A Fast Bow Shock Location Predictor‐Estimator From 2D and 3D Analytical Models: Application to Mars and the MAVEN Mission
We present fast algorithms to automatically estimate the statistical position of the bow shock from spacecraft data, using existing analytical two‐dimensional (2D) and three‐dimensional (3D) models of the shock surface. We derive expressions of the standoff distances in 2D and 3D and of the normal t...
Saved in:
| Published in | Journal of geophysical research. Space physics Vol. 127; no. 1; pp. e2021JA029942 - n/a |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
01.01.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-9380 2169-9402 2169-9402 |
| DOI | 10.1029/2021JA029942 |
Cover
| Abstract | We present fast algorithms to automatically estimate the statistical position of the bow shock from spacecraft data, using existing analytical two‐dimensional (2D) and three‐dimensional (3D) models of the shock surface. We derive expressions of the standoff distances in 2D and 3D and of the normal to the bow shock at any given point on it. Two simple bow shock detection algorithms are constructed, one solely based on a geometrical predictor from existing models, the other using this predicted position to further refine it with the help of magnetometer data, an instrument flown on many planetary missions. Both empirical techniques are applicable to any planetary environment with a defined shock structure. Applied to the Martian environment and the NASA/MAVEN mission, the predicted shock position is on average within 0.15 planetary radius Rp of the bow shock crossing. Using the predictor‐corrector algorithm, this estimate is further refined to within a few minutes of the true crossing (≈0.05Rp). Between 2014 and 2021, we detect 14,929 clear bow shock crossings, predominantly quasi‐perpendicular. Thanks to 2D conic and 3D quadratic fits, we investigate the variability of the shock surface with respect to Mars Years (MY), solar longitude (Ls), and solar EUV flux levels. Although asymmetry in Y and Z Mars Solar Orbital coordinates is on average small, we show that for MY32 and MY35, Ls = [135°−225°] and high solar flux, it can become particularly noticeable, and is superimposed to the usual North‐South asymmetry due in part to the presence of crustal magnetic fields.
Key Points
A simple predictor‐corrector algorithm based on magnetic field data is presented to locate the bow shock position in spacecraft data
The method, biased toward quasi‐perpendicular crossings, is general and applicable to all planetary bodies including Mars, Venus, and Earth
More than 14,900 bow shock crossings are identified with MAVEN for Mars Years 32–35, with 2D/3D fits revealing North‐South asymmetries |
|---|---|
| AbstractList | We present fast algorithms to automatically estimate the statistical position of the bow shock from spacecraft data, using existing analytical two‐dimensional (2D) and three‐dimensional (3D) models of the shock surface. We derive expressions of the standoff distances in 2D and 3D and of the normal to the bow shock at any given point on it. Two simple bow shock detection algorithms are constructed, one solely based on a geometrical predictor from existing models, the other using this predicted position to further refine it with the help of magnetometer data, an instrument flown on many planetary missions. Both empirical techniques are applicable to any planetary environment with a defined shock structure. Applied to the Martian environment and the NASA/MAVEN mission, the predicted shock position is on average within 0.15 planetary radius Rp of the bow shock crossing. Using the predictor‐corrector algorithm, this estimate is further refined to within a few minutes of the true crossing (≈0.05Rp). Between 2014 and 2021, we detect 14,929 clear bow shock crossings, predominantly quasi‐perpendicular. Thanks to 2D conic and 3D quadratic fits, we investigate the variability of the shock surface with respect to Mars Years (MY), solar longitude (Ls), and solar EUV flux levels. Although asymmetry in Y and Z Mars Solar Orbital coordinates is on average small, we show that for MY32 and MY35, Ls = [135°−225°] and high solar flux, it can become particularly noticeable, and is superimposed to the usual North‐South asymmetry due in part to the presence of crustal magnetic fields.
Key Points
A simple predictor‐corrector algorithm based on magnetic field data is presented to locate the bow shock position in spacecraft data
The method, biased toward quasi‐perpendicular crossings, is general and applicable to all planetary bodies including Mars, Venus, and Earth
More than 14,900 bow shock crossings are identified with MAVEN for Mars Years 32–35, with 2D/3D fits revealing North‐South asymmetries We present fast algorithms to automatically estimate the statistical position of the bow shock from spacecraft data, using existing analytical two-dimensional (2D) and three-dimensional (3D) models of the shock surface. We derive expressions of the standoff distances in 2D and 3D and of the normal to the bow shock at any given point on it. Two simple bow shock detection algorithms are constructed, one solely based on a geometrical predictor from existing models, the other using this predicted position to further refine it with the help of magnetometer data, an instrument flown on many planetary missions. Both empirical techniques are applicable to any planetary environment with a defined shock structure. Applied to the Martian environment and the NASA/MAVEN mission, the predicted shock position is on average within 0.15 planetary radius of the bow shock crossing. Using the predictor-corrector algorithm, this estimate is further refined to within a few minutes of the true crossing (≈0.05 ). Between 2014 and 2021, we detect 14,929 clear bow shock crossings, predominantly quasi-perpendicular. Thanks to 2D conic and 3D quadratic fits, we investigate the variability of the shock surface with respect to Mars Years (MY), solar longitude (Ls), and solar EUV flux levels. Although asymmetry in and Mars Solar Orbital coordinates is on average small, we show that for MY32 and MY35, Ls = [135°-225°] and high solar flux, it can become particularly noticeable, and is superimposed to the usual North-South asymmetry due in part to the presence of crustal magnetic fields. |
| Author | Mazelle, Christian Halekas, Jasper Beth, Arnaud Gruesbeck, Jacob R. Volwerk, Martin Möstl, Christian Rojas‐Castillo, Diana Simon Wedlund, Cyril |
| Author_xml | – sequence: 1 givenname: Cyril orcidid: 0000-0003-2201-7615 surname: Simon Wedlund fullname: Simon Wedlund, Cyril email: cyril.simon.wedlund@gmail.com organization: Austrian Academy of Sciences – sequence: 2 givenname: Martin orcidid: 0000-0002-4455-3403 surname: Volwerk fullname: Volwerk, Martin organization: Austrian Academy of Sciences – sequence: 3 givenname: Arnaud orcidid: 0000-0002-5644-2022 surname: Beth fullname: Beth, Arnaud organization: Umeå University – sequence: 4 givenname: Christian orcidid: 0000-0001-5332-9561 surname: Mazelle fullname: Mazelle, Christian organization: CNES – sequence: 5 givenname: Christian orcidid: 0000-0001-6868-4152 surname: Möstl fullname: Möstl, Christian organization: Austrian Academy of Sciences – sequence: 6 givenname: Jasper orcidid: 0000-0001-5258-6128 surname: Halekas fullname: Halekas, Jasper organization: University of Iowa – sequence: 7 givenname: Jacob R. orcidid: 0000-0002-1215-992X surname: Gruesbeck fullname: Gruesbeck, Jacob R. organization: Laboratory for Planetary Magnetospheres – sequence: 8 givenname: Diana orcidid: 0000-0002-6931-1742 surname: Rojas‐Castillo fullname: Rojas‐Castillo, Diana organization: Universidad Nacional Autónoma de México |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35865029$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkctOwzAQRS1UREvpjjXyDwT8bGN2oS-oWkC8tpHtOGpKGkdxqqpiwyfwjXwJLm1Z4c1czZy50lyfgkZhCwPAOUaXGBFxRRDBk8grwcgRaBHcFYFgiDQOmoaoCTrOLZB_oW9hfgKalIdd7rda4COCI-lqeGPX8Hlu9TucWi3rzBbwsTJJpmtbfX9-DV2dLaXXcFTZJSQDKIsE0gGMCplv6kzLHM5sYnJ3DaOyzLO9R23hTFbul67nBs6it-E9nGXO-ekZOE5l7kxnX9vgdTR86d8G04fxXT-aBpoTQQOGmVGMpVL3UqEQU6lOmVA8lJwzligkNNaKGSRlqI0iiqYoRZhT0RPC6JC2QbDzXRWl3Kxlnsdl5c-pNjFG8TbHeJvjQu5y9PzFji9XammSP_iQmgfoDlhnudn8a3b4lHgyfop4V_Qo_QEBvX6M |
| CitedBy_id | crossref_primary_10_1029_2024JA033275 crossref_primary_10_1029_2022JA030575 crossref_primary_10_5194_angeo_41_225_2023 crossref_primary_10_3847_1538_4357_acbd4c crossref_primary_10_1029_2023GL104769 crossref_primary_10_31857_S0023420623700073 crossref_primary_10_1134_S0010952522600081 crossref_primary_10_1029_2024JA033185 |
| ContentType | Journal Article |
| Copyright | 2022. The Authors. |
| Copyright_xml | – notice: 2022. The Authors. |
| DBID | 24P NPM ADTOC UNPAY |
| DOI | 10.1029/2021JA029942 |
| DatabaseName | Wiley Online Library Open Access (WRLC) PubMed Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | PubMed |
| DatabaseTitleList | PubMed |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Astronomy & Astrophysics |
| EISSN | 2169-9402 |
| EndPage | n/a |
| ExternalDocumentID | 10.1029/2021ja029942 35865029 JGRA56973 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Austrian Science Fund (FWF) funderid: P32035‐N36; P31659‐N27; P31521‐N27 – fundername: Swedish National Space Agency (SNSA) funderid: 108/18 – fundername: French space agency CNES – fundername: Austrian Science Fund FWF grantid: P 32035 |
| GroupedDBID | 05W 0R~ 1OB 1OC 24P 31~ 33P 3V. 50Y 52M 702 8-1 88I 8FE 8FG 8FH A00 AAESR AAHHS AAHQN AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ABUWG ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOD ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEQDE AEUYN AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ARAPS AZFZN AZQEC AZVAB BENPR BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU D0L D1K DPXWK DRFUL DRSTM DWQXO EBS EJD G-S GNUQQ GODZA HCIFZ HGLYW HZ~ K6- LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M2P M7R MEWTI MSFUL MSSTM MVM MXFUL MXSTM MY~ O9- P-X P2W P62 PCBAR PQQKQ PROAC R.K RNS ROL SUPJJ WBKPD WIN WXSBR WYJ ~OA AEYWJ AGHNM AGYGG NPM PHGZM PHGZT PQGLB ADTOC UNPAY |
| ID | FETCH-LOGICAL-c5293-414eb44fac7f9b04bfcf49b58a5544db09c1cb4e0aa8ceb2b3f0f01539799ec83 |
| IEDL.DBID | UNPAY |
| ISSN | 2169-9380 2169-9402 |
| IngestDate | Sun Oct 26 04:09:45 EDT 2025 Mon Jul 21 06:03:52 EDT 2025 Wed Jan 22 16:27:47 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Mars analytical empirical models magnetometer data MAVEN mission bow shock |
| Language | English |
| License | Attribution 2022. The Authors. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5293-414eb44fac7f9b04bfcf49b58a5544db09c1cb4e0aa8ceb2b3f0f01539799ec83 |
| ORCID | 0000-0002-5644-2022 0000-0002-6931-1742 0000-0003-2201-7615 0000-0002-4455-3403 0000-0001-5332-9561 0000-0001-5258-6128 0000-0002-1215-992X 0000-0001-6868-4152 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2021JA029942 |
| PMID | 35865029 |
| PageCount | 31 |
| ParticipantIDs | unpaywall_primary_10_1029_2021ja029942 pubmed_primary_35865029 wiley_primary_10_1029_2021JA029942_JGRA56973 |
| PublicationCentury | 2000 |
| PublicationDate | January 2022 2022-Jan |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of geophysical research. Space physics |
| PublicationTitleAlternate | J Geophys Res Space Phys |
| PublicationYear | 2022 |
| References | 1991; 18 2021; 201 1991; 13 2021; 126 1990; 17 1951; 29 1991; 96 2018; 123 2005; 20 2019; 124 2008; 35 1998; 279 2020; 125 1992; 97 1981; 86 2003; 55 2016; 34 2020; 7 1979; 27 2017; 604 2010; 115 2021; 911 2002; 107 1985 2008; 113 2017; 122 2006; 126 2000; 27 2005; 110 2006; 54 1976; 81 1984; 89 1993; 41 2016; 200 2008; 56 2016; 121 1988; 93 2009; 27 2006; 111 2015; 195 2004; 111 2003; 108 2002; 29 2021 2020 1993; 98 1999; 37 1977; 4 2015; 119 2014 1995; 100 1998; 1 2013 |
| References_xml | – volume: 18 start-page: 365 issue: 3 year: 1991 end-page: 368 article-title: Location of the Martian bow shock measurements by the plasma wave system on Phobos 2 publication-title: Geophysical Research Letters – volume: 27 start-page: 1137 issue: 9 year: 1979 end-page: 1149 article-title: The three‐dimensional shape of the magnetopause publication-title: Planetary and Space Science – volume: 122 start-page: 7279 issue: 7 year: 2017 end-page: 7290 article-title: Solar wind‐ and EUV‐dependent models for the shapes of the Martian plasma boundaries based on Mars Express measurements publication-title: Journal of Geophysical Research: Space Physics – volume: 108 issue: A8 year: 2003 article-title: Planetary bow shocks: Gasdynamic analytic approach publication-title: Journal of Geophysical Research: Space Physics – volume: 195 start-page: 199 issue: 1 year: 2015 end-page: 256 article-title: MAVEN SupraThermal and Thermal Ion Compostion (STATIC) instrument publication-title: Space Science Reviews – volume: 96 start-page: 11235 issue: A7 year: 1991 end-page: 11241 article-title: The solar wind interaction with Mars: Mariner 4, Mars 2, Mars 3, Mars 5, and Phobos 2 observations of bow shock position and shape publication-title: Journal of Geophysical Research: Space Physics – volume: 122 start-page: 2748 issue: 3 year: 2017 end-page: 2767 article-title: The MAVEN EUVM model of solar spectral irradiance variability at Mars: Algorithms and results publication-title: Journal of Geophysical Research: Space Physics – volume: 100 start-page: 7907 issue: A5 year: 1995 end-page: 7916 article-title: Three‐dimensional position and shape of the bow shock and their variation with Alfvénic, sonic and magnetosonic Mach numbers and interplanetary magnetic field orientation publication-title: Journal of Geophysical Research: Space Physics – year: 2021 – volume: 98 start-page: 1303 issue: A2 year: 1993 end-page: 1309 article-title: The dependence of the Martian magnetopause and bow shock on solar wind ram pressure according to Phobos 2 TAUS ion spectrometer measurements publication-title: Journal of Geophysical Research – volume: 115 issue: A7 year: 2010 article-title: Magnetosonic Mach number effect of the position of the bow shock at Mars in comparison to Venus publication-title: Journal of Geophysical Research: Space Physics – volume: 195 start-page: 125 issue: 1 year: 2015 end-page: 151 article-title: The Solar Wind Ion Analyzer for MAVEN publication-title: Space Science Reviews – volume: 86 start-page: 11401 issue: A13 year: 1981 end-page: 11418 article-title: Solar wind flow about the terrestrial planets 1. Modeling bow shock position and shape publication-title: Journal of Geophysical Research: Space Physics – volume: 126 start-page: 209 issue: 1 year: 2006 end-page: 238 article-title: Plasma morphology at mars. Aspera‐3 observations publication-title: Space Science Reviews – volume: 18 start-page: 127 issue: 2 year: 1991 end-page: 129 article-title: Asymmetries in the location of the Venus and Mars bow shock publication-title: Geophysical Research Letters – volume: 27 start-page: 1151 issue: 9 year: 1979 end-page: 1161 article-title: Orientation and shape of the Earth’s bow shock in three dimensions publication-title: Planetary and Space Science – volume: 111 start-page: 115 issue: 1 year: 2004 end-page: 181 article-title: Bow shock and upstream phenomena at mars publication-title: Space Science Reviews – volume: 27 start-page: 49 issue: 1 year: 2000 end-page: 52 article-title: The solar wind interaction with Mars: Locations and shapes of the bow shock and the magnetic pile‐up boundary from the observations of the MAG/ER Experiment onboard Mars Global Surveyor publication-title: Geophysical Research Letters – volume: 54 start-page: 357 issue: 4 year: 2006 end-page: 369 article-title: Martian shock and magnetic pile‐up boundary positions and shapes determined from the Phobos 2 and Mars Global Surveyor data sets publication-title: Planetary and Space Science – volume: 126 issue: 6 year: 2021 article-title: Physics‐based analytical model of the planetary bow shock position and shape publication-title: Journal of Geophysical Research: Space Physics – volume: 96 start-page: 11265 issue: A7 year: 1991 end-page: 11269 article-title: Interplanetary magnetic field control of the Mars bow shock: Evidence for Venuslike interaction publication-title: Journal of Geophysical Research: Space Physics – volume: 7 year: 2020 article-title: Automatic classification of plasma regions in near‐Earth space with supervised machine learning: Application to magnetospheric multi scale 2016‐2019 observation publication-title: Frontiers in Astronomy and Space Sciences – volume: 35 issue: 1 year: 2008 article-title: Solar flux variability of Mars’ exosphere densities and temperatures publication-title: Geophysical Research Letters – volume: 107 start-page: SSH10‐1 issue: A8 year: 2002 end-page: SSH10‐11 article-title: Four spacecraft measurements of the quasiperpendicular terrestrial bow shock: Orientation and motion publication-title: Journal of Geophysical Research: Space Physics – volume: 81 start-page: 3349 issue: 19 year: 1976 end-page: 3352 article-title: On electron and ion components of plasma in the antisolar part of near‐Martian space publication-title: Journal of Geophysical Research – volume: 122 start-page: 9723 issue: 9 year: 2017 end-page: 9737 article-title: Statistical study of relations between the induced magnetosphere, ion composition, and pressure balance boundaries around mars based on MAVEN observations publication-title: Journal of Geophysical Research – volume: 55 start-page: 33 year: 2003 end-page: 38 article-title: Planetary bow shocks: Asymptotic MHD Mach cones publication-title: Earth Planets and Space – volume: 121 start-page: 11474 issue: 11 year: 2016 end-page: 11494 article-title: Annual variations in the Martian bow shock location as observed by the Mars Express mission publication-title: Journal of Geophysical Research: Space Physics – volume: 97 issue: A6 year: 1992 article-title: The mirror and ion cyclotron anisotropy instabilities publication-title: Journal of Geophysical Research – volume: 911 start-page: 113 issue: 2 year: 2021 article-title: Statistical properties of solar wind upstream of mars: MAVEN observations publication-title: The Astrophysical Journal – volume: 124 start-page: 4761 issue: 6 year: 2019 end-page: 4772 article-title: The Martian bow shock over solar cycle 23–24 as observed by the Mars Express mission publication-title: Journal of Geophysical Research: Space Physics – volume: 29 start-page: 274 year: 1951 article-title: Kometenschweife und solare korpuskularstrahlung publication-title: Zeitschrift fur Astrophysik – volume: 27 start-page: 3537 issue: 9 year: 2009 end-page: 3550 article-title: Plasma boundary variability at mars as observed by mars global surveyor and mars express publication-title: Annales Geophysicae – volume: 125 issue: 11 year: 2020 article-title: Martian bow shock and magnetic pileup boundary models based on an automated region identification publication-title: Journal of Geophysical Research: Space Physics – volume: 195 start-page: 257 issue: 1–4 year: 2015 end-page: 291 article-title: The MAVEN magnetic field investigation publication-title: Space Science Reviews – volume: 119 start-page: 54 year: 2015 end-page: 61 article-title: Seasonal variation of Martian pick‐up ions: Evidence of breathing exosphere publication-title: Planetary and Space Science – volume: 122 start-page: 547 issue: 1 year: 2017 end-page: 578 article-title: Structure, dynamics, and seasonal variability of the Mars‐solar wind interaction: MAVEN Solar Wind Ion Analyzer in‐flight performance and science results publication-title: Journal of Geophysical Research: Space Physics – volume: 17 start-page: 889 issue: 6 year: 1990 end-page: 892 article-title: Martian bow shock: Phobos observations publication-title: Geophysical Research Letters – volume: 93 issue: A6 year: 1988 article-title: Solar and interplanetary control of the location of the Venus bow shock publication-title: Journal of Geophysical Research – volume: 121 start-page: 2547 issue: 3 year: 2016 end-page: 2568 article-title: Solar cycle variations in the ionosphere of Mars as seen by multiple Mars Express data sets publication-title: Journal of Geophysical Research: Space Physics – volume: 89 start-page: 2708 issue: A5 year: 1984 end-page: 2714 article-title: Planetary Mach cones: Theory and observation publication-title: Journal of Geophysical Research: Space Physics – volume: 124 start-page: 3000 issue: 11 year: 2019 end-page: 3024 article-title: Seasonal variations in atmospheric composition as measured in gale crater, Mars publication-title: Journal of Geophysical Research: Planets – volume: 201 year: 2021 article-title: Automated Multi‐Dataset Analysis (AMDA): An on‐line database and analysis tool for heliospheric and planetary plasma data publication-title: Planetary and Space Science – volume: 111 issue: A9 year: 2006 article-title: Ripples observed on the surface of the Earth’s quasi‐perpendicular bow shock publication-title: Journal of Geophysical Research: Space Physics – volume: 604 year: 2017 article-title: Hybrid modelling of cometary plasma environments: I. Impact of photoionisation, charge exchange, and electron ionisation on bow shock and cometopause at 67P/Churyumov‐Gerasimenko publication-title: Astronomy & Astrophysics – volume: 4 start-page: 387 issue: 10 year: 1977 end-page: 390 article-title: On the relative locations of the bow shocks of the terrestrial planets publication-title: Geophysical Research Letters – volume: 34 start-page: 1099 issue: 11 year: 2016 end-page: 1108 article-title: Mirror mode waves in Venus’s magnetosheath: Solar minimum vs. solar maximum publication-title: Annales Geophysicae – volume: 113 issue: A8 year: 2008 article-title: Statistical analysis of the location of the Martian magnetic pileup boundary and bow shock and the influence of crustal magnetic fields publication-title: Journal of Geophysical Research – volume: 110 issue: A4 year: 2005 article-title: Three‐dimensional position and shape of the bow shock and their variation with upstream Mach numbers and interplanetary magnetic field orientation publication-title: Journal of Geophysical Research: Space Physics – volume: 37 start-page: 38 issue: 1 year: 1999 end-page: 43 article-title: Shape and location of planetary bow shocks publication-title: Kosmicheskie Issledovaniia – start-page: 437 year: 2014 end-page: 457 – volume: 29 start-page: 42‐1 issue: 9 year: 2002 end-page: 42‐4 article-title: Factors controlling the location of the bow shock at Mars publication-title: Geophysical Research Letters – volume: 13 start-page: 1115 issue: 11 year: 1991 end-page: 1138 article-title: Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit equations with applications to edge and range image segmentation publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 1 start-page: 249 year: 1998 end-page: 270 article-title: Shock and discontinuity normals, Mach numbers, and related parameters publication-title: ISSI Scientific Reports Series – volume: 123 start-page: 4542 issue: 6 year: 2018 end-page: 4555 article-title: The three‐dimensional bow shock of Mars as observed by MAVEN publication-title: Journal of Geophysical Research: Space Physics – volume: 56 start-page: 785 issue: 6 year: 2008 end-page: 789 article-title: Initial Venus Express magnetic field observations of the Venus bow shock location at solar minimum publication-title: Planetary and Space Science – volume: 20 start-page: 205 year: 2005 end-page: 222 article-title: Quasi‐parallel shock structure and Processes – volume: 126 start-page: 113 issue: 1 year: 2006 end-page: 164 article-title: The Analyzer of Space Plasmas And Energetic Atoms (ASPERA‐3) for the mars express mission publication-title: Space Science Reviews – volume: 124 start-page: 9725 issue: 11 year: 2019 end-page: 9738 article-title: Expansion and shrinking of the Martian topside ionosphere publication-title: Journal of Geophysical Research: Space Physics – start-page: 1 year: 1985 end-page: 36 – volume: 279 start-page: 1676 issue: 5357 year: 1998 end-page: 1680 article-title: Magnetic field and plasma observations at mars: Initial results of the mars global surveyor mission publication-title: Science – year: 2020 – volume: 98 start-page: 15343 issue: A9 year: 1993 end-page: 15354 article-title: Are existing magnetospheric models excessively stretched? publication-title: Journal of Geophysical Research: Space Physics – volume: 124 start-page: 3219 issue: 12 year: 2019 end-page: 3230 article-title: Dawn‐dusk asymmetries in the Martian upper atmosphere publication-title: Journal of Geophysical Research: Planets – volume: 41 start-page: 189 issue: 3 year: 1993 end-page: 198 article-title: Position and shape of the Martian bow shock: The Phobos 2 plasma wave system observations publication-title: Planetary and Space Science – volume: 200 start-page: 495 issue: 1 year: 2016 end-page: 528 article-title: The MAVEN Solar Wind Electron Analyzer publication-title: Space Science Reviews – year: 2013 |
| SSID | ssj0000816915 |
| Score | 2.4424438 |
| Snippet | We present fast algorithms to automatically estimate the statistical position of the bow shock from spacecraft data, using existing analytical two‐dimensional... We present fast algorithms to automatically estimate the statistical position of the bow shock from spacecraft data, using existing analytical two-dimensional... |
| SourceID | unpaywall pubmed wiley |
| SourceType | Open Access Repository Index Database Publisher |
| StartPage | e2021JA029942 |
| SubjectTerms | analytical empirical models bow shock magnetometer data Mars MAVEN mission |
| SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access (WRLC) dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQDLAg3pSXbkBMRCSx08RsAVpQRRHiJbbKj1iA2gQ1RQix8BP4jfwSzk4oILGwWYqdwWffffed746QbSXRbDAdeE2jYxtmVJ7gWnsxTbQQRtKI2nzn7lnz5Jp1bqPbmnCzuTBVfYgx4WZvhtPX9oILWdbFBmyNTPTag06KY85QBU8FCGXsCQ_Z-ZhjsU0luGtiEOLA4zTx67fvuGzv5w9-2J_pp_xRvDyLfv83XnUGpz1HZmukCGkl2nkykeULZDUtLXddDF5gB9y4oibKRfKaQluUIzgonuHyDtUcnBYVHwfnQxuOQe_64-29hXd6YD1taA-LAYRHIHIN9AhceRLHbINtkNYv9yH9jm7DqIAuOsFuNoJG6KY3rTPo3ttXtPkSuW63rg5PvLq1gqciNPAoFJZJxoxQseHSZ9Iow7iMEoHwgmnpcxUoyTJfiESh8y2p8Q0iBxcFzFRCl8lkXuTZKgEtTWKzYeNAaIZqXBqWacFQdygeIDhqkJVqa3uPVf2MHo0SxIUhb5Cd8V6PP7qgeMh7VjoPopJOg-w6Qfw56UuEvc7xRRo1eUzX_jd9ncyENqfB8SobZHI0fMo2EWmM5JY7Tp-1_cqw priority: 102 providerName: Wiley-Blackwell |
| Title | A Fast Bow Shock Location Predictor‐Estimator From 2D and 3D Analytical Models: Application to Mars and the MAVEN Mission |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021JA029942 https://www.ncbi.nlm.nih.gov/pubmed/35865029 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2021JA029942 |
| UnpaywallVersion | publishedVersion |
| Volume | 127 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELZoOPRUKLQlqEVzQJy6KBt7H-5tKUlRxEZRIRU9RX6s1UeyGyUbIeDSn9Df2F_SsR1CWnGo1MtqpLVXa409883DM4QcKolqg-kwiI1ObJhRBYJrHSQ01UIYSSNq7zvn_fhsyHpX0dXaXRhfH2LlcLMnw8lre8Cn2ng5vyw5wK3lHvYypDhDMbwZR4jHG2Rz2B9kn21XuTDmAaeufZqnXTrP7vr0b8JPX9NATxflVNxci_H4T8TqVE53i6j7n_WZJt-PF7U8Vrd_1XH8v9Vsk2dLRAqZ30LPyUZR7pC9bG595NXkBo7A0d4FMt8ldxl0xbyGk-oaLr6gOIXzyvv9YDCzYR-04n_9-NlB2TGxFj10Z9UE2qcgSg30FFwZFOdBB9uIbTx_B9lDFB3qCnI0tt1oBKeQZ586fci_2mzd8gUZdjuX78-CZQuHQEUIJJD5rJCMGaESw2WLSaMM4zJKBcIYpmWLq1BJVrSESBUa-ZKalkGE4qKNhUrpS9Ioq7LYI6ClSe2t2yQUmqG6kIYVWjCUUYqHCMKa5JVn4Gjq63SMaJQi_mzzJjlacXT10gXf23y0vgea5K3j0aOD7jkz6n34mEUxT-j-v373NWnUs0XxBuFLLQ_IkzYb4LM_yA-We_U33Iruwg |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF6h9lAuiPJqoMAcUE9Y2N71Y3szNCGEOKqgRb1Z-_AKUGJXSaqq6qU_gd_IL2FmbUKRuHBbyWsfdjwz33yzM8PYK6PRbQgbBamzGaUZTaCktUHGc6uU0zzhVO9cztLxqZicJWf9nFOqhen6Q2wIN9IMb69JwYmQ7rsNUJNMDNujSYFrKdAGb4s0Sin6isXxhmShqRLSTzGIcRFInof95Xd87c3tD9xyQDsXzbm6ulTz-d-A1Xuc0X12r4eKUHSy3WV36uYB2ytWRF63iys4AL_uuInVQ3ZdwEit1vC2vYTPX9HOwbTtCDk4XlI-BsPrnzc_hqjUCwq1YbRsFxAfgWos8CPw_Uk8tQ00IW2-OoTiT3ob1i2UGAX73YgaoSy-DGdQfqNrtM0jdjoanrwbB_1shcAk6OFRKqLWQjhlMid1KLQzTkid5ArxhbA6lCYyWtShUrnB6FtzFzqEDj4NWJucP2ZbTdvUewysdjmVw2aRsgLtuHaitkqg8TAyQnQ0YE-6o63OuwYaFU9yBIaxHLCDzVlvHvqseCwrks531UlnwF57Qfxz028RVpP3n4oklRl_-n_bX7Kd8Uk5raYfZh-fsbsxFTh4kmWfba2XF_VzhB1r_cL_Wr8Au2zOHA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTttAEF4hkKCXqgVa0tJ2DogTVm3vOvZyMyQuDSSK2lJxs_bHK1oldpQERREXHoFn5EmYXbspSL30tpLXPux4Zr75ZmeGkAMl0W0wHXhto2ObZlSe4Fp7MU20EEbSiNp65_6gfXbJelfRVTPn1NbC1P0hVoSb1Qxnr62CFxNtmm4Dtkkmhu1BL8U1Z2iDN1iEztC2dmbDFclip0pwN8UgxIXHaeI3l9_xtc9PP_DEAW3dlBOxXIjR6DlgdR4ne0VeNlAR0lq2r8laUW6TvXRmyetqvIRDcOuam5jtkNsUMjGbw0m1gO_XaOfgoqoJORhObT4Gw-uHu_suKvXYhtqQTasxhB0QpQbaAdefxFHbYCekjWbHkP5Nb8O8gj5GwW43okbopz-7A-j_stdoy11ymXV_nJ55zWwFT0Xo4VEqrJCMGaFiw6XPpFGGcRklAvEF09LnKlCSFb4QicLoW1LjG4QOLg1YqIS-IetlVRZ7BLQ0iS2HjQOhGdpxaVihBUPjoXiA6KhF3tZHm0_qBho5jRIEhiFvkcPVWa8euqx4yHMrnd-ilk6LHDlB_HPTHxHmvS_f0qjNY_ru_7Z_IpvDTpZffB2cvycvQlvf4DiWfbI-n94UHxB1zOVH92c9ArMpzas |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELaqcOgJChRIVdAcECcWZWPvw70tJQFFTYTapqKnyI-1eCS7UbIRgl74CfxGfgljO6Rp1UMlbpbWXu1qxjPfvAnZVxLVBtNhEBud2DCjCgTXOkhoqoUwkkbU1jt3e_FZn3UuooulWhjfH2LhcLM3w8lre8HH2ng5P285wK3lHnYyXHGGYngljhCP18hKv3ee_bRT5cKYB5y68Wl-7dJ5NpePXwt_fEkDvZ0VY3F3K4bDPxGrUzntNaJePtZnmtwczSp5pO7_6uP4ur95R1bniBQyz0Lr5E1ebJCdbGp95OXoDg7Arb0LZLpJfmXQFtMKjstb-HaJ4hS-lN7vB-cTG_ZBK_7p4bGFsmNkLXpoT8oRNE9AFBroCbg2KM6DDnYQ23D6CbLfUXSoSuiise12IziFbvaj1YPulc3WLd6Tfrv1_fNZMB_hEKgIgQQSn-WSMSNUYrhsMGmUYVxGqUAYw7RscBUqyfKGEKlCI19S0zCIUFy0MVcp3SK1oizyHQJamtRW3Sah0AzVhTQs14KhjFI8RBBWJ9uegIOx79MxoFGK-LPJ6-RgQdHFQxd8b_LBMg_UyaGj0T83vVBm0Dn9mkUxT-iH_33vR1KrJrN8F-FLJffm_PkMvOrs3w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fast+Bow+Shock+Location+Predictor%E2%80%90Estimator+From+2D+and+3D+Analytical+Models%3A+Application+to+Mars+and+the+MAVEN+Mission&rft.jtitle=Journal+of+geophysical+research.+Space+physics&rft.au=Simon+Wedlund%2C+Cyril&rft.au=Volwerk%2C+Martin&rft.au=Beth%2C+Arnaud&rft.au=Mazelle%2C+Christian&rft.date=2022-01-01&rft.issn=2169-9380&rft.eissn=2169-9402&rft.volume=127&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2021JA029942&rft.externalDBID=10.1029%252F2021JA029942&rft.externalDocID=JGRA56973 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-9380&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-9380&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-9380&client=summon |