Ultrastretchable Elastic Shape Memory Fibers with Electrical Conductivity
Herein, elastomeric fibers that have shape memory properties due to the presence of a gallium core that can undergo phase transition from solid to liquid in response to mild heating are described. The gallium is injected into the core of a hollow fiber formed by melt processing. This approach provid...
Saved in:
Published in | Advanced science Vol. 6; no. 21; pp. 1901579 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
John Wiley & Sons, Inc
01.11.2019
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 2198-3844 2198-3844 |
DOI | 10.1002/advs.201901579 |
Cover
Abstract | Herein, elastomeric fibers that have shape memory properties due to the presence of a gallium core that can undergo phase transition from solid to liquid in response to mild heating are described. The gallium is injected into the core of a hollow fiber formed by melt processing. This approach provides a straightforward method to create shape memory properties from any hollow elastic fiber. Solidifying the core changes the effective fiber modulus from 4 to 1253 MPa. This increase in stiffness can preserve the fiber in a deformed shape. The elastic energy stored in the polymer shell during deformation drives the fiber to relax back to its original geometry upon melting the solid gallium core, allowing for shape memory. Although waxes are used previously for this purpose, the use of gallium is compelling because of its metallic electrical and thermal conductivity. In addition, the use of a rigid metallic core provides perfect fixity of the shape memory fiber. Notably, the use of gallium—with a melting point above room temperature but below body temperature—allows the user to melt and deform local regions of the fiber by hand and thereby tune the effective modulus and shape of the fiber.
Herein, soft and ultrastretchable elastic shape memory fibers with electrical conductivity are demonstrated fabricated by injecting liquid metal, gallium, into the elastic and hollow fibers. The ability to change the core of the fiber from liquid to solid allows an enormous modulus change and thus, excellent shape memory effects. |
---|---|
AbstractList | Herein, elastomeric fibers that have shape memory properties due to the presence of a gallium core that can undergo phase transition from solid to liquid in response to mild heating are described. The gallium is injected into the core of a hollow fiber formed by melt processing. This approach provides a straightforward method to create shape memory properties from any hollow elastic fiber. Solidifying the core changes the effective fiber modulus from 4 to 1253 MPa. This increase in stiffness can preserve the fiber in a deformed shape. The elastic energy stored in the polymer shell during deformation drives the fiber to relax back to its original geometry upon melting the solid gallium core, allowing for shape memory. Although waxes are used previously for this purpose, the use of gallium is compelling because of its metallic electrical and thermal conductivity. In addition, the use of a rigid metallic core provides perfect fixity of the shape memory fiber. Notably, the use of gallium—with a melting point above room temperature but below body temperature—allows the user to melt and deform local regions of the fiber by hand and thereby tune the effective modulus and shape of the fiber. Herein, elastomeric fibers that have shape memory properties due to the presence of a gallium core that can undergo phase transition from solid to liquid in response to mild heating are described. The gallium is injected into the core of a hollow fiber formed by melt processing. This approach provides a straightforward method to create shape memory properties from any hollow elastic fiber. Solidifying the core changes the effective fiber modulus from 4 to 1253 MPa. This increase in stiffness can preserve the fiber in a deformed shape. The elastic energy stored in the polymer shell during deformation drives the fiber to relax back to its original geometry upon melting the solid gallium core, allowing for shape memory. Although waxes are used previously for this purpose, the use of gallium is compelling because of its metallic electrical and thermal conductivity. In addition, the use of a rigid metallic core provides perfect fixity of the shape memory fiber. Notably, the use of gallium—with a melting point above room temperature but below body temperature—allows the user to melt and deform local regions of the fiber by hand and thereby tune the effective modulus and shape of the fiber. Herein, soft and ultrastretchable elastic shape memory fibers with electrical conductivity are demonstrated fabricated by injecting liquid metal, gallium, into the elastic and hollow fibers. The ability to change the core of the fiber from liquid to solid allows an enormous modulus change and thus, excellent shape memory effects. Abstract Herein, elastomeric fibers that have shape memory properties due to the presence of a gallium core that can undergo phase transition from solid to liquid in response to mild heating are described. The gallium is injected into the core of a hollow fiber formed by melt processing. This approach provides a straightforward method to create shape memory properties from any hollow elastic fiber. Solidifying the core changes the effective fiber modulus from 4 to 1253 MPa. This increase in stiffness can preserve the fiber in a deformed shape. The elastic energy stored in the polymer shell during deformation drives the fiber to relax back to its original geometry upon melting the solid gallium core, allowing for shape memory. Although waxes are used previously for this purpose, the use of gallium is compelling because of its metallic electrical and thermal conductivity. In addition, the use of a rigid metallic core provides perfect fixity of the shape memory fiber. Notably, the use of gallium—with a melting point above room temperature but below body temperature—allows the user to melt and deform local regions of the fiber by hand and thereby tune the effective modulus and shape of the fiber. Herein, elastomeric fibers that have shape memory properties due to the presence of a gallium core that can undergo phase transition from solid to liquid in response to mild heating are described. The gallium is injected into the core of a hollow fiber formed by melt processing. This approach provides a straightforward method to create shape memory properties from any hollow elastic fiber. Solidifying the core changes the effective fiber modulus from 4 to 1253 MPa. This increase in stiffness can preserve the fiber in a deformed shape. The elastic energy stored in the polymer shell during deformation drives the fiber to relax back to its original geometry upon melting the solid gallium core, allowing for shape memory. Although waxes are used previously for this purpose, the use of gallium is compelling because of its metallic electrical and thermal conductivity. In addition, the use of a rigid metallic core provides perfect fixity of the shape memory fiber. Notably, the use of gallium—with a melting point above room temperature but below body temperature—allows the user to melt and deform local regions of the fiber by hand and thereby tune the effective modulus and shape of the fiber. Herein, soft and ultrastretchable elastic shape memory fibers with electrical conductivity are demonstrated fabricated by injecting liquid metal, gallium, into the elastic and hollow fibers. The ability to change the core of the fiber from liquid to solid allows an enormous modulus change and thus, excellent shape memory effects. Herein, elastomeric fibers that have shape memory properties due to the presence of a gallium core that can undergo phase transition from solid to liquid in response to mild heating are described. The gallium is injected into the core of a hollow fiber formed by melt processing. This approach provides a straightforward method to create shape memory properties from any hollow elastic fiber. Solidifying the core changes the effective fiber modulus from 4 to 1253 MPa. This increase in stiffness can preserve the fiber in a deformed shape. The elastic energy stored in the polymer shell during deformation drives the fiber to relax back to its original geometry upon melting the solid gallium core, allowing for shape memory. Although waxes are used previously for this purpose, the use of gallium is compelling because of its metallic electrical and thermal conductivity. In addition, the use of a rigid metallic core provides perfect fixity of the shape memory fiber. Notably, the use of gallium-with a melting point above room temperature but below body temperature-allows the user to melt and deform local regions of the fiber by hand and thereby tune the effective modulus and shape of the fiber.Herein, elastomeric fibers that have shape memory properties due to the presence of a gallium core that can undergo phase transition from solid to liquid in response to mild heating are described. The gallium is injected into the core of a hollow fiber formed by melt processing. This approach provides a straightforward method to create shape memory properties from any hollow elastic fiber. Solidifying the core changes the effective fiber modulus from 4 to 1253 MPa. This increase in stiffness can preserve the fiber in a deformed shape. The elastic energy stored in the polymer shell during deformation drives the fiber to relax back to its original geometry upon melting the solid gallium core, allowing for shape memory. Although waxes are used previously for this purpose, the use of gallium is compelling because of its metallic electrical and thermal conductivity. In addition, the use of a rigid metallic core provides perfect fixity of the shape memory fiber. Notably, the use of gallium-with a melting point above room temperature but below body temperature-allows the user to melt and deform local regions of the fiber by hand and thereby tune the effective modulus and shape of the fiber. |
Author | Joshipura, Ishan D. Parekh, Dishit P. Park, Sungjune Baugh, Neil Dickey, Michael D. Shah, Hardil K. |
AuthorAffiliation | 1 Department of Polymer‐Nano Science and Technology BK21 Plus Haptic Polymer Composite Research Team Department of BIN Convergence Technology Chonbuk National University Jeonju 54896 South Korea 2 Department of Chemical and Biomolecular Engineering North Carolina State University 911 Partners Way Raleigh NC 27695 USA |
AuthorAffiliation_xml | – name: 1 Department of Polymer‐Nano Science and Technology BK21 Plus Haptic Polymer Composite Research Team Department of BIN Convergence Technology Chonbuk National University Jeonju 54896 South Korea – name: 2 Department of Chemical and Biomolecular Engineering North Carolina State University 911 Partners Way Raleigh NC 27695 USA |
Author_xml | – sequence: 1 givenname: Sungjune surname: Park fullname: Park, Sungjune organization: Chonbuk National University – sequence: 2 givenname: Neil surname: Baugh fullname: Baugh, Neil organization: North Carolina State University – sequence: 3 givenname: Hardil K. surname: Shah fullname: Shah, Hardil K. organization: North Carolina State University – sequence: 4 givenname: Dishit P. surname: Parekh fullname: Parekh, Dishit P. organization: North Carolina State University – sequence: 5 givenname: Ishan D. surname: Joshipura fullname: Joshipura, Ishan D. organization: North Carolina State University – sequence: 6 givenname: Michael D. orcidid: 0000-0003-1251-1871 surname: Dickey fullname: Dickey, Michael D. email: mddickey@ncsu.edu organization: North Carolina State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31728290$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1vGyEQhlGVqkndXHusVuqlF7vAsgt7qRS5SWspVQ9pekV8zMZYeHGBdeR_X1ynVpJLTsDMMy_zwrxFJ0MYAKH3BM8IxvSzsts0o5h0mDS8e4XOKOnEtBaMnTzan6LzlFYYF6jmjIg36LQmnAra4TO0uPU5qpQjZLNU2kN16cvRmepmqTZQ_YB1iLvqymmIqbp3eVkAMDk6o3w1D4MdTXZbl3fv0Ote-QTnD-sE3V5d_pp_n17__LaYX1xPTUM7MmWYWWAUgLQaU4uNbgQD3huNgQpb0rxXxQ4jdQnxngO1iooWt5gyrG09QYuDrg1qJTfRrVXcyaCc_BcI8U6qWAx4kKTTpVD3nDLLbKM1EaoVmhEiuADVF60vB63NqNdgDQzlMfwT0aeZwS3lXdjKVtQdb3AR-PQgEMOfEVKWa5cMeK8GCGOStCYNFnTvZoI-PkNXYYxDeao9RXnXCc4L9eFxR8dW_v9YAWYHwMSQUoT-iBAs91Mh91Mhj1NRCtizAuOyyi7sHTn_Ytm987B74RJ58fX3DalrUv8F1NXK7Q |
CitedBy_id | crossref_primary_10_1002_pc_27738 crossref_primary_10_1016_j_bioactmat_2021_12_032 crossref_primary_10_1016_j_mtadv_2020_100089 crossref_primary_10_1016_j_addma_2020_101117 crossref_primary_10_1021_acsami_9b14430 crossref_primary_10_1039_D0MH00312C crossref_primary_10_1038_s41378_022_00365_3 crossref_primary_10_1088_2399_7532_aba1d9 crossref_primary_10_1021_acsami_2c04755 crossref_primary_10_1007_s00170_024_13725_2 crossref_primary_10_1021_acsami_0c16438 crossref_primary_10_1021_acsami_1c01319 crossref_primary_10_1002_aisy_202000166 crossref_primary_10_1088_1361_665X_adbdb3 crossref_primary_10_1007_s10854_023_11829_1 crossref_primary_10_1002_smll_202206391 crossref_primary_10_1093_nsr_nwae006 crossref_primary_10_1002_adma_202004655 crossref_primary_10_1016_j_eurpolymj_2022_111385 crossref_primary_10_1021_acs_biomac_9b01074 crossref_primary_10_1021_acsami_0c06263 crossref_primary_10_1002_mame_202200400 crossref_primary_10_1021_acsapm_9b01078 crossref_primary_10_1038_s41467_021_21729_9 crossref_primary_10_1021_acsami_2c07618 crossref_primary_10_1021_acsami_3c03880 crossref_primary_10_3390_s22083028 crossref_primary_10_1002_adfm_202201942 crossref_primary_10_1002_nano_202000179 crossref_primary_10_1016_j_cej_2024_149394 crossref_primary_10_1016_j_cej_2022_139832 crossref_primary_10_1039_D1SM01189H crossref_primary_10_1016_j_isci_2021_103183 crossref_primary_10_1089_soro_2022_0118 crossref_primary_10_1002_admt_202200339 crossref_primary_10_1016_j_matt_2022_05_031 crossref_primary_10_1021_acs_jpcc_1c05859 crossref_primary_10_1002_admt_202101092 crossref_primary_10_1007_s42765_024_00399_4 crossref_primary_10_1016_j_isci_2023_106493 crossref_primary_10_1021_acsami_1c11577 crossref_primary_10_1002_adma_202007239 crossref_primary_10_1002_adma_202007952 crossref_primary_10_1002_admt_202100263 crossref_primary_10_1016_j_cej_2023_141400 crossref_primary_10_1016_j_cej_2023_147944 crossref_primary_10_1021_acsami_4c17511 crossref_primary_10_1002_advs_202205428 crossref_primary_10_1002_advs_202310185 crossref_primary_10_1016_j_eml_2020_100863 crossref_primary_10_34133_2022_9890686 crossref_primary_10_1002_adem_202100372 crossref_primary_10_1016_j_nanoen_2021_106713 crossref_primary_10_1016_j_conbuildmat_2023_134244 crossref_primary_10_1016_j_scib_2020_06_002 crossref_primary_10_1039_D0MH00280A crossref_primary_10_1002_adfm_202312036 crossref_primary_10_1021_acsami_1c06786 crossref_primary_10_1021_acsapm_1c00912 crossref_primary_10_1016_j_pmatsci_2024_101406 crossref_primary_10_1021_acsapm_3c01048 crossref_primary_10_1002_admt_202000659 crossref_primary_10_1002_smll_202004190 crossref_primary_10_3390_polym13152407 crossref_primary_10_1016_j_cej_2021_131648 crossref_primary_10_1002_adfm_202107764 crossref_primary_10_1016_j_eml_2020_100697 crossref_primary_10_1002_admt_202100777 crossref_primary_10_1016_j_polymer_2023_126155 crossref_primary_10_1002_aelm_202100146 crossref_primary_10_1088_1361_6439_ac85fc crossref_primary_10_1002_aenm_202100411 crossref_primary_10_1016_j_jmrt_2022_07_045 crossref_primary_10_1016_j_cej_2022_141018 crossref_primary_10_1002_adem_202402763 crossref_primary_10_1109_LRA_2024_3357035 crossref_primary_10_1021_acsanm_0c02566 crossref_primary_10_1016_j_mechmat_2023_104702 crossref_primary_10_3390_polym14040710 crossref_primary_10_1126_sciadv_abg4041 crossref_primary_10_1002_adem_202100863 |
Cites_doi | 10.1002/adma.201606425 10.1002/adfm.201304037 10.1016/S1369-7021(07)70047-0 10.1038/nmat1834 10.1146/annurev-matsci-082908-145419 10.1126/science.1206157 10.1016/j.coche.2012.10.006 10.1038/ncomms4066 10.1002/polb.23990 10.1007/978-3-642-12359-7 10.1039/c3ra44412k 10.1088/0964-1726/24/6/065001 10.1002/adfm.201600580 10.1016/j.polymer.2011.08.003 10.1016/j.progpolymsci.2015.04.001 10.1038/nature16521 10.1002/adfm.201202405 10.1007/12_2009_26 10.1016/0022-5088(69)90121-0 10.1016/j.polymer.2013.02.023 10.1088/0959-5309/48/2/308 10.1016/0375-9601(69)90528-3 10.1002/adem.201700190 10.1002/adma.201400633 10.1088/0022-3727/45/10/103001 10.1088/0964-1726/22/8/085005 10.1039/b615954k 10.1002/macp.201000540 10.1002/adma.201303349 10.1002/adma.200904447 10.1126/sciadv.aat4600 10.1002/adma.201602580 10.1021/mz500131r 10.1103/PhysRevA.9.400 10.1016/j.tibtech.2013.03.002 10.1002/admt.201700179 10.1002/adma.201505991 10.1002/adom.201500319 10.1038/nature08863 |
ContentType | Journal Article |
Copyright | 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1002/advs.201901579 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_19b860bf724d4d5bb18a68b411878eaf PMC6839750 31728290 10_1002_advs_201901579 ADVS1331 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Natick Soldier Systems Center – fundername: National Research Foundation of Korea funderid: NRF‐2019R1F1A1046822 – fundername: ; grantid: NRF‐2019R1F1A1046822 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAYXX ADMLS AFPKN CITATION EJD IAO IGS ITC PHGZM PHGZT NPM 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c5291-404de42ee16b02d0cb584e7fcb0e28d4047fa157413cb07f7e2da286060240bd3 |
IEDL.DBID | 24P |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:26:28 EDT 2025 Thu Aug 21 18:13:11 EDT 2025 Sun Sep 28 11:25:51 EDT 2025 Fri Jul 25 07:27:51 EDT 2025 Thu Apr 03 06:59:01 EDT 2025 Tue Jul 01 03:59:20 EDT 2025 Thu Apr 24 23:06:29 EDT 2025 Wed Jan 22 16:39:20 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | elastic shape memory fibers stretchable electronics liquid metals |
Language | English |
License | Attribution 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5291-404de42ee16b02d0cb584e7fcb0e28d4047fa157413cb07f7e2da286060240bd3 |
Notes | Dedicated to the memory of Prof. Siegfried Bauer ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1251-1871 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.201901579 |
PMID | 31728290 |
PQID | 2312799877 |
PQPubID | 4365299 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_19b860bf724d4d5bb18a68b411878eaf pubmedcentral_primary_oai_pubmedcentral_nih_gov_6839750 proquest_miscellaneous_2315082741 proquest_journals_2312799877 pubmed_primary_31728290 crossref_primary_10_1002_advs_201901579 crossref_citationtrail_10_1002_advs_201901579 wiley_primary_10_1002_advs_201901579_ADVS1331 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
PublicationTitle | Advanced science |
PublicationTitleAlternate | Adv Sci (Weinh) |
PublicationYear | 2019 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2007; 17 2015; 49–50 2011; 212 2011; 333 2013; 3 2017; 2 2013; 2 2019; 5 2013; 22 2010 2013; 23 2010; 464 2016; 529 2016; 54 2009 2011; 52 2014; 26 2014; 24 2017; 29 1969; 18 2007; 10 1974; 9 2016; 4 2015; 24 2010; 22 2014; 5 2014; 3 2013; 54 1936; 48 2013; 31 2007; 6 2017; 19 1969; 29 2016; 28 2012; 45 2016; 26 2009; 39 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 45 year: 2012 publication-title: J. Phys. D: Appl. Phys. – start-page: 1 year: 2009 end-page: 40 – volume: 18 start-page: 67 year: 1969 publication-title: J. Less‐Common‐Met. – volume: 10 start-page: 20 year: 2007 publication-title: Mater. Today – volume: 5 start-page: 3066 year: 2014 publication-title: Nat. Commun. – volume: 3 year: 2013 publication-title: RSC Adv. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 39 start-page: 445 year: 2009 publication-title: Annu. Rev. Mater. Res. – volume: 5 start-page: eaat4600 year: 2019 publication-title: Sci. Adv. – volume: 29 start-page: 470 year: 1969 publication-title: Phys. Lett. A – volume: 6 start-page: 93 year: 2007 publication-title: Nat. Mater. – volume: 28 start-page: 2801 year: 2016 publication-title: Adv. Mater. – volume: 2 start-page: 103 year: 2013 publication-title: Curr. Opin. Chem. Eng. – volume: 26 start-page: 5078 year: 2016 publication-title: Adv. Funct. Mater. – volume: 529 start-page: 509 year: 2016 publication-title: Nature – volume: 24 year: 2015 publication-title: Smart Mater. Struct. – year: 2010 – volume: 26 start-page: 5310 year: 2014 publication-title: Adv. Mater. – volume: 3 start-page: 374 year: 2014 publication-title: ACS Macro Lett. – volume: 52 start-page: 4985 year: 2011 publication-title: Polymer – volume: 26 start-page: 149 year: 2014 publication-title: Adv. Mater. – volume: 464 start-page: 267 year: 2010 publication-title: Nature – volume: 28 year: 2016 publication-title: Adv. Mater. – volume: 49–50 start-page: 79 year: 2015 publication-title: Prog. Polym. Sci. – volume: 23 start-page: 2308 year: 2013 publication-title: Adv. Funct. Mater. – volume: 17 start-page: 1543 year: 2007 publication-title: J. Mater. Chem. – volume: 31 start-page: 287 year: 2013 publication-title: Trends Biotechnol. – volume: 9 start-page: 400 year: 1974 publication-title: Phys. Rev. A – volume: 22 year: 2013 publication-title: Smart Mater. Struct. – volume: 48 start-page: 299 year: 1936 publication-title: Proc. Phys. Soc. – volume: 22 start-page: 3388 year: 2010 publication-title: Adv. Mater. – volume: 54 start-page: 2199 year: 2013 publication-title: Polymer – volume: 54 start-page: 1397 year: 2016 publication-title: J. Polym. Sci., Part B: Polym. Phys. – volume: 333 start-page: 838 year: 2011 publication-title: Science – volume: 24 start-page: 4860 year: 2014 publication-title: Adv. Funct. Mater. – volume: 212 start-page: 592 year: 2011 publication-title: Macromol. Chem. Phys. – volume: 2 year: 2017 publication-title: Adv. Mater. Technol. – volume: 19 year: 2017 publication-title: Adv. Eng. Mater. – volume: 4 start-page: 13 year: 2016 publication-title: Adv. Opt. Mater. – ident: e_1_2_7_30_1 doi: 10.1002/adma.201606425 – ident: e_1_2_7_37_1 doi: 10.1002/adfm.201304037 – ident: e_1_2_7_1_1 doi: 10.1016/S1369-7021(07)70047-0 – ident: e_1_2_7_5_1 doi: 10.1038/nmat1834 – ident: e_1_2_7_9_1 doi: 10.1146/annurev-matsci-082908-145419 – ident: e_1_2_7_27_1 doi: 10.1126/science.1206157 – ident: e_1_2_7_6_1 doi: 10.1016/j.coche.2012.10.006 – ident: e_1_2_7_19_1 doi: 10.1038/ncomms4066 – ident: e_1_2_7_20_1 doi: 10.1002/polb.23990 – ident: e_1_2_7_2_1 doi: 10.1007/978-3-642-12359-7 – ident: e_1_2_7_33_1 doi: 10.1039/c3ra44412k – ident: e_1_2_7_34_1 doi: 10.1088/0964-1726/24/6/065001 – ident: e_1_2_7_14_1 doi: 10.1002/adfm.201600580 – ident: e_1_2_7_10_1 doi: 10.1016/j.polymer.2011.08.003 – ident: e_1_2_7_7_1 doi: 10.1016/j.progpolymsci.2015.04.001 – ident: e_1_2_7_28_1 doi: 10.1038/nature16521 – ident: e_1_2_7_29_1 doi: 10.1002/adfm.201202405 – ident: e_1_2_7_39_1 doi: 10.1007/12_2009_26 – ident: e_1_2_7_12_1 doi: 10.1016/0022-5088(69)90121-0 – ident: e_1_2_7_36_1 doi: 10.1016/j.polymer.2013.02.023 – ident: e_1_2_7_21_1 doi: 10.1088/0959-5309/48/2/308 – ident: e_1_2_7_15_1 doi: 10.1016/0375-9601(69)90528-3 – ident: e_1_2_7_32_1 doi: 10.1002/adem.201700190 – ident: e_1_2_7_13_1 doi: 10.1002/adma.201400633 – ident: e_1_2_7_24_1 doi: 10.1088/0022-3727/45/10/103001 – ident: e_1_2_7_38_1 doi: 10.1088/0964-1726/22/8/085005 – ident: e_1_2_7_4_1 doi: 10.1039/b615954k – ident: e_1_2_7_16_1 doi: 10.1002/macp.201000540 – ident: e_1_2_7_25_1 doi: 10.1002/adma.201303349 – ident: e_1_2_7_3_1 doi: 10.1002/adma.200904447 – ident: e_1_2_7_18_1 doi: 10.1126/sciadv.aat4600 – ident: e_1_2_7_23_1 doi: 10.1002/adma.201602580 – ident: e_1_2_7_11_1 doi: 10.1021/mz500131r – ident: e_1_2_7_31_1 doi: 10.1103/PhysRevA.9.400 – ident: e_1_2_7_26_1 doi: 10.1016/j.tibtech.2013.03.002 – ident: e_1_2_7_35_1 doi: 10.1002/admt.201700179 – ident: e_1_2_7_22_1 doi: 10.1002/adma.201505991 – ident: e_1_2_7_17_1 doi: 10.1002/adom.201500319 – ident: e_1_2_7_8_1 doi: 10.1038/nature08863 |
SSID | ssj0001537418 |
Score | 2.4423094 |
Snippet | Herein, elastomeric fibers that have shape memory properties due to the presence of a gallium core that can undergo phase transition from solid to liquid in... Abstract Herein, elastomeric fibers that have shape memory properties due to the presence of a gallium core that can undergo phase transition from solid to... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1901579 |
SubjectTerms | Body temperature elastic shape memory fibers Elastomers Heat conductivity liquid metals Mechanical properties Phase transitions Polymers Robotics stretchable electronics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5CTr2EJG0S54UKhTQHE1nSSvYxCVm2he0lXcjNSJZEAsG75FHov8-M7DW7tCWXXq1ZW8zD88k78w3AF9PExtoGT6paxlypqHNMI1Ueq-g8Juwyeup3nv7Qk5n6fje6Wxn1RTVhHT1wp7iLonKl5i4aobzyI-eK0urSKRqTXQYb6e3LK75ymOr6gyXRsixZGrm4sP4XsXOn_Ed1WytZKJH1_w1h_lkouQpgUwYab8NWDx3ZZbflHdgI7S7s9MH5zL72DNLnH-Hb7BFvRG0gaBPqjWI3CJLxZ-z23i4Cm1J57W82pmqRZ0afYlGAxuGQxdj1vCUS2DRV4hPMxjc_ryd5PzMhb0aiouOg8kGJEArtuPC8cYgwgomN40GUHpdNtKgBzF14yUQThLcCNayJ7Mx5uQeb7bwNB8B44ZwypbXBOMWlcF5IiYALI7rUlWwyyJc6rJueUJzmWjzWHRWyqEnn9aDzDM4G-UVHpfFPySsyySBFFNjpAjpG3TtG_Z5jZHC8NGjdxyU-QhbC4AnTmAw-D8sYUfQ3iW3D_DXJIGolWp8M9jv7DzuRNM5LVDwDs-YZa1tdX2kf7hNrt0YoivAMtZZ86B0V1IhKbgspi8P_oYsj-EB37nooj2Hz5ek1nCCYenGnKW7eAALkGx0 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6V7YULojwDBRkJCThETWwnTg4I0WpXBakrRFmpt8iO7RapSpY-kPj3zDhO6IrXNXYSZ8bj-ezMfAPwUrW-1brFnWopfCqlL1N0I3Xqa28sOuzKW8p3PlqWhyv58aQ42YLlmAtDYZXjmhgWatu3dEa-hziEK9wbKPVu_S2lqlH0d3UsoaFjaQX7NlCM3YJtXJKLbAbb-_Plp8-_Tl0KQXQtI3tjxve0_U6s3cEvUjzXDe8USPz_hDx_D6C8CWyDZ1rchTsRUrL3wxzYgS3X3YOdaLSX7HVkln5zHz6szvFBlB6CuqKcKTZH8Iy3seMzvXbsiMJuf7AFRZFcMjqixQ5UJoc0yQ76jshhQ7WJB7BazL8cHKaxlkLaFrymbaK0TnLn8tJk3GatQeThlG9N5nhlsVl5jRJAn4aXlFeOW80r3N4QCZqx4iHMur5zj4FluTFSVVo7ZWQmuLFcCARiaOlVWYs2gXSUYdNGonGqd3HeDBTJvCGZN5PME3g19V8PFBt_7blPKpl6ETV2uNBfnDbR0pq8Njhs4xWXVtrCmLzSZWUk1VWvnPYJ7I4KbaK94ium2ZXAi6kZLY1-n-jO9dehD6JZovtJ4NGg_2kkgsp88TpLQG3MjI2hbrZ0X88Cm3eJEBVhG0otzKH_iKBBtHKcC5E_-fdnPIXbdM-QNbkLs6uLa_cM4dOVeR5t4idwpBki priority: 102 providerName: ProQuest |
Title | Ultrastretchable Elastic Shape Memory Fibers with Electrical Conductivity |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.201901579 https://www.ncbi.nlm.nih.gov/pubmed/31728290 https://www.proquest.com/docview/2312799877 https://www.proquest.com/docview/2315082741 https://pubmed.ncbi.nlm.nih.gov/PMC6839750 https://doaj.org/article/19b860bf724d4d5bb18a68b411878eaf |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED629mUvY91Pb13QYLDtwdSWFEt-bLuEbiylLAv0zUiW1A6KU5p2sP9-d7Lj1rRl9CkgXRxxp8t9J-u-A_io6lAbU2OmWoiQShmKFMNImYYyWIcBWwdH9c6zw-JgIb8fj49vVPG3_BD9gRt5Rvy_Jgc3drVzTRpq3B-i244BTZWPYRORvaA9zuXR9SnLWBA9C3WYw-w6FVrKNXNjxneGjxhEpkjgfxfqvH158iaojVFp-gyednCS7bb234JHvnkOW53DrtjnjlX6ywv4tjjDB1FpCNqJ6qXYBIEzfo3NT825ZzO6cvuXTekGyYrR8SwKUIscsiLbXzZEDBs7TbyExXTya_8g7foopPWYl5QiSucl9z4vbMZdVltEHV6F2maea4fTKhjUAMYzHFJBee4M15jaEAGadeIVbDTLxr8BluXWSqWN8crKTHDruBAIwtDLdVGKOoF0rcOq7kjGqdfFWdXSI_OKdF71Ok_gUy9_3tJr3Cu5RybppYgWOw4sL06qzsuqvLS4bBsUl066sbW5NoW2knqqa29CAttrg1adr-JPiJwrzDqVSuBDP41eRq9OTOOXV1EGkSxR_STwurV_vxJBLb54mSWgBjtjsNThTPP7NDJ5FwhPEbKh1uIe-o8KKkQq81yI_O0D5d_BExpsSyi3YePy4sq_Ryx1aUfRXUawuft19mOOn3uTw6Ofo3gy8Q9sTBso |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuiPIMFAgSCDhETWwnTg4VomVXu7S7QrQr9Rbs2KZIVbJ0W1D_HL-Nmbzoitep13iSOOOx57Mz8w3Ac1m4QqkCd6oJd4EQLgnQjWSBy5w26LBTZyjfeTpLxnPx_ig-WoMfXS4MhVV2a2K9UJuqoDPyLcQhTOLeQMo3i68BVY2iv6tdCQ3VllYw2zXFWJvYsWcvvuMWbrk9eYfj_YKx0fBwdxy0VQaCImYZbaCEsYJZGyU6ZCYsNPpkK12hQ8tSg83SqShGz8vxknTSMqNYisCf6MG04fjca7Au6ABlAOs7w9mHj79OeWJO9DAdW2TItpT5RizhtR-m-LFL3rAuGvAnpPt7wOZlIF17wtEtuNlCWP9tY3MbsGbL27DRLhJL_1XLZP36DkzmJ_ggSkdB26AcLX-IYB1v8w-O1cL6UwrzvfBHFLWy9OlIGAWoLA9Zjr9blURGW1e3uAvzK9HqPRiUVWkfgB9GWguZKmWlFiFn2jCOykbt8TTJeOFB0OkwL1pic6qvcZI3lMwsJ53nvc49eNnLLxpKj79K7tCQ9FJExV1fqE4_5-3MzqNMY7e1k0wYYWKto1QlqRZUxz21ynmw2Q1o3q4P-Iremj141jfjzKbfNaq01Xktg-iZ6IU8uN-Mf98TTmXFWBZ6IFcsY6Wrqy3ll-OaPTxBSIwwEbVW29B_VJAjOjqIOI8e_vsznsL18eF0P9-fzPYewQ26v8nY3ITB2em5fYzQ7Uw_aeeHD5-uekr-BM2DVQ0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVkJcEOUZKBAkEHCINrGTODlUiLa76lK6qigr9Rbs2KZIVbJ0W1D_Ir-KGa8TuuJ16jV2Emc89nzjzHwD8FzUtpayRk815zZKU5tHaEbKyJZWaTTYhdWU77w_yXen6buj7GgFfnS5MBRW2e2JbqPWbU1n5APEIUygbyDEwPqwiIOd0ZvZ14gqSNGf1q6chvRlFvSmoxvzSR575uI7unPzzfEOzv0LxkbDj9u7ka84ENUZK8mZSrVJmTFJrmKm41qhfTbC1io2rNDYLKxMMrTCHC8JKwzTkhXoBBBVmNIcn3sN1gRafXQE17aGk4MPv058Mk5UMR1zZMwGUn8jxnBnkymW7JJldAUE_oR6fw_evAyqnVUc3YKbHs6Gbxf6tw4rprkN637DmIevPKv16zswnp7ggyg1BfWE8rXCIQJ3vC08PJYzE-5TyO9FOKIIlnlIx8PYgUr0kBaF221DxLSu0sVdmF6JVO_BatM25gGEcaJUKgopjVBpzJnSjHMEgbjLFHnJ6wCiToZV7UnOqdbGSbWgZ2YVybzqZR7Ay77_bEHv8deeWzQlfS-i5XYX2tPPlV_lVVIqHLaygqU61ZlSSSHzQqVU070w0gaw0U1o5fcKfEWv2QE865txldOvG9mY9tz1QSRNVEMB3F_Mfz8STiXGWBkHIJY0Y2moyy3Nl2PHJJ4jPEbIiFJzOvQfEVSIlA4TzpOH__6Mp3Adl2b1fjzZewQ36PZF8uYGrJ6dnpvHiOLO1BO_PEL4dNUr8icAyllR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrastretchable+Elastic+Shape+Memory+Fibers+with+Electrical+Conductivity&rft.jtitle=Advanced+science&rft.au=Park%2C+Sungjune&rft.au=Baugh%2C+Neil&rft.au=Shah%2C+Hardil+K&rft.au=Parekh%2C+Dishit+P&rft.date=2019-11-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=6&rft.issue=21&rft.spage=1901579&rft_id=info:doi/10.1002%2Fadvs.201901579&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |