Semi-automatic identification of independent components representing EEG artifact

Independent component analysis (ICA) can disentangle multi-channel electroencephalogram (EEG) signals into a number of artifacts and brain-related signals. However, the identification and interpretation of independent components is time-consuming and involves subjective decision making. We developed...

Full description

Saved in:
Bibliographic Details
Published inClinical neurophysiology Vol. 120; no. 5; pp. 868 - 877
Main Authors Campos Viola, Filipa, Thorne, Jeremy, Edmonds, Barrie, Schneider, Till, Eichele, Tom, Debener, Stefan
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ireland Ltd 01.05.2009
Elsevier
Subjects
Online AccessGet full text
ISSN1388-2457
1872-8952
DOI10.1016/j.clinph.2009.01.015

Cover

Abstract Independent component analysis (ICA) can disentangle multi-channel electroencephalogram (EEG) signals into a number of artifacts and brain-related signals. However, the identification and interpretation of independent components is time-consuming and involves subjective decision making. We developed and evaluated a semi-automatic tool designed for clustering independent components from different subjects and/or EEG recordings. CORRMAP is an open-source EEGLAB plug-in, based on the correlation of ICA inverse weights, and finds independent components that are similar to a user-defined template. Component similarity is measured using a correlation procedure that selects components that pass a threshold. The threshold can be either user-defined or determined automatically. CORRMAP clustering performance was evaluated by comparing it with the performance of 11 users from different laboratories familiar with ICA. For eye-related artifacts, a very high degree of overlap between users (phi > 0.80), and between users and CORRMAP (phi > 0.80) was observed. Lower degrees of association were found for heartbeat artifact components, between users (phi < 0.70), and between users and CORRMAP (phi < 0.65). These results demonstrate that CORRMAP provides an efficient, convenient and objective way of clustering independent components. CORRMAP helps to efficiently use ICA for the removal EEG artifacts.
AbstractList Independent component analysis (ICA) can disentangle multi-channel electroencephalogram (EEG) signals into a number of artifacts and brain-related signals. However, the identification and interpretation of independent components is time-consuming and involves subjective decision making. We developed and evaluated a semi-automatic tool designed for clustering independent components from different subjects and/or EEG recordings. CORRMAP is an open-source EEGLAB plug-in, based on the correlation of ICA inverse weights, and finds independent components that are similar to a user-defined template. Component similarity is measured using a correlation procedure that selects components that pass a threshold. The threshold can be either user-defined or determined automatically. CORRMAP clustering performance was evaluated by comparing it with the performance of 11 users from different laboratories familiar with ICA. For eye-related artifacts, a very high degree of overlap between users (phi > 0.80), and between users and CORRMAP (phi > 0.80) was observed. Lower degrees of association were found for heartbeat artifact components, between users (phi < 0.70), and between users and CORRMAP (phi < 0.65). These results demonstrate that CORRMAP provides an efficient, convenient and objective way of clustering independent components. CORRMAP helps to efficiently use ICA for the removal EEG artifacts.
Independent component analysis (ICA) can disentangle multi-channel electroencephalogram (EEG) signals into a number of artifacts and brain-related signals. However, the identification and interpretation of independent components is time-consuming and involves subjective decision making. We developed and evaluated a semi-automatic tool designed for clustering independent components from different subjects and/or EEG recordings. CORRMAP is an open-source EEGLAB plug-in, based on the correlation of ICA inverse weights, and finds independent components that are similar to a user-defined template. Component similarity is measured using a correlation procedure that selects components that pass a threshold. The threshold can be either user-defined or determined automatically. CORRMAP clustering performance was evaluated by comparing it with the performance of 11 users from different laboratories familiar with ICA. For eye-related artifacts, a very high degree of overlap between users (phi>0.80), and between users and CORRMAP (phi>0.80) was observed. Lower degrees of association were found for heartbeat artifact components, between users (phi<0.70), and between users and CORRMAP (phi<0.65). These results demonstrate that CORRMAP provides an efficient, convenient and objective way of clustering independent components. CORRMAP helps to efficiently use ICA for the removal EEG artifacts.
Objective - Independent component analysis (ICA) can disentangle multi-channel electroencephalogram (EEG) signals into a number of artifacts and brain-related signals. However, the identification and interpretation of independent components is time-consuming and involves subjective decision making. We developed and evaluated a semi-automatic tool designed for clustering independent components from different subjects and/or EEG recordings. Methods - CORRMAP is an open-source EEGLAB plug-in, based on the correlation of ICA inverse weights, and finds independent components that are similar to a user-defined template. Component similarity is measured using a correlation procedure that selects components that pass a threshold. The threshold can be either user-defined or determined automatically. CORRMAP clustering performance was evaluated by comparing it with the performance of 11 users from different laboratories familiar with ICA. Results - For eye-related artifacts, a very high degree of overlap between users (phi > 0.80), and between users and CORRMAP (phi > 0.80) was observed. Lower degrees of association were found for heartbeat artifact components, between users (phi < 0.70), and between users and CORRMAP (phi < 0.65). Conclusions - These results demonstrate that CORRMAP provides an efficient, convenient and objective way of clustering independent components. Significance - CORRMAP helps to efficiently use ICA for the removal EEG artifacts.
Abstract Objective Independent component analysis (ICA) can disentangle multi-channel electroencephalogram (EEG) signals into a number of artifacts and brain-related signals. However, the identification and interpretation of independent components is time-consuming and involves subjective decision making. We developed and evaluated a semi-automatic tool designed for clustering independent components from different subjects and/or EEG recordings. Methods CORRMAP is an open-source EEGLAB plug-in, based on the correlation of ICA inverse weights, and finds independent components that are similar to a user-defined template. Component similarity is measured using a correlation procedure that selects components that pass a threshold. The threshold can be either user-defined or determined automatically. CORRMAP clustering performance was evaluated by comparing it with the performance of 11 users from different laboratories familiar with ICA. Results For eye-related artifacts, a very high degree of overlap between users (phi > 0.80), and between users and CORRMAP (phi > 0.80) was observed. Lower degrees of association were found for heartbeat artifact components, between users (phi < 0.70), and between users and CORRMAP (phi < 0.65). Conclusions These results demonstrate that CORRMAP provides an efficient, convenient and objective way of clustering independent components. Significance CORRMAP helps to efficiently use ICA for the removal EEG artifacts.
OBJECTIVEIndependent component analysis (ICA) can disentangle multi-channel electroencephalogram (EEG) signals into a number of artifacts and brain-related signals. However, the identification and interpretation of independent components is time-consuming and involves subjective decision making. We developed and evaluated a semi-automatic tool designed for clustering independent components from different subjects and/or EEG recordings.METHODSCORRMAP is an open-source EEGLAB plug-in, based on the correlation of ICA inverse weights, and finds independent components that are similar to a user-defined template. Component similarity is measured using a correlation procedure that selects components that pass a threshold. The threshold can be either user-defined or determined automatically. CORRMAP clustering performance was evaluated by comparing it with the performance of 11 users from different laboratories familiar with ICA.RESULTSFor eye-related artifacts, a very high degree of overlap between users (phi>0.80), and between users and CORRMAP (phi>0.80) was observed. Lower degrees of association were found for heartbeat artifact components, between users (phi<0.70), and between users and CORRMAP (phi<0.65).CONCLUSIONSThese results demonstrate that CORRMAP provides an efficient, convenient and objective way of clustering independent components.SIGNIFICANCECORRMAP helps to efficiently use ICA for the removal EEG artifacts.
Author Edmonds, Barrie
Schneider, Till
Debener, Stefan
Campos Viola, Filipa
Eichele, Tom
Thorne, Jeremy
Author_xml – sequence: 1
  givenname: Filipa
  surname: Campos Viola
  fullname: Campos Viola, Filipa
  organization: MRC Institute of Hearing Research, Southampton, UK
– sequence: 2
  givenname: Jeremy
  surname: Thorne
  fullname: Thorne, Jeremy
  organization: MRC Institute of Hearing Research, Southampton, UK
– sequence: 3
  givenname: Barrie
  surname: Edmonds
  fullname: Edmonds, Barrie
  organization: MRC Institute of Hearing Research, Nottingham, UK
– sequence: 4
  givenname: Till
  surname: Schneider
  fullname: Schneider, Till
  organization: Department of Neurophysiology and Pathophysiology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
– sequence: 5
  givenname: Tom
  surname: Eichele
  fullname: Eichele, Tom
  organization: Department of Biological and Medical Psychology, University of Bergen, Norway
– sequence: 6
  givenname: Stefan
  surname: Debener
  fullname: Debener, Stefan
  email: stefan@debener.de
  organization: MRC Institute of Hearing Research, Southampton, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21543298$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19345611$$D View this record in MEDLINE/PubMed
BookMark eNqVkmuL1DAUhoOsuBf9ByL9ot86Jmmbi4ggy7gKCyKrn0OanmjGNqlJKuy_33RnVBBkEAK58LzvybmcoxMfPCD0lOANwYS93G3M6Pz8bUMxlhtMyuoeoDMiOK2F7OhJOTdC1LTt-Ck6T2mHMea4pY_QKZFN2zFCztCnG5hcrZccJp2dqdwAPjvrTLkFXwVbOT_ADH59r0yY5vILn1MVYY6QVth_rbbbq0rHotMmP0YPrR4TPDnsF-jLu-3ny_f19cerD5dvr2vTUZlrahnXQlJKOg49oYxbiRntsNAMmLUdoUC40HSQTPesZbS3tgfWcir4wEhzgV7sfecYfiyQsppcMjCO2kNYkmKcNoS34ihY6sdbKlgBnx3ApZ9gUHN0k4636le1CvD8AOhk9Gij9sal31xJpW2oXCO2e87EkFIE-8cKq7V5aqf2zVuDS4VJWV2RvfpLZly-70OO2o3HxG_2Yig1_-kgqmQceAODi2CyGoL7X4MVKoMwfodbSLuwRF_6qYhKVGF1sw7XOltYYkybZs369b8Njse_Ayo0378
CitedBy_id crossref_primary_10_1002_hbm_26643
crossref_primary_10_1093_sleep_zsab100
crossref_primary_10_1016_j_neuroimage_2019_116117
crossref_primary_10_1142_S021800141558001X
crossref_primary_10_1016_j_neuroimage_2016_05_074
crossref_primary_10_3389_fnhum_2017_00582
crossref_primary_10_3389_fnhum_2018_00312
crossref_primary_10_1016_j_neuroimage_2021_118834
crossref_primary_10_1016_j_biopsycho_2023_108643
crossref_primary_10_1016_j_aforl_2018_12_009
crossref_primary_10_1088_1741_2552_aa8232
crossref_primary_10_1016_j_clinph_2014_08_009
crossref_primary_10_1016_S0208_5216_11_70026_2
crossref_primary_10_1097_WNP_0000000000000039
crossref_primary_10_1523_JNEUROSCI_6352_11_2012
crossref_primary_10_1016_j_neuroimage_2012_01_063
crossref_primary_10_1126_scitranslmed_aav8939
crossref_primary_10_1016_j_clinph_2009_02_169
crossref_primary_10_1088_1741_2552_aa7a25
crossref_primary_10_1371_journal_pone_0162657
crossref_primary_10_1007_s10548_013_0287_9
crossref_primary_10_1016_j_neuroimage_2010_04_256
crossref_primary_10_1080_13803395_2014_977232
crossref_primary_10_1002_brb3_3205
crossref_primary_10_1186_1687_6180_2012_127
crossref_primary_10_1016_j_clinph_2021_05_036
crossref_primary_10_1111_psyp_14178
crossref_primary_10_1155_2016_9754813
crossref_primary_10_1016_j_jneumeth_2015_02_025
crossref_primary_10_7717_peerj_4380
crossref_primary_10_1016_j_clinph_2023_12_133
crossref_primary_10_1016_j_bandl_2018_09_005
crossref_primary_10_1016_j_jneumeth_2015_10_003
crossref_primary_10_1002_hbm_22388
crossref_primary_10_1109_ACCESS_2018_2842082
crossref_primary_10_1016_j_biopsych_2014_12_010
crossref_primary_10_1016_j_cortex_2014_12_019
crossref_primary_10_1016_j_brainres_2017_07_001
crossref_primary_10_1016_j_clinph_2022_03_018
crossref_primary_10_1016_j_bspc_2015_05_015
crossref_primary_10_1109_ACCESS_2020_3032056
crossref_primary_10_1027_2512_8442_a000061
crossref_primary_10_1007_s00221_018_5447_4
crossref_primary_10_1016_j_neuroimage_2023_119942
crossref_primary_10_3389_fnins_2019_00441
crossref_primary_10_1016_j_neuroimage_2015_07_062
crossref_primary_10_1016_j_neuroimage_2022_119549
crossref_primary_10_1007_s10548_023_00947_y
crossref_primary_10_1016_j_neuroimage_2013_07_057
crossref_primary_10_1089_brain_2018_0645
crossref_primary_10_1016_j_ijpsycho_2022_11_012
crossref_primary_10_1007_s10548_017_0603_x
crossref_primary_10_1002_hbm_26417
crossref_primary_10_1016_j_pain_2011_03_027
crossref_primary_10_1088_1741_2560_13_2_026005
crossref_primary_10_1016_j_clinph_2015_06_016
crossref_primary_10_1002_hbm_24352
crossref_primary_10_1016_j_neuroimage_2023_120141
crossref_primary_10_3389_fnins_2020_577160
crossref_primary_10_1016_j_ijpsycho_2013_08_010
crossref_primary_10_1371_journal_pone_0062944
crossref_primary_10_1002_hbm_23938
crossref_primary_10_1016_j_neuroimage_2020_117315
crossref_primary_10_1016_j_neuropsychologia_2021_108011
crossref_primary_10_1109_TCDS_2021_3065200
crossref_primary_10_1525_collabra_87
crossref_primary_10_1111_psyp_14191
crossref_primary_10_3389_fnins_2020_624484
crossref_primary_10_1016_j_clinph_2009_05_011
crossref_primary_10_1016_j_neuroimage_2019_06_048
crossref_primary_10_1109_TNSRE_2013_2293139
crossref_primary_10_1016_j_neuroimage_2011_06_045
crossref_primary_10_1038_s41598_024_52587_2
crossref_primary_10_1111_j_1469_8986_2011_01224_x
crossref_primary_10_1167_jov_21_11_19
crossref_primary_10_1038_srep24435
crossref_primary_10_1088_1741_2552_ab3235
crossref_primary_10_1111_psyp_13399
crossref_primary_10_1523_ENEURO_0238_24_2024
crossref_primary_10_1126_sciadv_abg6867
crossref_primary_10_1523_JNEUROSCI_2751_19_2020
crossref_primary_10_3389_fnhum_2015_00007
crossref_primary_10_1093_cercor_bhv076
crossref_primary_10_1038_s41598_024_73630_2
crossref_primary_10_3389_fnins_2018_00530
crossref_primary_10_1016_j_biopsycho_2022_108323
crossref_primary_10_1038_s41467_018_07456_8
crossref_primary_10_1038_s41598_022_17970_x
crossref_primary_10_1109_JSEN_2011_2115236
crossref_primary_10_1016_j_neuroimage_2018_10_059
crossref_primary_10_1016_j_bspc_2015_06_009
crossref_primary_10_1186_s40317_022_00287_x
crossref_primary_10_1016_j_neuroimage_2018_03_012
crossref_primary_10_1088_1741_2552_aa69d1
crossref_primary_10_1523_ENEURO_0026_23_2023
crossref_primary_10_1016_j_bbr_2015_10_031
crossref_primary_10_1038_s41597_024_03241_z
crossref_primary_10_1080_00140139_2016_1142121
crossref_primary_10_1038_ncomms4940
crossref_primary_10_3389_fnhum_2016_00171
crossref_primary_10_1016_j_clinph_2014_06_029
crossref_primary_10_3389_fpsyg_2018_00485
crossref_primary_10_1016_j_cmpb_2012_04_005
crossref_primary_10_1371_journal_pone_0014371
crossref_primary_10_1152_jn_00070_2015
crossref_primary_10_3390_s19204454
crossref_primary_10_1016_j_ijpsycho_2021_02_016
crossref_primary_10_1111_psyp_13731
crossref_primary_10_1016_j_neuropsychologia_2019_107204
crossref_primary_10_1038_s41598_020_62155_z
crossref_primary_10_1002_ejp_535
crossref_primary_10_1371_journal_pone_0289293
crossref_primary_10_1038_s42003_022_04048_7
crossref_primary_10_3389_fnins_2018_00309
crossref_primary_10_1016_j_clinph_2010_07_008
crossref_primary_10_1016_j_neuroimage_2012_07_055
crossref_primary_10_1038_s41598_021_89690_7
crossref_primary_10_1111_psyp_14020
crossref_primary_10_1038_srep16743
crossref_primary_10_1016_j_medengphy_2012_08_017
crossref_primary_10_1186_1744_9081_7_30
crossref_primary_10_3389_fnins_2017_00305
crossref_primary_10_3389_fnhum_2014_00181
crossref_primary_10_1177_03057356221116141
crossref_primary_10_1088_1741_2560_11_3_036008
crossref_primary_10_1016_j_heares_2011_12_010
crossref_primary_10_3389_fnins_2023_1247290
crossref_primary_10_1111_psyp_12899
crossref_primary_10_1111_psyp_12894
crossref_primary_10_1111_j_1469_8986_2010_01061_x
crossref_primary_10_1016_j_bbe_2021_06_007
crossref_primary_10_1016_j_clinph_2019_09_016
crossref_primary_10_1111_psyp_14277
crossref_primary_10_3389_fpsyg_2019_00449
crossref_primary_10_3390_clockssleep6040041
crossref_primary_10_1016_j_neuroimage_2019_04_017
crossref_primary_10_1007_s10548_015_0424_8
crossref_primary_10_1016_j_nicl_2017_09_001
crossref_primary_10_1038_s41598_017_16595_9
crossref_primary_10_1111_psyp_12827
crossref_primary_10_1016_j_biopsycho_2024_108775
crossref_primary_10_1016_j_neuropsychologia_2015_06_019
crossref_primary_10_1007_s10548_016_0483_5
crossref_primary_10_1111_psyp_14323
crossref_primary_10_1111_psyp_12147
crossref_primary_10_1038_s41598_024_56633_x
crossref_primary_10_1016_j_psychsport_2024_102679
crossref_primary_10_1088_1741_2552_ad1783
crossref_primary_10_1371_journal_pone_0121048
crossref_primary_10_1016_j_neucli_2017_10_059
crossref_primary_10_1016_j_anorl_2019_08_001
crossref_primary_10_1371_journal_pone_0222420
crossref_primary_10_1371_journal_pone_0266107
crossref_primary_10_1126_scitranslmed_adm7580
crossref_primary_10_1016_j_neuroimage_2015_08_053
crossref_primary_10_1016_j_procs_2016_08_253
crossref_primary_10_1111_psyp_14457
crossref_primary_10_1587_transinf_2015CBP0008
crossref_primary_10_3389_fnhum_2015_00339
crossref_primary_10_1016_j_neuroimage_2013_01_040
crossref_primary_10_12688_f1000research_10569_1
crossref_primary_10_3389_fnhum_2018_00029
crossref_primary_10_12688_f1000research_10569_2
crossref_primary_10_1016_j_neuroimage_2010_10_033
crossref_primary_10_1088_1741_2552_ac1037
crossref_primary_10_1109_TNSRE_2022_3156931
crossref_primary_10_1016_j_neuropsychologia_2016_01_014
crossref_primary_10_1111_ejn_14965
crossref_primary_10_1016_j_bandl_2014_07_010
crossref_primary_10_1016_j_neuroimage_2010_07_057
crossref_primary_10_3390_biology12020284
crossref_primary_10_1016_j_jneumeth_2015_01_030
crossref_primary_10_1016_j_neuroimage_2023_120093
crossref_primary_10_1016_j_cmpb_2013_12_010
crossref_primary_10_1007_s00221_020_05922_8
crossref_primary_10_1016_j_neuroimage_2020_117600
crossref_primary_10_3389_fnhum_2017_00163
crossref_primary_10_3390_s20247040
crossref_primary_10_1186_1471_2202_13_113
crossref_primary_10_3390_s21196364
crossref_primary_10_3758_s13415_016_0452_1
crossref_primary_10_1016_j_clinph_2015_12_009
crossref_primary_10_1016_j_clinph_2021_10_018
crossref_primary_10_3389_fnhum_2019_00141
crossref_primary_10_1088_1741_2560_11_3_035013
crossref_primary_10_1093_braincomms_fcad232
crossref_primary_10_1111_j_1469_8986_2012_01458_x
crossref_primary_10_1523_ENEURO_0345_22_2022
crossref_primary_10_3390_s23104847
crossref_primary_10_1016_j_neuroimage_2016_03_034
crossref_primary_10_1016_j_clinph_2013_12_109
crossref_primary_10_1093_sleep_zsae105
crossref_primary_10_1155_2017_3072870
crossref_primary_10_1002_hbm_26135
crossref_primary_10_1016_j_nicl_2013_01_001
crossref_primary_10_1088_1741_2552_ac5fcb
crossref_primary_10_1111_psyp_14117
crossref_primary_10_1523_ENEURO_0355_21_2021
crossref_primary_10_1016_j_brs_2022_02_008
crossref_primary_10_1038_s41598_020_67234_9
crossref_primary_10_1016_j_neuroimage_2011_03_017
crossref_primary_10_1111_psyp_12290
crossref_primary_10_1371_journal_pone_0178934
crossref_primary_10_1016_j_biopsycho_2023_108698
crossref_primary_10_1002_hbm_21475
crossref_primary_10_3758_s13415_020_00778_5
crossref_primary_10_1016_j_neuroimage_2022_119322
crossref_primary_10_1111_jopy_12167
crossref_primary_10_1016_j_medengphy_2011_10_005
crossref_primary_10_1111_ejn_13896
crossref_primary_10_1111_ejn_15037
crossref_primary_10_1111_j_1467_7687_2011_01131_x
crossref_primary_10_3389_fpsyg_2022_833112
crossref_primary_10_1016_j_biopsycho_2018_12_013
crossref_primary_10_1162_jocn_a_00551
crossref_primary_10_1371_journal_pone_0173237
crossref_primary_10_1371_journal_pone_0170647
crossref_primary_10_3390_brainsci4010001
crossref_primary_10_1016_j_neuroimage_2018_08_001
crossref_primary_10_1080_23273798_2018_1502458
crossref_primary_10_1162_neco_a_01363
crossref_primary_10_1007_s00221_020_05996_4
crossref_primary_10_1016_j_neuroimage_2022_119677
crossref_primary_10_1038_srep43916
crossref_primary_10_1016_j_bspc_2020_102336
crossref_primary_10_3390_s25010182
crossref_primary_10_1016_j_neuropsychologia_2018_09_016
crossref_primary_10_1109_JETCAS_2011_2179421
crossref_primary_10_1016_j_clinph_2012_02_086
crossref_primary_10_1016_j_clinph_2016_02_006
crossref_primary_10_1038_s41598_020_80562_0
crossref_primary_10_1038_s41591_019_0567_3
crossref_primary_10_3389_fpsyt_2021_630406
crossref_primary_10_1016_j_neuropsychologia_2016_06_039
crossref_primary_10_1016_j_jneumeth_2020_108961
crossref_primary_10_1111_j_1469_8986_2012_01471_x
crossref_primary_10_1016_j_cortex_2024_09_020
crossref_primary_10_1371_journal_pone_0088940
crossref_primary_10_1016_j_ymeth_2017_06_019
crossref_primary_10_1109_ACCESS_2023_3325283
crossref_primary_10_1016_j_bspc_2021_102741
crossref_primary_10_1016_j_neuroimage_2009_10_010
crossref_primary_10_1007_s10548_022_00901_4
crossref_primary_10_1016_j_biopsycho_2018_06_007
crossref_primary_10_1007_s00521_010_0370_z
crossref_primary_10_3389_fnhum_2018_00096
crossref_primary_10_1016_j_heliyon_2024_e34860
crossref_primary_10_1016_j_neuroimage_2019_02_032
crossref_primary_10_1016_j_neuroimage_2019_04_081
crossref_primary_10_1093_cercor_bhad099
crossref_primary_10_1152_jn_00990_2012
crossref_primary_10_1016_j_neuropsychologia_2014_01_007
crossref_primary_10_1111_psyp_12810
crossref_primary_10_1016_j_ssci_2017_12_024
crossref_primary_10_1162_jocn_a_01074
crossref_primary_10_1016_j_clinph_2014_07_007
crossref_primary_10_1109_TNSRE_2023_3253821
crossref_primary_10_1111_jne_12347
crossref_primary_10_3389_fnins_2016_00050
crossref_primary_10_1016_j_ijpsycho_2016_11_005
crossref_primary_10_1038_s42003_025_07788_4
Cites_doi 10.1016/j.neuroimage.2008.05.033
10.1016/j.clinph.2007.03.012
10.1016/j.ijpsycho.2007.05.015
10.1152/jn.00721.2004
10.1016/j.cogbrainres.2004.09.006
10.1016/j.tics.2004.03.008
10.1523/JNEUROSCI.3477-07.2007
10.1073/pnas.0505508102
10.1111/1469-8986.3720163
10.1126/science.1066168
10.1016/j.jneumeth.2003.10.009
10.1111/j.1469-8986.2003.00141.x
10.1016/j.neuroimage.2006.09.031
10.1523/JNEUROSCI.3286-05.2005
10.1016/S1388-2457(00)00386-2
10.1371/journal.pbio.0020176
10.1016/j.neubiorev.2006.06.007
10.1111/j.1469-8986.2007.00610.x
10.1016/j.clinph.2006.04.018
10.1016/j.tics.2006.09.010
10.1016/j.neuroimage.2005.04.014
ContentType Journal Article
Copyright 2009 International Federation of Clinical Neurophysiology
International Federation of Clinical Neurophysiology
2009 INIST-CNRS
Copyright_xml – notice: 2009 International Federation of Clinical Neurophysiology
– notice: International Federation of Clinical Neurophysiology
– notice: 2009 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
DOI 10.1016/j.clinph.2009.01.015
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList

MEDLINE
Neurosciences Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-8952
EndPage 877
ExternalDocumentID 19345611
21543298
10_1016_j_clinph_2009_01_015
S1388245709002338
1_s2_0_S1388245709002338
Genre Validation Studies
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5RE
5VS
6J9
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABLJU
ABMAC
ABMZM
ABTEW
ABWVN
ABXDB
ACDAQ
ACGFO
ACIEU
ACIUM
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HX~
HZ~
IHE
J1W
K-O
KOM
L7B
M41
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OHT
OP~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSN
SSZ
T5K
UAP
UNMZH
UV1
VH1
X7M
XOL
XPP
Z5R
ZGI
~G-
~HD
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
PKN
RIG
VQA
AADPK
AAIAV
ABLVK
ABYKQ
AFMIJ
AHPSJ
AJBFU
LCYCR
ZA5
AAYXX
CITATION
AGCQF
AGRNS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
ID FETCH-LOGICAL-c529t-2f67a8922157eb1267f9062508a6e6ff512e178a2d96ab6462bffbe647287d613
IEDL.DBID AIKHN
ISSN 1388-2457
IngestDate Thu Oct 02 16:55:03 EDT 2025
Thu Oct 02 06:21:26 EDT 2025
Thu Apr 03 07:03:16 EDT 2025
Mon Jul 21 09:15:32 EDT 2025
Wed Oct 29 21:16:12 EDT 2025
Thu Apr 24 23:09:25 EDT 2025
Fri Feb 23 02:34:23 EST 2024
Sun Feb 23 10:19:36 EST 2025
Tue Oct 14 19:39:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Artifact correction
Lateral eye movements
ICA
EEG
Eye blinks
Independent component analysis
Human
User
Decision making
Objective analysis
Central nervous system
Electrophysiology
Artefact
Electroencephalography
Interpretation
Eye movement
Encephalon
Eye
Visual system
Electrodiagnosis
Performance
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c529t-2f67a8922157eb1267f9062508a6e6ff512e178a2d96ab6462bffbe647287d613
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ObjectType-Undefined-3
PMID 19345611
PQID 20074286
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_67231748
proquest_miscellaneous_20074286
pubmed_primary_19345611
pascalfrancis_primary_21543298
crossref_primary_10_1016_j_clinph_2009_01_015
crossref_citationtrail_10_1016_j_clinph_2009_01_015
elsevier_sciencedirect_doi_10_1016_j_clinph_2009_01_015
elsevier_clinicalkeyesjournals_1_s2_0_S1388245709002338
elsevier_clinicalkey_doi_10_1016_j_clinph_2009_01_015
PublicationCentury 2000
PublicationDate 2009-05-01
PublicationDateYYYYMMDD 2009-05-01
PublicationDate_xml – month: 05
  year: 2009
  text: 2009-05-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: Netherlands
PublicationTitle Clinical neurophysiology
PublicationTitleAlternate Clin Neurophysiol
PublicationYear 2009
Publisher Elsevier Ireland Ltd
Elsevier
Publisher_xml – name: Elsevier Ireland Ltd
– name: Elsevier
References Debener, Makeig, Delorme, Engel (bib1) 2005; 22
Makeig, Delorme, Westerfield, Jung, Townsend, Courchesne (bib19) 2004; 2
Debener, Ullsperger, Siegel, Fiehler, von Cramon, Engel (bib2) 2005; 25
Delorme, Westerfield, Makeig (bib8) 2007; 27
Makeig, Westerfield, Jung, Enghoff, Townsend, Courchesne (bib17) 2002; 295
Feige, Scheffler, Esposito, Di Salle, Hennig, Seifritz (bib10) 2005; 93
Joyce, Gorodnitsky, Kutas (bib14) 2004; 41
Onton, Delorme, Makeig (bib20) 2005; 27
Onton, Westerfield, Townsend, Makeig (bib21) 2006; 30
Debener, Hine, Bleeck, Eyles (bib5) 2008; 45
Makeig, Debener, Onton, Delorme (bib18) 2004; 8
Delorme, Makeig (bib7) 2004; 134
Gilley, Sharma, Dorman, Finley, Panch, Martin (bib11) 2006; 117
Eichele, Specht, Moosmann, Jongsma, Quiroga, Nordby (bib9) 2005; 102
Debener, Mullinger, Niazy, Bowtell (bib6) 2008; 67
Hyvärinen, Karhunen, Oja (bib13) 2001
Jung, Makeig, Westerfield, Townsend, Courchesne, Sejnowski (bib16) 2000; 111
Hine, Debener (bib12) 2007; 118
Debener, Strobel, Sorger, Peters, Kranczioch, Engel (bib4) 2007; 34
Jung, Makeig, Humphries, Lee, McKeown, Iragui (bib15) 2000; 37
Debener, Ullsperger, Siegel, Engel (bib3) 2006; 10
Schneider, Debener, Oostenveld, Engel (bib22) 2008; 42
Feige (10.1016/j.clinph.2009.01.015_bib10) 2005; 93
Delorme (10.1016/j.clinph.2009.01.015_bib7) 2004; 134
Debener (10.1016/j.clinph.2009.01.015_bib3) 2006; 10
Delorme (10.1016/j.clinph.2009.01.015_bib8) 2007; 27
Jung (10.1016/j.clinph.2009.01.015_bib16) 2000; 111
Debener (10.1016/j.clinph.2009.01.015_bib5) 2008; 45
Onton (10.1016/j.clinph.2009.01.015_bib21) 2006; 30
Gilley (10.1016/j.clinph.2009.01.015_bib11) 2006; 117
Hine (10.1016/j.clinph.2009.01.015_bib12) 2007; 118
Jung (10.1016/j.clinph.2009.01.015_bib15) 2000; 37
Eichele (10.1016/j.clinph.2009.01.015_bib9) 2005; 102
Debener (10.1016/j.clinph.2009.01.015_bib1) 2005; 22
Debener (10.1016/j.clinph.2009.01.015_bib2) 2005; 25
Makeig (10.1016/j.clinph.2009.01.015_bib17) 2002; 295
Joyce (10.1016/j.clinph.2009.01.015_bib14) 2004; 41
Debener (10.1016/j.clinph.2009.01.015_bib6) 2008; 67
Makeig (10.1016/j.clinph.2009.01.015_bib19) 2004; 2
Hyvärinen (10.1016/j.clinph.2009.01.015_bib13) 2001
Makeig (10.1016/j.clinph.2009.01.015_bib18) 2004; 8
Debener (10.1016/j.clinph.2009.01.015_bib4) 2007; 34
Onton (10.1016/j.clinph.2009.01.015_bib20) 2005; 27
Schneider (10.1016/j.clinph.2009.01.015_bib22) 2008; 42
19362051 - Clin Neurophysiol. 2009 May;120(5):841-2
References_xml – volume: 27
  start-page: 11949
  year: 2007
  end-page: 11959
  ident: bib8
  article-title: Medial prefrontal theta bursts precede rapid motor responses during visual selective attention
  publication-title: J Neurosci
– volume: 111
  start-page: 1745
  year: 2000
  end-page: 1758
  ident: bib16
  article-title: Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects
  publication-title: Clin Neurophysiol
– volume: 2
  start-page: 747
  year: 2004
  end-page: 762
  ident: bib19
  article-title: Electroencephalographic brain dynamics following manually responded visual targets
  publication-title: Plos Biol
– volume: 37
  start-page: 163
  year: 2000
  end-page: 178
  ident: bib15
  article-title: Removing electroencephalographic artifacts by blind source separation
  publication-title: Psychophysiology
– volume: 134
  start-page: 9
  year: 2004
  end-page: 21
  ident: bib7
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J Neurosci Methods
– volume: 117
  start-page: 1772
  year: 2006
  end-page: 1782
  ident: bib11
  article-title: Minimization of cochlear implant stimulus artifact in cortical auditory evoked potentials
  publication-title: Clin Neurophysiol
– volume: 118
  start-page: 1274
  year: 2007
  end-page: 1285
  ident: bib12
  article-title: Late auditory evoked potentials asymmetry revisited
  publication-title: Clin Neurophysiol
– volume: 41
  start-page: 313
  year: 2004
  end-page: 325
  ident: bib14
  article-title: Automatic removal of eye movement and blink artifacts from EEG data using blind component separation
  publication-title: Psychophysiology
– volume: 295
  start-page: 690
  year: 2002
  end-page: 694
  ident: bib17
  article-title: Dynamic brain sources of visual evoked responses
  publication-title: Science
– volume: 67
  start-page: 189
  year: 2008
  end-page: 199
  ident: bib6
  article-title: Properties of the ballistocardiogram artefact as revealed by EEG recordings at 1.5, 3 and 7
  publication-title: Int J Psychophysiol
– volume: 102
  start-page: 17798
  year: 2005
  end-page: 17803
  ident: bib9
  article-title: Assessing the spatiotemporal evolution of neuronal activation with single-trial event-related potentials and functional MRI
  publication-title: Proc Natl Acad Sci USA
– year: 2001
  ident: bib13
  article-title: Independent component analysis
– volume: 25
  start-page: 11730
  year: 2005
  end-page: 11737
  ident: bib2
  article-title: Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring
  publication-title: J Neurosci
– volume: 34
  start-page: 590
  year: 2007
  end-page: 600
  ident: bib4
  article-title: Improved quality of auditory event-related potentials recorded simultaneously with 3-T fMRI: removal of the ballistocardiogram artefact
  publication-title: Neuroimage
– volume: 93
  start-page: 2864
  year: 2005
  end-page: 2872
  ident: bib10
  article-title: Cortical and subcortical correlates of electroencephalographic alpha rhythm modulation
  publication-title: J Neurophysiol
– volume: 22
  start-page: 309
  year: 2005
  end-page: 321
  ident: bib1
  article-title: What is novel in the novelty oddball paradigm? Functional significance of the novelty P3 event-related potential as revealed by independent component analysis
  publication-title: Cogn Brain Res
– volume: 8
  start-page: 204
  year: 2004
  end-page: 210
  ident: bib18
  article-title: Mining event-related brain dynamics
  publication-title: Trends Cogn Sci
– volume: 10
  start-page: 558
  year: 2006
  end-page: 563
  ident: bib3
  article-title: Single-trial EEG/fMRI reveals the dynamics of cognitive function
  publication-title: Trends Cogn Sci
– volume: 30
  start-page: 808
  year: 2006
  end-page: 822
  ident: bib21
  article-title: Imaging human EEG dynamics using independent component analysis
  publication-title: Neurosci Biobehav Rev
– volume: 27
  start-page: 341
  year: 2005
  end-page: 356
  ident: bib20
  article-title: Frontal midline EEG dynamics during working memory
  publication-title: Neuroimage
– volume: 45
  start-page: 20
  year: 2008
  end-page: 24
  ident: bib5
  article-title: Source localization of auditory evoked potentials after cochlear implantation
  publication-title: Psychophysiology
– volume: 42
  start-page: 1244
  year: 2008
  end-page: 1254
  ident: bib22
  article-title: Enhanced EEG gamma-band activity reflects multisensory semantic matching in visual-to-auditory object priming
  publication-title: Neuroimage
– volume: 42
  start-page: 1244
  issue: 3
  year: 2008
  ident: 10.1016/j.clinph.2009.01.015_bib22
  article-title: Enhanced EEG gamma-band activity reflects multisensory semantic matching in visual-to-auditory object priming
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.05.033
– volume: 118
  start-page: 1274
  issue: 6
  year: 2007
  ident: 10.1016/j.clinph.2009.01.015_bib12
  article-title: Late auditory evoked potentials asymmetry revisited
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2007.03.012
– volume: 67
  start-page: 189
  issue: 3
  year: 2008
  ident: 10.1016/j.clinph.2009.01.015_bib6
  article-title: Properties of the ballistocardiogram artefact as revealed by EEG recordings at 1.5, 3 and 7T static magnetic field strength
  publication-title: Int J Psychophysiol
  doi: 10.1016/j.ijpsycho.2007.05.015
– volume: 93
  start-page: 2864
  issue: 5
  year: 2005
  ident: 10.1016/j.clinph.2009.01.015_bib10
  article-title: Cortical and subcortical correlates of electroencephalographic alpha rhythm modulation
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00721.2004
– volume: 22
  start-page: 309
  issue: 3
  year: 2005
  ident: 10.1016/j.clinph.2009.01.015_bib1
  article-title: What is novel in the novelty oddball paradigm? Functional significance of the novelty P3 event-related potential as revealed by independent component analysis
  publication-title: Cogn Brain Res
  doi: 10.1016/j.cogbrainres.2004.09.006
– volume: 8
  start-page: 204
  issue: 5
  year: 2004
  ident: 10.1016/j.clinph.2009.01.015_bib18
  article-title: Mining event-related brain dynamics
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2004.03.008
– volume: 27
  start-page: 11949
  issue: 44
  year: 2007
  ident: 10.1016/j.clinph.2009.01.015_bib8
  article-title: Medial prefrontal theta bursts precede rapid motor responses during visual selective attention
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3477-07.2007
– volume: 102
  start-page: 17798
  issue: 49
  year: 2005
  ident: 10.1016/j.clinph.2009.01.015_bib9
  article-title: Assessing the spatiotemporal evolution of neuronal activation with single-trial event-related potentials and functional MRI
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0505508102
– volume: 37
  start-page: 163
  issue: 2
  year: 2000
  ident: 10.1016/j.clinph.2009.01.015_bib15
  article-title: Removing electroencephalographic artifacts by blind source separation
  publication-title: Psychophysiology
  doi: 10.1111/1469-8986.3720163
– volume: 295
  start-page: 690
  issue: 5555
  year: 2002
  ident: 10.1016/j.clinph.2009.01.015_bib17
  article-title: Dynamic brain sources of visual evoked responses
  publication-title: Science
  doi: 10.1126/science.1066168
– year: 2001
  ident: 10.1016/j.clinph.2009.01.015_bib13
– volume: 134
  start-page: 9
  issue: 1
  year: 2004
  ident: 10.1016/j.clinph.2009.01.015_bib7
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 41
  start-page: 313
  issue: 2
  year: 2004
  ident: 10.1016/j.clinph.2009.01.015_bib14
  article-title: Automatic removal of eye movement and blink artifacts from EEG data using blind component separation
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.2003.00141.x
– volume: 34
  start-page: 590
  issue: 2
  year: 2007
  ident: 10.1016/j.clinph.2009.01.015_bib4
  article-title: Improved quality of auditory event-related potentials recorded simultaneously with 3-T fMRI: removal of the ballistocardiogram artefact
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.09.031
– volume: 25
  start-page: 11730
  issue: 50
  year: 2005
  ident: 10.1016/j.clinph.2009.01.015_bib2
  article-title: Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3286-05.2005
– volume: 111
  start-page: 1745
  issue: 10
  year: 2000
  ident: 10.1016/j.clinph.2009.01.015_bib16
  article-title: Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(00)00386-2
– volume: 2
  start-page: 747
  issue: 6
  year: 2004
  ident: 10.1016/j.clinph.2009.01.015_bib19
  article-title: Electroencephalographic brain dynamics following manually responded visual targets
  publication-title: Plos Biol
  doi: 10.1371/journal.pbio.0020176
– volume: 30
  start-page: 808
  issue: 6
  year: 2006
  ident: 10.1016/j.clinph.2009.01.015_bib21
  article-title: Imaging human EEG dynamics using independent component analysis
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2006.06.007
– volume: 45
  start-page: 20
  issue: 1
  year: 2008
  ident: 10.1016/j.clinph.2009.01.015_bib5
  article-title: Source localization of auditory evoked potentials after cochlear implantation
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.2007.00610.x
– volume: 117
  start-page: 1772
  issue: 8
  year: 2006
  ident: 10.1016/j.clinph.2009.01.015_bib11
  article-title: Minimization of cochlear implant stimulus artifact in cortical auditory evoked potentials
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2006.04.018
– volume: 10
  start-page: 558
  issue: 12
  year: 2006
  ident: 10.1016/j.clinph.2009.01.015_bib3
  article-title: Single-trial EEG/fMRI reveals the dynamics of cognitive function
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2006.09.010
– volume: 27
  start-page: 341
  issue: 2
  year: 2005
  ident: 10.1016/j.clinph.2009.01.015_bib20
  article-title: Frontal midline EEG dynamics during working memory
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.04.014
– reference: 19362051 - Clin Neurophysiol. 2009 May;120(5):841-2
SSID ssj0007042
Score 2.4459023
Snippet Independent component analysis (ICA) can disentangle multi-channel electroencephalogram (EEG) signals into a number of artifacts and brain-related signals....
Abstract Objective Independent component analysis (ICA) can disentangle multi-channel electroencephalogram (EEG) signals into a number of artifacts and...
Objective - Independent component analysis (ICA) can disentangle multi-channel electroencephalogram (EEG) signals into a number of artifacts and brain-related...
OBJECTIVEIndependent component analysis (ICA) can disentangle multi-channel electroencephalogram (EEG) signals into a number of artifacts and brain-related...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 868
SubjectTerms Algorithms
Artifact correction
Artificial Intelligence
Biological and medical sciences
Brain - physiology
Brain Mapping - methods
Computer Simulation
EEG
Electrodiagnosis. Electric activity recording
Electroencephalography - methods
Evoked Potentials - physiology
Eye and associated structures. Visual pathways and centers. Vision
Eye blinks
Eye Movements - physiology
Fundamental and applied biological sciences. Psychology
Heart Rate - physiology
Humans
ICA
Independent component analysis
Investigative techniques, diagnostic techniques (general aspects)
Lateral eye movements
Medical sciences
Nervous system
Neurology
Pattern Recognition, Automated - methods
Signal Processing, Computer-Assisted
Software
Software Validation
Vertebrates: nervous system and sense organs
Title Semi-automatic identification of independent components representing EEG artifact
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1388245709002338
https://www.clinicalkey.es/playcontent/1-s2.0-S1388245709002338
https://dx.doi.org/10.1016/j.clinph.2009.01.015
https://www.ncbi.nlm.nih.gov/pubmed/19345611
https://www.proquest.com/docview/20074286
https://www.proquest.com/docview/67231748
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-8952
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007042
  issn: 1388-2457
  databaseCode: .~1
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-8952
  dateEnd: 20180430
  omitProxy: true
  ssIdentifier: ssj0007042
  issn: 1388-2457
  databaseCode: ACRLP
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-8952
  dateEnd: 20180430
  omitProxy: true
  ssIdentifier: ssj0007042
  issn: 1388-2457
  databaseCode: AIKHN
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8952
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007042
  issn: 1388-2457
  databaseCode: AKRWK
  dateStart: 19990101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbarYSQKsSb8lh84Go28TM-VtWWBdRKqFTqzXISWwTB7opkr_3tzCTOQgWrIiSfIo-djGfmm8jzIOQNiEBhCsVZraxk0njLvK8DA92y3JS5VxKzkc_O9eJSfrhSV3vkZMyFwbDKZPsHm95b6_Rklrg5WzfN7CIX4B1KZTKLwCOKfXIA-FMUE3Jw_P7j4nxrkE3W99DB-QwJxgy6PswLExDXX1LhyhyG2oVQh2vfAt_i0PBit0faI9PpfXIvuZT0eHjrB2QvLB-SO2fp0vwR-XQRvjfMb7pVX56VNnWKEOoPha4ibba9cDuKMearJYZX0L7gJSYnAbzR-fwdRcZgJsRjcnk6_3yyYKmTAqsUtx3jURsPzAd8N2CcuTYR6xODc-Z10DEC6ofcFJ7XVvtSS83LGMuApeULUwPiPyGTJez9jNBSKF3XtayEETKL1pfBFJX3WqqK2yiOiBi556pUZhy7XXxzYzzZVzfwHDtgWpflMNQRYVuq9VBm45b5ajwYN6aQgtFzgAO30Jm_0YU2aW7rctdyl7k_pOt3yhsC-g97Tm9IzvYD4TSk4BaWfj2KkgPlxhsbvwyrTYurGPg_1LtnaAMOupGwxtNBBn-xzwp0jvPn__3iL8jd4e4Mwztfkkn3YxNegQvWlVOy__Y6nyZF-wnTCC-K
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0CpFAiSEeFMerQ9czSZ-xkdUbVmgWwm1lXqznMRWg2B3RbJXvp2ZxNlSwaoIyadoxnbG87I8D0LeAgsUplCc1cpKJo23zPs6MJAty02ZeyUxG3l-omfn8tOFutghh2MuDIZVJt0_6PReW6cvk0TNyappJqe5AO9QKpNZNDyiuEVuS8UN3sDe_byK8zBZ30EHoRmCj_lzfZAXph-uLlPZyhyG2maf7q98C1SLQ7uL7f5ob5eOHpIHyaGk74c9PyI7YfGY3JmnJ_Mn5Mtp-N4wv-6WfXFW2tQpPqg_ErqMtNl0wu0oRpgvFxhcQftyl5iaBMaNTqcfKJIF8yCekvOj6dnhjKU-CqxS3HaMR208kB6suwHVzLWJWJ0YXDOvg44RbH7ITeF5bbUvtdS8jLEMWFi-MDXY-2dkdwFrvyC0FErXdS0rYYTMovVlMEXlvZaq4jaKPSJG6rkqFRnHXhff3BhN9tUNNMf-l9ZlOQy1R9gGazUU2bgBXo0H48YEUlB5DqzADXjmb3ihTXLbuty13GXuD976HfMae_7DmvvXOGfzg3AaUnALUx-MrORAtPG9xi_Cct3iLAZuh3o7hDbgnhsJczwfePCKfFaga5y__O-NH5C7s7P5sTv-ePL5Fbk3vKJhoOdrstv9WIc34Ix15X4vbL8AYUEwUg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-automatic+identification+of+independent+components+representing+EEG+artifact&rft.jtitle=Clinical+neurophysiology&rft.au=Viola%2C+Filipa+Campos&rft.au=Thorne%2C+Jeremy&rft.au=Edmonds%2C+Barrie&rft.au=Schneider%2C+Till&rft.date=2009-05-01&rft.eissn=1872-8952&rft.volume=120&rft.issue=5&rft.spage=868&rft_id=info:doi/10.1016%2Fj.clinph.2009.01.015&rft_id=info%3Apmid%2F19345611&rft.externalDocID=19345611
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13882457%2FS1388245709X00064%2Fcov150h.gif