Ultrastretchable Elastic Shape Memory Fibers with Electrical Conductivity

Herein, elastomeric fibers that have shape memory properties due to the presence of a gallium core that can undergo phase transition from solid to liquid in response to mild heating are described. The gallium is injected into the core of a hollow fiber formed by melt processing. This approach provid...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 6; no. 21; pp. 1901579 - n/a
Main Authors Park, Sungjune, Baugh, Neil, Shah, Hardil K., Parekh, Dishit P., Joshipura, Ishan D., Dickey, Michael D.
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.11.2019
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text
ISSN2198-3844
2198-3844
DOI10.1002/advs.201901579

Cover

Abstract Herein, elastomeric fibers that have shape memory properties due to the presence of a gallium core that can undergo phase transition from solid to liquid in response to mild heating are described. The gallium is injected into the core of a hollow fiber formed by melt processing. This approach provides a straightforward method to create shape memory properties from any hollow elastic fiber. Solidifying the core changes the effective fiber modulus from 4 to 1253 MPa. This increase in stiffness can preserve the fiber in a deformed shape. The elastic energy stored in the polymer shell during deformation drives the fiber to relax back to its original geometry upon melting the solid gallium core, allowing for shape memory. Although waxes are used previously for this purpose, the use of gallium is compelling because of its metallic electrical and thermal conductivity. In addition, the use of a rigid metallic core provides perfect fixity of the shape memory fiber. Notably, the use of gallium—with a melting point above room temperature but below body temperature—allows the user to melt and deform local regions of the fiber by hand and thereby tune the effective modulus and shape of the fiber. Herein, soft and ultrastretchable elastic shape memory fibers with electrical conductivity are demonstrated fabricated by injecting liquid metal, gallium, into the elastic and hollow fibers. The ability to change the core of the fiber from liquid to solid allows an enormous modulus change and thus, excellent shape memory effects.
AbstractList Herein, elastomeric fibers that have shape memory properties due to the presence of a gallium core that can undergo phase transition from solid to liquid in response to mild heating are described. The gallium is injected into the core of a hollow fiber formed by melt processing. This approach provides a straightforward method to create shape memory properties from any hollow elastic fiber. Solidifying the core changes the effective fiber modulus from 4 to 1253 MPa. This increase in stiffness can preserve the fiber in a deformed shape. The elastic energy stored in the polymer shell during deformation drives the fiber to relax back to its original geometry upon melting the solid gallium core, allowing for shape memory. Although waxes are used previously for this purpose, the use of gallium is compelling because of its metallic electrical and thermal conductivity. In addition, the use of a rigid metallic core provides perfect fixity of the shape memory fiber. Notably, the use of gallium—with a melting point above room temperature but below body temperature—allows the user to melt and deform local regions of the fiber by hand and thereby tune the effective modulus and shape of the fiber.
Herein, elastomeric fibers that have shape memory properties due to the presence of a gallium core that can undergo phase transition from solid to liquid in response to mild heating are described. The gallium is injected into the core of a hollow fiber formed by melt processing. This approach provides a straightforward method to create shape memory properties from any hollow elastic fiber. Solidifying the core changes the effective fiber modulus from 4 to 1253 MPa. This increase in stiffness can preserve the fiber in a deformed shape. The elastic energy stored in the polymer shell during deformation drives the fiber to relax back to its original geometry upon melting the solid gallium core, allowing for shape memory. Although waxes are used previously for this purpose, the use of gallium is compelling because of its metallic electrical and thermal conductivity. In addition, the use of a rigid metallic core provides perfect fixity of the shape memory fiber. Notably, the use of gallium—with a melting point above room temperature but below body temperature—allows the user to melt and deform local regions of the fiber by hand and thereby tune the effective modulus and shape of the fiber. Herein, soft and ultrastretchable elastic shape memory fibers with electrical conductivity are demonstrated fabricated by injecting liquid metal, gallium, into the elastic and hollow fibers. The ability to change the core of the fiber from liquid to solid allows an enormous modulus change and thus, excellent shape memory effects.
Abstract Herein, elastomeric fibers that have shape memory properties due to the presence of a gallium core that can undergo phase transition from solid to liquid in response to mild heating are described. The gallium is injected into the core of a hollow fiber formed by melt processing. This approach provides a straightforward method to create shape memory properties from any hollow elastic fiber. Solidifying the core changes the effective fiber modulus from 4 to 1253 MPa. This increase in stiffness can preserve the fiber in a deformed shape. The elastic energy stored in the polymer shell during deformation drives the fiber to relax back to its original geometry upon melting the solid gallium core, allowing for shape memory. Although waxes are used previously for this purpose, the use of gallium is compelling because of its metallic electrical and thermal conductivity. In addition, the use of a rigid metallic core provides perfect fixity of the shape memory fiber. Notably, the use of gallium—with a melting point above room temperature but below body temperature—allows the user to melt and deform local regions of the fiber by hand and thereby tune the effective modulus and shape of the fiber.
Herein, elastomeric fibers that have shape memory properties due to the presence of a gallium core that can undergo phase transition from solid to liquid in response to mild heating are described. The gallium is injected into the core of a hollow fiber formed by melt processing. This approach provides a straightforward method to create shape memory properties from any hollow elastic fiber. Solidifying the core changes the effective fiber modulus from 4 to 1253 MPa. This increase in stiffness can preserve the fiber in a deformed shape. The elastic energy stored in the polymer shell during deformation drives the fiber to relax back to its original geometry upon melting the solid gallium core, allowing for shape memory. Although waxes are used previously for this purpose, the use of gallium is compelling because of its metallic electrical and thermal conductivity. In addition, the use of a rigid metallic core provides perfect fixity of the shape memory fiber. Notably, the use of gallium—with a melting point above room temperature but below body temperature—allows the user to melt and deform local regions of the fiber by hand and thereby tune the effective modulus and shape of the fiber. Herein, soft and ultrastretchable elastic shape memory fibers with electrical conductivity are demonstrated fabricated by injecting liquid metal, gallium, into the elastic and hollow fibers. The ability to change the core of the fiber from liquid to solid allows an enormous modulus change and thus, excellent shape memory effects.
Herein, elastomeric fibers that have shape memory properties due to the presence of a gallium core that can undergo phase transition from solid to liquid in response to mild heating are described. The gallium is injected into the core of a hollow fiber formed by melt processing. This approach provides a straightforward method to create shape memory properties from any hollow elastic fiber. Solidifying the core changes the effective fiber modulus from 4 to 1253 MPa. This increase in stiffness can preserve the fiber in a deformed shape. The elastic energy stored in the polymer shell during deformation drives the fiber to relax back to its original geometry upon melting the solid gallium core, allowing for shape memory. Although waxes are used previously for this purpose, the use of gallium is compelling because of its metallic electrical and thermal conductivity. In addition, the use of a rigid metallic core provides perfect fixity of the shape memory fiber. Notably, the use of gallium-with a melting point above room temperature but below body temperature-allows the user to melt and deform local regions of the fiber by hand and thereby tune the effective modulus and shape of the fiber.Herein, elastomeric fibers that have shape memory properties due to the presence of a gallium core that can undergo phase transition from solid to liquid in response to mild heating are described. The gallium is injected into the core of a hollow fiber formed by melt processing. This approach provides a straightforward method to create shape memory properties from any hollow elastic fiber. Solidifying the core changes the effective fiber modulus from 4 to 1253 MPa. This increase in stiffness can preserve the fiber in a deformed shape. The elastic energy stored in the polymer shell during deformation drives the fiber to relax back to its original geometry upon melting the solid gallium core, allowing for shape memory. Although waxes are used previously for this purpose, the use of gallium is compelling because of its metallic electrical and thermal conductivity. In addition, the use of a rigid metallic core provides perfect fixity of the shape memory fiber. Notably, the use of gallium-with a melting point above room temperature but below body temperature-allows the user to melt and deform local regions of the fiber by hand and thereby tune the effective modulus and shape of the fiber.
Author Joshipura, Ishan D.
Parekh, Dishit P.
Park, Sungjune
Baugh, Neil
Dickey, Michael D.
Shah, Hardil K.
AuthorAffiliation 1 Department of Polymer‐Nano Science and Technology BK21 Plus Haptic Polymer Composite Research Team Department of BIN Convergence Technology Chonbuk National University Jeonju 54896 South Korea
2 Department of Chemical and Biomolecular Engineering North Carolina State University 911 Partners Way Raleigh NC 27695 USA
AuthorAffiliation_xml – name: 1 Department of Polymer‐Nano Science and Technology BK21 Plus Haptic Polymer Composite Research Team Department of BIN Convergence Technology Chonbuk National University Jeonju 54896 South Korea
– name: 2 Department of Chemical and Biomolecular Engineering North Carolina State University 911 Partners Way Raleigh NC 27695 USA
Author_xml – sequence: 1
  givenname: Sungjune
  surname: Park
  fullname: Park, Sungjune
  organization: Chonbuk National University
– sequence: 2
  givenname: Neil
  surname: Baugh
  fullname: Baugh, Neil
  organization: North Carolina State University
– sequence: 3
  givenname: Hardil K.
  surname: Shah
  fullname: Shah, Hardil K.
  organization: North Carolina State University
– sequence: 4
  givenname: Dishit P.
  surname: Parekh
  fullname: Parekh, Dishit P.
  organization: North Carolina State University
– sequence: 5
  givenname: Ishan D.
  surname: Joshipura
  fullname: Joshipura, Ishan D.
  organization: North Carolina State University
– sequence: 6
  givenname: Michael D.
  orcidid: 0000-0003-1251-1871
  surname: Dickey
  fullname: Dickey, Michael D.
  email: mddickey@ncsu.edu
  organization: North Carolina State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31728290$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1vGyEQhlGVqkndXHusVuqlF7vAsgt7qRS5SWspVQ9pekV8zMZYeHGBdeR_X1ynVpJLTsDMMy_zwrxFJ0MYAKH3BM8IxvSzsts0o5h0mDS8e4XOKOnEtBaMnTzan6LzlFYYF6jmjIg36LQmnAra4TO0uPU5qpQjZLNU2kN16cvRmepmqTZQ_YB1iLvqymmIqbp3eVkAMDk6o3w1D4MdTXZbl3fv0Ote-QTnD-sE3V5d_pp_n17__LaYX1xPTUM7MmWYWWAUgLQaU4uNbgQD3huNgQpb0rxXxQ4jdQnxngO1iooWt5gyrG09QYuDrg1qJTfRrVXcyaCc_BcI8U6qWAx4kKTTpVD3nDLLbKM1EaoVmhEiuADVF60vB63NqNdgDQzlMfwT0aeZwS3lXdjKVtQdb3AR-PQgEMOfEVKWa5cMeK8GCGOStCYNFnTvZoI-PkNXYYxDeao9RXnXCc4L9eFxR8dW_v9YAWYHwMSQUoT-iBAs91Mh91Mhj1NRCtizAuOyyi7sHTn_Ytm987B74RJ58fX3DalrUv8F1NXK7Q
CitedBy_id crossref_primary_10_1002_pc_27738
crossref_primary_10_1016_j_bioactmat_2021_12_032
crossref_primary_10_1016_j_mtadv_2020_100089
crossref_primary_10_1016_j_addma_2020_101117
crossref_primary_10_1021_acsami_9b14430
crossref_primary_10_1039_D0MH00312C
crossref_primary_10_1038_s41378_022_00365_3
crossref_primary_10_1088_2399_7532_aba1d9
crossref_primary_10_1021_acsami_2c04755
crossref_primary_10_1007_s00170_024_13725_2
crossref_primary_10_1021_acsami_0c16438
crossref_primary_10_1021_acsami_1c01319
crossref_primary_10_1002_aisy_202000166
crossref_primary_10_1088_1361_665X_adbdb3
crossref_primary_10_1007_s10854_023_11829_1
crossref_primary_10_1002_smll_202206391
crossref_primary_10_1093_nsr_nwae006
crossref_primary_10_1002_adma_202004655
crossref_primary_10_1016_j_eurpolymj_2022_111385
crossref_primary_10_1021_acs_biomac_9b01074
crossref_primary_10_1021_acsami_0c06263
crossref_primary_10_1002_mame_202200400
crossref_primary_10_1021_acsapm_9b01078
crossref_primary_10_1038_s41467_021_21729_9
crossref_primary_10_1021_acsami_2c07618
crossref_primary_10_1021_acsami_3c03880
crossref_primary_10_3390_s22083028
crossref_primary_10_1002_adfm_202201942
crossref_primary_10_1002_nano_202000179
crossref_primary_10_1016_j_cej_2024_149394
crossref_primary_10_1016_j_cej_2022_139832
crossref_primary_10_1039_D1SM01189H
crossref_primary_10_1016_j_isci_2021_103183
crossref_primary_10_1089_soro_2022_0118
crossref_primary_10_1002_admt_202200339
crossref_primary_10_1016_j_matt_2022_05_031
crossref_primary_10_1021_acs_jpcc_1c05859
crossref_primary_10_1002_admt_202101092
crossref_primary_10_1007_s42765_024_00399_4
crossref_primary_10_1016_j_isci_2023_106493
crossref_primary_10_1021_acsami_1c11577
crossref_primary_10_1002_adma_202007239
crossref_primary_10_1002_adma_202007952
crossref_primary_10_1002_admt_202100263
crossref_primary_10_1016_j_cej_2023_141400
crossref_primary_10_1016_j_cej_2023_147944
crossref_primary_10_1021_acsami_4c17511
crossref_primary_10_1002_advs_202205428
crossref_primary_10_1002_advs_202310185
crossref_primary_10_1016_j_eml_2020_100863
crossref_primary_10_34133_2022_9890686
crossref_primary_10_1002_adem_202100372
crossref_primary_10_1016_j_nanoen_2021_106713
crossref_primary_10_1016_j_conbuildmat_2023_134244
crossref_primary_10_1016_j_scib_2020_06_002
crossref_primary_10_1039_D0MH00280A
crossref_primary_10_1002_adfm_202312036
crossref_primary_10_1021_acsami_1c06786
crossref_primary_10_1021_acsapm_1c00912
crossref_primary_10_1016_j_pmatsci_2024_101406
crossref_primary_10_1021_acsapm_3c01048
crossref_primary_10_1002_admt_202000659
crossref_primary_10_1002_smll_202004190
crossref_primary_10_3390_polym13152407
crossref_primary_10_1016_j_cej_2021_131648
crossref_primary_10_1002_adfm_202107764
crossref_primary_10_1016_j_eml_2020_100697
crossref_primary_10_1002_admt_202100777
crossref_primary_10_1016_j_polymer_2023_126155
crossref_primary_10_1002_aelm_202100146
crossref_primary_10_1088_1361_6439_ac85fc
crossref_primary_10_1002_aenm_202100411
crossref_primary_10_1016_j_jmrt_2022_07_045
crossref_primary_10_1016_j_cej_2022_141018
crossref_primary_10_1002_adem_202402763
crossref_primary_10_1109_LRA_2024_3357035
crossref_primary_10_1021_acsanm_0c02566
crossref_primary_10_1016_j_mechmat_2023_104702
crossref_primary_10_3390_polym14040710
crossref_primary_10_1126_sciadv_abg4041
crossref_primary_10_1002_adem_202100863
Cites_doi 10.1002/adma.201606425
10.1002/adfm.201304037
10.1016/S1369-7021(07)70047-0
10.1038/nmat1834
10.1146/annurev-matsci-082908-145419
10.1126/science.1206157
10.1016/j.coche.2012.10.006
10.1038/ncomms4066
10.1002/polb.23990
10.1007/978-3-642-12359-7
10.1039/c3ra44412k
10.1088/0964-1726/24/6/065001
10.1002/adfm.201600580
10.1016/j.polymer.2011.08.003
10.1016/j.progpolymsci.2015.04.001
10.1038/nature16521
10.1002/adfm.201202405
10.1007/12_2009_26
10.1016/0022-5088(69)90121-0
10.1016/j.polymer.2013.02.023
10.1088/0959-5309/48/2/308
10.1016/0375-9601(69)90528-3
10.1002/adem.201700190
10.1002/adma.201400633
10.1088/0022-3727/45/10/103001
10.1088/0964-1726/22/8/085005
10.1039/b615954k
10.1002/macp.201000540
10.1002/adma.201303349
10.1002/adma.200904447
10.1126/sciadv.aat4600
10.1002/adma.201602580
10.1021/mz500131r
10.1103/PhysRevA.9.400
10.1016/j.tibtech.2013.03.002
10.1002/admt.201700179
10.1002/adma.201505991
10.1002/adom.201500319
10.1038/nature08863
ContentType Journal Article
Copyright 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.201901579
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

Publicly Available Content Database

PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_19b860bf724d4d5bb18a68b411878eaf
PMC6839750
31728290
10_1002_advs_201901579
ADVS1331
Genre article
Journal Article
GrantInformation_xml – fundername: Natick Soldier Systems Center
– fundername: National Research Foundation of Korea
  funderid: NRF‐2019R1F1A1046822
– fundername: ;
  grantid: NRF‐2019R1F1A1046822
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
ADMLS
AFPKN
CITATION
EJD
IAO
IGS
ITC
PHGZM
PHGZT
NPM
3V.
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c5291-404de42ee16b02d0cb584e7fcb0e28d4047fa157413cb07f7e2da286060240bd3
IEDL.DBID 24P
ISSN 2198-3844
IngestDate Wed Aug 27 01:26:28 EDT 2025
Thu Aug 21 18:13:11 EDT 2025
Sun Sep 28 11:25:51 EDT 2025
Fri Jul 25 07:27:51 EDT 2025
Thu Apr 03 06:59:01 EDT 2025
Tue Jul 01 03:59:20 EDT 2025
Thu Apr 24 23:06:29 EDT 2025
Wed Jan 22 16:39:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords elastic shape memory fibers
stretchable electronics
liquid metals
Language English
License Attribution
2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5291-404de42ee16b02d0cb584e7fcb0e28d4047fa157413cb07f7e2da286060240bd3
Notes Dedicated to the memory of Prof. Siegfried Bauer
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1251-1871
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.201901579
PMID 31728290
PQID 2312799877
PQPubID 4365299
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_19b860bf724d4d5bb18a68b411878eaf
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6839750
proquest_miscellaneous_2315082741
proquest_journals_2312799877
pubmed_primary_31728290
crossref_primary_10_1002_advs_201901579
crossref_citationtrail_10_1002_advs_201901579
wiley_primary_10_1002_advs_201901579_ADVS1331
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2019
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2007; 17
2015; 49–50
2011; 212
2011; 333
2013; 3
2017; 2
2013; 2
2019; 5
2013; 22
2010
2013; 23
2010; 464
2016; 529
2016; 54
2009
2011; 52
2014; 26
2014; 24
2017; 29
1969; 18
2007; 10
1974; 9
2016; 4
2015; 24
2010; 22
2014; 5
2014; 3
2013; 54
1936; 48
2013; 31
2007; 6
2017; 19
1969; 29
2016; 28
2012; 45
2016; 26
2009; 39
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 45
  year: 2012
  publication-title: J. Phys. D: Appl. Phys.
– start-page: 1
  year: 2009
  end-page: 40
– volume: 18
  start-page: 67
  year: 1969
  publication-title: J. Less‐Common‐Met.
– volume: 10
  start-page: 20
  year: 2007
  publication-title: Mater. Today
– volume: 5
  start-page: 3066
  year: 2014
  publication-title: Nat. Commun.
– volume: 3
  year: 2013
  publication-title: RSC Adv.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 39
  start-page: 445
  year: 2009
  publication-title: Annu. Rev. Mater. Res.
– volume: 5
  start-page: eaat4600
  year: 2019
  publication-title: Sci. Adv.
– volume: 29
  start-page: 470
  year: 1969
  publication-title: Phys. Lett. A
– volume: 6
  start-page: 93
  year: 2007
  publication-title: Nat. Mater.
– volume: 28
  start-page: 2801
  year: 2016
  publication-title: Adv. Mater.
– volume: 2
  start-page: 103
  year: 2013
  publication-title: Curr. Opin. Chem. Eng.
– volume: 26
  start-page: 5078
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 529
  start-page: 509
  year: 2016
  publication-title: Nature
– volume: 24
  year: 2015
  publication-title: Smart Mater. Struct.
– year: 2010
– volume: 26
  start-page: 5310
  year: 2014
  publication-title: Adv. Mater.
– volume: 3
  start-page: 374
  year: 2014
  publication-title: ACS Macro Lett.
– volume: 52
  start-page: 4985
  year: 2011
  publication-title: Polymer
– volume: 26
  start-page: 149
  year: 2014
  publication-title: Adv. Mater.
– volume: 464
  start-page: 267
  year: 2010
  publication-title: Nature
– volume: 28
  year: 2016
  publication-title: Adv. Mater.
– volume: 49–50
  start-page: 79
  year: 2015
  publication-title: Prog. Polym. Sci.
– volume: 23
  start-page: 2308
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 17
  start-page: 1543
  year: 2007
  publication-title: J. Mater. Chem.
– volume: 31
  start-page: 287
  year: 2013
  publication-title: Trends Biotechnol.
– volume: 9
  start-page: 400
  year: 1974
  publication-title: Phys. Rev. A
– volume: 22
  year: 2013
  publication-title: Smart Mater. Struct.
– volume: 48
  start-page: 299
  year: 1936
  publication-title: Proc. Phys. Soc.
– volume: 22
  start-page: 3388
  year: 2010
  publication-title: Adv. Mater.
– volume: 54
  start-page: 2199
  year: 2013
  publication-title: Polymer
– volume: 54
  start-page: 1397
  year: 2016
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
– volume: 333
  start-page: 838
  year: 2011
  publication-title: Science
– volume: 24
  start-page: 4860
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 212
  start-page: 592
  year: 2011
  publication-title: Macromol. Chem. Phys.
– volume: 2
  year: 2017
  publication-title: Adv. Mater. Technol.
– volume: 19
  year: 2017
  publication-title: Adv. Eng. Mater.
– volume: 4
  start-page: 13
  year: 2016
  publication-title: Adv. Opt. Mater.
– ident: e_1_2_7_30_1
  doi: 10.1002/adma.201606425
– ident: e_1_2_7_37_1
  doi: 10.1002/adfm.201304037
– ident: e_1_2_7_1_1
  doi: 10.1016/S1369-7021(07)70047-0
– ident: e_1_2_7_5_1
  doi: 10.1038/nmat1834
– ident: e_1_2_7_9_1
  doi: 10.1146/annurev-matsci-082908-145419
– ident: e_1_2_7_27_1
  doi: 10.1126/science.1206157
– ident: e_1_2_7_6_1
  doi: 10.1016/j.coche.2012.10.006
– ident: e_1_2_7_19_1
  doi: 10.1038/ncomms4066
– ident: e_1_2_7_20_1
  doi: 10.1002/polb.23990
– ident: e_1_2_7_2_1
  doi: 10.1007/978-3-642-12359-7
– ident: e_1_2_7_33_1
  doi: 10.1039/c3ra44412k
– ident: e_1_2_7_34_1
  doi: 10.1088/0964-1726/24/6/065001
– ident: e_1_2_7_14_1
  doi: 10.1002/adfm.201600580
– ident: e_1_2_7_10_1
  doi: 10.1016/j.polymer.2011.08.003
– ident: e_1_2_7_7_1
  doi: 10.1016/j.progpolymsci.2015.04.001
– ident: e_1_2_7_28_1
  doi: 10.1038/nature16521
– ident: e_1_2_7_29_1
  doi: 10.1002/adfm.201202405
– ident: e_1_2_7_39_1
  doi: 10.1007/12_2009_26
– ident: e_1_2_7_12_1
  doi: 10.1016/0022-5088(69)90121-0
– ident: e_1_2_7_36_1
  doi: 10.1016/j.polymer.2013.02.023
– ident: e_1_2_7_21_1
  doi: 10.1088/0959-5309/48/2/308
– ident: e_1_2_7_15_1
  doi: 10.1016/0375-9601(69)90528-3
– ident: e_1_2_7_32_1
  doi: 10.1002/adem.201700190
– ident: e_1_2_7_13_1
  doi: 10.1002/adma.201400633
– ident: e_1_2_7_24_1
  doi: 10.1088/0022-3727/45/10/103001
– ident: e_1_2_7_38_1
  doi: 10.1088/0964-1726/22/8/085005
– ident: e_1_2_7_4_1
  doi: 10.1039/b615954k
– ident: e_1_2_7_16_1
  doi: 10.1002/macp.201000540
– ident: e_1_2_7_25_1
  doi: 10.1002/adma.201303349
– ident: e_1_2_7_3_1
  doi: 10.1002/adma.200904447
– ident: e_1_2_7_18_1
  doi: 10.1126/sciadv.aat4600
– ident: e_1_2_7_23_1
  doi: 10.1002/adma.201602580
– ident: e_1_2_7_11_1
  doi: 10.1021/mz500131r
– ident: e_1_2_7_31_1
  doi: 10.1103/PhysRevA.9.400
– ident: e_1_2_7_26_1
  doi: 10.1016/j.tibtech.2013.03.002
– ident: e_1_2_7_35_1
  doi: 10.1002/admt.201700179
– ident: e_1_2_7_22_1
  doi: 10.1002/adma.201505991
– ident: e_1_2_7_17_1
  doi: 10.1002/adom.201500319
– ident: e_1_2_7_8_1
  doi: 10.1038/nature08863
SSID ssj0001537418
Score 2.4423094
Snippet Herein, elastomeric fibers that have shape memory properties due to the presence of a gallium core that can undergo phase transition from solid to liquid in...
Abstract Herein, elastomeric fibers that have shape memory properties due to the presence of a gallium core that can undergo phase transition from solid to...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1901579
SubjectTerms Body temperature
elastic shape memory fibers
Elastomers
Heat conductivity
liquid metals
Mechanical properties
Phase transitions
Polymers
Robotics
stretchable electronics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5CTr2EJG0S54UKhTQHE1nSSvYxCVm2he0lXcjNSJZEAsG75FHov8-M7DW7tCWXXq1ZW8zD88k78w3AF9PExtoGT6paxlypqHNMI1Ueq-g8Juwyeup3nv7Qk5n6fje6Wxn1RTVhHT1wp7iLonKl5i4aobzyI-eK0urSKRqTXQYb6e3LK75ymOr6gyXRsixZGrm4sP4XsXOn_Ed1WytZKJH1_w1h_lkouQpgUwYab8NWDx3ZZbflHdgI7S7s9MH5zL72DNLnH-Hb7BFvRG0gaBPqjWI3CJLxZ-z23i4Cm1J57W82pmqRZ0afYlGAxuGQxdj1vCUS2DRV4hPMxjc_ryd5PzMhb0aiouOg8kGJEArtuPC8cYgwgomN40GUHpdNtKgBzF14yUQThLcCNayJ7Mx5uQeb7bwNB8B44ZwypbXBOMWlcF5IiYALI7rUlWwyyJc6rJueUJzmWjzWHRWyqEnn9aDzDM4G-UVHpfFPySsyySBFFNjpAjpG3TtG_Z5jZHC8NGjdxyU-QhbC4AnTmAw-D8sYUfQ3iW3D_DXJIGolWp8M9jv7DzuRNM5LVDwDs-YZa1tdX2kf7hNrt0YoivAMtZZ86B0V1IhKbgspi8P_oYsj-EB37nooj2Hz5ek1nCCYenGnKW7eAALkGx0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6V7YULojwDBRkJCThETWwnTg4I0WpXBakrRFmpt8iO7RapSpY-kPj3zDhO6IrXNXYSZ8bj-ezMfAPwUrW-1brFnWopfCqlL1N0I3Xqa28sOuzKW8p3PlqWhyv58aQ42YLlmAtDYZXjmhgWatu3dEa-hziEK9wbKPVu_S2lqlH0d3UsoaFjaQX7NlCM3YJtXJKLbAbb-_Plp8-_Tl0KQXQtI3tjxve0_U6s3cEvUjzXDe8USPz_hDx_D6C8CWyDZ1rchTsRUrL3wxzYgS3X3YOdaLSX7HVkln5zHz6szvFBlB6CuqKcKTZH8Iy3seMzvXbsiMJuf7AFRZFcMjqixQ5UJoc0yQ76jshhQ7WJB7BazL8cHKaxlkLaFrymbaK0TnLn8tJk3GatQeThlG9N5nhlsVl5jRJAn4aXlFeOW80r3N4QCZqx4iHMur5zj4FluTFSVVo7ZWQmuLFcCARiaOlVWYs2gXSUYdNGonGqd3HeDBTJvCGZN5PME3g19V8PFBt_7blPKpl6ETV2uNBfnDbR0pq8Njhs4xWXVtrCmLzSZWUk1VWvnPYJ7I4KbaK94ium2ZXAi6kZLY1-n-jO9dehD6JZovtJ4NGg_2kkgsp88TpLQG3MjI2hbrZ0X88Cm3eJEBVhG0otzKH_iKBBtHKcC5E_-fdnPIXbdM-QNbkLs6uLa_cM4dOVeR5t4idwpBki
  priority: 102
  providerName: ProQuest
Title Ultrastretchable Elastic Shape Memory Fibers with Electrical Conductivity
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.201901579
https://www.ncbi.nlm.nih.gov/pubmed/31728290
https://www.proquest.com/docview/2312799877
https://www.proquest.com/docview/2315082741
https://pubmed.ncbi.nlm.nih.gov/PMC6839750
https://doaj.org/article/19b860bf724d4d5bb18a68b411878eaf
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED629mUvY91Pb13QYLDtwdSWFEt-bLuEbiylLAv0zUiW1A6KU5p2sP9-d7Lj1rRl9CkgXRxxp8t9J-u-A_io6lAbU2OmWoiQShmKFMNImYYyWIcBWwdH9c6zw-JgIb8fj49vVPG3_BD9gRt5Rvy_Jgc3drVzTRpq3B-i244BTZWPYRORvaA9zuXR9SnLWBA9C3WYw-w6FVrKNXNjxneGjxhEpkjgfxfqvH158iaojVFp-gyednCS7bb234JHvnkOW53DrtjnjlX6ywv4tjjDB1FpCNqJ6qXYBIEzfo3NT825ZzO6cvuXTekGyYrR8SwKUIscsiLbXzZEDBs7TbyExXTya_8g7foopPWYl5QiSucl9z4vbMZdVltEHV6F2maea4fTKhjUAMYzHFJBee4M15jaEAGadeIVbDTLxr8BluXWSqWN8crKTHDruBAIwtDLdVGKOoF0rcOq7kjGqdfFWdXSI_OKdF71Ok_gUy9_3tJr3Cu5RybppYgWOw4sL06qzsuqvLS4bBsUl066sbW5NoW2knqqa29CAttrg1adr-JPiJwrzDqVSuBDP41eRq9OTOOXV1EGkSxR_STwurV_vxJBLb54mSWgBjtjsNThTPP7NDJ5FwhPEbKh1uIe-o8KKkQq81yI_O0D5d_BExpsSyi3YePy4sq_Ryx1aUfRXUawuft19mOOn3uTw6Ofo3gy8Q9sTBso
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuiPIMFAgSCDhETWwnTg4VomVXu7S7QrQr9Rbs2KZIVbJ0W1D_HL-Nmbzoitep13iSOOOx57Mz8w3Ac1m4QqkCd6oJd4EQLgnQjWSBy5w26LBTZyjfeTpLxnPx_ig-WoMfXS4MhVV2a2K9UJuqoDPyLcQhTOLeQMo3i68BVY2iv6tdCQ3VllYw2zXFWJvYsWcvvuMWbrk9eYfj_YKx0fBwdxy0VQaCImYZbaCEsYJZGyU6ZCYsNPpkK12hQ8tSg83SqShGz8vxknTSMqNYisCf6MG04fjca7Au6ABlAOs7w9mHj79OeWJO9DAdW2TItpT5RizhtR-m-LFL3rAuGvAnpPt7wOZlIF17wtEtuNlCWP9tY3MbsGbL27DRLhJL_1XLZP36DkzmJ_ggSkdB26AcLX-IYB1v8w-O1cL6UwrzvfBHFLWy9OlIGAWoLA9Zjr9blURGW1e3uAvzK9HqPRiUVWkfgB9GWguZKmWlFiFn2jCOykbt8TTJeOFB0OkwL1pic6qvcZI3lMwsJ53nvc49eNnLLxpKj79K7tCQ9FJExV1fqE4_5-3MzqNMY7e1k0wYYWKto1QlqRZUxz21ynmw2Q1o3q4P-Iremj141jfjzKbfNaq01Xktg-iZ6IU8uN-Mf98TTmXFWBZ6IFcsY6Wrqy3ll-OaPTxBSIwwEbVW29B_VJAjOjqIOI8e_vsznsL18eF0P9-fzPYewQ26v8nY3ITB2em5fYzQ7Uw_aeeHD5-uekr-BM2DVQ0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVkJcEOUZKBAkEHCINrGTODlUiLa76lK6qigr9Rbs2KZIVbJ0W1D_Ir-KGa8TuuJ16jV2Emc89nzjzHwD8FzUtpayRk815zZKU5tHaEbKyJZWaTTYhdWU77w_yXen6buj7GgFfnS5MBRW2e2JbqPWbU1n5APEIUygbyDEwPqwiIOd0ZvZ14gqSNGf1q6chvRlFvSmoxvzSR575uI7unPzzfEOzv0LxkbDj9u7ka84ENUZK8mZSrVJmTFJrmKm41qhfTbC1io2rNDYLKxMMrTCHC8JKwzTkhXoBBBVmNIcn3sN1gRafXQE17aGk4MPv058Mk5UMR1zZMwGUn8jxnBnkymW7JJldAUE_oR6fw_evAyqnVUc3YKbHs6Gbxf6tw4rprkN637DmIevPKv16zswnp7ggyg1BfWE8rXCIQJ3vC08PJYzE-5TyO9FOKIIlnlIx8PYgUr0kBaF221DxLSu0sVdmF6JVO_BatM25gGEcaJUKgopjVBpzJnSjHMEgbjLFHnJ6wCiToZV7UnOqdbGSbWgZ2YVybzqZR7Ay77_bEHv8deeWzQlfS-i5XYX2tPPlV_lVVIqHLaygqU61ZlSSSHzQqVU070w0gaw0U1o5fcKfEWv2QE865txldOvG9mY9tz1QSRNVEMB3F_Mfz8STiXGWBkHIJY0Y2moyy3Nl2PHJJ4jPEbIiFJzOvQfEVSIlA4TzpOH__6Mp3Adl2b1fjzZewQ36PZF8uYGrJ6dnpvHiOLO1BO_PEL4dNUr8icAyllR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrastretchable+Elastic+Shape+Memory+Fibers+with+Electrical+Conductivity&rft.jtitle=Advanced+science&rft.au=Park%2C+Sungjune&rft.au=Baugh%2C+Neil&rft.au=Shah%2C+Hardil+K&rft.au=Parekh%2C+Dishit+P&rft.date=2019-11-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=6&rft.issue=21&rft.spage=1901579&rft_id=info:doi/10.1002%2Fadvs.201901579&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon