Semi-automatic identification of independent components representing EEG artifact
Independent component analysis (ICA) can disentangle multi-channel electroencephalogram (EEG) signals into a number of artifacts and brain-related signals. However, the identification and interpretation of independent components is time-consuming and involves subjective decision making. We developed...
        Saved in:
      
    
          | Published in | Clinical neurophysiology Vol. 120; no. 5; pp. 868 - 877 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Oxford
          Elsevier Ireland Ltd
    
        01.05.2009
     Elsevier  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1388-2457 1872-8952  | 
| DOI | 10.1016/j.clinph.2009.01.015 | 
Cover
| Abstract | Independent component analysis (ICA) can disentangle multi-channel electroencephalogram (EEG) signals into a number of artifacts and brain-related signals. However, the identification and interpretation of independent components is time-consuming and involves subjective decision making. We developed and evaluated a semi-automatic tool designed for clustering independent components from different subjects and/or EEG recordings.
CORRMAP is an open-source EEGLAB plug-in, based on the correlation of ICA inverse weights, and finds independent components that are similar to a user-defined template. Component similarity is measured using a correlation procedure that selects components that pass a threshold. The threshold can be either user-defined or determined automatically. CORRMAP clustering performance was evaluated by comparing it with the performance of 11 users from different laboratories familiar with ICA.
For eye-related artifacts, a very high degree of overlap between users (phi
>
0.80), and between users and CORRMAP (phi
>
0.80) was observed. Lower degrees of association were found for heartbeat artifact components, between users (phi
<
0.70), and between users and CORRMAP (phi
<
0.65).
These results demonstrate that CORRMAP provides an efficient, convenient and objective way of clustering independent components.
CORRMAP helps to efficiently use ICA for the removal EEG artifacts. | 
    
|---|---|
| AbstractList | Independent component analysis (ICA) can disentangle multi-channel electroencephalogram (EEG) signals into a number of artifacts and brain-related signals. However, the identification and interpretation of independent components is time-consuming and involves subjective decision making. We developed and evaluated a semi-automatic tool designed for clustering independent components from different subjects and/or EEG recordings.
CORRMAP is an open-source EEGLAB plug-in, based on the correlation of ICA inverse weights, and finds independent components that are similar to a user-defined template. Component similarity is measured using a correlation procedure that selects components that pass a threshold. The threshold can be either user-defined or determined automatically. CORRMAP clustering performance was evaluated by comparing it with the performance of 11 users from different laboratories familiar with ICA.
For eye-related artifacts, a very high degree of overlap between users (phi
>
0.80), and between users and CORRMAP (phi
>
0.80) was observed. Lower degrees of association were found for heartbeat artifact components, between users (phi
<
0.70), and between users and CORRMAP (phi
<
0.65).
These results demonstrate that CORRMAP provides an efficient, convenient and objective way of clustering independent components.
CORRMAP helps to efficiently use ICA for the removal EEG artifacts. Independent component analysis (ICA) can disentangle multi-channel electroencephalogram (EEG) signals into a number of artifacts and brain-related signals. However, the identification and interpretation of independent components is time-consuming and involves subjective decision making. We developed and evaluated a semi-automatic tool designed for clustering independent components from different subjects and/or EEG recordings. CORRMAP is an open-source EEGLAB plug-in, based on the correlation of ICA inverse weights, and finds independent components that are similar to a user-defined template. Component similarity is measured using a correlation procedure that selects components that pass a threshold. The threshold can be either user-defined or determined automatically. CORRMAP clustering performance was evaluated by comparing it with the performance of 11 users from different laboratories familiar with ICA. For eye-related artifacts, a very high degree of overlap between users (phi>0.80), and between users and CORRMAP (phi>0.80) was observed. Lower degrees of association were found for heartbeat artifact components, between users (phi<0.70), and between users and CORRMAP (phi<0.65). These results demonstrate that CORRMAP provides an efficient, convenient and objective way of clustering independent components. CORRMAP helps to efficiently use ICA for the removal EEG artifacts. Objective - Independent component analysis (ICA) can disentangle multi-channel electroencephalogram (EEG) signals into a number of artifacts and brain-related signals. However, the identification and interpretation of independent components is time-consuming and involves subjective decision making. We developed and evaluated a semi-automatic tool designed for clustering independent components from different subjects and/or EEG recordings. Methods - CORRMAP is an open-source EEGLAB plug-in, based on the correlation of ICA inverse weights, and finds independent components that are similar to a user-defined template. Component similarity is measured using a correlation procedure that selects components that pass a threshold. The threshold can be either user-defined or determined automatically. CORRMAP clustering performance was evaluated by comparing it with the performance of 11 users from different laboratories familiar with ICA. Results - For eye-related artifacts, a very high degree of overlap between users (phi > 0.80), and between users and CORRMAP (phi > 0.80) was observed. Lower degrees of association were found for heartbeat artifact components, between users (phi < 0.70), and between users and CORRMAP (phi < 0.65). Conclusions - These results demonstrate that CORRMAP provides an efficient, convenient and objective way of clustering independent components. Significance - CORRMAP helps to efficiently use ICA for the removal EEG artifacts. Abstract Objective Independent component analysis (ICA) can disentangle multi-channel electroencephalogram (EEG) signals into a number of artifacts and brain-related signals. However, the identification and interpretation of independent components is time-consuming and involves subjective decision making. We developed and evaluated a semi-automatic tool designed for clustering independent components from different subjects and/or EEG recordings. Methods CORRMAP is an open-source EEGLAB plug-in, based on the correlation of ICA inverse weights, and finds independent components that are similar to a user-defined template. Component similarity is measured using a correlation procedure that selects components that pass a threshold. The threshold can be either user-defined or determined automatically. CORRMAP clustering performance was evaluated by comparing it with the performance of 11 users from different laboratories familiar with ICA. Results For eye-related artifacts, a very high degree of overlap between users (phi > 0.80), and between users and CORRMAP (phi > 0.80) was observed. Lower degrees of association were found for heartbeat artifact components, between users (phi < 0.70), and between users and CORRMAP (phi < 0.65). Conclusions These results demonstrate that CORRMAP provides an efficient, convenient and objective way of clustering independent components. Significance CORRMAP helps to efficiently use ICA for the removal EEG artifacts. OBJECTIVEIndependent component analysis (ICA) can disentangle multi-channel electroencephalogram (EEG) signals into a number of artifacts and brain-related signals. However, the identification and interpretation of independent components is time-consuming and involves subjective decision making. We developed and evaluated a semi-automatic tool designed for clustering independent components from different subjects and/or EEG recordings.METHODSCORRMAP is an open-source EEGLAB plug-in, based on the correlation of ICA inverse weights, and finds independent components that are similar to a user-defined template. Component similarity is measured using a correlation procedure that selects components that pass a threshold. The threshold can be either user-defined or determined automatically. CORRMAP clustering performance was evaluated by comparing it with the performance of 11 users from different laboratories familiar with ICA.RESULTSFor eye-related artifacts, a very high degree of overlap between users (phi>0.80), and between users and CORRMAP (phi>0.80) was observed. Lower degrees of association were found for heartbeat artifact components, between users (phi<0.70), and between users and CORRMAP (phi<0.65).CONCLUSIONSThese results demonstrate that CORRMAP provides an efficient, convenient and objective way of clustering independent components.SIGNIFICANCECORRMAP helps to efficiently use ICA for the removal EEG artifacts.  | 
    
| Author | Edmonds, Barrie Schneider, Till Debener, Stefan Campos Viola, Filipa Eichele, Tom Thorne, Jeremy  | 
    
| Author_xml | – sequence: 1 givenname: Filipa surname: Campos Viola fullname: Campos Viola, Filipa organization: MRC Institute of Hearing Research, Southampton, UK – sequence: 2 givenname: Jeremy surname: Thorne fullname: Thorne, Jeremy organization: MRC Institute of Hearing Research, Southampton, UK – sequence: 3 givenname: Barrie surname: Edmonds fullname: Edmonds, Barrie organization: MRC Institute of Hearing Research, Nottingham, UK – sequence: 4 givenname: Till surname: Schneider fullname: Schneider, Till organization: Department of Neurophysiology and Pathophysiology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany – sequence: 5 givenname: Tom surname: Eichele fullname: Eichele, Tom organization: Department of Biological and Medical Psychology, University of Bergen, Norway – sequence: 6 givenname: Stefan surname: Debener fullname: Debener, Stefan email: stefan@debener.de organization: MRC Institute of Hearing Research, Southampton, UK  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21543298$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19345611$$D View this record in MEDLINE/PubMed  | 
    
| BookMark | eNqVkmuL1DAUhoOsuBf9ByL9ot86Jmmbi4ggy7gKCyKrn0OanmjGNqlJKuy_33RnVBBkEAK58LzvybmcoxMfPCD0lOANwYS93G3M6Pz8bUMxlhtMyuoeoDMiOK2F7OhJOTdC1LTt-Ck6T2mHMea4pY_QKZFN2zFCztCnG5hcrZccJp2dqdwAPjvrTLkFXwVbOT_ADH59r0yY5vILn1MVYY6QVth_rbbbq0rHotMmP0YPrR4TPDnsF-jLu-3ny_f19cerD5dvr2vTUZlrahnXQlJKOg49oYxbiRntsNAMmLUdoUC40HSQTPesZbS3tgfWcir4wEhzgV7sfecYfiyQsppcMjCO2kNYkmKcNoS34ihY6sdbKlgBnx3ApZ9gUHN0k4636le1CvD8AOhk9Gij9sal31xJpW2oXCO2e87EkFIE-8cKq7V5aqf2zVuDS4VJWV2RvfpLZly-70OO2o3HxG_2Yig1_-kgqmQceAODi2CyGoL7X4MVKoMwfodbSLuwRF_6qYhKVGF1sw7XOltYYkybZs369b8Njse_Ayo0378 | 
    
| CitedBy_id | crossref_primary_10_1002_hbm_26643 crossref_primary_10_1093_sleep_zsab100 crossref_primary_10_1016_j_neuroimage_2019_116117 crossref_primary_10_1142_S021800141558001X crossref_primary_10_1016_j_neuroimage_2016_05_074 crossref_primary_10_3389_fnhum_2017_00582 crossref_primary_10_3389_fnhum_2018_00312 crossref_primary_10_1016_j_neuroimage_2021_118834 crossref_primary_10_1016_j_biopsycho_2023_108643 crossref_primary_10_1016_j_aforl_2018_12_009 crossref_primary_10_1088_1741_2552_aa8232 crossref_primary_10_1016_j_clinph_2014_08_009 crossref_primary_10_1016_S0208_5216_11_70026_2 crossref_primary_10_1097_WNP_0000000000000039 crossref_primary_10_1523_JNEUROSCI_6352_11_2012 crossref_primary_10_1016_j_neuroimage_2012_01_063 crossref_primary_10_1126_scitranslmed_aav8939 crossref_primary_10_1016_j_clinph_2009_02_169 crossref_primary_10_1088_1741_2552_aa7a25 crossref_primary_10_1371_journal_pone_0162657 crossref_primary_10_1007_s10548_013_0287_9 crossref_primary_10_1016_j_neuroimage_2010_04_256 crossref_primary_10_1080_13803395_2014_977232 crossref_primary_10_1002_brb3_3205 crossref_primary_10_1186_1687_6180_2012_127 crossref_primary_10_1016_j_clinph_2021_05_036 crossref_primary_10_1111_psyp_14178 crossref_primary_10_1155_2016_9754813 crossref_primary_10_1016_j_jneumeth_2015_02_025 crossref_primary_10_7717_peerj_4380 crossref_primary_10_1016_j_clinph_2023_12_133 crossref_primary_10_1016_j_bandl_2018_09_005 crossref_primary_10_1016_j_jneumeth_2015_10_003 crossref_primary_10_1002_hbm_22388 crossref_primary_10_1109_ACCESS_2018_2842082 crossref_primary_10_1016_j_biopsych_2014_12_010 crossref_primary_10_1016_j_cortex_2014_12_019 crossref_primary_10_1016_j_brainres_2017_07_001 crossref_primary_10_1016_j_clinph_2022_03_018 crossref_primary_10_1016_j_bspc_2015_05_015 crossref_primary_10_1109_ACCESS_2020_3032056 crossref_primary_10_1027_2512_8442_a000061 crossref_primary_10_1007_s00221_018_5447_4 crossref_primary_10_1016_j_neuroimage_2023_119942 crossref_primary_10_3389_fnins_2019_00441 crossref_primary_10_1016_j_neuroimage_2015_07_062 crossref_primary_10_1016_j_neuroimage_2022_119549 crossref_primary_10_1007_s10548_023_00947_y crossref_primary_10_1016_j_neuroimage_2013_07_057 crossref_primary_10_1089_brain_2018_0645 crossref_primary_10_1016_j_ijpsycho_2022_11_012 crossref_primary_10_1007_s10548_017_0603_x crossref_primary_10_1002_hbm_26417 crossref_primary_10_1016_j_pain_2011_03_027 crossref_primary_10_1088_1741_2560_13_2_026005 crossref_primary_10_1016_j_clinph_2015_06_016 crossref_primary_10_1002_hbm_24352 crossref_primary_10_1016_j_neuroimage_2023_120141 crossref_primary_10_3389_fnins_2020_577160 crossref_primary_10_1016_j_ijpsycho_2013_08_010 crossref_primary_10_1371_journal_pone_0062944 crossref_primary_10_1002_hbm_23938 crossref_primary_10_1016_j_neuroimage_2020_117315 crossref_primary_10_1016_j_neuropsychologia_2021_108011 crossref_primary_10_1109_TCDS_2021_3065200 crossref_primary_10_1525_collabra_87 crossref_primary_10_1111_psyp_14191 crossref_primary_10_3389_fnins_2020_624484 crossref_primary_10_1016_j_clinph_2009_05_011 crossref_primary_10_1016_j_neuroimage_2019_06_048 crossref_primary_10_1109_TNSRE_2013_2293139 crossref_primary_10_1016_j_neuroimage_2011_06_045 crossref_primary_10_1038_s41598_024_52587_2 crossref_primary_10_1111_j_1469_8986_2011_01224_x crossref_primary_10_1167_jov_21_11_19 crossref_primary_10_1038_srep24435 crossref_primary_10_1088_1741_2552_ab3235 crossref_primary_10_1111_psyp_13399 crossref_primary_10_1523_ENEURO_0238_24_2024 crossref_primary_10_1126_sciadv_abg6867 crossref_primary_10_1523_JNEUROSCI_2751_19_2020 crossref_primary_10_3389_fnhum_2015_00007 crossref_primary_10_1093_cercor_bhv076 crossref_primary_10_1038_s41598_024_73630_2 crossref_primary_10_3389_fnins_2018_00530 crossref_primary_10_1016_j_biopsycho_2022_108323 crossref_primary_10_1038_s41467_018_07456_8 crossref_primary_10_1038_s41598_022_17970_x crossref_primary_10_1109_JSEN_2011_2115236 crossref_primary_10_1016_j_neuroimage_2018_10_059 crossref_primary_10_1016_j_bspc_2015_06_009 crossref_primary_10_1186_s40317_022_00287_x crossref_primary_10_1016_j_neuroimage_2018_03_012 crossref_primary_10_1088_1741_2552_aa69d1 crossref_primary_10_1523_ENEURO_0026_23_2023 crossref_primary_10_1016_j_bbr_2015_10_031 crossref_primary_10_1038_s41597_024_03241_z crossref_primary_10_1080_00140139_2016_1142121 crossref_primary_10_1038_ncomms4940 crossref_primary_10_3389_fnhum_2016_00171 crossref_primary_10_1016_j_clinph_2014_06_029 crossref_primary_10_3389_fpsyg_2018_00485 crossref_primary_10_1016_j_cmpb_2012_04_005 crossref_primary_10_1371_journal_pone_0014371 crossref_primary_10_1152_jn_00070_2015 crossref_primary_10_3390_s19204454 crossref_primary_10_1016_j_ijpsycho_2021_02_016 crossref_primary_10_1111_psyp_13731 crossref_primary_10_1016_j_neuropsychologia_2019_107204 crossref_primary_10_1038_s41598_020_62155_z crossref_primary_10_1002_ejp_535 crossref_primary_10_1371_journal_pone_0289293 crossref_primary_10_1038_s42003_022_04048_7 crossref_primary_10_3389_fnins_2018_00309 crossref_primary_10_1016_j_clinph_2010_07_008 crossref_primary_10_1016_j_neuroimage_2012_07_055 crossref_primary_10_1038_s41598_021_89690_7 crossref_primary_10_1111_psyp_14020 crossref_primary_10_1038_srep16743 crossref_primary_10_1016_j_medengphy_2012_08_017 crossref_primary_10_1186_1744_9081_7_30 crossref_primary_10_3389_fnins_2017_00305 crossref_primary_10_3389_fnhum_2014_00181 crossref_primary_10_1177_03057356221116141 crossref_primary_10_1088_1741_2560_11_3_036008 crossref_primary_10_1016_j_heares_2011_12_010 crossref_primary_10_3389_fnins_2023_1247290 crossref_primary_10_1111_psyp_12899 crossref_primary_10_1111_psyp_12894 crossref_primary_10_1111_j_1469_8986_2010_01061_x crossref_primary_10_1016_j_bbe_2021_06_007 crossref_primary_10_1016_j_clinph_2019_09_016 crossref_primary_10_1111_psyp_14277 crossref_primary_10_3389_fpsyg_2019_00449 crossref_primary_10_3390_clockssleep6040041 crossref_primary_10_1016_j_neuroimage_2019_04_017 crossref_primary_10_1007_s10548_015_0424_8 crossref_primary_10_1016_j_nicl_2017_09_001 crossref_primary_10_1038_s41598_017_16595_9 crossref_primary_10_1111_psyp_12827 crossref_primary_10_1016_j_biopsycho_2024_108775 crossref_primary_10_1016_j_neuropsychologia_2015_06_019 crossref_primary_10_1007_s10548_016_0483_5 crossref_primary_10_1111_psyp_14323 crossref_primary_10_1111_psyp_12147 crossref_primary_10_1038_s41598_024_56633_x crossref_primary_10_1016_j_psychsport_2024_102679 crossref_primary_10_1088_1741_2552_ad1783 crossref_primary_10_1371_journal_pone_0121048 crossref_primary_10_1016_j_neucli_2017_10_059 crossref_primary_10_1016_j_anorl_2019_08_001 crossref_primary_10_1371_journal_pone_0222420 crossref_primary_10_1371_journal_pone_0266107 crossref_primary_10_1126_scitranslmed_adm7580 crossref_primary_10_1016_j_neuroimage_2015_08_053 crossref_primary_10_1016_j_procs_2016_08_253 crossref_primary_10_1111_psyp_14457 crossref_primary_10_1587_transinf_2015CBP0008 crossref_primary_10_3389_fnhum_2015_00339 crossref_primary_10_1016_j_neuroimage_2013_01_040 crossref_primary_10_12688_f1000research_10569_1 crossref_primary_10_3389_fnhum_2018_00029 crossref_primary_10_12688_f1000research_10569_2 crossref_primary_10_1016_j_neuroimage_2010_10_033 crossref_primary_10_1088_1741_2552_ac1037 crossref_primary_10_1109_TNSRE_2022_3156931 crossref_primary_10_1016_j_neuropsychologia_2016_01_014 crossref_primary_10_1111_ejn_14965 crossref_primary_10_1016_j_bandl_2014_07_010 crossref_primary_10_1016_j_neuroimage_2010_07_057 crossref_primary_10_3390_biology12020284 crossref_primary_10_1016_j_jneumeth_2015_01_030 crossref_primary_10_1016_j_neuroimage_2023_120093 crossref_primary_10_1016_j_cmpb_2013_12_010 crossref_primary_10_1007_s00221_020_05922_8 crossref_primary_10_1016_j_neuroimage_2020_117600 crossref_primary_10_3389_fnhum_2017_00163 crossref_primary_10_3390_s20247040 crossref_primary_10_1186_1471_2202_13_113 crossref_primary_10_3390_s21196364 crossref_primary_10_3758_s13415_016_0452_1 crossref_primary_10_1016_j_clinph_2015_12_009 crossref_primary_10_1016_j_clinph_2021_10_018 crossref_primary_10_3389_fnhum_2019_00141 crossref_primary_10_1088_1741_2560_11_3_035013 crossref_primary_10_1093_braincomms_fcad232 crossref_primary_10_1111_j_1469_8986_2012_01458_x crossref_primary_10_1523_ENEURO_0345_22_2022 crossref_primary_10_3390_s23104847 crossref_primary_10_1016_j_neuroimage_2016_03_034 crossref_primary_10_1016_j_clinph_2013_12_109 crossref_primary_10_1093_sleep_zsae105 crossref_primary_10_1155_2017_3072870 crossref_primary_10_1002_hbm_26135 crossref_primary_10_1016_j_nicl_2013_01_001 crossref_primary_10_1088_1741_2552_ac5fcb crossref_primary_10_1111_psyp_14117 crossref_primary_10_1523_ENEURO_0355_21_2021 crossref_primary_10_1016_j_brs_2022_02_008 crossref_primary_10_1038_s41598_020_67234_9 crossref_primary_10_1016_j_neuroimage_2011_03_017 crossref_primary_10_1111_psyp_12290 crossref_primary_10_1371_journal_pone_0178934 crossref_primary_10_1016_j_biopsycho_2023_108698 crossref_primary_10_1002_hbm_21475 crossref_primary_10_3758_s13415_020_00778_5 crossref_primary_10_1016_j_neuroimage_2022_119322 crossref_primary_10_1111_jopy_12167 crossref_primary_10_1016_j_medengphy_2011_10_005 crossref_primary_10_1111_ejn_13896 crossref_primary_10_1111_ejn_15037 crossref_primary_10_1111_j_1467_7687_2011_01131_x crossref_primary_10_3389_fpsyg_2022_833112 crossref_primary_10_1016_j_biopsycho_2018_12_013 crossref_primary_10_1162_jocn_a_00551 crossref_primary_10_1371_journal_pone_0173237 crossref_primary_10_1371_journal_pone_0170647 crossref_primary_10_3390_brainsci4010001 crossref_primary_10_1016_j_neuroimage_2018_08_001 crossref_primary_10_1080_23273798_2018_1502458 crossref_primary_10_1162_neco_a_01363 crossref_primary_10_1007_s00221_020_05996_4 crossref_primary_10_1016_j_neuroimage_2022_119677 crossref_primary_10_1038_srep43916 crossref_primary_10_1016_j_bspc_2020_102336 crossref_primary_10_3390_s25010182 crossref_primary_10_1016_j_neuropsychologia_2018_09_016 crossref_primary_10_1109_JETCAS_2011_2179421 crossref_primary_10_1016_j_clinph_2012_02_086 crossref_primary_10_1016_j_clinph_2016_02_006 crossref_primary_10_1038_s41598_020_80562_0 crossref_primary_10_1038_s41591_019_0567_3 crossref_primary_10_3389_fpsyt_2021_630406 crossref_primary_10_1016_j_neuropsychologia_2016_06_039 crossref_primary_10_1016_j_jneumeth_2020_108961 crossref_primary_10_1111_j_1469_8986_2012_01471_x crossref_primary_10_1016_j_cortex_2024_09_020 crossref_primary_10_1371_journal_pone_0088940 crossref_primary_10_1016_j_ymeth_2017_06_019 crossref_primary_10_1109_ACCESS_2023_3325283 crossref_primary_10_1016_j_bspc_2021_102741 crossref_primary_10_1016_j_neuroimage_2009_10_010 crossref_primary_10_1007_s10548_022_00901_4 crossref_primary_10_1016_j_biopsycho_2018_06_007 crossref_primary_10_1007_s00521_010_0370_z crossref_primary_10_3389_fnhum_2018_00096 crossref_primary_10_1016_j_heliyon_2024_e34860 crossref_primary_10_1016_j_neuroimage_2019_02_032 crossref_primary_10_1016_j_neuroimage_2019_04_081 crossref_primary_10_1093_cercor_bhad099 crossref_primary_10_1152_jn_00990_2012 crossref_primary_10_1016_j_neuropsychologia_2014_01_007 crossref_primary_10_1111_psyp_12810 crossref_primary_10_1016_j_ssci_2017_12_024 crossref_primary_10_1162_jocn_a_01074 crossref_primary_10_1016_j_clinph_2014_07_007 crossref_primary_10_1109_TNSRE_2023_3253821 crossref_primary_10_1111_jne_12347 crossref_primary_10_3389_fnins_2016_00050 crossref_primary_10_1016_j_ijpsycho_2016_11_005 crossref_primary_10_1038_s42003_025_07788_4  | 
    
| Cites_doi | 10.1016/j.neuroimage.2008.05.033 10.1016/j.clinph.2007.03.012 10.1016/j.ijpsycho.2007.05.015 10.1152/jn.00721.2004 10.1016/j.cogbrainres.2004.09.006 10.1016/j.tics.2004.03.008 10.1523/JNEUROSCI.3477-07.2007 10.1073/pnas.0505508102 10.1111/1469-8986.3720163 10.1126/science.1066168 10.1016/j.jneumeth.2003.10.009 10.1111/j.1469-8986.2003.00141.x 10.1016/j.neuroimage.2006.09.031 10.1523/JNEUROSCI.3286-05.2005 10.1016/S1388-2457(00)00386-2 10.1371/journal.pbio.0020176 10.1016/j.neubiorev.2006.06.007 10.1111/j.1469-8986.2007.00610.x 10.1016/j.clinph.2006.04.018 10.1016/j.tics.2006.09.010 10.1016/j.neuroimage.2005.04.014  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2009 International Federation of Clinical Neurophysiology International Federation of Clinical Neurophysiology 2009 INIST-CNRS  | 
    
| Copyright_xml | – notice: 2009 International Federation of Clinical Neurophysiology – notice: International Federation of Clinical Neurophysiology – notice: 2009 INIST-CNRS  | 
    
| DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TK 7X8  | 
    
| DOI | 10.1016/j.clinph.2009.01.015 | 
    
| DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE Neurosciences Abstracts MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 1872-8952 | 
    
| EndPage | 877 | 
    
| ExternalDocumentID | 19345611 21543298 10_1016_j_clinph_2009_01_015 S1388245709002338 1_s2_0_S1388245709002338  | 
    
| Genre | Validation Studies Research Support, Non-U.S. Gov't Journal Article  | 
    
| GroupedDBID | --- --K --M -~X .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5RE 5VS 6J9 7-5 71M 8P~ AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABLJU ABMAC ABMZM ABTEW ABWVN ABXDB ACDAQ ACGFO ACIEU ACIUM ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGWIK AGYEJ AI. AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HX~ HZ~ IHE J1W K-O KOM L7B M41 MO0 MOBAO MVM N9A O-L O9- OAUVE OHT OP~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSN SSZ T5K UAP UNMZH UV1 VH1 X7M XOL XPP Z5R ZGI ~G- ~HD AACTN AFCTW AFKWA AJOXV AMFUW PKN RIG VQA AADPK AAIAV ABLVK ABYKQ AFMIJ AHPSJ AJBFU LCYCR ZA5 AAYXX CITATION AGCQF AGRNS IQODW CGR CUY CVF ECM EIF NPM 7TK 7X8  | 
    
| ID | FETCH-LOGICAL-c529t-2f67a8922157eb1267f9062508a6e6ff512e178a2d96ab6462bffbe647287d613 | 
    
| IEDL.DBID | AIKHN | 
    
| ISSN | 1388-2457 | 
    
| IngestDate | Thu Oct 02 16:55:03 EDT 2025 Thu Oct 02 06:21:26 EDT 2025 Thu Apr 03 07:03:16 EDT 2025 Mon Jul 21 09:15:32 EDT 2025 Wed Oct 29 21:16:12 EDT 2025 Thu Apr 24 23:09:25 EDT 2025 Fri Feb 23 02:34:23 EST 2024 Sun Feb 23 10:19:36 EST 2025 Tue Oct 14 19:39:04 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 5 | 
    
| Keywords | Artifact correction Lateral eye movements ICA EEG Eye blinks Independent component analysis Human User Decision making Objective analysis Central nervous system Electrophysiology Artefact Electroencephalography Interpretation Eye movement Encephalon Eye Visual system Electrodiagnosis Performance  | 
    
| Language | English | 
    
| License | CC BY 4.0 | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c529t-2f67a8922157eb1267f9062508a6e6ff512e178a2d96ab6462bffbe647287d613 | 
    
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 ObjectType-Undefined-3  | 
    
| PMID | 19345611 | 
    
| PQID | 20074286 | 
    
| PQPubID | 23462 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | proquest_miscellaneous_67231748 proquest_miscellaneous_20074286 pubmed_primary_19345611 pascalfrancis_primary_21543298 crossref_primary_10_1016_j_clinph_2009_01_015 crossref_citationtrail_10_1016_j_clinph_2009_01_015 elsevier_sciencedirect_doi_10_1016_j_clinph_2009_01_015 elsevier_clinicalkeyesjournals_1_s2_0_S1388245709002338 elsevier_clinicalkey_doi_10_1016_j_clinph_2009_01_015  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2009-05-01 | 
    
| PublicationDateYYYYMMDD | 2009-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2009 text: 2009-05-01 day: 01  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | Oxford | 
    
| PublicationPlace_xml | – name: Oxford – name: Netherlands  | 
    
| PublicationTitle | Clinical neurophysiology | 
    
| PublicationTitleAlternate | Clin Neurophysiol | 
    
| PublicationYear | 2009 | 
    
| Publisher | Elsevier Ireland Ltd Elsevier  | 
    
| Publisher_xml | – name: Elsevier Ireland Ltd – name: Elsevier  | 
    
| References | Debener, Makeig, Delorme, Engel (bib1) 2005; 22 Makeig, Delorme, Westerfield, Jung, Townsend, Courchesne (bib19) 2004; 2 Debener, Ullsperger, Siegel, Fiehler, von Cramon, Engel (bib2) 2005; 25 Delorme, Westerfield, Makeig (bib8) 2007; 27 Makeig, Westerfield, Jung, Enghoff, Townsend, Courchesne (bib17) 2002; 295 Feige, Scheffler, Esposito, Di Salle, Hennig, Seifritz (bib10) 2005; 93 Joyce, Gorodnitsky, Kutas (bib14) 2004; 41 Onton, Delorme, Makeig (bib20) 2005; 27 Onton, Westerfield, Townsend, Makeig (bib21) 2006; 30 Debener, Hine, Bleeck, Eyles (bib5) 2008; 45 Makeig, Debener, Onton, Delorme (bib18) 2004; 8 Delorme, Makeig (bib7) 2004; 134 Gilley, Sharma, Dorman, Finley, Panch, Martin (bib11) 2006; 117 Eichele, Specht, Moosmann, Jongsma, Quiroga, Nordby (bib9) 2005; 102 Debener, Mullinger, Niazy, Bowtell (bib6) 2008; 67 Hyvärinen, Karhunen, Oja (bib13) 2001 Jung, Makeig, Westerfield, Townsend, Courchesne, Sejnowski (bib16) 2000; 111 Hine, Debener (bib12) 2007; 118 Debener, Strobel, Sorger, Peters, Kranczioch, Engel (bib4) 2007; 34 Jung, Makeig, Humphries, Lee, McKeown, Iragui (bib15) 2000; 37 Debener, Ullsperger, Siegel, Engel (bib3) 2006; 10 Schneider, Debener, Oostenveld, Engel (bib22) 2008; 42 Feige (10.1016/j.clinph.2009.01.015_bib10) 2005; 93 Delorme (10.1016/j.clinph.2009.01.015_bib7) 2004; 134 Debener (10.1016/j.clinph.2009.01.015_bib3) 2006; 10 Delorme (10.1016/j.clinph.2009.01.015_bib8) 2007; 27 Jung (10.1016/j.clinph.2009.01.015_bib16) 2000; 111 Debener (10.1016/j.clinph.2009.01.015_bib5) 2008; 45 Onton (10.1016/j.clinph.2009.01.015_bib21) 2006; 30 Gilley (10.1016/j.clinph.2009.01.015_bib11) 2006; 117 Hine (10.1016/j.clinph.2009.01.015_bib12) 2007; 118 Jung (10.1016/j.clinph.2009.01.015_bib15) 2000; 37 Eichele (10.1016/j.clinph.2009.01.015_bib9) 2005; 102 Debener (10.1016/j.clinph.2009.01.015_bib1) 2005; 22 Debener (10.1016/j.clinph.2009.01.015_bib2) 2005; 25 Makeig (10.1016/j.clinph.2009.01.015_bib17) 2002; 295 Joyce (10.1016/j.clinph.2009.01.015_bib14) 2004; 41 Debener (10.1016/j.clinph.2009.01.015_bib6) 2008; 67 Makeig (10.1016/j.clinph.2009.01.015_bib19) 2004; 2 Hyvärinen (10.1016/j.clinph.2009.01.015_bib13) 2001 Makeig (10.1016/j.clinph.2009.01.015_bib18) 2004; 8 Debener (10.1016/j.clinph.2009.01.015_bib4) 2007; 34 Onton (10.1016/j.clinph.2009.01.015_bib20) 2005; 27 Schneider (10.1016/j.clinph.2009.01.015_bib22) 2008; 42 19362051 - Clin Neurophysiol. 2009 May;120(5):841-2  | 
    
| References_xml | – volume: 27 start-page: 11949 year: 2007 end-page: 11959 ident: bib8 article-title: Medial prefrontal theta bursts precede rapid motor responses during visual selective attention publication-title: J Neurosci – volume: 111 start-page: 1745 year: 2000 end-page: 1758 ident: bib16 article-title: Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects publication-title: Clin Neurophysiol – volume: 2 start-page: 747 year: 2004 end-page: 762 ident: bib19 article-title: Electroencephalographic brain dynamics following manually responded visual targets publication-title: Plos Biol – volume: 37 start-page: 163 year: 2000 end-page: 178 ident: bib15 article-title: Removing electroencephalographic artifacts by blind source separation publication-title: Psychophysiology – volume: 134 start-page: 9 year: 2004 end-page: 21 ident: bib7 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J Neurosci Methods – volume: 117 start-page: 1772 year: 2006 end-page: 1782 ident: bib11 article-title: Minimization of cochlear implant stimulus artifact in cortical auditory evoked potentials publication-title: Clin Neurophysiol – volume: 118 start-page: 1274 year: 2007 end-page: 1285 ident: bib12 article-title: Late auditory evoked potentials asymmetry revisited publication-title: Clin Neurophysiol – volume: 41 start-page: 313 year: 2004 end-page: 325 ident: bib14 article-title: Automatic removal of eye movement and blink artifacts from EEG data using blind component separation publication-title: Psychophysiology – volume: 295 start-page: 690 year: 2002 end-page: 694 ident: bib17 article-title: Dynamic brain sources of visual evoked responses publication-title: Science – volume: 67 start-page: 189 year: 2008 end-page: 199 ident: bib6 article-title: Properties of the ballistocardiogram artefact as revealed by EEG recordings at 1.5, 3 and 7 publication-title: Int J Psychophysiol – volume: 102 start-page: 17798 year: 2005 end-page: 17803 ident: bib9 article-title: Assessing the spatiotemporal evolution of neuronal activation with single-trial event-related potentials and functional MRI publication-title: Proc Natl Acad Sci USA – year: 2001 ident: bib13 article-title: Independent component analysis – volume: 25 start-page: 11730 year: 2005 end-page: 11737 ident: bib2 article-title: Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring publication-title: J Neurosci – volume: 34 start-page: 590 year: 2007 end-page: 600 ident: bib4 article-title: Improved quality of auditory event-related potentials recorded simultaneously with 3-T fMRI: removal of the ballistocardiogram artefact publication-title: Neuroimage – volume: 93 start-page: 2864 year: 2005 end-page: 2872 ident: bib10 article-title: Cortical and subcortical correlates of electroencephalographic alpha rhythm modulation publication-title: J Neurophysiol – volume: 22 start-page: 309 year: 2005 end-page: 321 ident: bib1 article-title: What is novel in the novelty oddball paradigm? Functional significance of the novelty P3 event-related potential as revealed by independent component analysis publication-title: Cogn Brain Res – volume: 8 start-page: 204 year: 2004 end-page: 210 ident: bib18 article-title: Mining event-related brain dynamics publication-title: Trends Cogn Sci – volume: 10 start-page: 558 year: 2006 end-page: 563 ident: bib3 article-title: Single-trial EEG/fMRI reveals the dynamics of cognitive function publication-title: Trends Cogn Sci – volume: 30 start-page: 808 year: 2006 end-page: 822 ident: bib21 article-title: Imaging human EEG dynamics using independent component analysis publication-title: Neurosci Biobehav Rev – volume: 27 start-page: 341 year: 2005 end-page: 356 ident: bib20 article-title: Frontal midline EEG dynamics during working memory publication-title: Neuroimage – volume: 45 start-page: 20 year: 2008 end-page: 24 ident: bib5 article-title: Source localization of auditory evoked potentials after cochlear implantation publication-title: Psychophysiology – volume: 42 start-page: 1244 year: 2008 end-page: 1254 ident: bib22 article-title: Enhanced EEG gamma-band activity reflects multisensory semantic matching in visual-to-auditory object priming publication-title: Neuroimage – volume: 42 start-page: 1244 issue: 3 year: 2008 ident: 10.1016/j.clinph.2009.01.015_bib22 article-title: Enhanced EEG gamma-band activity reflects multisensory semantic matching in visual-to-auditory object priming publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.05.033 – volume: 118 start-page: 1274 issue: 6 year: 2007 ident: 10.1016/j.clinph.2009.01.015_bib12 article-title: Late auditory evoked potentials asymmetry revisited publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2007.03.012 – volume: 67 start-page: 189 issue: 3 year: 2008 ident: 10.1016/j.clinph.2009.01.015_bib6 article-title: Properties of the ballistocardiogram artefact as revealed by EEG recordings at 1.5, 3 and 7T static magnetic field strength publication-title: Int J Psychophysiol doi: 10.1016/j.ijpsycho.2007.05.015 – volume: 93 start-page: 2864 issue: 5 year: 2005 ident: 10.1016/j.clinph.2009.01.015_bib10 article-title: Cortical and subcortical correlates of electroencephalographic alpha rhythm modulation publication-title: J Neurophysiol doi: 10.1152/jn.00721.2004 – volume: 22 start-page: 309 issue: 3 year: 2005 ident: 10.1016/j.clinph.2009.01.015_bib1 article-title: What is novel in the novelty oddball paradigm? Functional significance of the novelty P3 event-related potential as revealed by independent component analysis publication-title: Cogn Brain Res doi: 10.1016/j.cogbrainres.2004.09.006 – volume: 8 start-page: 204 issue: 5 year: 2004 ident: 10.1016/j.clinph.2009.01.015_bib18 article-title: Mining event-related brain dynamics publication-title: Trends Cogn Sci doi: 10.1016/j.tics.2004.03.008 – volume: 27 start-page: 11949 issue: 44 year: 2007 ident: 10.1016/j.clinph.2009.01.015_bib8 article-title: Medial prefrontal theta bursts precede rapid motor responses during visual selective attention publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3477-07.2007 – volume: 102 start-page: 17798 issue: 49 year: 2005 ident: 10.1016/j.clinph.2009.01.015_bib9 article-title: Assessing the spatiotemporal evolution of neuronal activation with single-trial event-related potentials and functional MRI publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0505508102 – volume: 37 start-page: 163 issue: 2 year: 2000 ident: 10.1016/j.clinph.2009.01.015_bib15 article-title: Removing electroencephalographic artifacts by blind source separation publication-title: Psychophysiology doi: 10.1111/1469-8986.3720163 – volume: 295 start-page: 690 issue: 5555 year: 2002 ident: 10.1016/j.clinph.2009.01.015_bib17 article-title: Dynamic brain sources of visual evoked responses publication-title: Science doi: 10.1126/science.1066168 – year: 2001 ident: 10.1016/j.clinph.2009.01.015_bib13 – volume: 134 start-page: 9 issue: 1 year: 2004 ident: 10.1016/j.clinph.2009.01.015_bib7 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2003.10.009 – volume: 41 start-page: 313 issue: 2 year: 2004 ident: 10.1016/j.clinph.2009.01.015_bib14 article-title: Automatic removal of eye movement and blink artifacts from EEG data using blind component separation publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2003.00141.x – volume: 34 start-page: 590 issue: 2 year: 2007 ident: 10.1016/j.clinph.2009.01.015_bib4 article-title: Improved quality of auditory event-related potentials recorded simultaneously with 3-T fMRI: removal of the ballistocardiogram artefact publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.09.031 – volume: 25 start-page: 11730 issue: 50 year: 2005 ident: 10.1016/j.clinph.2009.01.015_bib2 article-title: Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3286-05.2005 – volume: 111 start-page: 1745 issue: 10 year: 2000 ident: 10.1016/j.clinph.2009.01.015_bib16 article-title: Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(00)00386-2 – volume: 2 start-page: 747 issue: 6 year: 2004 ident: 10.1016/j.clinph.2009.01.015_bib19 article-title: Electroencephalographic brain dynamics following manually responded visual targets publication-title: Plos Biol doi: 10.1371/journal.pbio.0020176 – volume: 30 start-page: 808 issue: 6 year: 2006 ident: 10.1016/j.clinph.2009.01.015_bib21 article-title: Imaging human EEG dynamics using independent component analysis publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2006.06.007 – volume: 45 start-page: 20 issue: 1 year: 2008 ident: 10.1016/j.clinph.2009.01.015_bib5 article-title: Source localization of auditory evoked potentials after cochlear implantation publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2007.00610.x – volume: 117 start-page: 1772 issue: 8 year: 2006 ident: 10.1016/j.clinph.2009.01.015_bib11 article-title: Minimization of cochlear implant stimulus artifact in cortical auditory evoked potentials publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2006.04.018 – volume: 10 start-page: 558 issue: 12 year: 2006 ident: 10.1016/j.clinph.2009.01.015_bib3 article-title: Single-trial EEG/fMRI reveals the dynamics of cognitive function publication-title: Trends Cogn Sci doi: 10.1016/j.tics.2006.09.010 – volume: 27 start-page: 341 issue: 2 year: 2005 ident: 10.1016/j.clinph.2009.01.015_bib20 article-title: Frontal midline EEG dynamics during working memory publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.04.014 – reference: 19362051 - Clin Neurophysiol. 2009 May;120(5):841-2  | 
    
| SSID | ssj0007042 | 
    
| Score | 2.4459023 | 
    
| Snippet | Independent component analysis (ICA) can disentangle multi-channel electroencephalogram (EEG) signals into a number of artifacts and brain-related signals.... Abstract Objective Independent component analysis (ICA) can disentangle multi-channel electroencephalogram (EEG) signals into a number of artifacts and... Objective - Independent component analysis (ICA) can disentangle multi-channel electroencephalogram (EEG) signals into a number of artifacts and brain-related... OBJECTIVEIndependent component analysis (ICA) can disentangle multi-channel electroencephalogram (EEG) signals into a number of artifacts and brain-related...  | 
    
| SourceID | proquest pubmed pascalfrancis crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 868 | 
    
| SubjectTerms | Algorithms Artifact correction Artificial Intelligence Biological and medical sciences Brain - physiology Brain Mapping - methods Computer Simulation EEG Electrodiagnosis. Electric activity recording Electroencephalography - methods Evoked Potentials - physiology Eye and associated structures. Visual pathways and centers. Vision Eye blinks Eye Movements - physiology Fundamental and applied biological sciences. Psychology Heart Rate - physiology Humans ICA Independent component analysis Investigative techniques, diagnostic techniques (general aspects) Lateral eye movements Medical sciences Nervous system Neurology Pattern Recognition, Automated - methods Signal Processing, Computer-Assisted Software Software Validation Vertebrates: nervous system and sense organs  | 
    
| Title | Semi-automatic identification of independent components representing EEG artifact | 
    
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1388245709002338 https://www.clinicalkey.es/playcontent/1-s2.0-S1388245709002338 https://dx.doi.org/10.1016/j.clinph.2009.01.015 https://www.ncbi.nlm.nih.gov/pubmed/19345611 https://www.proquest.com/docview/20074286 https://www.proquest.com/docview/67231748  | 
    
| Volume | 120 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-8952 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007042 issn: 1388-2457 databaseCode: .~1 dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-8952 dateEnd: 20180430 omitProxy: true ssIdentifier: ssj0007042 issn: 1388-2457 databaseCode: ACRLP dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-8952 dateEnd: 20180430 omitProxy: true ssIdentifier: ssj0007042 issn: 1388-2457 databaseCode: AIKHN dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-8952 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007042 issn: 1388-2457 databaseCode: AKRWK dateStart: 19990101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbarYSQKsSb8lh84Go28TM-VtWWBdRKqFTqzXISWwTB7opkr_3tzCTOQgWrIiSfIo-djGfmm8jzIOQNiEBhCsVZraxk0njLvK8DA92y3JS5VxKzkc_O9eJSfrhSV3vkZMyFwbDKZPsHm95b6_Rklrg5WzfN7CIX4B1KZTKLwCOKfXIA-FMUE3Jw_P7j4nxrkE3W99DB-QwJxgy6PswLExDXX1LhyhyG2oVQh2vfAt_i0PBit0faI9PpfXIvuZT0eHjrB2QvLB-SO2fp0vwR-XQRvjfMb7pVX56VNnWKEOoPha4ibba9cDuKMearJYZX0L7gJSYnAbzR-fwdRcZgJsRjcnk6_3yyYKmTAqsUtx3jURsPzAd8N2CcuTYR6xODc-Z10DEC6ofcFJ7XVvtSS83LGMuApeULUwPiPyGTJez9jNBSKF3XtayEETKL1pfBFJX3WqqK2yiOiBi556pUZhy7XXxzYzzZVzfwHDtgWpflMNQRYVuq9VBm45b5ajwYN6aQgtFzgAO30Jm_0YU2aW7rctdyl7k_pOt3yhsC-g97Tm9IzvYD4TSk4BaWfj2KkgPlxhsbvwyrTYurGPg_1LtnaAMOupGwxtNBBn-xzwp0jvPn__3iL8jd4e4Mwztfkkn3YxNegQvWlVOy__Y6nyZF-wnTCC-K | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0CpFAiSEeFMerQ9czSZ-xkdUbVmgWwm1lXqznMRWg2B3RbJXvp2ZxNlSwaoIyadoxnbG87I8D0LeAgsUplCc1cpKJo23zPs6MJAty02ZeyUxG3l-omfn8tOFutghh2MuDIZVJt0_6PReW6cvk0TNyappJqe5AO9QKpNZNDyiuEVuS8UN3sDe_byK8zBZ30EHoRmCj_lzfZAXph-uLlPZyhyG2maf7q98C1SLQ7uL7f5ob5eOHpIHyaGk74c9PyI7YfGY3JmnJ_Mn5Mtp-N4wv-6WfXFW2tQpPqg_ErqMtNl0wu0oRpgvFxhcQftyl5iaBMaNTqcfKJIF8yCekvOj6dnhjKU-CqxS3HaMR208kB6suwHVzLWJWJ0YXDOvg44RbH7ITeF5bbUvtdS8jLEMWFi-MDXY-2dkdwFrvyC0FErXdS0rYYTMovVlMEXlvZaq4jaKPSJG6rkqFRnHXhff3BhN9tUNNMf-l9ZlOQy1R9gGazUU2bgBXo0H48YEUlB5DqzADXjmb3ihTXLbuty13GXuD976HfMae_7DmvvXOGfzg3AaUnALUx-MrORAtPG9xi_Cct3iLAZuh3o7hDbgnhsJczwfePCKfFaga5y__O-NH5C7s7P5sTv-ePL5Fbk3vKJhoOdrstv9WIc34Ix15X4vbL8AYUEwUg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-automatic+identification+of+independent+components+representing+EEG+artifact&rft.jtitle=Clinical+neurophysiology&rft.au=Viola%2C+Filipa+Campos&rft.au=Thorne%2C+Jeremy&rft.au=Edmonds%2C+Barrie&rft.au=Schneider%2C+Till&rft.date=2009-05-01&rft.eissn=1872-8952&rft.volume=120&rft.issue=5&rft.spage=868&rft_id=info:doi/10.1016%2Fj.clinph.2009.01.015&rft_id=info%3Apmid%2F19345611&rft.externalDocID=19345611 | 
    
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13882457%2FS1388245709X00064%2Fcov150h.gif |