A bilevel model for electricity retailers' participation in a demand response market environment

Demand response programmes are seen as one of the contributing solutions to the challenges posed to power systems by the large-scale integration of renewable power sources, mostly due to their intermittent and stochastic nature. Among demand response programmes, real-time pricing schemes for small c...

Full description

Saved in:
Bibliographic Details
Published inEnergy economics Vol. 36; pp. 182 - 197
Main Authors Zugno, Marco, Morales, Juan Miguel, Pinson, Pierre, Madsen, Henrik
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.03.2013
Elsevier
Subjects
Online AccessGet full text
ISSN0140-9883
1873-6181
DOI10.1016/j.eneco.2012.12.010

Cover

Abstract Demand response programmes are seen as one of the contributing solutions to the challenges posed to power systems by the large-scale integration of renewable power sources, mostly due to their intermittent and stochastic nature. Among demand response programmes, real-time pricing schemes for small consumers are believed to have significant potential for peak-shaving and load-shifting, thus relieving the power system while reducing costs and risk for energy retailers. This paper proposes a game theoretical model accounting for the Stackelberg relationship between retailers (leaders) and consumers (followers) in a dynamic price environment. Both players in the game solve an economic optimisation problem subject to stochasticity in prices, weather-related variables and must-serve load. The model allows the determination of the dynamic price-signal delivering maximum retailer profit, and the optimal load pattern for consumers under this pricing. The bilevel programme is reformulated as a single-level MILP, which can be solved using commercial off-the-shelf optimisation software. In an illustrative example, we simulate and compare the dynamic pricing scheme with fixed and time-of-use pricing. We find that the dynamic pricing scheme is the most effective in achieving load-shifting, thus reducing retailer costs for energy procurement and regulation in the wholesale market. Additionally, the redistribution of the saved costs between retailers and consumers is investigated, showing that real-time pricing is less convenient than fixed and time-of-use price for consumers. This implies that careful design of the retail market is needed. Finally, we carry out a sensitivity analysis to analyse the effect of different levels of consumer flexibility. ► We model the game between electricity retailers and consumers under dynamic pricing. ► The retailer cuts procurement costs by shifting demand in time via price-incentive. ► Imbalance costs for the retailer taper off when using real-time pricing. ► The additional welfare can be distributed unfairly between retailers and consumers. ► Real-time pricing encourages consumers to increase their flexibility.
AbstractList Demand response programmes are seen as one of the contributing solutions to the challenges posed to power systems by the large-scale integration of renewable power sources, mostly due to their intermittent and stochastic nature. Among demand response programmes, real-time pricing schemes for small consumers are believed to have significant potential for peak-shaving and load-shifting, thus relieving the power system while reducing costs and risk for energy retailers. This paper proposes a game theoretical model accounting for the Stackelberg relationship between retailers (leaders) and consumers (followers) in a dynamic price environment. Both players in the game solve an economic optimisation problem subject to stochasticity in prices, weather-related variables and must-serve load. The model allows the determination of the dynamic price-signal delivering maximum retailer profit, and the optimal load pattern for consumers under this pricing. The bilevel programme is reformulated as a single-level MILP, which can be solved using commercial off-the-shelf optimisation software. In an illustrative example, we simulate and compare the dynamic pricing scheme with fixed and time-of-use pricing. We find that the dynamic pricing scheme is the most effective in achieving load-shifting, thus reducing retailer costs for energy procurement and regulation in the wholesale market. Additionally, the redistribution of the saved costs between retailers and consumers is investigated, showing that real-time pricing is less convenient than fixed and time-of-use price for consumers. This implies that careful design of the retail market is needed. Finally, we carry out a sensitivity analysis to analyse the effect of different levels of consumer flexibility.
Demand response programmes are seen as one of the contributing solutions to the challenges posed to power systems by the large-scale integration of renewable power sources, mostly due to their intermittent and stochastic nature. Among demand response programmes, real-time pricing schemes for small consumers are believed to have significant potential for peak-shaving and load-shifting, thus relieving the power system while reducing costs and risk for energy retailers. This paper proposes a game theoretical model accounting for the Stackelberg relationship between retailers (leaders) and consumers (followers) in a dynamic price environment. Both players in the game solve an economic optimisation problem subject to stochasticity in prices, weather-related variables and must-serve load. The model allows the determination of the dynamic price-signal delivering maximum retailer profit, and the optimal load pattern for consumers under this pricing. The bilevel programme is reformulated as a single-level MILP, which can be solved using commercial off-the-shelf optimisation software. In an illustrative example, we simulate and compare the dynamic pricing scheme with fixed and time-of-use pricing. We find that the dynamic pricing scheme is the most effective in achieving load-shifting, thus reducing retailer costs for energy procurement and regulation in the wholesale market. Additionally, the redistribution of the saved costs between retailers and consumers is investigated, showing that real-time pricing is less convenient than fixed and time-of-use price for consumers. This implies that careful design of the retail market is needed. Finally, we carry out a sensitivity analysis to analyse the effect of different levels of consumer flexibility. [Copyright Elsevier B.V.]
Demand response programmes are seen as one of the contributing solutions to the challenges posed to power systems by the large-scale integration of renewable power sources, mostly due to their intermittent and stochastic nature. Among demand response programmes, real-time pricing schemes for small consumers are believed to have significant potential for peak-shaving and load-shifting, thus relieving the power system while reducing costs and risk for energy retailers. This paper proposes a game theoretical model accounting for the Stackelberg relationship between retailers (leaders) and consumers (followers) in a dynamic price environment. Both players in the game solve an economic optimisation problem subject to stochasticity in prices, weather-related variables and must-serve load. The model allows the determination of the dynamic price-signal delivering maximum retailer profit, and the optimal load pattern for consumers under this pricing. The bilevel programme is reformulated as a single-level MILP, which can be solved using commercial off-the-shelf optimisation software. In an illustrative example, we simulate and compare the dynamic pricing scheme with fixed and time-of-use pricing. We find that the dynamic pricing scheme is the most effective in achieving load-shifting, thus reducing retailer costs for energy procurement and regulation in the wholesale market. Additionally, the redistribution of the saved costs between retailers and consumers is investigated, showing that real-time pricing is less convenient than fixed and time-of-use price for consumers. This implies that careful design of the retail market is needed. Finally, we carry out a sensitivity analysis to analyse the effect of different levels of consumer flexibility. ► We model the game between electricity retailers and consumers under dynamic pricing. ► The retailer cuts procurement costs by shifting demand in time via price-incentive. ► Imbalance costs for the retailer taper off when using real-time pricing. ► The additional welfare can be distributed unfairly between retailers and consumers. ► Real-time pricing encourages consumers to increase their flexibility.
Demand response programmes are seen as one of the contributing solutions to the challenges posed to power systems by the large-scale integration of renewable power sources, mostly due to their intermittent and stochastic nature. Among demand response programmes, real-time pricing schemes for small consumers are believed to have significant potential for peak-shaving and load-shifting, thus relieving the power system while reducing costs and risk for energy retailers. This paper proposes a game theoretical model accounting for the Stackelberg relationship between retailers (leaders) and consumers (followers) in a dynamic price environment. Both players in the game solve an economic optimisation problem subject to stochasticity in prices, weather-related variables and must-serve load. The model allows the determination of the dynamic price-signal delivering maximum retailer profit, and the optimal load pattern for consumers under this pricing. The bilevel programme is reformulated as a single-level MILP, which can be solved using commercial off-the-shelf optimisation software. In an illustrative example, we simulate and compare the dynamic pricing scheme with fixed and time-of-use pricing. We find that the dynamic pricing scheme is the most effective in achieving load-shifting, thus reducing retailer costs for energy procurement and regulation in the wholesale market. Additionally, the redistribution of the saved costs between retailers and consumers is investigated, showing that real-time pricing is less convenient than fixed and time-of-use price for consumers. This implies that careful design of the retail market is needed. Finally, we carry out a sensitivity analysis to analyse the effect of different levels of consumer flexibility. All rights reserved, Elsevier
Author Zugno, Marco
Pinson, Pierre
Madsen, Henrik
Morales, Juan Miguel
Author_xml – sequence: 1
  givenname: Marco
  surname: Zugno
  fullname: Zugno, Marco
  email: mazu@imm.dtu.dk
– sequence: 2
  givenname: Juan Miguel
  surname: Morales
  fullname: Morales, Juan Miguel
  email: jmmgo@imm.dtu.dk
– sequence: 3
  givenname: Pierre
  surname: Pinson
  fullname: Pinson, Pierre
  email: pp@imm.dtu.dk
– sequence: 4
  givenname: Henrik
  surname: Madsen
  fullname: Madsen, Henrik
  email: hm@imm.dtu.dk
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27029855$$DView record in Pascal Francis
BookMark eNqNkj1rHDEQhkVwIOePX5BGTUiavehbqyKFMUlsMKRxalmrnQVddqWNJB_430fnc5oUjmGQQDzPDMyrU3QSUwSE3lOypYSqz7stRPBpywhl21aEkjdoQ3vNO0V7eoI2hArSmb7n79BpKTtCiFSy36D7SzyEGfYw4yWN7ZxSxjCDrzn4UB9xhuoakMtHvLpc2-PqakgRh4gdHmFxcWxQWVMsgBeXf0HFEPchp7hArOfo7eTmAhfP9xn6-e3r3dV1d_vj-83V5W3nJTO143LqtWMaJi-Y88qRkclBiImxUVIlBgacGyk8GUA3QzoFSjWLaT8o4fgZ-nTsu-b0-wFKtUsoHubZRUgPxVLNuZSGS_1_VPBeEcKUfA2qjdKMk1egzBgqJFEN_fCMuuLdPGUXfSh2zaHt79EyTZjp5WG6OXI-p1IyTLZF8rT9mlsolhJ7iN_u7FP89hC_bdXiby7_x_3b_mXry9GCFtU-QLbFB4gexpDbn7BjCi_6fwDsW8tP
CODEN EECODR
CitedBy_id crossref_primary_10_1016_j_orp_2023_100276
crossref_primary_10_2139_ssrn_2948369
crossref_primary_10_1109_TSG_2018_2834527
crossref_primary_10_3390_en14082095
crossref_primary_10_1007_s40866_021_00112_z
crossref_primary_10_1002_eej_22743
crossref_primary_10_1109_TPWRS_2015_2475175
crossref_primary_10_1007_s12351_023_00753_1
crossref_primary_10_1109_TII_2014_2342032
crossref_primary_10_1016_j_ijepes_2019_105701
crossref_primary_10_1016_j_ijepes_2020_106252
crossref_primary_10_1002_er_6545
crossref_primary_10_1016_j_epsr_2022_108478
crossref_primary_10_1049_iet_gtd_2020_1047
crossref_primary_10_3390_en15228445
crossref_primary_10_1016_j_energy_2021_120517
crossref_primary_10_1016_j_orp_2024_100300
crossref_primary_10_1002_2050_7038_12867
crossref_primary_10_1016_j_epsr_2019_105869
crossref_primary_10_1016_j_esr_2017_09_001
crossref_primary_10_1080_01900692_2019_1669052
crossref_primary_10_1016_j_eneco_2021_105774
crossref_primary_10_1016_j_apenergy_2018_01_051
crossref_primary_10_1016_j_eneco_2022_105836
crossref_primary_10_1016_j_omega_2019_01_005
crossref_primary_10_1007_s10100_020_00699_1
crossref_primary_10_1016_j_apenergy_2015_10_125
crossref_primary_10_1016_j_apenergy_2016_12_134
crossref_primary_10_1109_ACCESS_2020_2983868
crossref_primary_10_20965_jaciii_2018_p0359
crossref_primary_10_1016_j_rser_2017_01_020
crossref_primary_10_1016_j_epsr_2020_106960
crossref_primary_10_1109_TSG_2015_2428194
crossref_primary_10_1016_j_ijepes_2018_03_032
crossref_primary_10_1109_TSG_2017_2752712
crossref_primary_10_1016_j_ejor_2018_06_026
crossref_primary_10_1016_j_enconman_2017_01_017
crossref_primary_10_1109_TIA_2020_2984614
crossref_primary_10_1109_TSG_2015_2462083
crossref_primary_10_1049_iet_gtd_2017_0412
crossref_primary_10_1109_TSG_2016_2565383
crossref_primary_10_1016_j_energy_2018_10_189
crossref_primary_10_1016_j_energy_2018_09_139
crossref_primary_10_1016_j_ins_2018_03_039
crossref_primary_10_1109_TSG_2017_2671743
crossref_primary_10_1016_j_apenergy_2021_116546
crossref_primary_10_1007_s12667_021_00496_y
crossref_primary_10_3390_su9111990
crossref_primary_10_1049_iet_gtd_2018_6554
crossref_primary_10_1016_j_energy_2022_124753
crossref_primary_10_1016_j_ijepes_2016_03_015
crossref_primary_10_3390_en9120983
crossref_primary_10_1007_s00291_024_00802_x
crossref_primary_10_1016_j_energy_2025_135221
crossref_primary_10_1002_2050_7038_12160
crossref_primary_10_1016_j_solener_2018_07_004
crossref_primary_10_1541_ieejeiss_136_732
crossref_primary_10_1007_s13369_020_04670_9
crossref_primary_10_1016_j_epsr_2022_108560
crossref_primary_10_1016_j_apenergy_2016_11_024
crossref_primary_10_1016_j_rser_2014_07_098
crossref_primary_10_1109_TSG_2021_3135561
crossref_primary_10_1007_s12667_020_00407_7
crossref_primary_10_1016_j_segan_2016_06_002
crossref_primary_10_1016_j_orp_2018_07_003
crossref_primary_10_1541_ieejeiss_135_292
crossref_primary_10_1049_iet_gtd_2018_5176
crossref_primary_10_1007_s40866_022_00158_7
crossref_primary_10_1007_s11768_017_6186_y
crossref_primary_10_1016_j_apenergy_2015_04_067
crossref_primary_10_1016_j_trb_2024_103056
crossref_primary_10_1109_ACCESS_2022_3164689
crossref_primary_10_1109_TSTE_2023_3327336
crossref_primary_10_1016_j_ijpe_2018_04_022
crossref_primary_10_1109_TPWRS_2018_2867476
crossref_primary_10_1016_j_segan_2020_100411
crossref_primary_10_3390_en15249568
crossref_primary_10_1016_j_segan_2022_100931
crossref_primary_10_1080_15435075_2020_1865372
crossref_primary_10_1109_TIE_2018_2826454
crossref_primary_10_1007_s13235_022_00454_y
crossref_primary_10_1016_j_rser_2015_12_031
crossref_primary_10_1016_j_epsr_2016_08_038
crossref_primary_10_1016_j_cie_2016_08_021
crossref_primary_10_1016_j_epsr_2020_106761
crossref_primary_10_1109_TSG_2017_2673860
crossref_primary_10_2139_ssrn_4002800
crossref_primary_10_1016_j_ejco_2021_100007
crossref_primary_10_1016_j_enpol_2020_112116
crossref_primary_10_1016_j_ijepes_2020_106065
crossref_primary_10_1109_TNSE_2020_3024786
crossref_primary_10_1016_j_adapen_2022_100100
crossref_primary_10_1016_j_eneco_2018_01_028
crossref_primary_10_1016_j_orl_2022_08_008
crossref_primary_10_1016_j_ins_2013_09_021
crossref_primary_10_1007_s40565_014_0086_7
crossref_primary_10_1049_iet_gtd_2017_0731
crossref_primary_10_1109_TSTE_2017_2701836
crossref_primary_10_1016_j_trb_2013_10_002
crossref_primary_10_1061__ASCE_EY_1943_7897_0000462
crossref_primary_10_1016_j_apenergy_2021_117684
crossref_primary_10_1049_iet_gtd_2019_1433
crossref_primary_10_1109_TPWRS_2016_2530843
crossref_primary_10_1109_TEM_2025_3545951
crossref_primary_10_1007_s00500_022_07038_3
crossref_primary_10_1016_j_eneco_2023_106567
crossref_primary_10_1016_j_cor_2017_12_014
crossref_primary_10_1109_TSG_2023_3329726
crossref_primary_10_1007_s00291_022_00697_6
crossref_primary_10_1109_TSG_2014_2376522
crossref_primary_10_1016_j_ijepes_2022_108831
crossref_primary_10_1016_j_apenergy_2016_09_014
crossref_primary_10_1007_s40565_019_0569_7
crossref_primary_10_1186_s42162_018_0020_8
crossref_primary_10_1016_j_jup_2015_03_002
crossref_primary_10_1007_s10898_022_01172_w
crossref_primary_10_1109_COMST_2014_2341586
crossref_primary_10_1109_TSG_2017_2750706
crossref_primary_10_1007_s12046_022_01814_5
crossref_primary_10_1016_j_segan_2017_09_004
crossref_primary_10_1016_j_energy_2021_122544
crossref_primary_10_3390_en11123296
crossref_primary_10_1109_TSG_2013_2295024
crossref_primary_10_1109_TSG_2021_3053639
crossref_primary_10_1002_eej_23201
crossref_primary_10_1016_j_scs_2020_102260
crossref_primary_10_1016_j_energy_2020_117926
crossref_primary_10_1049_iet_gtd_2019_1574
crossref_primary_10_1016_j_ijepes_2024_110234
crossref_primary_10_1007_s11750_020_00573_y
crossref_primary_10_1063_5_0154506
crossref_primary_10_1109_TPWRS_2017_2688344
crossref_primary_10_1109_TPWRS_2019_2943670
crossref_primary_10_1016_j_apenergy_2019_114321
crossref_primary_10_1007_s10957_022_02147_3
crossref_primary_10_1109_TPWRS_2019_2963022
crossref_primary_10_1016_j_apenergy_2017_04_050
crossref_primary_10_1016_j_omega_2021_102516
crossref_primary_10_1016_j_ijepes_2021_107004
crossref_primary_10_3390_en13215672
crossref_primary_10_3390_en16042080
crossref_primary_10_1111_itor_12710
crossref_primary_10_1016_j_egyr_2023_05_005
crossref_primary_10_1016_j_ijepes_2014_05_054
crossref_primary_10_1541_ieejpes_138_902
crossref_primary_10_1016_j_ijepes_2019_105764
crossref_primary_10_1016_j_cor_2023_106195
crossref_primary_10_1109_JSYST_2018_2812807
crossref_primary_10_1063_1_4917556
crossref_primary_10_1016_j_ijhydene_2016_10_070
crossref_primary_10_1016_j_apenergy_2016_08_112
crossref_primary_10_1016_j_ijepes_2016_02_029
crossref_primary_10_1016_j_eneco_2018_02_012
crossref_primary_10_1109_TSG_2018_2805326
crossref_primary_10_1287_opre_2017_1650
crossref_primary_10_1109_TSG_2019_2899780
crossref_primary_10_1002_mcda_1627
crossref_primary_10_1016_j_ijpe_2022_108759
crossref_primary_10_1016_j_eneco_2020_105065
crossref_primary_10_1016_j_promfg_2020_01_344
crossref_primary_10_1002_rnc_6830
crossref_primary_10_1049_iet_est_2020_0043
crossref_primary_10_1016_j_energy_2021_121015
crossref_primary_10_1016_j_ijepes_2018_09_011
crossref_primary_10_2139_ssrn_4592562
crossref_primary_10_1016_j_omega_2020_102327
crossref_primary_10_1016_j_ins_2017_08_019
crossref_primary_10_1109_TSG_2019_2932621
crossref_primary_10_1007_s41549_023_00083_3
crossref_primary_10_1016_j_energy_2022_124380
crossref_primary_10_1109_TSG_2018_2815593
crossref_primary_10_1109_TSG_2019_2946341
crossref_primary_10_2139_ssrn_4011358
crossref_primary_10_3390_en13061308
crossref_primary_10_1016_j_apenergy_2023_121545
crossref_primary_10_1016_j_ejor_2021_07_047
crossref_primary_10_1016_j_ejor_2020_09_015
crossref_primary_10_1109_ACCESS_2021_3059476
crossref_primary_10_1016_j_ijepes_2020_106555
crossref_primary_10_2139_ssrn_4560864
crossref_primary_10_1109_TSG_2017_2686875
crossref_primary_10_1016_j_eneco_2021_105169
crossref_primary_10_3389_fenrg_2023_1324450
crossref_primary_10_1016_j_ijepes_2018_02_047
crossref_primary_10_3390_en17153749
crossref_primary_10_1016_j_epsr_2021_107762
crossref_primary_10_1016_j_ijepes_2018_05_013
crossref_primary_10_1007_s40565_018_0464_7
crossref_primary_10_1109_TPWRS_2019_2929845
crossref_primary_10_1016_j_apenergy_2022_120626
crossref_primary_10_1155_2023_2425608
crossref_primary_10_1109_TSG_2015_2501808
crossref_primary_10_1007_s10479_018_2815_1
crossref_primary_10_1063_1_4977741
crossref_primary_10_1109_TSG_2013_2258412
crossref_primary_10_1007_s00450_017_0349_4
crossref_primary_10_1016_j_enconman_2021_114064
Cites_doi 10.1109/TPWRS.2009.2032552
10.1257/0895330027175
10.1109/TSG.2010.2078843
10.1109/TPWRS.2012.2197027
10.1016/j.apenergy.2010.12.015
10.1109/TSG.2010.2046430
10.1016/0378-7788(94)00904-X
10.1109/TPWRS.2008.2007001
10.1109/TPWRS.2011.2129542
10.1109/TPWRS.2010.2052374
10.1016/j.eneco.2011.11.021
10.1016/j.eneco.2009.10.018
10.1109/TPWRS.2010.2095890
10.1007/BF00121269
10.1109/TPWRS.2009.2019777
10.1109/TSTE.2012.2212731
10.1057/jors.1981.156
10.1109/TPWRS.2004.826810
10.1016/j.energy.2009.05.021
10.1002/(SICI)1099-095X(199709/10)8:5<409::AID-ENV261>3.0.CO;2-0
10.1109/TPWRS.2008.922537
10.1109/TPWRS.2004.840397
ContentType Journal Article
Copyright 2012 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7ST
C1K
SOI
8BJ
FQK
JBE
7TQ
DHY
DON
7S9
L.6
DOI 10.1016/j.eneco.2012.12.010
DatabaseName CrossRef
Pascal-Francis
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
PAIS Index
PAIS International
PAIS International (Ovid)
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
International Bibliography of the Social Sciences (IBSS)
PAIS International
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Environment Abstracts
PAIS International

International Bibliography of the Social Sciences (IBSS)
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Applied Sciences
EISSN 1873-6181
EndPage 197
ExternalDocumentID 27029855
10_1016_j_eneco_2012_12_010
S0140988312003477
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFFL
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACHQT
ACIWK
ACRLP
ACROA
ADBBV
ADEZE
ADFHU
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AEYQN
AFKWA
AFODL
AFRAH
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIIAU
AIKHN
AITUG
AJBFU
AJOXV
AJWLA
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AXLSJ
AZFZN
BEHZQ
BELTK
BEZPJ
BGSCR
BKOJK
BKOMP
BLXMC
BNTGB
BPUDD
BULVW
BZJEE
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMB
HVGLF
HZ~
IHE
IXIXF
J1W
JARJE
KOM
KZ1
LY5
LY6
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SAC
SCC
SDF
SDG
SDP
SEB
SEE
SES
SEW
SPC
SPCBC
SSB
SSF
SSR
SSZ
T5K
TN5
U5U
WH7
WUQ
YK3
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADMHG
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
SSH
7ST
ABUFD
C1K
SOI
8BJ
FQK
JBE
7TQ
DHY
DON
7S9
L.6
ID FETCH-LOGICAL-c529t-35f87a27efc42ac6a0d25b44f22d5164b2e33954c0be75295a6e6635f27cb64a3
IEDL.DBID .~1
ISSN 0140-9883
IngestDate Sun Sep 28 11:22:25 EDT 2025
Thu Oct 02 08:56:56 EDT 2025
Wed Oct 01 15:01:27 EDT 2025
Tue Oct 07 09:26:05 EDT 2025
Wed Apr 02 07:26:05 EDT 2025
Thu Oct 02 04:23:34 EDT 2025
Thu Apr 24 22:56:16 EDT 2025
Fri Feb 23 02:48:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Q4
Real-time pricing
Electricity markets
Bilevel programming
Demand response
Energy retail
C61
C72
Stochastic programming
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c529t-35f87a27efc42ac6a0d25b44f22d5164b2e33954c0be75295a6e6635f27cb64a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 1429914506
PQPubID 23462
PageCount 16
ParticipantIDs proquest_miscellaneous_1733559357
proquest_miscellaneous_1438600265
proquest_miscellaneous_1437967230
proquest_miscellaneous_1429914506
pascalfrancis_primary_27029855
crossref_citationtrail_10_1016_j_eneco_2012_12_010
crossref_primary_10_1016_j_eneco_2012_12_010
elsevier_sciencedirect_doi_10_1016_j_eneco_2012_12_010
PublicationCentury 2000
PublicationDate 2013-03-01
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Energy economics
PublicationYear 2013
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Energinet website (bb0050) 2011
Weron (bb0180) 2006
Oh, Thomas (bb0145) 2008; 23
Parvania, Fotuhi-Firuzabad (bb0150) 2010; 1
von Stackelberg (bb0175) 2011
Jónsson, Pinson, Nielsen, Madsen, Nielsen (bb0090) 2013; 4
Madsen, H., 1985. Statistically determined dynamical models for climate processes, Ph.D. thesis, Technical University of Denmark.
Morales, Conejo (bb0135) 2011; 26
Luenberger (bb0110) 1984
Pereira, Granville, Fampa, Dix, Barroso (bb0155) 2005; 20
Ilić, Xie, Joo (bb0070) 2011; 26
Luo, Pang, Ralph (bb0115) 1996
Halvgaard, Poulsen, Madsen, Jørgensen (bb0060) 2012
Chicco, Napoli, Piglione, Postolache, Scutariu, Toader (bb0020) 2004; 19
Kristoffersen, Capion, Meibom (bb0095) 2011; 88
Algarni, Bhattacharya (bb0005) 2009; 24
Borenstein (bb0010) 2002; 16
Torriti, Hassan, Leach (bb0165) 2010; 35
Madsen (bb0125) 2007
Madsen, Holst (bb0130) 1995; 22
Carrión, Arroyo, Conejo (bb0015) 2009; 24
Jónsson, T., 2012. Forecasting and decision-making in electricity markets with focus on wind energy, Ph.D. thesis, Technical University of Denmark.
Conejo, Castillo, Mínguez, García Bertrand (bb0025) 2006
Fortuny-Amat, McCarl (bb0055) 1981; 32
Nguyen, Negnevitsky, de Groot (bb0140) 2011; 26
Danish Energy Association (bb0040) 2010
.
Dubrovsky (bb0045) 1997; 8
Loridan, Morgan (bb0105) 1996; 8
Vespucci, Innorta, Cervigni (bb0170) 2013; 35
Iowa Environmental Mesonet website (bb0075) 2011
Kwakernaak, Sivan (bb0100) 1972
Sioshansi (bb0160) 2010; 25
Conejo, Morales, Baringo (bb0030) 2010; 1
Ilić, Xie, Joo (bb0065) 2011; 26
Corradi, O., Ochsenfeld, H., Madsen, H., Pinson, P., in press. Controlling the electricity consumption by forecasting its response to varying prices. IEEE Trans. Power Syst.
Jónsson, Pinson, Madsen (bb0085) 2010; 32
Ilić (10.1016/j.eneco.2012.12.010_bb0065) 2011; 26
Weron (10.1016/j.eneco.2012.12.010_bb0180) 2006
10.1016/j.eneco.2012.12.010_bb0080
Jónsson (10.1016/j.eneco.2012.12.010_bb0085) 2010; 32
Kristoffersen (10.1016/j.eneco.2012.12.010_bb0095) 2011; 88
Dubrovsky (10.1016/j.eneco.2012.12.010_bb0045) 1997; 8
Danish Energy Association (10.1016/j.eneco.2012.12.010_bb0040) 2010
Nguyen (10.1016/j.eneco.2012.12.010_bb0140) 2011; 26
Torriti (10.1016/j.eneco.2012.12.010_bb0165) 2010; 35
Jónsson (10.1016/j.eneco.2012.12.010_bb0090) 2013; 4
Kwakernaak (10.1016/j.eneco.2012.12.010_bb0100) 1972
10.1016/j.eneco.2012.12.010_bb0120
Conejo (10.1016/j.eneco.2012.12.010_bb0030) 2010; 1
Madsen (10.1016/j.eneco.2012.12.010_bb0125) 2007
Vespucci (10.1016/j.eneco.2012.12.010_bb0170) 2013; 35
Sioshansi (10.1016/j.eneco.2012.12.010_bb0160) 2010; 25
von Stackelberg (10.1016/j.eneco.2012.12.010_bb0175) 2011
Pereira (10.1016/j.eneco.2012.12.010_bb0155) 2005; 20
Ilić (10.1016/j.eneco.2012.12.010_bb0070) 2011; 26
Parvania (10.1016/j.eneco.2012.12.010_bb0150) 2010; 1
Carrión (10.1016/j.eneco.2012.12.010_bb0015) 2009; 24
Morales (10.1016/j.eneco.2012.12.010_bb0135) 2011; 26
Luo (10.1016/j.eneco.2012.12.010_bb0115) 1996
Algarni (10.1016/j.eneco.2012.12.010_bb0005) 2009; 24
Borenstein (10.1016/j.eneco.2012.12.010_bb0010) 2002; 16
Conejo (10.1016/j.eneco.2012.12.010_bb0025) 2006
10.1016/j.eneco.2012.12.010_bb0035
Fortuny-Amat (10.1016/j.eneco.2012.12.010_bb0055) 1981; 32
Chicco (10.1016/j.eneco.2012.12.010_bb0020) 2004; 19
Iowa Environmental Mesonet website (10.1016/j.eneco.2012.12.010_bb0075)
Madsen (10.1016/j.eneco.2012.12.010_bb0130) 1995; 22
Halvgaard (10.1016/j.eneco.2012.12.010_bb0060) 2012
Luenberger (10.1016/j.eneco.2012.12.010_bb0110) 1984
Oh (10.1016/j.eneco.2012.12.010_bb0145) 2008; 23
Energinet website (10.1016/j.eneco.2012.12.010_bb0050)
Loridan (10.1016/j.eneco.2012.12.010_bb0105) 1996; 8
References_xml – year: 1972
  ident: bb0100
  article-title: Linear Optimal Control Systems
– reference: Madsen, H., 1985. Statistically determined dynamical models for climate processes, Ph.D. thesis, Technical University of Denmark.
– volume: 20
  start-page: 180
  year: 2005
  end-page: 188
  ident: bb0155
  article-title: Strategic bidding under uncertainty: a binary expansion approach
  publication-title: IEEE Trans. Power Syst.
– year: 2011
  ident: bb0075
– volume: 26
  start-page: 1875
  year: 2011
  end-page: 1884
  ident: bb0065
  article-title: Efficient coordination of wind power and price-responsive demand—Part I: theoretical foundations
  publication-title: IEEE Trans. Power Syst.
– year: 1984
  ident: bb0110
  article-title: Linear and Nonlinear Programming
– volume: 16
  start-page: 191
  year: 2002
  end-page: 211
  ident: bb0010
  article-title: The trouble with electricity markets: understanding California's restructuring disaster
  publication-title: J. Econ. Perspect.
– year: 2010
  ident: bb0040
  article-title: Dansk elforsyning statistik 2009
– volume: 35
  start-page: 35
  year: 2013
  end-page: 41
  ident: bb0170
  article-title: A Mixed Integer Linear Programming model of a zonal electricity market with a dominant producer
  publication-title: Energy Econ.
– year: 2006
  ident: bb0025
  article-title: Decomposition Techniques in Mathematical Programming. Engineering and Science Applications
– volume: 22
  start-page: 67
  year: 1995
  end-page: 79
  ident: bb0130
  article-title: Estimation of continuous-time models for the heat dynamics of a building
  publication-title: Energy Build.
– volume: 32
  start-page: 313
  year: 2010
  end-page: 320
  ident: bb0085
  article-title: On the market impact of wind energy forecasts
  publication-title: Energy Econ.
– volume: 19
  start-page: 1232
  year: 2004
  end-page: 1239
  ident: bb0020
  article-title: Load pattern-based classification of electricity customers
  publication-title: IEEE Trans. Power Syst.
– volume: 26
  start-page: 820
  year: 2011
  end-page: 828
  ident: bb0135
  article-title: Simulating the impact of wind production on locational marginal prices
  publication-title: IEEE Trans. Power Syst.
– reference: Corradi, O., Ochsenfeld, H., Madsen, H., Pinson, P., in press. Controlling the electricity consumption by forecasting its response to varying prices. IEEE Trans. Power Syst.
– year: 2011
  ident: bb0050
– year: 2007
  ident: bb0125
  article-title: Time Series Analysis
– volume: 1
  start-page: 236
  year: 2010
  end-page: 242
  ident: bb0030
  article-title: Real-time demand response model
  publication-title: IEEE Trans. Smart Grid
– volume: 88
  start-page: 1940
  year: 2011
  end-page: 1948
  ident: bb0095
  article-title: Optimal charging of electric drive vehicles in a market environment
  publication-title: Appl. Energy
– volume: 8
  start-page: 263
  year: 1996
  end-page: 287
  ident: bb0105
  article-title: Weak via strong Stackelberg problems: new results
  publication-title: J. Glob. Optim.
– volume: 26
  start-page: 1884
  year: 2011
  end-page: 1893
  ident: bb0070
  article-title: Efficient coordination of wind power and price-responsive demand—Part II: case studies
  publication-title: IEEE Trans. Power Syst.
– volume: 1
  start-page: 89
  year: 2010
  end-page: 98
  ident: bb0150
  article-title: Demand response scheduling by stochastic SCUC
  publication-title: IEEE Trans. Smart Grids
– reference: Jónsson, T., 2012. Forecasting and decision-making in electricity markets with focus on wind energy, Ph.D. thesis, Technical University of Denmark.
– year: 1996
  ident: bb0115
  article-title: Mathematical Programs with Equilibrium Constraints
– volume: 35
  start-page: 1575
  year: 2010
  end-page: 1583
  ident: bb0165
  article-title: Demand response experience in Europe: policies, programmes and implementation
  publication-title: Energy
– reference: .
– year: 2006
  ident: bb0180
  article-title: Modeling and Forecasting Electricity Loads and Prices
– year: 2011
  ident: bb0175
  article-title: Market Structure and Equilibrium
– volume: 4
  start-page: 210
  year: 2013
  end-page: 218
  ident: bb0090
  article-title: Forecasting electricity spot prices accounting for wind power predictions
  publication-title: IEEE Trans. Sustain. Energy
– volume: 23
  start-page: 1050
  year: 2008
  end-page: 1056
  ident: bb0145
  article-title: Demand-side bidding agents: modeling and simulation
  publication-title: IEEE Trans. Power Syst.
– volume: 26
  start-page: 1677
  year: 2011
  end-page: 1685
  ident: bb0140
  article-title: Pool-based demand response exchange—concept and modeling
  publication-title: IEEE Trans. Power Syst.
– volume: 24
  start-page: 356
  year: 2009
  end-page: 367
  ident: bb0005
  article-title: A generic operations framework for discos in retail electricity markets
  publication-title: IEEE Trans. Power Syst.
– volume: 8
  start-page: 409
  year: 1997
  end-page: 424
  ident: bb0045
  article-title: Creating daily weather series with use of the weather generator
  publication-title: Environmetrics
– volume: 32
  start-page: 783
  year: 1981
  end-page: 792
  ident: bb0055
  article-title: A representation and economic interpretation of a two-level programming problem
  publication-title: J. Oper. Res. Soc.
– year: 2012
  ident: bb0060
  article-title: Economic model predictive control for building climate control in a smart grid
  publication-title: IEEE PES Conference on Innovative Smart Grid Technologies (ISGT), Washington, USA
– volume: 25
  start-page: 741
  year: 2010
  end-page: 748
  ident: bb0160
  article-title: Evaluating the impact of real-time pricing on the cost and value of wind generation
  publication-title: IEEE Trans. Power Syst.
– volume: 24
  year: 2009
  ident: bb0015
  article-title: A bilevel stochastic programming approach for retailer futures market trading
  publication-title: IEEE Trans. Power Syst.
– year: 2007
  ident: 10.1016/j.eneco.2012.12.010_bb0125
– volume: 25
  start-page: 741
  year: 2010
  ident: 10.1016/j.eneco.2012.12.010_bb0160
  article-title: Evaluating the impact of real-time pricing on the cost and value of wind generation
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2009.2032552
– year: 2011
  ident: 10.1016/j.eneco.2012.12.010_bb0175
– volume: 16
  start-page: 191
  year: 2002
  ident: 10.1016/j.eneco.2012.12.010_bb0010
  article-title: The trouble with electricity markets: understanding California's restructuring disaster
  publication-title: J. Econ. Perspect.
  doi: 10.1257/0895330027175
– volume: 1
  start-page: 236
  year: 2010
  ident: 10.1016/j.eneco.2012.12.010_bb0030
  article-title: Real-time demand response model
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2010.2078843
– ident: 10.1016/j.eneco.2012.12.010_bb0035
  doi: 10.1109/TPWRS.2012.2197027
– volume: 26
  start-page: 1884
  year: 2011
  ident: 10.1016/j.eneco.2012.12.010_bb0070
  article-title: Efficient coordination of wind power and price-responsive demand—Part II: case studies
  publication-title: IEEE Trans. Power Syst.
– ident: 10.1016/j.eneco.2012.12.010_bb0075
– volume: 88
  start-page: 1940
  year: 2011
  ident: 10.1016/j.eneco.2012.12.010_bb0095
  article-title: Optimal charging of electric drive vehicles in a market environment
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2010.12.015
– ident: 10.1016/j.eneco.2012.12.010_bb0120
– volume: 1
  start-page: 89
  year: 2010
  ident: 10.1016/j.eneco.2012.12.010_bb0150
  article-title: Demand response scheduling by stochastic SCUC
  publication-title: IEEE Trans. Smart Grids
  doi: 10.1109/TSG.2010.2046430
– year: 2006
  ident: 10.1016/j.eneco.2012.12.010_bb0025
– volume: 22
  start-page: 67
  year: 1995
  ident: 10.1016/j.eneco.2012.12.010_bb0130
  article-title: Estimation of continuous-time models for the heat dynamics of a building
  publication-title: Energy Build.
  doi: 10.1016/0378-7788(94)00904-X
– volume: 24
  start-page: 356
  year: 2009
  ident: 10.1016/j.eneco.2012.12.010_bb0005
  article-title: A generic operations framework for discos in retail electricity markets
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2008.2007001
– ident: 10.1016/j.eneco.2012.12.010_bb0050
– year: 1984
  ident: 10.1016/j.eneco.2012.12.010_bb0110
– volume: 26
  start-page: 1875
  year: 2011
  ident: 10.1016/j.eneco.2012.12.010_bb0065
  article-title: Efficient coordination of wind power and price-responsive demand—Part I: theoretical foundations
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2011.2129542
– year: 1972
  ident: 10.1016/j.eneco.2012.12.010_bb0100
– volume: 26
  start-page: 820
  year: 2011
  ident: 10.1016/j.eneco.2012.12.010_bb0135
  article-title: Simulating the impact of wind production on locational marginal prices
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2010.2052374
– volume: 35
  start-page: 35
  year: 2013
  ident: 10.1016/j.eneco.2012.12.010_bb0170
  article-title: A Mixed Integer Linear Programming model of a zonal electricity market with a dominant producer
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2011.11.021
– volume: 32
  start-page: 313
  year: 2010
  ident: 10.1016/j.eneco.2012.12.010_bb0085
  article-title: On the market impact of wind energy forecasts
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2009.10.018
– volume: 26
  start-page: 1677
  year: 2011
  ident: 10.1016/j.eneco.2012.12.010_bb0140
  article-title: Pool-based demand response exchange—concept and modeling
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2010.2095890
– volume: 8
  start-page: 263
  year: 1996
  ident: 10.1016/j.eneco.2012.12.010_bb0105
  article-title: Weak via strong Stackelberg problems: new results
  publication-title: J. Glob. Optim.
  doi: 10.1007/BF00121269
– volume: 24
  year: 2009
  ident: 10.1016/j.eneco.2012.12.010_bb0015
  article-title: A bilevel stochastic programming approach for retailer futures market trading
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2009.2019777
– year: 2006
  ident: 10.1016/j.eneco.2012.12.010_bb0180
– volume: 4
  start-page: 210
  year: 2013
  ident: 10.1016/j.eneco.2012.12.010_bb0090
  article-title: Forecasting electricity spot prices accounting for wind power predictions
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2012.2212731
– volume: 32
  start-page: 783
  year: 1981
  ident: 10.1016/j.eneco.2012.12.010_bb0055
  article-title: A representation and economic interpretation of a two-level programming problem
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/jors.1981.156
– volume: 19
  start-page: 1232
  year: 2004
  ident: 10.1016/j.eneco.2012.12.010_bb0020
  article-title: Load pattern-based classification of electricity customers
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2004.826810
– ident: 10.1016/j.eneco.2012.12.010_bb0080
– volume: 35
  start-page: 1575
  year: 2010
  ident: 10.1016/j.eneco.2012.12.010_bb0165
  article-title: Demand response experience in Europe: policies, programmes and implementation
  publication-title: Energy
  doi: 10.1016/j.energy.2009.05.021
– year: 1996
  ident: 10.1016/j.eneco.2012.12.010_bb0115
– volume: 8
  start-page: 409
  year: 1997
  ident: 10.1016/j.eneco.2012.12.010_bb0045
  article-title: Creating daily weather series with use of the weather generator
  publication-title: Environmetrics
  doi: 10.1002/(SICI)1099-095X(199709/10)8:5<409::AID-ENV261>3.0.CO;2-0
– year: 2010
  ident: 10.1016/j.eneco.2012.12.010_bb0040
– volume: 23
  start-page: 1050
  year: 2008
  ident: 10.1016/j.eneco.2012.12.010_bb0145
  article-title: Demand-side bidding agents: modeling and simulation
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2008.922537
– year: 2012
  ident: 10.1016/j.eneco.2012.12.010_bb0060
  article-title: Economic model predictive control for building climate control in a smart grid
– volume: 20
  start-page: 180
  year: 2005
  ident: 10.1016/j.eneco.2012.12.010_bb0155
  article-title: Strategic bidding under uncertainty: a binary expansion approach
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2004.840397
SSID ssj0005658
Score 2.527413
Snippet Demand response programmes are seen as one of the contributing solutions to the challenges posed to power systems by the large-scale integration of renewable...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 182
SubjectTerms Accounting
Applied sciences
Bilevel programming
computer software
Consumers
Cost
Demand response
Economic data
Electric energy
Electric power
electricity
Electricity markets
Energy
energy costs
Energy economics
Energy market
Energy policy
Energy retail
Environment
Exact sciences and technology
Game theory
General, economic and professional studies
Markets
Methodology. Modelling
Natural energy
Power demand
Prices
Pricing
Profits
Purchasing
Real-time pricing
Regulation
retail marketing
Risk
Stochastic processes
Stochastic programming
wholesale marketing
Title A bilevel model for electricity retailers' participation in a demand response market environment
URI https://dx.doi.org/10.1016/j.eneco.2012.12.010
https://www.proquest.com/docview/1429914506
https://www.proquest.com/docview/1437967230
https://www.proquest.com/docview/1438600265
https://www.proquest.com/docview/1733559357
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6181
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005658
  issn: 0140-9883
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6181
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005658
  issn: 0140-9883
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-6181
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005658
  issn: 0140-9883
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  customDbUrl:
  eissn: 1873-6181
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005658
  issn: 0140-9883
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6181
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005658
  issn: 0140-9883
  databaseCode: AKRWK
  dateStart: 19790101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-wwEA-iBx88xE_e-rFEELzYt22arx6XxWVV9KTgraZJCitaF3f16N_uTNrKynv0IPRUJqSdaWYmze83Q8iJ8XFivUwia0oVca6QrOx0pAVnWJDOmMCFub6Rkzt-eS_uV8io5cIgrLLx_bVPD966uTNotDmYTaeDAEvKtE4TxFdxhYxymAu7GPz9WIJ5yNCjM8AYUbqtPBQwXuBOLDIAExb-CSKN9v_R6ffMzEFnZd3s4h-_HYLReJNsNFkkHdYPukVWfLVN1luS8XyHPAxpAev93T_R0OuGQm5K65Y3UwuJN30N0FHI_U7pzCxBq-m0ooY6_2wqB0IBQOvpc-BG0yVW3C65G5_fjiZR00whsoJliygVpVaGKV9azoyVJnZMFJyXjDkBe6aC-TTNBLdx4RWe_hnpMRspmbKF5CbdI6vVS-X_EBoXTrjYZo67hFuhjCnQtKWAZFFL7XuEtUrMbVNpHBtePOUtpOwxD5rPUfM5XKD5Hjn7GjSrC210i8vWOvm37yWHUNA9sP_Nll-TITEv00L0yHFr3ByWGp6fmMq_vM1hlwSxO-Eill0yqcqkgo1dp4zG41DZNZdKIRPMUqH2f_qmB-QXC707EDB3SFYXr2_-CDKoRdEPS6RP1oYXV5ObT6HEGuc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ReqBSVfWpLhTqSpV6abqJ41eOCBVtW-AEEjfXsR1pKwgrdumR386Mk6BFVDlUyikay8lMPDOOv28G4LOLeeGjKjLvGp0JoYmsHExmpOBUkM65xIU5PlGzM_HzXJ5vwMHAhSFYZe_7O5-evHV_Z9prc7qYz6cJllQZUxaErxJaP4GnQnJNO7Bvt2s4D5WadCYcI4kPpYcSyAv9iScKYMHTT0Hi0f47PD1fuCUqrem6XTxy3CkaHb6EF30ayfa7J30FG7F9DVsDy3j5Bn7vsxoX_N94wVKzG4bJKet63sw9Zt7sOmFHMfn7whZuDVvN5i1zLMRL1wYUSgjayC4TOZqt0eLewtnh99ODWdZ3U8i85NUqK2VjtOM6Nl5w55XLA5e1EA3nQeKmqeaxLCspfF5HTcd_TkVKRxqufa2EK9_BZnvVxvfA8jrIkPsqiFAIL7VzNdm2kZgtGmXiBPigROv7UuPU8eLCDpiyPzZp3pLmLV6o-Ql8vR-06CptjIurwTr2wQdjMRaMD9x7YMv7yYiZVxkpJ_BpMK7FtUYHKK6NVzdL3CZh8C6EzNWYTKkrpXFnNypj6DxUjc2lS0wFq1Lq7f9904-wNTs9PrJHP05-7cAznhp5EHruA2yurm_iLqZTq3ovLZc7_a4cfA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+bilevel+model+for+electricity+retailers%27+participation+in+a+demand+response+market+environment&rft.jtitle=Energy+economics&rft.au=Zugno%2C+Marco&rft.au=Morales%2C+Juan+Miguel&rft.au=Pinson%2C+Pierre&rft.au=Madsen%2C+Henrik&rft.date=2013-03-01&rft.pub=Elsevier+B.V&rft.issn=0140-9883&rft.eissn=1873-6181&rft.volume=36&rft.spage=182&rft.epage=197&rft_id=info:doi/10.1016%2Fj.eneco.2012.12.010&rft.externalDocID=S0140988312003477
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-9883&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-9883&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-9883&client=summon