j_orp_2023_100276 crossref_primary_10_2139_ssrn_2948369 crossref_primary_10_1109_TSG_2018_2834527 crossref_primary_10_3390_en14082095 crossref_primary_10_1007_s40866_021_00112_z crossref_primary_10_1002_eej_22743 crossref_primary_10_1109_TPWRS_2015_2475175 crossref_primary_10_1007_s12351_023_00753_1 crossref_primary_10_1109_TII_2014_2342032 crossref_primary_10_1016_j_ijepes_2019_105701 crossref_primary_10_1016_j_ijepes_2020_106252 crossref_primary_10_1002_er_6545 crossref_primary_10_1016_j_epsr_2022_108478 crossref_primary_10_1049_iet_gtd_2020_1047 crossref_primary_10_3390_en15228445 crossref_primary_10_1016_j_energy_2021_120517 crossref_primary_10_1016_j_orp_2024_100300 crossref_primary_10_1002_2050_7038_12867 crossref_primary_10_1016_j_epsr_2019_105869 crossref_primary_10_1016_j_esr_2017_09_001 crossref_primary_10_1080_01900692_2019_1669052 crossref_primary_10_1016_j_eneco_2021_105774 crossref_primary_10_1016_j_apenergy_2018_01_051 crossref_primary_10_1016_j_eneco_2022_105836 crossref_primary_10_1016_j_omega_2019_01_005 crossref_primary_10_1007_s10100_020_00699_1 crossref_primary_10_1016_j_apenergy_2015_10_125 crossref_primary_10_1016_j_apenergy_2016_12_134 crossref_primary_10_1109_ACCESS_2020_2983868 crossref_primary_10_20965_jaciii_2018_p0359 crossref_primary_10_1016_j_rser_2017_01_020 crossref_primary_10_1016_j_epsr_2020_106960 crossref_primary_10_1109_TSG_2015_2428194 crossref_primary_10_1016_j_ijepes_2018_03_032 crossref_primary_10_1109_TSG_2017_2752712 crossref_primary_10_1016_j_ejor_2018_06_026 crossref_primary_10_1016_j_enconman_2017_01_017 crossref_primary_10_1109_TIA_2020_2984614 crossref_primary_10_1109_TSG_2015_2462083 crossref_primary_10_1049_iet_gtd_2017_0412 crossref_primary_10_1109_TSG_2016_2565383 crossref_primary_10_1016_j_energy_2018_10_189 crossref_primary_10_1016_j_energy_2018_09_139 crossref_primary_10_1016_j_ins_2018_03_039 crossref_primary_10_1109_TSG_2017_2671743 crossref_primary_10_1016_j_apenergy_2021_116546 crossref_primary_10_1007_s12667_021_00496_y crossref_primary_10_3390_su9111990 crossref_primary_10_1049_iet_gtd_2018_6554 crossref_primary_10_1016_j_energy_2022_124753 crossref_primary_10_1016_j_ijepes_2016_03_015 crossref_primary_10_3390_en9120983 crossref_primary_10_1007_s00291_024_00802_x crossref_primary_10_1016_j_energy_2025_135221 crossref_primary_10_1002_2050_7038_12160 crossref_primary_10_1016_j_solener_2018_07_004 crossref_primary_10_1541_ieejeiss_136_732 crossref_primary_10_1007_s13369_020_04670_9 crossref_primary_10_1016_j_epsr_2022_108560 crossref_primary_10_1016_j_apenergy_2016_11_024 crossref_primary_10_1016_j_rser_2014_07_098 crossref_primary_10_1109_TSG_2021_3135561 crossref_primary_10_1007_s12667_020_00407_7 crossref_primary_10_1016_j_segan_2016_06_002 crossref_primary_10_1016_j_orp_2018_07_003 crossref_primary_10_1541_ieejeiss_135_292 crossref_primary_10_1049_iet_gtd_2018_5176 crossref_primary_10_1007_s40866_022_00158_7 crossref_primary_10_1007_s11768_017_6186_y crossref_primary_10_1016_j_apenergy_2015_04_067 crossref_primary_10_1016_j_trb_2024_103056 crossref_primary_10_1109_ACCESS_2022_3164689 crossref_primary_10_1109_TSTE_2023_3327336 crossref_primary_10_1016_j_ijpe_2018_04_022 crossref_primary_10_1109_TPWRS_2018_2867476 crossref_primary_10_1016_j_segan_2020_100411 crossref_primary_10_3390_en15249568 crossref_primary_10_1016_j_segan_2022_100931 crossref_primary_10_1080_15435075_2020_1865372 crossref_primary_10_1109_TIE_2018_2826454 crossref_primary_10_1007_s13235_022_00454_y crossref_primary_10_1016_j_rser_2015_12_031 crossref_primary_10_1016_j_epsr_2016_08_038 crossref_primary_10_1016_j_cie_2016_08_021 crossref_primary_10_1016_j_epsr_2020_106761 crossref_primary_10_1109_TSG_2017_2673860 crossref_primary_10_2139_ssrn_4002800 crossref_primary_10_1016_j_ejco_2021_100007 crossref_primary_10_1016_j_enpol_2020_112116 crossref_primary_10_1016_j_ijepes_2020_106065 crossref_primary_10_1109_TNSE_2020_3024786 crossref_primary_10_1016_j_adapen_2022_100100 crossref_primary_10_1016_j_eneco_2018_01_028 crossref_primary_10_1016_j_orl_2022_08_008 crossref_primary_10_1016_j_ins_2013_09_021 crossref_primary_10_1007_s40565_014_0086_7 crossref_primary_10_1049_iet_gtd_2017_0731 crossref_primary_10_1109_TSTE_2017_2701836 crossref_primary_10_1016_j_trb_2013_10_002 crossref_primary_10_1061__ASCE_EY_1943_7897_0000462 crossref_primary_10_1016_j_apenergy_2021_117684 crossref_primary_10_1049_iet_gtd_2019_1433 crossref_primary_10_1109_TPWRS_2016_2530843 crossref_primary_10_1109_TEM_2025_3545951 crossref_primary_10_1007_s00500_022_07038_3 crossref_primary_10_1016_j_eneco_2023_106567 crossref_primary_10_1016_j_cor_2017_12_014 crossref_primary_10_1109_TSG_2023_3329726 crossref_primary_10_1007_s00291_022_00697_6 crossref_primary_10_1109_TSG_2014_2376522 crossref_primary_10_1016_j_ijepes_2022_108831 crossref_primary_10_1016_j_apenergy_2016_09_014 crossref_primary_10_1007_s40565_019_0569_7 crossref_primary_10_1186_s42162_018_0020_8 crossref_primary_10_1016_j_jup_2015_03_002 crossref_primary_10_1007_s10898_022_01172_w crossref_primary_10_1109_COMST_2014_2341586 crossref_primary_10_1109_TSG_2017_2750706 crossref_primary_10_1007_s12046_022_01814_5 crossref_primary_10_1016_j_segan_2017_09_004 crossref_primary_10_1016_j_energy_2021_122544 crossref_primary_10_3390_en11123296 crossref_primary_10_1109_TSG_2013_2295024 crossref_primary_10_1109_TSG_2021_3053639 crossref_primary_10_1002_eej_23201 crossref_primary_10_1016_j_scs_2020_102260 crossref_primary_10_1016_j_energy_2020_117926 crossref_primary_10_1049_iet_gtd_2019_1574 crossref_primary_10_1016_j_ijepes_2024_110234 crossref_primary_10_1007_s11750_020_00573_y crossref_primary_10_1063_5_0154506 crossref_primary_10_1109_TPWRS_2017_2688344 crossref_primary_10_1109_TPWRS_2019_2943670 crossref_primary_10_1016_j_apenergy_2019_114321 crossref_primary_10_1007_s10957_022_02147_3 crossref_primary_10_1109_TPWRS_2019_2963022 crossref_primary_10_1016_j_apenergy_2017_04_050 crossref_primary_10_1016_j_omega_2021_102516 crossref_primary_10_1016_j_ijepes_2021_107004 crossref_primary_10_3390_en13215672 crossref_primary_10_3390_en16042080 crossref_primary_10_1111_itor_12710 crossref_primary_10_1016_j_egyr_2023_05_005 crossref_primary_10_1016_j_ijepes_2014_05_054 crossref_primary_10_1541_ieejpes_138_902 crossref_primary_10_1016_j_ijepes_2019_105764 crossref_primary_10_1016_j_cor_2023_106195 crossref_primary_10_1109_JSYST_2018_2812807 crossref_primary_10_1063_1_4917556 crossref_primary_10_1016_j_ijhydene_2016_10_070 crossref_primary_10_1016_j_apenergy_2016_08_112 crossref_primary_10_1016_j_ijepes_2016_02_029 crossref_primary_10_1016_j_eneco_2018_02_012 crossref_primary_10_1109_TSG_2018_2805326 crossref_primary_10_1287_opre_2017_1650 crossref_primary_10_1109_TSG_2019_2899780 crossref_primary_10_1002_mcda_1627 crossref_primary_10_1016_j_ijpe_2022_108759 crossref_primary_10_1016_j_eneco_2020_105065 crossref_primary_10_1016_j_promfg_2020_01_344 crossref_primary_10_1002_rnc_6830 crossref_primary_10_1049_iet_est_2020_0043 crossref_primary_10_1016_j_energy_2021_121015 crossref_primary_10_1016_j_ijepes_2018_09_011 crossref_primary_10_2139_ssrn_4592562 crossref_primary_10_1016_j_omega_2020_102327 crossref_primary_10_1016_j_ins_2017_08_019 crossref_primary_10_1109_TSG_2019_2932621 crossref_primary_10_1007_s41549_023_00083_3 crossref_primary_10_1016_j_energy_2022_124380 crossref_primary_10_1109_TSG_2018_2815593 crossref_primary_10_1109_TSG_2019_2946341 crossref_primary_10_2139_ssrn_4011358 crossref_primary_10_3390_en13061308 crossref_primary_10_1016_j_apenergy_2023_121545 crossref_primary_10_1016_j_ejor_2021_07_047 crossref_primary_10_1016_j_ejor_2020_09_015 crossref_primary_10_1109_ACCESS_2021_3059476 crossref_primary_10_1016_j_ijepes_2020_106555 crossref_primary_10_2139_ssrn_4560864 crossref_primary_10_1109_TSG_2017_2686875 crossref_primary_10_1016_j_eneco_2021_105169 crossref_primary_10_3389_fenrg_2023_1324450 crossref_primary_10_1016_j_ijepes_2018_02_047 crossref_primary_10_3390_en17153749 crossref_primary_10_1016_j_epsr_2021_107762 crossref_primary_10_1016_j_ijepes_2018_05_013 crossref_primary_10_1007_s40565_018_0464_7 crossref_primary_10_1109_TPWRS_2019_2929845 crossref_primary_10_1016_j_apenergy_2022_120626 crossref_primary_10_1155_2023_2425608 crossref_primary_10_1109_TSG_2015_2501808 crossref_primary_10_1007_s10479_018_2815_1 crossref_primary_10_1063_1_4977741 crossref_primary_10_1109_TSG_2013_2258412 crossref_primary_10_1007_s00450_017_0349_4 crossref_primary_10_1016_j_enconman_2021_114064 |
| Cites_doi | 10.1109/TPWRS.2009.2032552 10.1257/0895330027175 10.1109/TSG.2010.2078843 10.1109/TPWRS.2012.2197027 10.1016/j.apenergy.2010.12.015 10.1109/TSG.2010.2046430 10.1016/0378-7788(94)00904-X 10.1109/TPWRS.2008.2007001 10.1109/TPWRS.2011.2129542 10.1109/TPWRS.2010.2052374 10.1016/j.eneco.2011.11.021 10.1016/j.eneco.2009.10.018 10.1109/TPWRS.2010.2095890 10.1007/BF00121269 10.1109/TPWRS.2009.2019777 10.1109/TSTE.2012.2212731 10.1057/jors.1981.156 10.1109/TPWRS.2004.826810 10.1016/j.energy.2009.05.021 10.1002/(SICI)1099-095X(199709/10)8:5<409::AID-ENV261>3.0.CO;2-0 10.1109/TPWRS.2008.922537 10.1109/TPWRS.2004.840397 |
| ContentType | Journal Article |
| Copyright | 2012 Elsevier B.V. 2015 INIST-CNRS |
| Copyright_xml | – notice: 2012 Elsevier B.V. – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7ST C1K SOI 8BJ FQK JBE 7TQ DHY DON 7S9 L.6 |
| DOI | 10.1016/j.eneco.2012.12.010 |
| DatabaseName | CrossRef Pascal-Francis Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences PAIS Index PAIS International PAIS International (Ovid) AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management International Bibliography of the Social Sciences (IBSS) PAIS International AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Environment Abstracts PAIS International International Bibliography of the Social Sciences (IBSS) AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Applied Sciences |
| EISSN | 1873-6181 |
| EndPage | 197 |
| ExternalDocumentID | 27029855 10_1016_j_eneco_2012_12_010 S0140988312003477 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFFL AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAPFB AAQFI AAQXK AARJD AAXUO ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACHQT ACIWK ACRLP ACROA ADBBV ADEZE ADFHU ADIYS ADMUD AEBSH AEFWE AEKER AEYQN AFKWA AFODL AFRAH AFTJW AGHFR AGTHC AGUBO AGYEJ AHHHB AHIDL AIEXJ AIIAU AIKHN AITUG AJBFU AJOXV AJWLA ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AXLSJ AZFZN BEHZQ BELTK BEZPJ BGSCR BKOJK BKOMP BLXMC BNTGB BPUDD BULVW BZJEE CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMB HVGLF HZ~ IHE IXIXF J1W JARJE KOM KZ1 LY5 LY6 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SAC SCC SDF SDG SDP SEB SEE SES SEW SPC SPCBC SSB SSF SSR SSZ T5K TN5 U5U WH7 WUQ YK3 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADMHG ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD BNPGV IQODW SSH 7ST ABUFD C1K SOI 8BJ FQK JBE 7TQ DHY DON 7S9 L.6 |
| ID | FETCH-LOGICAL-c529t-35f87a27efc42ac6a0d25b44f22d5164b2e33954c0be75295a6e6635f27cb64a3 |
| IEDL.DBID | .~1 |
| ISSN | 0140-9883 |
| IngestDate | Sun Sep 28 11:22:25 EDT 2025 Thu Oct 02 08:56:56 EDT 2025 Wed Oct 01 15:01:27 EDT 2025 Tue Oct 07 09:26:05 EDT 2025 Wed Apr 02 07:26:05 EDT 2025 Thu Oct 02 04:23:34 EDT 2025 Thu Apr 24 22:56:16 EDT 2025 Fri Feb 23 02:48:08 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Q4 Real-time pricing Electricity markets Bilevel programming Demand response Energy retail C61 C72 Stochastic programming |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c529t-35f87a27efc42ac6a0d25b44f22d5164b2e33954c0be75295a6e6635f27cb64a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| PQID | 1429914506 |
| PQPubID | 23462 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_1733559357 proquest_miscellaneous_1438600265 proquest_miscellaneous_1437967230 proquest_miscellaneous_1429914506 pascalfrancis_primary_27029855 crossref_citationtrail_10_1016_j_eneco_2012_12_010 crossref_primary_10_1016_j_eneco_2012_12_010 elsevier_sciencedirect_doi_10_1016_j_eneco_2012_12_010 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-03-01 |
| PublicationDateYYYYMMDD | 2013-03-01 |
| PublicationDate_xml | – month: 03 year: 2013 text: 2013-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Energy economics |
| PublicationYear | 2013 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Energinet website (bb0050) 2011 Weron (bb0180) 2006 Oh, Thomas (bb0145) 2008; 23 Parvania, Fotuhi-Firuzabad (bb0150) 2010; 1 von Stackelberg (bb0175) 2011 Jónsson, Pinson, Nielsen, Madsen, Nielsen (bb0090) 2013; 4 Madsen, H., 1985. Statistically determined dynamical models for climate processes, Ph.D. thesis, Technical University of Denmark. Morales, Conejo (bb0135) 2011; 26 Luenberger (bb0110) 1984 Pereira, Granville, Fampa, Dix, Barroso (bb0155) 2005; 20 Ilić, Xie, Joo (bb0070) 2011; 26 Luo, Pang, Ralph (bb0115) 1996 Halvgaard, Poulsen, Madsen, Jørgensen (bb0060) 2012 Chicco, Napoli, Piglione, Postolache, Scutariu, Toader (bb0020) 2004; 19 Kristoffersen, Capion, Meibom (bb0095) 2011; 88 Algarni, Bhattacharya (bb0005) 2009; 24 Borenstein (bb0010) 2002; 16 Torriti, Hassan, Leach (bb0165) 2010; 35 Madsen (bb0125) 2007 Madsen, Holst (bb0130) 1995; 22 Carrión, Arroyo, Conejo (bb0015) 2009; 24 Jónsson, T., 2012. Forecasting and decision-making in electricity markets with focus on wind energy, Ph.D. thesis, Technical University of Denmark. Conejo, Castillo, Mínguez, García Bertrand (bb0025) 2006 Fortuny-Amat, McCarl (bb0055) 1981; 32 Nguyen, Negnevitsky, de Groot (bb0140) 2011; 26 Danish Energy Association (bb0040) 2010 . Dubrovsky (bb0045) 1997; 8 Loridan, Morgan (bb0105) 1996; 8 Vespucci, Innorta, Cervigni (bb0170) 2013; 35 Iowa Environmental Mesonet website (bb0075) 2011 Kwakernaak, Sivan (bb0100) 1972 Sioshansi (bb0160) 2010; 25 Conejo, Morales, Baringo (bb0030) 2010; 1 Ilić, Xie, Joo (bb0065) 2011; 26 Corradi, O., Ochsenfeld, H., Madsen, H., Pinson, P., in press. Controlling the electricity consumption by forecasting its response to varying prices. IEEE Trans. Power Syst. Jónsson, Pinson, Madsen (bb0085) 2010; 32 Ilić (10.1016/j.eneco.2012.12.010_bb0065) 2011; 26 Weron (10.1016/j.eneco.2012.12.010_bb0180) 2006 10.1016/j.eneco.2012.12.010_bb0080 Jónsson (10.1016/j.eneco.2012.12.010_bb0085) 2010; 32 Kristoffersen (10.1016/j.eneco.2012.12.010_bb0095) 2011; 88 Dubrovsky (10.1016/j.eneco.2012.12.010_bb0045) 1997; 8 Danish Energy Association (10.1016/j.eneco.2012.12.010_bb0040) 2010 Nguyen (10.1016/j.eneco.2012.12.010_bb0140) 2011; 26 Torriti (10.1016/j.eneco.2012.12.010_bb0165) 2010; 35 Jónsson (10.1016/j.eneco.2012.12.010_bb0090) 2013; 4 Kwakernaak (10.1016/j.eneco.2012.12.010_bb0100) 1972 10.1016/j.eneco.2012.12.010_bb0120 Conejo (10.1016/j.eneco.2012.12.010_bb0030) 2010; 1 Madsen (10.1016/j.eneco.2012.12.010_bb0125) 2007 Vespucci (10.1016/j.eneco.2012.12.010_bb0170) 2013; 35 Sioshansi (10.1016/j.eneco.2012.12.010_bb0160) 2010; 25 von Stackelberg (10.1016/j.eneco.2012.12.010_bb0175) 2011 Pereira (10.1016/j.eneco.2012.12.010_bb0155) 2005; 20 Ilić (10.1016/j.eneco.2012.12.010_bb0070) 2011; 26 Parvania (10.1016/j.eneco.2012.12.010_bb0150) 2010; 1 Carrión (10.1016/j.eneco.2012.12.010_bb0015) 2009; 24 Morales (10.1016/j.eneco.2012.12.010_bb0135) 2011; 26 Luo (10.1016/j.eneco.2012.12.010_bb0115) 1996 Algarni (10.1016/j.eneco.2012.12.010_bb0005) 2009; 24 Borenstein (10.1016/j.eneco.2012.12.010_bb0010) 2002; 16 Conejo (10.1016/j.eneco.2012.12.010_bb0025) 2006 10.1016/j.eneco.2012.12.010_bb0035 Fortuny-Amat (10.1016/j.eneco.2012.12.010_bb0055) 1981; 32 Chicco (10.1016/j.eneco.2012.12.010_bb0020) 2004; 19 Iowa Environmental Mesonet website (10.1016/j.eneco.2012.12.010_bb0075) Madsen (10.1016/j.eneco.2012.12.010_bb0130) 1995; 22 Halvgaard (10.1016/j.eneco.2012.12.010_bb0060) 2012 Luenberger (10.1016/j.eneco.2012.12.010_bb0110) 1984 Oh (10.1016/j.eneco.2012.12.010_bb0145) 2008; 23 Energinet website (10.1016/j.eneco.2012.12.010_bb0050) Loridan (10.1016/j.eneco.2012.12.010_bb0105) 1996; 8 |
| References_xml | – year: 1972 ident: bb0100 article-title: Linear Optimal Control Systems – reference: Madsen, H., 1985. Statistically determined dynamical models for climate processes, Ph.D. thesis, Technical University of Denmark. – volume: 20 start-page: 180 year: 2005 end-page: 188 ident: bb0155 article-title: Strategic bidding under uncertainty: a binary expansion approach publication-title: IEEE Trans. Power Syst. – year: 2011 ident: bb0075 – volume: 26 start-page: 1875 year: 2011 end-page: 1884 ident: bb0065 article-title: Efficient coordination of wind power and price-responsive demand—Part I: theoretical foundations publication-title: IEEE Trans. Power Syst. – year: 1984 ident: bb0110 article-title: Linear and Nonlinear Programming – volume: 16 start-page: 191 year: 2002 end-page: 211 ident: bb0010 article-title: The trouble with electricity markets: understanding California's restructuring disaster publication-title: J. Econ. Perspect. – year: 2010 ident: bb0040 article-title: Dansk elforsyning statistik 2009 – volume: 35 start-page: 35 year: 2013 end-page: 41 ident: bb0170 article-title: A Mixed Integer Linear Programming model of a zonal electricity market with a dominant producer publication-title: Energy Econ. – year: 2006 ident: bb0025 article-title: Decomposition Techniques in Mathematical Programming. Engineering and Science Applications – volume: 22 start-page: 67 year: 1995 end-page: 79 ident: bb0130 article-title: Estimation of continuous-time models for the heat dynamics of a building publication-title: Energy Build. – volume: 32 start-page: 313 year: 2010 end-page: 320 ident: bb0085 article-title: On the market impact of wind energy forecasts publication-title: Energy Econ. – volume: 19 start-page: 1232 year: 2004 end-page: 1239 ident: bb0020 article-title: Load pattern-based classification of electricity customers publication-title: IEEE Trans. Power Syst. – volume: 26 start-page: 820 year: 2011 end-page: 828 ident: bb0135 article-title: Simulating the impact of wind production on locational marginal prices publication-title: IEEE Trans. Power Syst. – reference: Corradi, O., Ochsenfeld, H., Madsen, H., Pinson, P., in press. Controlling the electricity consumption by forecasting its response to varying prices. IEEE Trans. Power Syst. – year: 2011 ident: bb0050 – year: 2007 ident: bb0125 article-title: Time Series Analysis – volume: 1 start-page: 236 year: 2010 end-page: 242 ident: bb0030 article-title: Real-time demand response model publication-title: IEEE Trans. Smart Grid – volume: 88 start-page: 1940 year: 2011 end-page: 1948 ident: bb0095 article-title: Optimal charging of electric drive vehicles in a market environment publication-title: Appl. Energy – volume: 8 start-page: 263 year: 1996 end-page: 287 ident: bb0105 article-title: Weak via strong Stackelberg problems: new results publication-title: J. Glob. Optim. – volume: 26 start-page: 1884 year: 2011 end-page: 1893 ident: bb0070 article-title: Efficient coordination of wind power and price-responsive demand—Part II: case studies publication-title: IEEE Trans. Power Syst. – volume: 1 start-page: 89 year: 2010 end-page: 98 ident: bb0150 article-title: Demand response scheduling by stochastic SCUC publication-title: IEEE Trans. Smart Grids – reference: Jónsson, T., 2012. Forecasting and decision-making in electricity markets with focus on wind energy, Ph.D. thesis, Technical University of Denmark. – year: 1996 ident: bb0115 article-title: Mathematical Programs with Equilibrium Constraints – volume: 35 start-page: 1575 year: 2010 end-page: 1583 ident: bb0165 article-title: Demand response experience in Europe: policies, programmes and implementation publication-title: Energy – reference: . – year: 2006 ident: bb0180 article-title: Modeling and Forecasting Electricity Loads and Prices – year: 2011 ident: bb0175 article-title: Market Structure and Equilibrium – volume: 4 start-page: 210 year: 2013 end-page: 218 ident: bb0090 article-title: Forecasting electricity spot prices accounting for wind power predictions publication-title: IEEE Trans. Sustain. Energy – volume: 23 start-page: 1050 year: 2008 end-page: 1056 ident: bb0145 article-title: Demand-side bidding agents: modeling and simulation publication-title: IEEE Trans. Power Syst. – volume: 26 start-page: 1677 year: 2011 end-page: 1685 ident: bb0140 article-title: Pool-based demand response exchange—concept and modeling publication-title: IEEE Trans. Power Syst. – volume: 24 start-page: 356 year: 2009 end-page: 367 ident: bb0005 article-title: A generic operations framework for discos in retail electricity markets publication-title: IEEE Trans. Power Syst. – volume: 8 start-page: 409 year: 1997 end-page: 424 ident: bb0045 article-title: Creating daily weather series with use of the weather generator publication-title: Environmetrics – volume: 32 start-page: 783 year: 1981 end-page: 792 ident: bb0055 article-title: A representation and economic interpretation of a two-level programming problem publication-title: J. Oper. Res. Soc. – year: 2012 ident: bb0060 article-title: Economic model predictive control for building climate control in a smart grid publication-title: IEEE PES Conference on Innovative Smart Grid Technologies (ISGT), Washington, USA – volume: 25 start-page: 741 year: 2010 end-page: 748 ident: bb0160 article-title: Evaluating the impact of real-time pricing on the cost and value of wind generation publication-title: IEEE Trans. Power Syst. – volume: 24 year: 2009 ident: bb0015 article-title: A bilevel stochastic programming approach for retailer futures market trading publication-title: IEEE Trans. Power Syst. – year: 2007 ident: 10.1016/j.eneco.2012.12.010_bb0125 – volume: 25 start-page: 741 year: 2010 ident: 10.1016/j.eneco.2012.12.010_bb0160 article-title: Evaluating the impact of real-time pricing on the cost and value of wind generation publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2009.2032552 – year: 2011 ident: 10.1016/j.eneco.2012.12.010_bb0175 – volume: 16 start-page: 191 year: 2002 ident: 10.1016/j.eneco.2012.12.010_bb0010 article-title: The trouble with electricity markets: understanding California's restructuring disaster publication-title: J. Econ. Perspect. doi: 10.1257/0895330027175 – volume: 1 start-page: 236 year: 2010 ident: 10.1016/j.eneco.2012.12.010_bb0030 article-title: Real-time demand response model publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2010.2078843 – ident: 10.1016/j.eneco.2012.12.010_bb0035 doi: 10.1109/TPWRS.2012.2197027 – volume: 26 start-page: 1884 year: 2011 ident: 10.1016/j.eneco.2012.12.010_bb0070 article-title: Efficient coordination of wind power and price-responsive demand—Part II: case studies publication-title: IEEE Trans. Power Syst. – ident: 10.1016/j.eneco.2012.12.010_bb0075 – volume: 88 start-page: 1940 year: 2011 ident: 10.1016/j.eneco.2012.12.010_bb0095 article-title: Optimal charging of electric drive vehicles in a market environment publication-title: Appl. Energy doi: 10.1016/j.apenergy.2010.12.015 – ident: 10.1016/j.eneco.2012.12.010_bb0120 – volume: 1 start-page: 89 year: 2010 ident: 10.1016/j.eneco.2012.12.010_bb0150 article-title: Demand response scheduling by stochastic SCUC publication-title: IEEE Trans. Smart Grids doi: 10.1109/TSG.2010.2046430 – year: 2006 ident: 10.1016/j.eneco.2012.12.010_bb0025 – volume: 22 start-page: 67 year: 1995 ident: 10.1016/j.eneco.2012.12.010_bb0130 article-title: Estimation of continuous-time models for the heat dynamics of a building publication-title: Energy Build. doi: 10.1016/0378-7788(94)00904-X – volume: 24 start-page: 356 year: 2009 ident: 10.1016/j.eneco.2012.12.010_bb0005 article-title: A generic operations framework for discos in retail electricity markets publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2008.2007001 – ident: 10.1016/j.eneco.2012.12.010_bb0050 – year: 1984 ident: 10.1016/j.eneco.2012.12.010_bb0110 – volume: 26 start-page: 1875 year: 2011 ident: 10.1016/j.eneco.2012.12.010_bb0065 article-title: Efficient coordination of wind power and price-responsive demand—Part I: theoretical foundations publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2011.2129542 – year: 1972 ident: 10.1016/j.eneco.2012.12.010_bb0100 – volume: 26 start-page: 820 year: 2011 ident: 10.1016/j.eneco.2012.12.010_bb0135 article-title: Simulating the impact of wind production on locational marginal prices publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2010.2052374 – volume: 35 start-page: 35 year: 2013 ident: 10.1016/j.eneco.2012.12.010_bb0170 article-title: A Mixed Integer Linear Programming model of a zonal electricity market with a dominant producer publication-title: Energy Econ. doi: 10.1016/j.eneco.2011.11.021 – volume: 32 start-page: 313 year: 2010 ident: 10.1016/j.eneco.2012.12.010_bb0085 article-title: On the market impact of wind energy forecasts publication-title: Energy Econ. doi: 10.1016/j.eneco.2009.10.018 – volume: 26 start-page: 1677 year: 2011 ident: 10.1016/j.eneco.2012.12.010_bb0140 article-title: Pool-based demand response exchange—concept and modeling publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2010.2095890 – volume: 8 start-page: 263 year: 1996 ident: 10.1016/j.eneco.2012.12.010_bb0105 article-title: Weak via strong Stackelberg problems: new results publication-title: J. Glob. Optim. doi: 10.1007/BF00121269 – volume: 24 year: 2009 ident: 10.1016/j.eneco.2012.12.010_bb0015 article-title: A bilevel stochastic programming approach for retailer futures market trading publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2009.2019777 – year: 2006 ident: 10.1016/j.eneco.2012.12.010_bb0180 – volume: 4 start-page: 210 year: 2013 ident: 10.1016/j.eneco.2012.12.010_bb0090 article-title: Forecasting electricity spot prices accounting for wind power predictions publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2012.2212731 – volume: 32 start-page: 783 year: 1981 ident: 10.1016/j.eneco.2012.12.010_bb0055 article-title: A representation and economic interpretation of a two-level programming problem publication-title: J. Oper. Res. Soc. doi: 10.1057/jors.1981.156 – volume: 19 start-page: 1232 year: 2004 ident: 10.1016/j.eneco.2012.12.010_bb0020 article-title: Load pattern-based classification of electricity customers publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2004.826810 – ident: 10.1016/j.eneco.2012.12.010_bb0080 – volume: 35 start-page: 1575 year: 2010 ident: 10.1016/j.eneco.2012.12.010_bb0165 article-title: Demand response experience in Europe: policies, programmes and implementation publication-title: Energy doi: 10.1016/j.energy.2009.05.021 – year: 1996 ident: 10.1016/j.eneco.2012.12.010_bb0115 – volume: 8 start-page: 409 year: 1997 ident: 10.1016/j.eneco.2012.12.010_bb0045 article-title: Creating daily weather series with use of the weather generator publication-title: Environmetrics doi: 10.1002/(SICI)1099-095X(199709/10)8:5<409::AID-ENV261>3.0.CO;2-0 – year: 2010 ident: 10.1016/j.eneco.2012.12.010_bb0040 – volume: 23 start-page: 1050 year: 2008 ident: 10.1016/j.eneco.2012.12.010_bb0145 article-title: Demand-side bidding agents: modeling and simulation publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2008.922537 – year: 2012 ident: 10.1016/j.eneco.2012.12.010_bb0060 article-title: Economic model predictive control for building climate control in a smart grid – volume: 20 start-page: 180 year: 2005 ident: 10.1016/j.eneco.2012.12.010_bb0155 article-title: Strategic bidding under uncertainty: a binary expansion approach publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2004.840397 |
| SSID | ssj0005658 |
| Score | 2.527413 |
| Snippet | Demand response programmes are seen as one of the contributing solutions to the challenges posed to power systems by the large-scale integration of renewable... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 182 |
| SubjectTerms | Accounting Applied sciences Bilevel programming computer software Consumers Cost Demand response Economic data Electric energy Electric power electricity Electricity markets Energy energy costs Energy economics Energy market Energy policy Energy retail Environment Exact sciences and technology Game theory General, economic and professional studies Markets Methodology. Modelling Natural energy Power demand Prices Pricing Profits Purchasing Real-time pricing Regulation retail marketing Risk Stochastic processes Stochastic programming wholesale marketing |
| Title | A bilevel model for electricity retailers' participation in a demand response market environment |
| URI | https://dx.doi.org/10.1016/j.eneco.2012.12.010 https://www.proquest.com/docview/1429914506 https://www.proquest.com/docview/1437967230 https://www.proquest.com/docview/1438600265 https://www.proquest.com/docview/1733559357 |
| Volume | 36 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6181 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005658 issn: 0140-9883 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6181 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005658 issn: 0140-9883 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-6181 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005658 issn: 0140-9883 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Journal Collection customDbUrl: eissn: 1873-6181 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005658 issn: 0140-9883 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6181 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005658 issn: 0140-9883 databaseCode: AKRWK dateStart: 19790101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-wwEA-iBx88xE_e-rFEELzYt22arx6XxWVV9KTgraZJCitaF3f16N_uTNrKynv0IPRUJqSdaWYmze83Q8iJ8XFivUwia0oVca6QrOx0pAVnWJDOmMCFub6Rkzt-eS_uV8io5cIgrLLx_bVPD966uTNotDmYTaeDAEvKtE4TxFdxhYxymAu7GPz9WIJ5yNCjM8AYUbqtPBQwXuBOLDIAExb-CSKN9v_R6ffMzEFnZd3s4h-_HYLReJNsNFkkHdYPukVWfLVN1luS8XyHPAxpAev93T_R0OuGQm5K65Y3UwuJN30N0FHI_U7pzCxBq-m0ooY6_2wqB0IBQOvpc-BG0yVW3C65G5_fjiZR00whsoJliygVpVaGKV9azoyVJnZMFJyXjDkBe6aC-TTNBLdx4RWe_hnpMRspmbKF5CbdI6vVS-X_EBoXTrjYZo67hFuhjCnQtKWAZFFL7XuEtUrMbVNpHBtePOUtpOwxD5rPUfM5XKD5Hjn7GjSrC210i8vWOvm37yWHUNA9sP_Nll-TITEv00L0yHFr3ByWGp6fmMq_vM1hlwSxO-Eill0yqcqkgo1dp4zG41DZNZdKIRPMUqH2f_qmB-QXC707EDB3SFYXr2_-CDKoRdEPS6RP1oYXV5ObT6HEGuc |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ReqBSVfWpLhTqSpV6abqJ41eOCBVtW-AEEjfXsR1pKwgrdumR386Mk6BFVDlUyikay8lMPDOOv28G4LOLeeGjKjLvGp0JoYmsHExmpOBUkM65xIU5PlGzM_HzXJ5vwMHAhSFYZe_7O5-evHV_Z9prc7qYz6cJllQZUxaErxJaP4GnQnJNO7Bvt2s4D5WadCYcI4kPpYcSyAv9iScKYMHTT0Hi0f47PD1fuCUqrem6XTxy3CkaHb6EF30ayfa7J30FG7F9DVsDy3j5Bn7vsxoX_N94wVKzG4bJKet63sw9Zt7sOmFHMfn7whZuDVvN5i1zLMRL1wYUSgjayC4TOZqt0eLewtnh99ODWdZ3U8i85NUqK2VjtOM6Nl5w55XLA5e1EA3nQeKmqeaxLCspfF5HTcd_TkVKRxqufa2EK9_BZnvVxvfA8jrIkPsqiFAIL7VzNdm2kZgtGmXiBPigROv7UuPU8eLCDpiyPzZp3pLmLV6o-Ql8vR-06CptjIurwTr2wQdjMRaMD9x7YMv7yYiZVxkpJ_BpMK7FtUYHKK6NVzdL3CZh8C6EzNWYTKkrpXFnNypj6DxUjc2lS0wFq1Lq7f9904-wNTs9PrJHP05-7cAznhp5EHruA2yurm_iLqZTq3ovLZc7_a4cfA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+bilevel+model+for+electricity+retailers%27+participation+in+a+demand+response+market+environment&rft.jtitle=Energy+economics&rft.au=Zugno%2C+Marco&rft.au=Morales%2C+Juan+Miguel&rft.au=Pinson%2C+Pierre&rft.au=Madsen%2C+Henrik&rft.date=2013-03-01&rft.pub=Elsevier+B.V&rft.issn=0140-9883&rft.eissn=1873-6181&rft.volume=36&rft.spage=182&rft.epage=197&rft_id=info:doi/10.1016%2Fj.eneco.2012.12.010&rft.externalDocID=S0140988312003477 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-9883&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-9883&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-9883&client=summon |