Hybrid analysis for indicating patients with breast cancer using temperature time series

•We have proposed a hybrid automatic method for identifying patients with breast cancer, supporting human experts.•We have applied learning techniques supervised and unsupervised learning techniques.•We have applied various validity indexes of clusters.•In the evaluation of the proposed method, a da...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 130; pp. 142 - 153
Main Authors Silva, Lincoln F., Santos, Alair Augusto S.M.D., Bravo, Renato S., Silva, Aristófanes C., Muchaluat-Saade, Débora C., Conci, Aura
Format Journal Article
LanguageEnglish
Published Ireland Elsevier Ireland Ltd 01.07.2016
Subjects
Online AccessGet full text
ISSN0169-2607
1872-7565
1872-7565
DOI10.1016/j.cmpb.2016.03.002

Cover

Abstract •We have proposed a hybrid automatic method for identifying patients with breast cancer, supporting human experts.•We have applied learning techniques supervised and unsupervised learning techniques.•We have applied various validity indexes of clusters.•In the evaluation of the proposed method, a data mining tool was used to solve the combined algorithm selection and hyperparameter optimization (CASH) problem.•Among the classification algorithms which have been applied, K-Star and Bayes Net has shown the best result, 100% accuracy. Breast cancer is the most common cancer among women worldwide. Diagnosis and treatment in early stages increase cure chances. The temperature of cancerous tissue is generally higher than that of healthy surrounding tissues, making thermography an option to be considered in screening strategies of this cancer type. This paper proposes a hybrid methodology for analyzing dynamic infrared thermography in order to indicate patients with risk of breast cancer, using unsupervised and supervised machine learning techniques, which characterizes the methodology as hybrid. The dynamic infrared thermography monitors or quantitatively measures temperature changes on the examined surface, after a thermal stress. In the dynamic infrared thermography execution, a sequence of breast thermograms is generated. In the proposed methodology, this sequence is processed and analyzed by several techniques. First, the region of the breasts is segmented and the thermograms of the sequence are registered. Then, temperature time series are built and the k-means algorithm is applied on these series using various values of k. Clustering formed by k-means algorithm, for each k value, is evaluated using clustering validation indices, generating values treated as features in the classification model construction step. A data mining tool was used to solve the combined algorithm selection and hyperparameter optimization (CASH) problem in classification tasks. Besides the classification algorithm recommended by the data mining tool, classifiers based on Bayesian networks, neural networks, decision rules and decision tree were executed on the data set used for evaluation. Test results support that the proposed analysis methodology is able to indicate patients with breast cancer. Among 39 tested classification algorithms, K-Star and Bayes Net presented 100% classification accuracy. Furthermore, among the Bayes Net, multi-layer perceptron, decision table and random forest classification algorithms, an average accuracy of 95.38% was obtained.
AbstractList •We have proposed a hybrid automatic method for identifying patients with breast cancer, supporting human experts.•We have applied learning techniques supervised and unsupervised learning techniques.•We have applied various validity indexes of clusters.•In the evaluation of the proposed method, a data mining tool was used to solve the combined algorithm selection and hyperparameter optimization (CASH) problem.•Among the classification algorithms which have been applied, K-Star and Bayes Net has shown the best result, 100% accuracy. Breast cancer is the most common cancer among women worldwide. Diagnosis and treatment in early stages increase cure chances. The temperature of cancerous tissue is generally higher than that of healthy surrounding tissues, making thermography an option to be considered in screening strategies of this cancer type. This paper proposes a hybrid methodology for analyzing dynamic infrared thermography in order to indicate patients with risk of breast cancer, using unsupervised and supervised machine learning techniques, which characterizes the methodology as hybrid. The dynamic infrared thermography monitors or quantitatively measures temperature changes on the examined surface, after a thermal stress. In the dynamic infrared thermography execution, a sequence of breast thermograms is generated. In the proposed methodology, this sequence is processed and analyzed by several techniques. First, the region of the breasts is segmented and the thermograms of the sequence are registered. Then, temperature time series are built and the k-means algorithm is applied on these series using various values of k. Clustering formed by k-means algorithm, for each k value, is evaluated using clustering validation indices, generating values treated as features in the classification model construction step. A data mining tool was used to solve the combined algorithm selection and hyperparameter optimization (CASH) problem in classification tasks. Besides the classification algorithm recommended by the data mining tool, classifiers based on Bayesian networks, neural networks, decision rules and decision tree were executed on the data set used for evaluation. Test results support that the proposed analysis methodology is able to indicate patients with breast cancer. Among 39 tested classification algorithms, K-Star and Bayes Net presented 100% classification accuracy. Furthermore, among the Bayes Net, multi-layer perceptron, decision table and random forest classification algorithms, an average accuracy of 95.38% was obtained.
Breast cancer is the most common cancer among women worldwide. Diagnosis and treatment in early stages increase cure chances. The temperature of cancerous tissue is generally higher than that of healthy surrounding tissues, making thermography an option to be considered in screening strategies of this cancer type. This paper proposes a hybrid methodology for analyzing dynamic infrared thermography in order to indicate patients with risk of breast cancer, using unsupervised and supervised machine learning techniques, which characterizes the methodology as hybrid. The dynamic infrared thermography monitors or quantitatively measures temperature changes on the examined surface, after a thermal stress. In the dynamic infrared thermography execution, a sequence of breast thermograms is generated. In the proposed methodology, this sequence is processed and analyzed by several techniques. First, the region of the breasts is segmented and the thermograms of the sequence are registered. Then, temperature time series are built and the k-means algorithm is applied on these series using various values of k. Clustering formed by k-means algorithm, for each k value, is evaluated using clustering validation indices, generating values treated as features in the classification model construction step. A data mining tool was used to solve the combined algorithm selection and hyperparameter optimization (CASH) problem in classification tasks. Besides the classification algorithm recommended by the data mining tool, classifiers based on Bayesian networks, neural networks, decision rules and decision tree were executed on the data set used for evaluation. Test results support that the proposed analysis methodology is able to indicate patients with breast cancer. Among 39 tested classification algorithms, K-Star and Bayes Net presented 100% classification accuracy. Furthermore, among the Bayes Net, multi-layer perceptron, decision table and random forest classification algorithms, an average accuracy of 95.38% was obtained.
Breast cancer is the most common cancer among women worldwide. Diagnosis and treatment in early stages increase cure chances. The temperature of cancerous tissue is generally higher than that of healthy surrounding tissues, making thermography an option to be considered in screening strategies of this cancer type. This paper proposes a hybrid methodology for analyzing dynamic infrared thermography in order to indicate patients with risk of breast cancer, using unsupervised and supervised machine learning techniques, which characterizes the methodology as hybrid. The dynamic infrared thermography monitors or quantitatively measures temperature changes on the examined surface, after a thermal stress. In the dynamic infrared thermography execution, a sequence of breast thermograms is generated. In the proposed methodology, this sequence is processed and analyzed by several techniques. First, the region of the breasts is segmented and the thermograms of the sequence are registered. Then, temperature time series are built and the k-means algorithm is applied on these series using various values of k. Clustering formed by k-means algorithm, for each k value, is evaluated using clustering validation indices, generating values treated as features in the classification model construction step. A data mining tool was used to solve the combined algorithm selection and hyperparameter optimization (CASH) problem in classification tasks. Besides the classification algorithm recommended by the data mining tool, classifiers based on Bayesian networks, neural networks, decision rules and decision tree were executed on the data set used for evaluation. Test results support that the proposed analysis methodology is able to indicate patients with breast cancer. Among 39 tested classification algorithms, K-Star and Bayes Net presented 100% classification accuracy. Furthermore, among the Bayes Net, multi-layer perceptron, decision table and random forest classification algorithms, an average accuracy of 95.38% was obtained.Breast cancer is the most common cancer among women worldwide. Diagnosis and treatment in early stages increase cure chances. The temperature of cancerous tissue is generally higher than that of healthy surrounding tissues, making thermography an option to be considered in screening strategies of this cancer type. This paper proposes a hybrid methodology for analyzing dynamic infrared thermography in order to indicate patients with risk of breast cancer, using unsupervised and supervised machine learning techniques, which characterizes the methodology as hybrid. The dynamic infrared thermography monitors or quantitatively measures temperature changes on the examined surface, after a thermal stress. In the dynamic infrared thermography execution, a sequence of breast thermograms is generated. In the proposed methodology, this sequence is processed and analyzed by several techniques. First, the region of the breasts is segmented and the thermograms of the sequence are registered. Then, temperature time series are built and the k-means algorithm is applied on these series using various values of k. Clustering formed by k-means algorithm, for each k value, is evaluated using clustering validation indices, generating values treated as features in the classification model construction step. A data mining tool was used to solve the combined algorithm selection and hyperparameter optimization (CASH) problem in classification tasks. Besides the classification algorithm recommended by the data mining tool, classifiers based on Bayesian networks, neural networks, decision rules and decision tree were executed on the data set used for evaluation. Test results support that the proposed analysis methodology is able to indicate patients with breast cancer. Among 39 tested classification algorithms, K-Star and Bayes Net presented 100% classification accuracy. Furthermore, among the Bayes Net, multi-layer perceptron, decision table and random forest classification algorithms, an average accuracy of 95.38% was obtained.
Highlights • We have proposed a hybrid automatic method for identifying patients with breast cancer, supporting human experts. • We have applied learning techniques supervised and unsupervised learning techniques. • We have applied various validity indexes of clusters. • In the evaluation of the proposed method, a data mining tool was used to solve the combined algorithm selection and hyperparameter optimization (CASH) problem. • Among the classification algorithms which have been applied, K-Star and Bayes Net has shown the best result, 100% accuracy.
Author Silva, Lincoln F.
Santos, Alair Augusto S.M.D.
Bravo, Renato S.
Silva, Aristófanes C.
Conci, Aura
Muchaluat-Saade, Débora C.
Author_xml – sequence: 1
  givenname: Lincoln F.
  surname: Silva
  fullname: Silva, Lincoln F.
  email: lsilva@ic.uff.br
  organization: Institute of Computing, Fluminense Federal University, Niterói, RJ, Brazil
– sequence: 2
  givenname: Alair Augusto S.M.D.
  surname: Santos
  fullname: Santos, Alair Augusto S.M.D.
  organization: Department of Radiology, Fluminense Federal University, Niterói, RJ, Brazil
– sequence: 3
  givenname: Renato S.
  surname: Bravo
  fullname: Bravo, Renato S.
  organization: Department of Mastology, Fluminense Federal University, Niterói, RJ, Brazil
– sequence: 4
  givenname: Aristófanes C.
  surname: Silva
  fullname: Silva, Aristófanes C.
  organization: Department of Electrical Engineering, Federal University of the Maranhão, São Luís, MA, Brazil
– sequence: 5
  givenname: Débora C.
  surname: Muchaluat-Saade
  fullname: Muchaluat-Saade, Débora C.
  organization: Institute of Computing, Fluminense Federal University, Niterói, RJ, Brazil
– sequence: 6
  givenname: Aura
  surname: Conci
  fullname: Conci, Aura
  organization: Institute of Computing, Fluminense Federal University, Niterói, RJ, Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27208529$$D View this record in MEDLINE/PubMed
BookMark eNqNUsGK1TAUDTLivBn9AReSpZvWm7RpUhFhGNQRBlyo4C6k6a3m2aY1SZX396a8mc2AM25yAznnXHLOOSMnfvZIyHMGJQPWvNqXdlq6kud7CVUJwB-RHVOSF1I04oTs8kNb8AbkKTmLcQ8ZIUTzhJxyyUEJ3u7It6tDF1xPjTfjIbpIhzlQ53tnTXL-O13yQJ8i_ePSD9oFNDFRa7zFQNe4IRJOCwaT1oA0uQlpxOAwPiWPBzNGfHYzz8nX9---XF4V158-fLy8uC6s4CoVA_SWiQrF0CJTCuyQTyMk9GCgHwxrZKuqoeuZqM1Qc1NjJ4ywyK3iUrTVOXl51F3C_GvFmPTkosVxNB7nNWqmuKhbyRv5H1BQTV0DiIehsoWGibbeVF_cQNduwl4vwU0mHPStxxmgjgAb5hgDDtq6lG2dfQrGjZqB3uLUe73Fqbc4NVQ6h5Wp_A71Vv1e0psjCbPtvx0GHW3O0GLvAtqk-9ndT397h25H53Mfxp94wLif15C7ki3QkWvQn7eSbR3LKWZ6vf339b8FHtr-FxgS4OI
CitedBy_id crossref_primary_10_3390_app11020842
crossref_primary_10_1016_j_ijheatmasstransfer_2018_11_089
crossref_primary_10_1055_s_0044_1779743
crossref_primary_10_1080_21681163_2020_1824685
crossref_primary_10_1016_j_mehy_2019_109542
crossref_primary_10_1007_s11042_023_17566_1
crossref_primary_10_3390_s20143866
crossref_primary_10_3233_XST_18374
crossref_primary_10_1016_j_patcog_2016_12_027
crossref_primary_10_1109_TIM_2019_2956362
crossref_primary_10_1016_j_artmed_2020_101879
crossref_primary_10_1080_21681163_2022_2118174
crossref_primary_10_1016_j_patcog_2021_107989
crossref_primary_10_1007_s11042_020_09600_3
crossref_primary_10_1016_j_compbiomed_2021_104553
crossref_primary_10_1016_j_jtherbio_2023_103561
crossref_primary_10_1109_ACCESS_2020_3038817
crossref_primary_10_3390_app14041603
crossref_primary_10_1016_j_patcog_2018_06_010
crossref_primary_10_1177_14604582231153779
crossref_primary_10_1007_s10044_021_01041_4
crossref_primary_10_1007_s10462_022_10359_2
crossref_primary_10_1007_s12652_024_04883_y
crossref_primary_10_3390_cancers14143442
crossref_primary_10_1016_j_jtbi_2017_05_031
crossref_primary_10_1088_2057_1976_acd6fe
crossref_primary_10_32604_cmes_2022_016065
crossref_primary_10_1016_j_tsep_2021_101142
crossref_primary_10_1007_s42600_021_00158_z
crossref_primary_10_1145_3423923
crossref_primary_10_1016_j_asoc_2022_108870
crossref_primary_10_1186_s12859_020_3355_7
crossref_primary_10_1080_03091902_2019_1664672
crossref_primary_10_1109_ACCESS_2024_3522251
Cites_doi 10.2214/ajr.180.1.1800263
10.1504/IJICA.2012.050054
10.1007/BF01908064
10.1016/0378-4371(94)00163-N
10.1016/S0165-1684(02)00475-9
10.1016/j.sigpro.2012.06.002
10.1016/j.ijthermalsci.2013.03.001
10.1145/601858.601862
10.1007/s10916-010-9611-z
10.1109/51.844379
10.1007/3-540-59286-5_57
10.1016/j.amjsurg.2008.06.015
10.1016/j.cmpb.2010.04.014
10.1016/j.sigpro.2012.08.012
10.1109/TPAMI.1979.4766909
10.1080/03610926.2011.560741
10.1145/1656274.1656278
10.1023/A:1010933404324
10.3389/fphys.2014.00176
10.1186/gb-2002-3-7-research0036
10.1109/51.956823
10.1016/0377-0427(87)90125-7
10.1109/TMI.2010.2053043
10.1088/0031-9155/49/14/005
10.1109/51.844381
10.1142/S0219519413300019
10.1055/s-0038-1634059
10.1209/0295-5075/104/68001
10.1586/edm.13.15
10.1016/j.ejso.2010.04.003
10.1166/jmihi.2014.1226
10.1007/s10916-008-9174-4
10.2307/2531893
ContentType Journal Article
Copyright 2016 Elsevier Ireland Ltd
Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Ireland Ltd
– notice: Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
7SC
JQ2
L7M
L~C
L~D
DOI 10.1016/j.cmpb.2016.03.002
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Engineering Research Database
Computer and Information Systems Abstracts
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
EndPage 153
ExternalDocumentID 27208529
10_1016_j_cmpb_2016_03_002
S0169260715300249
1_s2_0_S0169260715300249
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
~HD
AFCTW
AGCQF
AGRNS
RIG
AACTN
AAIAV
ABLVK
ABTAH
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
7SC
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c528t-f0dc153e5f9e1880cf188a570d0a0dfa167983fbd154af42a4eb5a5ce2c827593
IEDL.DBID .~1
ISSN 0169-2607
1872-7565
IngestDate Sun Sep 28 09:26:03 EDT 2025
Tue Oct 07 09:26:47 EDT 2025
Sun Sep 28 01:31:59 EDT 2025
Wed Feb 19 02:09:11 EST 2025
Thu Apr 24 23:01:46 EDT 2025
Wed Oct 01 03:21:05 EDT 2025
Fri Feb 23 02:26:00 EST 2024
Fri May 16 01:02:24 EDT 2025
Tue Oct 14 19:32:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Breast cancer
Dynamic infrared thermography
Machine learning
Classification
Temperature time series
Dynamic Infrared Thermography
Language English
License Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c528t-f0dc153e5f9e1880cf188a570d0a0dfa167983fbd154af42a4eb5a5ce2c827593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27208529
PQID 1790615947
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_1825497267
proquest_miscellaneous_1808644005
proquest_miscellaneous_1790615947
pubmed_primary_27208529
crossref_citationtrail_10_1016_j_cmpb_2016_03_002
crossref_primary_10_1016_j_cmpb_2016_03_002
elsevier_sciencedirect_doi_10_1016_j_cmpb_2016_03_002
elsevier_clinicalkeyesjournals_1_s2_0_S0169260715300249
elsevier_clinicalkey_doi_10_1016_j_cmpb_2016_03_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-07-01
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2016
Publisher Elsevier Ireland Ltd
Publisher_xml – name: Elsevier Ireland Ltd
References Silva, Saade, Sequeiros, Silva, Paiva, Bravo, Conci (bib0035) 2014; 4
Davies, Bouldin (bib0050) 1979; PAMI-1
Wishart, Campisid, Boswella, Chapmana, Shackletona, Iddlesa, Halletta, Britton (bib0120) 2010; 36
Halkidi, Batistakis, Vazirgiannis (bib0210) 2002; 31
Han, Kamber (bib0235) 2006
Ohashi, Uchida (bib0080) 1997
Hajnal, Hawkes, Hill (bib0145) 2001
Hartigan (bib0180) 1985; 2
Acharya, Ng, Tan, Sree (bib0070) 2012; 36
Krzanowski, Lai (bib0175) 1988; 44
Parisky, Sardi, Hamm, Hughes, Esserman, Rust, Callahan (bib0100) 2003; 180
Tan, Ng, Acharya U, Keith, Holmes (bib0075) 2009; 33
Arora, Martins, Ruggerio, Tousimis, Swistel, Osborne, Simmons (bib0115) 2008; 196
Chen, Jaradat, Banerjee, Tanaka, Ko, Zhang (bib0185) 2002; 12
MacQueen (bib0040) 1967
Anbar, Milescu, Naumov, Brown, Button, Carty, AlDulaimi (bib0095) 2001; 20
Gerasimova, Audit, Roux, Khalil, Gileva, Argoul, Naimark, Arneodo (bib0135) 2014; 5
Kozak (bib0165) 2012; 41
Bezerra, Oliveira, Rolim, Conci, Santos, Lyra, Lima (bib0005) 2013; 93
Thornton, Hutter, Hoos, Leyton-Brown (bib0060) 2013
Jing, Ng, Zeng (bib0200) 2010; 4
EtehadTavakol, Chandran, Ng, Kafieh (bib0065) 2013; 69
Breiman (bib0240) 2001; 45
Ohashi, Uchida (bib0085) 2000; 19
Hall (bib0225) 1999
Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (bib0220) 2009; 11
Caliński, Harabasz (bib0055) 1974; 3
Arneodo, Bacry, Muzy (bib0130) 1995; 213
Flir (bib0215) 2013
Borchartt, Conci, Lima, Resmini, Sanchez (bib0020) 2013; 93
Herman (bib0030) 2013; 8
Borchartt, Resmini, Motta, Clua, Conci, Viana, Santos, Lima, Sanchez (bib0010) 2012; 4
Lewis, Ackerman, Sa (bib0160) 2012
Sharan, Maron-Katz, Shamir (bib0190) 2003; 19
Etehadtavakol, NG (bib0015) 2013; 13
Lee, Yang (bib0230) 2010; 100
Mattes, Haynor, Vesselle, Lewellyn, Eubank (bib0150) 2001
Amalu (bib0025) 2004; 1
Kaczmarek, Nowakowski (bib0105) 2004; 8
Rousseeuw (bib0045) 1987; 20
Dudoit, Fridlyand (bib0170) 2002; 3
Kohavi (bib0245) 1995; 912
Anbar, Brown, Milescu, Babalola, Gentner (bib0090) 2000; 19
Myronenko, Song (bib0140) 2010; 29
Gerasimova, Audit, Roux, Khalil, Argoul, Naimark1, Arneodo (bib0125) 2013; 104
Bolshakova, Azuaje (bib0195) 2006; 45
Button, Li, Fisher, Rosenblatt, Dulaimy, Li, O’Hea, Salvitti, Geronimo, Geronimo, Jambawalikar, Carvelli1, Weiss (bib0110) 2004; 49
Bolshakova, Azuaje (bib0155) 2003; 83
Witten, Eibe, Hall (bib0250) 2011
Gan, Ma, Wu (bib0205) 2007
Borchartt (10.1016/j.cmpb.2016.03.002_bib0020) 2013; 93
Halkidi (10.1016/j.cmpb.2016.03.002_bib0210) 2002; 31
Bezerra (10.1016/j.cmpb.2016.03.002_bib0005) 2013; 93
Lee (10.1016/j.cmpb.2016.03.002_bib0230) 2010; 100
Mattes (10.1016/j.cmpb.2016.03.002_bib0150) 2001
Sharan (10.1016/j.cmpb.2016.03.002_bib0190) 2003; 19
Chen (10.1016/j.cmpb.2016.03.002_bib0185) 2002; 12
Anbar (10.1016/j.cmpb.2016.03.002_bib0090) 2000; 19
Gan (10.1016/j.cmpb.2016.03.002_bib0205) 2007
Wishart (10.1016/j.cmpb.2016.03.002_bib0120) 2010; 36
Ohashi (10.1016/j.cmpb.2016.03.002_bib0080) 1997
Tan (10.1016/j.cmpb.2016.03.002_bib0075) 2009; 33
EtehadTavakol (10.1016/j.cmpb.2016.03.002_bib0065) 2013; 69
Borchartt (10.1016/j.cmpb.2016.03.002_bib0010) 2012; 4
Etehadtavakol (10.1016/j.cmpb.2016.03.002_bib0015) 2013; 13
Breiman (10.1016/j.cmpb.2016.03.002_bib0240) 2001; 45
Acharya (10.1016/j.cmpb.2016.03.002_bib0070) 2012; 36
Hall (10.1016/j.cmpb.2016.03.002_bib0225) 1999
Button (10.1016/j.cmpb.2016.03.002_bib0110) 2004; 49
Myronenko (10.1016/j.cmpb.2016.03.002_bib0140) 2010; 29
Thornton (10.1016/j.cmpb.2016.03.002_bib0060) 2013
Kohavi (10.1016/j.cmpb.2016.03.002_bib0245) 1995; 912
Krzanowski (10.1016/j.cmpb.2016.03.002_bib0175) 1988; 44
Anbar (10.1016/j.cmpb.2016.03.002_bib0095) 2001; 20
Ohashi (10.1016/j.cmpb.2016.03.002_bib0085) 2000; 19
Gerasimova (10.1016/j.cmpb.2016.03.002_bib0135) 2014; 5
Rousseeuw (10.1016/j.cmpb.2016.03.002_bib0045) 1987; 20
Herman (10.1016/j.cmpb.2016.03.002_bib0030) 2013; 8
Lewis (10.1016/j.cmpb.2016.03.002_bib0160) 2012
Gerasimova (10.1016/j.cmpb.2016.03.002_bib0125) 2013; 104
Hartigan (10.1016/j.cmpb.2016.03.002_bib0180) 1985; 2
Caliński (10.1016/j.cmpb.2016.03.002_bib0055) 1974; 3
Bolshakova (10.1016/j.cmpb.2016.03.002_bib0155) 2003; 83
MacQueen (10.1016/j.cmpb.2016.03.002_bib0040) 1967
Dudoit (10.1016/j.cmpb.2016.03.002_bib0170) 2002; 3
Davies (10.1016/j.cmpb.2016.03.002_bib0050) 1979; PAMI-1
Amalu (10.1016/j.cmpb.2016.03.002_bib0025) 2004; 1
Kaczmarek (10.1016/j.cmpb.2016.03.002_bib0105) 2004; 8
Arora (10.1016/j.cmpb.2016.03.002_bib0115) 2008; 196
Han (10.1016/j.cmpb.2016.03.002_bib0235) 2006
Hajnal (10.1016/j.cmpb.2016.03.002_bib0145) 2001
Hall (10.1016/j.cmpb.2016.03.002_bib0220) 2009; 11
Kozak (10.1016/j.cmpb.2016.03.002_bib0165) 2012; 41
Bolshakova (10.1016/j.cmpb.2016.03.002_bib0195) 2006; 45
Flir (10.1016/j.cmpb.2016.03.002_bib0215) 2013
Parisky (10.1016/j.cmpb.2016.03.002_bib0100) 2003; 180
Arneodo (10.1016/j.cmpb.2016.03.002_bib0130) 1995; 213
Witten (10.1016/j.cmpb.2016.03.002_bib0250) 2011
Silva (10.1016/j.cmpb.2016.03.002_bib0035) 2014; 4
Jing (10.1016/j.cmpb.2016.03.002_bib0200) 2010; 4
References_xml – volume: 36
  start-page: 1503
  year: 2012
  end-page: 1510
  ident: bib0070
  article-title: Thermography based breast cancer detection using texture features and support vector machine
  publication-title: J. Med. Syst.
– start-page: 281
  year: 1967
  end-page: 297
  ident: bib0040
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics
– volume: 93
  start-page: 2785
  year: 2013
  end-page: 2803
  ident: bib0020
  article-title: Breast thermography from an image processing viewpoint: a survey
  publication-title: Signal Process.
– start-page: 847
  year: 2013
  end-page: 855
  ident: bib0060
  article-title: Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms
  publication-title: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 49
  start-page: 3105
  year: 2004
  end-page: 3116
  ident: bib0110
  article-title: Dynamic infrared imaging for the detection of malignancy
  publication-title: Phys. Med. Biol.
– volume: 100
  start-page: 269
  year: 2010
  end-page: 282
  ident: bib0230
  article-title: Entropy-based feature extraction and decision tree induction for breast cancer diagnosis with standardized thermograph images
  publication-title: Comput. Methods Progr. Biomed.
– volume: 3
  start-page: 1
  year: 1974
  end-page: 27
  ident: bib0055
  article-title: A dendrite method for cluster analysis
  publication-title: Commun. Stat.
– volume: 19
  start-page: 1787
  year: 2003
  end-page: 1799
  ident: bib0190
  article-title: Click and expander: a system for clustering and visualizing gene expression data
  publication-title: J. Classif.
– volume: 19
  start-page: 42
  year: 2000
  end-page: 51
  ident: bib0085
  article-title: Applying dynamic thermography in the diagnosis of breast cancer
  publication-title: IEEE Eng. Med. Biol. Mag.
– year: 2012
  ident: bib0160
  article-title: Human cluster evaluation and formal quality measures: a comparative study
  publication-title: Proc. 34th Conf. of the Cognitive Science Society CogSci
– volume: 4
  start-page: 92
  year: 2014
  end-page: 100
  ident: bib0035
  article-title: A new database for breast research with infrared image
  publication-title: J. Med. Imaging Health Inform.
– year: 2001
  ident: bib0145
  article-title: Medical Image Registration
– volume: 8
  start-page: 177
  year: 2013
  end-page: 184
  ident: bib0030
  article-title: The role of dynamic infrared imaging in melanoma diagnosis
  publication-title: Expert Rev. Dermatol.
– volume: 44
  start-page: 23
  year: 1988
  end-page: 34
  ident: bib0175
  article-title: A criterion for determining the number of groups in a data set using sum-of-squares clustering
  publication-title: Biometrics
– volume: 69
  start-page: 21
  year: 2013
  end-page: 36
  ident: bib0065
  article-title: Breast cancer detection from thermal images using bispectral invariant features
  publication-title: Int. J. Therm. Sci.
– volume: 19
  start-page: 58
  year: 2000
  end-page: 62
  ident: bib0090
  article-title: The potential of dynamic area telethermometry in assessing breast cancer
  publication-title: Eng. Med. Biol. Mag. IEEE
– year: 2011
  ident: bib0250
  article-title: Data Mining: Practical Machine Learning Tools and Techniques
– volume: 41
  start-page: 2279
  year: 2012
  end-page: 2280
  ident: bib0165
  article-title: A dendrite method for cluster analysis by caliński and harabasz: a classical work that is far too often incorrectly cited
  publication-title: Commun. Stat. – Theory Methods
– volume: 20
  start-page: 53
  year: 1987
  end-page: 65
  ident: bib0045
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
– year: 2013
  ident: bib0215
  article-title: Sc620 Infrared Camera System
– year: 2006
  ident: bib0235
  article-title: Data Mining: Concepts and Techniques
– volume: 4
  start-page: 163
  year: 2012
  end-page: 183
  ident: bib0010
  article-title: Combining approaches for early diagnosis of breast diseases using thermal imaging
  publication-title: Int. J. Innov. Comput. Appl.
– start-page: 1609
  year: 2001
  end-page: 1620
  ident: bib0150
  article-title: Nonrigid multimodality image registration
  publication-title: Medical Imaging 2001: Image Processing, SPIE 4322
– volume: 33
  start-page: 141
  year: 2009
  end-page: 153
  ident: bib0075
  article-title: Comparative study on the use of analytical software to identify the different stages of breast cancer using discrete temperature data
  publication-title: J. Med. Syst.
– volume: 180
  start-page: 263
  year: 2003
  end-page: 269
  ident: bib0100
  article-title: Efficacy of computerized infrared imaging analysis to evaluate mammographically suspicious lesions
  publication-title: Am. J. Roentgenol.
– volume: 36
  start-page: 535
  year: 2010
  end-page: 540
  ident: bib0120
  article-title: The accuracy of digital infrared imaging for breast cancer detection in women undergoing breast biopsy
  publication-title: Eur. J. Surg. Oncol.
– volume: PAMI-1
  start-page: 224
  year: 1979
  end-page: 227
  ident: bib0050
  article-title: A cluster separation measure
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 83
  start-page: 825
  year: 2003
  end-page: 833
  ident: bib0155
  article-title: Cluster validation techniques for genome expression data
  publication-title: Signal Process.
– volume: 1
  start-page: 1174
  year: 2004
  end-page: 1177
  ident: bib0025
  article-title: Nondestructive testing of the human breast: the validity of dynamic stress testing in medical infrared breast imaging
  publication-title: Eng. Med. Biol. Soc.
– volume: 4
  start-page: 02
  year: 2010
  end-page: 20
  ident: bib0200
  article-title: Novel hybrid method for gene selection and cancer prediction
  publication-title: World Acad. Sci. Eng. Technol.
– volume: 11
  start-page: 10
  year: 2009
  end-page: 18
  ident: bib0220
  article-title: The weka data mining software: an update
  publication-title: SIGKDD Explor.
– volume: 196
  start-page: 523
  year: 2008
  end-page: 526
  ident: bib0115
  article-title: Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer
  publication-title: Am. J. Surg.
– volume: 104
  year: 2013
  ident: bib0125
  article-title: Multifractal analysis of dynamic infrared imaging of breast cancer
  publication-title: Europhys. Lett.
– year: 1999
  ident: bib0225
  article-title: Correlation-based feature selection for machine learning, Ph.D. thesis
– year: 2007
  ident: bib0205
  article-title: Data Clustering: Theory, Algorithms, and Applications, ASA-SIAM Series on Statistics and Applied Probability
– volume: 45
  start-page: 153
  year: 2006
  end-page: 157
  ident: bib0195
  article-title: Estimating the number of clusters in dna microarray data
  publication-title: Methods Inf. Med.
– start-page: 670
  year: 1997
  end-page: 672
  ident: bib0080
  article-title: Some considerations on the diagnosis of breast cancer by thermography in patients with nonpalpable breast cancer
  publication-title: Engineering in Medicine and Biology Society, 1997. Proceedings of the 19th Annual International Conference of the IEEE 2
– volume: 31
  start-page: 19
  year: 2002
  end-page: 27
  ident: bib0210
  article-title: Clustering validity checking methods. Part II
  publication-title: SIGMOD Rec.
– volume: 912
  start-page: 174
  year: 1995
  end-page: 189
  ident: bib0245
  article-title: The power of decision tables, machine learning: ECML-95
  publication-title: Lect. Notes Comput. Sci.
– volume: 5
  start-page: 176
  year: 2014
  ident: bib0135
  article-title: Wavelet-based multifractal analysis of dynamic infrared thermograms to assist in early breast cancer diagnosis
  publication-title: Front. Physiol.
– volume: 213
  start-page: 232
  year: 1995
  end-page: 275
  ident: bib0130
  article-title: The thermodynamics of fractals revisited with wavelets
  publication-title: Phys. A: Stat. Mech. Appl.
– volume: 13
  start-page: 1330001
  year: 2013
  ident: bib0015
  article-title: Breast thermography as a potential non-contact method in the early detection of cancer: a review
  publication-title: J. Mech. Med. Biol.
– volume: 2
  start-page: 63
  year: 1985
  end-page: 76
  ident: bib0180
  article-title: Statistical theory in clustering
  publication-title: J. Classif.
– volume: 12
  start-page: 241
  year: 2002
  end-page: 262
  ident: bib0185
  article-title: Evaluation and comparison of clustering algorithms in anglying es cell gene expression data
  publication-title: Stat. Sin.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0240
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 3
  year: 2002
  ident: bib0170
  article-title: A prediction-based resampling method for estimating the number of clusters in a dataset
  publication-title: Genome Biol.
– volume: 20
  start-page: 80
  year: 2001
  end-page: 91
  ident: bib0095
  article-title: Detection of cancerous breasts by dynamic area telethermometry
  publication-title: Eng. Med. Biol. Mag. IEEE
– volume: 8
  start-page: 259
  year: 2004
  end-page: 267
  ident: bib0105
  article-title: Active dynamic thermography in mammography
  publication-title: TASK Q.
– volume: 29
  start-page: 1882
  year: 2010
  end-page: 1891
  ident: bib0140
  article-title: Intensity-based image registration by minimizing residual complexity
  publication-title: IEEE Trans. Med. Imaging
– volume: 93
  start-page: 2851
  year: 2013
  end-page: 2863
  ident: bib0005
  article-title: Estimation of breast tumor thermal properties using infrared images
  publication-title: Signal Process.
– volume: 180
  start-page: 263
  issue: 1
  year: 2003
  ident: 10.1016/j.cmpb.2016.03.002_bib0100
  article-title: Efficacy of computerized infrared imaging analysis to evaluate mammographically suspicious lesions
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/ajr.180.1.1800263
– volume: 4
  start-page: 163
  issue: 3–4
  year: 2012
  ident: 10.1016/j.cmpb.2016.03.002_bib0010
  article-title: Combining approaches for early diagnosis of breast diseases using thermal imaging
  publication-title: Int. J. Innov. Comput. Appl.
  doi: 10.1504/IJICA.2012.050054
– volume: 8
  start-page: 259
  issue: 2
  year: 2004
  ident: 10.1016/j.cmpb.2016.03.002_bib0105
  article-title: Active dynamic thermography in mammography
  publication-title: TASK Q.
– volume: 2
  start-page: 63
  issue: 1
  year: 1985
  ident: 10.1016/j.cmpb.2016.03.002_bib0180
  article-title: Statistical theory in clustering
  publication-title: J. Classif.
  doi: 10.1007/BF01908064
– year: 2007
  ident: 10.1016/j.cmpb.2016.03.002_bib0205
– volume: 213
  start-page: 232
  issue: 1–2
  year: 1995
  ident: 10.1016/j.cmpb.2016.03.002_bib0130
  article-title: The thermodynamics of fractals revisited with wavelets
  publication-title: Phys. A: Stat. Mech. Appl.
  doi: 10.1016/0378-4371(94)00163-N
– volume: 4
  start-page: 02
  year: 2010
  ident: 10.1016/j.cmpb.2016.03.002_bib0200
  article-title: Novel hybrid method for gene selection and cancer prediction
  publication-title: World Acad. Sci. Eng. Technol.
– volume: 83
  start-page: 825
  issue: 4
  year: 2003
  ident: 10.1016/j.cmpb.2016.03.002_bib0155
  article-title: Cluster validation techniques for genome expression data
  publication-title: Signal Process.
  doi: 10.1016/S0165-1684(02)00475-9
– volume: 93
  start-page: 2851
  issue: 10
  year: 2013
  ident: 10.1016/j.cmpb.2016.03.002_bib0005
  article-title: Estimation of breast tumor thermal properties using infrared images
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2012.06.002
– volume: 69
  start-page: 21
  year: 2013
  ident: 10.1016/j.cmpb.2016.03.002_bib0065
  article-title: Breast cancer detection from thermal images using bispectral invariant features
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2013.03.001
– year: 2011
  ident: 10.1016/j.cmpb.2016.03.002_bib0250
– volume: 1
  start-page: 1174
  year: 2004
  ident: 10.1016/j.cmpb.2016.03.002_bib0025
  article-title: Nondestructive testing of the human breast: the validity of dynamic stress testing in medical infrared breast imaging
  publication-title: Eng. Med. Biol. Soc.
– volume: 31
  start-page: 19
  issue: 3
  year: 2002
  ident: 10.1016/j.cmpb.2016.03.002_bib0210
  article-title: Clustering validity checking methods. Part II
  publication-title: SIGMOD Rec.
  doi: 10.1145/601858.601862
– year: 1999
  ident: 10.1016/j.cmpb.2016.03.002_bib0225
– volume: 3
  start-page: 1
  issue: 1
  year: 1974
  ident: 10.1016/j.cmpb.2016.03.002_bib0055
  article-title: A dendrite method for cluster analysis
  publication-title: Commun. Stat.
– year: 2013
  ident: 10.1016/j.cmpb.2016.03.002_bib0215
– volume: 36
  start-page: 1503
  year: 2012
  ident: 10.1016/j.cmpb.2016.03.002_bib0070
  article-title: Thermography based breast cancer detection using texture features and support vector machine
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-010-9611-z
– start-page: 1609
  year: 2001
  ident: 10.1016/j.cmpb.2016.03.002_bib0150
  article-title: Nonrigid multimodality image registration
– volume: 19
  start-page: 42
  issue: 3
  year: 2000
  ident: 10.1016/j.cmpb.2016.03.002_bib0085
  article-title: Applying dynamic thermography in the diagnosis of breast cancer
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/51.844379
– volume: 912
  start-page: 174
  year: 1995
  ident: 10.1016/j.cmpb.2016.03.002_bib0245
  article-title: The power of decision tables, machine learning: ECML-95
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/3-540-59286-5_57
– start-page: 670
  year: 1997
  ident: 10.1016/j.cmpb.2016.03.002_bib0080
  article-title: Some considerations on the diagnosis of breast cancer by thermography in patients with nonpalpable breast cancer
– volume: 196
  start-page: 523
  issue: 4
  year: 2008
  ident: 10.1016/j.cmpb.2016.03.002_bib0115
  article-title: Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer
  publication-title: Am. J. Surg.
  doi: 10.1016/j.amjsurg.2008.06.015
– year: 2012
  ident: 10.1016/j.cmpb.2016.03.002_bib0160
  article-title: Human cluster evaluation and formal quality measures: a comparative study
– volume: 100
  start-page: 269
  issue: 3
  year: 2010
  ident: 10.1016/j.cmpb.2016.03.002_bib0230
  article-title: Entropy-based feature extraction and decision tree induction for breast cancer diagnosis with standardized thermograph images
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2010.04.014
– volume: 93
  start-page: 2785
  year: 2013
  ident: 10.1016/j.cmpb.2016.03.002_bib0020
  article-title: Breast thermography from an image processing viewpoint: a survey
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2012.08.012
– start-page: 847
  year: 2013
  ident: 10.1016/j.cmpb.2016.03.002_bib0060
  article-title: Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms
– volume: PAMI-1
  start-page: 224
  issue: 2
  year: 1979
  ident: 10.1016/j.cmpb.2016.03.002_bib0050
  article-title: A cluster separation measure
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1979.4766909
– volume: 41
  start-page: 2279
  issue: 12
  year: 2012
  ident: 10.1016/j.cmpb.2016.03.002_bib0165
  article-title: A dendrite method for cluster analysis by caliński and harabasz: a classical work that is far too often incorrectly cited
  publication-title: Commun. Stat. – Theory Methods
  doi: 10.1080/03610926.2011.560741
– year: 2006
  ident: 10.1016/j.cmpb.2016.03.002_bib0235
– volume: 11
  start-page: 10
  issue: 1
  year: 2009
  ident: 10.1016/j.cmpb.2016.03.002_bib0220
  article-title: The weka data mining software: an update
  publication-title: SIGKDD Explor.
  doi: 10.1145/1656274.1656278
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.cmpb.2016.03.002_bib0240
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 5
  start-page: 176
  year: 2014
  ident: 10.1016/j.cmpb.2016.03.002_bib0135
  article-title: Wavelet-based multifractal analysis of dynamic infrared thermograms to assist in early breast cancer diagnosis
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2014.00176
– volume: 12
  start-page: 241
  year: 2002
  ident: 10.1016/j.cmpb.2016.03.002_bib0185
  article-title: Evaluation and comparison of clustering algorithms in anglying es cell gene expression data
  publication-title: Stat. Sin.
– volume: 3
  issue: 7
  year: 2002
  ident: 10.1016/j.cmpb.2016.03.002_bib0170
  article-title: A prediction-based resampling method for estimating the number of clusters in a dataset
  publication-title: Genome Biol.
  doi: 10.1186/gb-2002-3-7-research0036
– volume: 20
  start-page: 80
  issue: 5
  year: 2001
  ident: 10.1016/j.cmpb.2016.03.002_bib0095
  article-title: Detection of cancerous breasts by dynamic area telethermometry
  publication-title: Eng. Med. Biol. Mag. IEEE
  doi: 10.1109/51.956823
– volume: 20
  start-page: 53
  issue: 0
  year: 1987
  ident: 10.1016/j.cmpb.2016.03.002_bib0045
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(87)90125-7
– volume: 29
  start-page: 1882
  issue: 11
  year: 2010
  ident: 10.1016/j.cmpb.2016.03.002_bib0140
  article-title: Intensity-based image registration by minimizing residual complexity
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2053043
– volume: 49
  start-page: 3105
  issue: 14
  year: 2004
  ident: 10.1016/j.cmpb.2016.03.002_bib0110
  article-title: Dynamic infrared imaging for the detection of malignancy
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/49/14/005
– volume: 19
  start-page: 58
  issue: 3
  year: 2000
  ident: 10.1016/j.cmpb.2016.03.002_bib0090
  article-title: The potential of dynamic area telethermometry in assessing breast cancer
  publication-title: Eng. Med. Biol. Mag. IEEE
  doi: 10.1109/51.844381
– volume: 19
  start-page: 1787
  issue: 14
  year: 2003
  ident: 10.1016/j.cmpb.2016.03.002_bib0190
  article-title: Click and expander: a system for clustering and visualizing gene expression data
  publication-title: J. Classif.
– year: 2001
  ident: 10.1016/j.cmpb.2016.03.002_bib0145
– volume: 13
  start-page: 1330001
  issue: 2
  year: 2013
  ident: 10.1016/j.cmpb.2016.03.002_bib0015
  article-title: Breast thermography as a potential non-contact method in the early detection of cancer: a review
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519413300019
– volume: 45
  start-page: 153
  issue: 2
  year: 2006
  ident: 10.1016/j.cmpb.2016.03.002_bib0195
  article-title: Estimating the number of clusters in dna microarray data
  publication-title: Methods Inf. Med.
  doi: 10.1055/s-0038-1634059
– volume: 104
  issue: 6
  year: 2013
  ident: 10.1016/j.cmpb.2016.03.002_bib0125
  article-title: Multifractal analysis of dynamic infrared imaging of breast cancer
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/104/68001
– volume: 8
  start-page: 177
  issue: 2
  year: 2013
  ident: 10.1016/j.cmpb.2016.03.002_bib0030
  article-title: The role of dynamic infrared imaging in melanoma diagnosis
  publication-title: Expert Rev. Dermatol.
  doi: 10.1586/edm.13.15
– volume: 36
  start-page: 535
  issue: 6
  year: 2010
  ident: 10.1016/j.cmpb.2016.03.002_bib0120
  article-title: The accuracy of digital infrared imaging for breast cancer detection in women undergoing breast biopsy
  publication-title: Eur. J. Surg. Oncol.
  doi: 10.1016/j.ejso.2010.04.003
– volume: 4
  start-page: 92
  issue: 1
  year: 2014
  ident: 10.1016/j.cmpb.2016.03.002_bib0035
  article-title: A new database for breast research with infrared image
  publication-title: J. Med. Imaging Health Inform.
  doi: 10.1166/jmihi.2014.1226
– volume: 33
  start-page: 141
  issue: 2
  year: 2009
  ident: 10.1016/j.cmpb.2016.03.002_bib0075
  article-title: Comparative study on the use of analytical software to identify the different stages of breast cancer using discrete temperature data
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-008-9174-4
– start-page: 281
  year: 1967
  ident: 10.1016/j.cmpb.2016.03.002_bib0040
  article-title: Some methods for classification and analysis of multivariate observations
– volume: 44
  start-page: 23
  issue: 1
  year: 1988
  ident: 10.1016/j.cmpb.2016.03.002_bib0175
  article-title: A criterion for determining the number of groups in a data set using sum-of-squares clustering
  publication-title: Biometrics
  doi: 10.2307/2531893
SSID ssj0002556
Score 2.3587172
Snippet •We have proposed a hybrid automatic method for identifying patients with breast cancer, supporting human experts.•We have applied learning techniques...
Highlights • We have proposed a hybrid automatic method for identifying patients with breast cancer, supporting human experts. • We have applied learning...
Breast cancer is the most common cancer among women worldwide. Diagnosis and treatment in early stages increase cure chances. The temperature of cancerous...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 142
SubjectTerms Algorithms
Bayesian analysis
Breast
Breast cancer
Breast Neoplasms - diagnosis
Cancer
Classification
Cluster Analysis
Dynamic infrared thermography
Female
Humans
Internal Medicine
Machine learning
Methodology
Models, Biological
Other
Patients
Temperature time series
Thermography
Time and Motion Studies
Title Hybrid analysis for indicating patients with breast cancer using temperature time series
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260715300249
https://www.clinicalkey.es/playcontent/1-s2.0-S0169260715300249
https://dx.doi.org/10.1016/j.cmpb.2016.03.002
https://www.ncbi.nlm.nih.gov/pubmed/27208529
https://www.proquest.com/docview/1790615947
https://www.proquest.com/docview/1808644005
https://www.proquest.com/docview/1825497267
Volume 130
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AKRWK
  dateStart: 19850501
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iIF7Et-uLCN6kbjZt2vQooqyKXlTYW0jSRBTtLnY9ePG3O9OmK6Ku4KXQkknDZDKZZGa-IeTA9EzMXOYjmUiHt1WwpKxIoxhMB2OljX2BF_pX12n_LrkYiMEMOWlzYTCsMuj-RqfX2jp86QZudkcPD90bxBHhCI8m4hr4DjPYkwyrGBy9f4Z5IMRWg--dR9g6JM40MV72eWQwvCttgE75b5vTb8ZnvQmdLZHFYD3S42aAy2TGlStk_ir4x1fJoP-GGVhUB6gRCiYpRa80XsyV9zSgqFYUr1-pwYD0MbU48S8UI-DvKUJVBZxlinXnKYqoq9bI3dnp7Uk_CrUTIiu4HEeeFRYY44TPHUKuWQ9PLTJWMM0Kr2vvS-xNASaU9gnXiTNCC-u4lTwTebxOZsth6TYJNTlzcPBhqe75RPoUutGwqeXSGA4Gn-uQXss0ZQOwONa3eFJtBNmjQkYrZLRisQJGd8jhhGbUwGpMbR23c6HahFFQcQq0_lSq7CcqV4VVWqmeqrhi6pskdYiYUH4Rxj__uN8KioJViq4XXbrhK_wpy9F2zJNsShsJXE5Ap4ppbfBAn_EU-tloJHHCP_SoS8HzrX-Ofpss4FsTi7xDZscvr24XLK6x2auX1B6ZOz6_7F9_AKMwKSE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa6Dth6KfZss-6hAbsNXhTZsuVjUaxItyaXJUBugiRLRYfVDer0sMt--0hbzlBsyYBefLApWaBIiiKpTwAf7Mim3BchUZnyFK1ClXIyT1J0HaxTLg0VBfQn03w8z74s5GIHTvqzMFRWGW1_Z9Nbax3fDCM3h8vLy-E3whERBI8m0xb47gE8zKQoaAf26defOg_C2OoAvsuEyOPJma7Iy10tLdV35R3Sqdi0Om3yPttV6PQJ7Ef3kR13I3wKO75-Bo8mMUH-HBbjn3QEi5mINcLQJ2WUlqbIXH3BIoxqwyj-yixVpK-Yo5m_YVQCf8EIqyoCLTO6eJ6RjPrmBcxPP89Oxkm8PCFxUqhVEnjlkDNehtIT5poL-DSy4BU3vAqmTb-kwVboQ5mQCZN5K410XjglClmmL2G3vq79ITBbco87H56bUchUyLEbg6taqawV6PH5AYx6pmkXkcXpgosfui8h-66J0ZoYrXmqkdED-Lhus-xwNbZSp_1c6P7EKNo4jWZ_a6viX618E9W00SPdCM31X6I0ALlueUca__vH972gaFRTyr2Y2l_f4p-KkpzHMiu20CjkcoZGVW6joR19IXLs56CTxDX_KKWupChf3XP07-DxeDY51-dn069HsEdfusLk17C7urn1b9D9Wtm3rXr9BkKzKrY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+analysis+for+indicating+patients+with+breast+cancer+using+temperature+time+series&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Silva%2C+Lincoln+F.&rft.au=Santos%2C+Alair+Augusto+S.M.D.&rft.au=Bravo%2C+Renato+S.&rft.au=Silva%2C+Arist%C3%B3fanes+C.&rft.date=2016-07-01&rft.issn=0169-2607&rft.volume=130&rft.spage=142&rft.epage=153&rft_id=info:doi/10.1016%2Fj.cmpb.2016.03.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cmpb_2016_03_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon