Hybrid analysis for indicating patients with breast cancer using temperature time series
•We have proposed a hybrid automatic method for identifying patients with breast cancer, supporting human experts.•We have applied learning techniques supervised and unsupervised learning techniques.•We have applied various validity indexes of clusters.•In the evaluation of the proposed method, a da...
Saved in:
| Published in | Computer methods and programs in biomedicine Vol. 130; pp. 142 - 153 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Ireland
Elsevier Ireland Ltd
01.07.2016
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0169-2607 1872-7565 1872-7565 |
| DOI | 10.1016/j.cmpb.2016.03.002 |
Cover
| Abstract | •We have proposed a hybrid automatic method for identifying patients with breast cancer, supporting human experts.•We have applied learning techniques supervised and unsupervised learning techniques.•We have applied various validity indexes of clusters.•In the evaluation of the proposed method, a data mining tool was used to solve the combined algorithm selection and hyperparameter optimization (CASH) problem.•Among the classification algorithms which have been applied, K-Star and Bayes Net has shown the best result, 100% accuracy.
Breast cancer is the most common cancer among women worldwide. Diagnosis and treatment in early stages increase cure chances. The temperature of cancerous tissue is generally higher than that of healthy surrounding tissues, making thermography an option to be considered in screening strategies of this cancer type. This paper proposes a hybrid methodology for analyzing dynamic infrared thermography in order to indicate patients with risk of breast cancer, using unsupervised and supervised machine learning techniques, which characterizes the methodology as hybrid. The dynamic infrared thermography monitors or quantitatively measures temperature changes on the examined surface, after a thermal stress. In the dynamic infrared thermography execution, a sequence of breast thermograms is generated. In the proposed methodology, this sequence is processed and analyzed by several techniques. First, the region of the breasts is segmented and the thermograms of the sequence are registered. Then, temperature time series are built and the k-means algorithm is applied on these series using various values of k. Clustering formed by k-means algorithm, for each k value, is evaluated using clustering validation indices, generating values treated as features in the classification model construction step. A data mining tool was used to solve the combined algorithm selection and hyperparameter optimization (CASH) problem in classification tasks. Besides the classification algorithm recommended by the data mining tool, classifiers based on Bayesian networks, neural networks, decision rules and decision tree were executed on the data set used for evaluation. Test results support that the proposed analysis methodology is able to indicate patients with breast cancer. Among 39 tested classification algorithms, K-Star and Bayes Net presented 100% classification accuracy. Furthermore, among the Bayes Net, multi-layer perceptron, decision table and random forest classification algorithms, an average accuracy of 95.38% was obtained. |
|---|---|
| AbstractList | •We have proposed a hybrid automatic method for identifying patients with breast cancer, supporting human experts.•We have applied learning techniques supervised and unsupervised learning techniques.•We have applied various validity indexes of clusters.•In the evaluation of the proposed method, a data mining tool was used to solve the combined algorithm selection and hyperparameter optimization (CASH) problem.•Among the classification algorithms which have been applied, K-Star and Bayes Net has shown the best result, 100% accuracy.
Breast cancer is the most common cancer among women worldwide. Diagnosis and treatment in early stages increase cure chances. The temperature of cancerous tissue is generally higher than that of healthy surrounding tissues, making thermography an option to be considered in screening strategies of this cancer type. This paper proposes a hybrid methodology for analyzing dynamic infrared thermography in order to indicate patients with risk of breast cancer, using unsupervised and supervised machine learning techniques, which characterizes the methodology as hybrid. The dynamic infrared thermography monitors or quantitatively measures temperature changes on the examined surface, after a thermal stress. In the dynamic infrared thermography execution, a sequence of breast thermograms is generated. In the proposed methodology, this sequence is processed and analyzed by several techniques. First, the region of the breasts is segmented and the thermograms of the sequence are registered. Then, temperature time series are built and the k-means algorithm is applied on these series using various values of k. Clustering formed by k-means algorithm, for each k value, is evaluated using clustering validation indices, generating values treated as features in the classification model construction step. A data mining tool was used to solve the combined algorithm selection and hyperparameter optimization (CASH) problem in classification tasks. Besides the classification algorithm recommended by the data mining tool, classifiers based on Bayesian networks, neural networks, decision rules and decision tree were executed on the data set used for evaluation. Test results support that the proposed analysis methodology is able to indicate patients with breast cancer. Among 39 tested classification algorithms, K-Star and Bayes Net presented 100% classification accuracy. Furthermore, among the Bayes Net, multi-layer perceptron, decision table and random forest classification algorithms, an average accuracy of 95.38% was obtained. Breast cancer is the most common cancer among women worldwide. Diagnosis and treatment in early stages increase cure chances. The temperature of cancerous tissue is generally higher than that of healthy surrounding tissues, making thermography an option to be considered in screening strategies of this cancer type. This paper proposes a hybrid methodology for analyzing dynamic infrared thermography in order to indicate patients with risk of breast cancer, using unsupervised and supervised machine learning techniques, which characterizes the methodology as hybrid. The dynamic infrared thermography monitors or quantitatively measures temperature changes on the examined surface, after a thermal stress. In the dynamic infrared thermography execution, a sequence of breast thermograms is generated. In the proposed methodology, this sequence is processed and analyzed by several techniques. First, the region of the breasts is segmented and the thermograms of the sequence are registered. Then, temperature time series are built and the k-means algorithm is applied on these series using various values of k. Clustering formed by k-means algorithm, for each k value, is evaluated using clustering validation indices, generating values treated as features in the classification model construction step. A data mining tool was used to solve the combined algorithm selection and hyperparameter optimization (CASH) problem in classification tasks. Besides the classification algorithm recommended by the data mining tool, classifiers based on Bayesian networks, neural networks, decision rules and decision tree were executed on the data set used for evaluation. Test results support that the proposed analysis methodology is able to indicate patients with breast cancer. Among 39 tested classification algorithms, K-Star and Bayes Net presented 100% classification accuracy. Furthermore, among the Bayes Net, multi-layer perceptron, decision table and random forest classification algorithms, an average accuracy of 95.38% was obtained. Breast cancer is the most common cancer among women worldwide. Diagnosis and treatment in early stages increase cure chances. The temperature of cancerous tissue is generally higher than that of healthy surrounding tissues, making thermography an option to be considered in screening strategies of this cancer type. This paper proposes a hybrid methodology for analyzing dynamic infrared thermography in order to indicate patients with risk of breast cancer, using unsupervised and supervised machine learning techniques, which characterizes the methodology as hybrid. The dynamic infrared thermography monitors or quantitatively measures temperature changes on the examined surface, after a thermal stress. In the dynamic infrared thermography execution, a sequence of breast thermograms is generated. In the proposed methodology, this sequence is processed and analyzed by several techniques. First, the region of the breasts is segmented and the thermograms of the sequence are registered. Then, temperature time series are built and the k-means algorithm is applied on these series using various values of k. Clustering formed by k-means algorithm, for each k value, is evaluated using clustering validation indices, generating values treated as features in the classification model construction step. A data mining tool was used to solve the combined algorithm selection and hyperparameter optimization (CASH) problem in classification tasks. Besides the classification algorithm recommended by the data mining tool, classifiers based on Bayesian networks, neural networks, decision rules and decision tree were executed on the data set used for evaluation. Test results support that the proposed analysis methodology is able to indicate patients with breast cancer. Among 39 tested classification algorithms, K-Star and Bayes Net presented 100% classification accuracy. Furthermore, among the Bayes Net, multi-layer perceptron, decision table and random forest classification algorithms, an average accuracy of 95.38% was obtained.Breast cancer is the most common cancer among women worldwide. Diagnosis and treatment in early stages increase cure chances. The temperature of cancerous tissue is generally higher than that of healthy surrounding tissues, making thermography an option to be considered in screening strategies of this cancer type. This paper proposes a hybrid methodology for analyzing dynamic infrared thermography in order to indicate patients with risk of breast cancer, using unsupervised and supervised machine learning techniques, which characterizes the methodology as hybrid. The dynamic infrared thermography monitors or quantitatively measures temperature changes on the examined surface, after a thermal stress. In the dynamic infrared thermography execution, a sequence of breast thermograms is generated. In the proposed methodology, this sequence is processed and analyzed by several techniques. First, the region of the breasts is segmented and the thermograms of the sequence are registered. Then, temperature time series are built and the k-means algorithm is applied on these series using various values of k. Clustering formed by k-means algorithm, for each k value, is evaluated using clustering validation indices, generating values treated as features in the classification model construction step. A data mining tool was used to solve the combined algorithm selection and hyperparameter optimization (CASH) problem in classification tasks. Besides the classification algorithm recommended by the data mining tool, classifiers based on Bayesian networks, neural networks, decision rules and decision tree were executed on the data set used for evaluation. Test results support that the proposed analysis methodology is able to indicate patients with breast cancer. Among 39 tested classification algorithms, K-Star and Bayes Net presented 100% classification accuracy. Furthermore, among the Bayes Net, multi-layer perceptron, decision table and random forest classification algorithms, an average accuracy of 95.38% was obtained. Highlights • We have proposed a hybrid automatic method for identifying patients with breast cancer, supporting human experts. • We have applied learning techniques supervised and unsupervised learning techniques. • We have applied various validity indexes of clusters. • In the evaluation of the proposed method, a data mining tool was used to solve the combined algorithm selection and hyperparameter optimization (CASH) problem. • Among the classification algorithms which have been applied, K-Star and Bayes Net has shown the best result, 100% accuracy. |
| Author | Silva, Lincoln F. Santos, Alair Augusto S.M.D. Bravo, Renato S. Silva, Aristófanes C. Conci, Aura Muchaluat-Saade, Débora C. |
| Author_xml | – sequence: 1 givenname: Lincoln F. surname: Silva fullname: Silva, Lincoln F. email: lsilva@ic.uff.br organization: Institute of Computing, Fluminense Federal University, Niterói, RJ, Brazil – sequence: 2 givenname: Alair Augusto S.M.D. surname: Santos fullname: Santos, Alair Augusto S.M.D. organization: Department of Radiology, Fluminense Federal University, Niterói, RJ, Brazil – sequence: 3 givenname: Renato S. surname: Bravo fullname: Bravo, Renato S. organization: Department of Mastology, Fluminense Federal University, Niterói, RJ, Brazil – sequence: 4 givenname: Aristófanes C. surname: Silva fullname: Silva, Aristófanes C. organization: Department of Electrical Engineering, Federal University of the Maranhão, São Luís, MA, Brazil – sequence: 5 givenname: Débora C. surname: Muchaluat-Saade fullname: Muchaluat-Saade, Débora C. organization: Institute of Computing, Fluminense Federal University, Niterói, RJ, Brazil – sequence: 6 givenname: Aura surname: Conci fullname: Conci, Aura organization: Institute of Computing, Fluminense Federal University, Niterói, RJ, Brazil |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27208529$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUsGK1TAUDTLivBn9AReSpZvWm7RpUhFhGNQRBlyo4C6k6a3m2aY1SZX396a8mc2AM25yAznnXHLOOSMnfvZIyHMGJQPWvNqXdlq6kud7CVUJwB-RHVOSF1I04oTs8kNb8AbkKTmLcQ8ZIUTzhJxyyUEJ3u7It6tDF1xPjTfjIbpIhzlQ53tnTXL-O13yQJ8i_ePSD9oFNDFRa7zFQNe4IRJOCwaT1oA0uQlpxOAwPiWPBzNGfHYzz8nX9---XF4V158-fLy8uC6s4CoVA_SWiQrF0CJTCuyQTyMk9GCgHwxrZKuqoeuZqM1Qc1NjJ4ywyK3iUrTVOXl51F3C_GvFmPTkosVxNB7nNWqmuKhbyRv5H1BQTV0DiIehsoWGibbeVF_cQNduwl4vwU0mHPStxxmgjgAb5hgDDtq6lG2dfQrGjZqB3uLUe73Fqbc4NVQ6h5Wp_A71Vv1e0psjCbPtvx0GHW3O0GLvAtqk-9ndT397h25H53Mfxp94wLif15C7ki3QkWvQn7eSbR3LKWZ6vf339b8FHtr-FxgS4OI |
| CitedBy_id | crossref_primary_10_3390_app11020842 crossref_primary_10_1016_j_ijheatmasstransfer_2018_11_089 crossref_primary_10_1055_s_0044_1779743 crossref_primary_10_1080_21681163_2020_1824685 crossref_primary_10_1016_j_mehy_2019_109542 crossref_primary_10_1007_s11042_023_17566_1 crossref_primary_10_3390_s20143866 crossref_primary_10_3233_XST_18374 crossref_primary_10_1016_j_patcog_2016_12_027 crossref_primary_10_1109_TIM_2019_2956362 crossref_primary_10_1016_j_artmed_2020_101879 crossref_primary_10_1080_21681163_2022_2118174 crossref_primary_10_1016_j_patcog_2021_107989 crossref_primary_10_1007_s11042_020_09600_3 crossref_primary_10_1016_j_compbiomed_2021_104553 crossref_primary_10_1016_j_jtherbio_2023_103561 crossref_primary_10_1109_ACCESS_2020_3038817 crossref_primary_10_3390_app14041603 crossref_primary_10_1016_j_patcog_2018_06_010 crossref_primary_10_1177_14604582231153779 crossref_primary_10_1007_s10044_021_01041_4 crossref_primary_10_1007_s10462_022_10359_2 crossref_primary_10_1007_s12652_024_04883_y crossref_primary_10_3390_cancers14143442 crossref_primary_10_1016_j_jtbi_2017_05_031 crossref_primary_10_1088_2057_1976_acd6fe crossref_primary_10_32604_cmes_2022_016065 crossref_primary_10_1016_j_tsep_2021_101142 crossref_primary_10_1007_s42600_021_00158_z crossref_primary_10_1145_3423923 crossref_primary_10_1016_j_asoc_2022_108870 crossref_primary_10_1186_s12859_020_3355_7 crossref_primary_10_1080_03091902_2019_1664672 crossref_primary_10_1109_ACCESS_2024_3522251 |
| Cites_doi | 10.2214/ajr.180.1.1800263 10.1504/IJICA.2012.050054 10.1007/BF01908064 10.1016/0378-4371(94)00163-N 10.1016/S0165-1684(02)00475-9 10.1016/j.sigpro.2012.06.002 10.1016/j.ijthermalsci.2013.03.001 10.1145/601858.601862 10.1007/s10916-010-9611-z 10.1109/51.844379 10.1007/3-540-59286-5_57 10.1016/j.amjsurg.2008.06.015 10.1016/j.cmpb.2010.04.014 10.1016/j.sigpro.2012.08.012 10.1109/TPAMI.1979.4766909 10.1080/03610926.2011.560741 10.1145/1656274.1656278 10.1023/A:1010933404324 10.3389/fphys.2014.00176 10.1186/gb-2002-3-7-research0036 10.1109/51.956823 10.1016/0377-0427(87)90125-7 10.1109/TMI.2010.2053043 10.1088/0031-9155/49/14/005 10.1109/51.844381 10.1142/S0219519413300019 10.1055/s-0038-1634059 10.1209/0295-5075/104/68001 10.1586/edm.13.15 10.1016/j.ejso.2010.04.003 10.1166/jmihi.2014.1226 10.1007/s10916-008-9174-4 10.2307/2531893 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ireland Ltd Copyright © 2016 Elsevier Ireland Ltd. All rights reserved. |
| Copyright_xml | – notice: 2016 Elsevier Ireland Ltd – notice: Copyright © 2016 Elsevier Ireland Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 7SC JQ2 L7M L~C L~D |
| DOI | 10.1016/j.cmpb.2016.03.002 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Engineering Research Database Computer and Information Systems Abstracts MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1872-7565 |
| EndPage | 153 |
| ExternalDocumentID | 27208529 10_1016_j_cmpb_2016_03_002 S0169260715300249 1_s2_0_S0169260715300249 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .1- .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMK HMO HVGLF HZ~ IHE J1W KOM LG9 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SBC SDF SDG SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WUQ XPP Z5R ZGI ZY4 ~G- ~HD AFCTW AGCQF AGRNS RIG AACTN AAIAV ABLVK ABTAH ABYKQ AFKWA AJBFU AJOXV AMFUW LCYCR AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 7SC JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c528t-f0dc153e5f9e1880cf188a570d0a0dfa167983fbd154af42a4eb5a5ce2c827593 |
| IEDL.DBID | .~1 |
| ISSN | 0169-2607 1872-7565 |
| IngestDate | Sun Sep 28 09:26:03 EDT 2025 Tue Oct 07 09:26:47 EDT 2025 Sun Sep 28 01:31:59 EDT 2025 Wed Feb 19 02:09:11 EST 2025 Thu Apr 24 23:01:46 EDT 2025 Wed Oct 01 03:21:05 EDT 2025 Fri Feb 23 02:26:00 EST 2024 Fri May 16 01:02:24 EDT 2025 Tue Oct 14 19:32:50 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Breast cancer Dynamic infrared thermography Machine learning Classification Temperature time series Dynamic Infrared Thermography |
| Language | English |
| License | Copyright © 2016 Elsevier Ireland Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c528t-f0dc153e5f9e1880cf188a570d0a0dfa167983fbd154af42a4eb5a5ce2c827593 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 27208529 |
| PQID | 1790615947 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_1825497267 proquest_miscellaneous_1808644005 proquest_miscellaneous_1790615947 pubmed_primary_27208529 crossref_citationtrail_10_1016_j_cmpb_2016_03_002 crossref_primary_10_1016_j_cmpb_2016_03_002 elsevier_sciencedirect_doi_10_1016_j_cmpb_2016_03_002 elsevier_clinicalkeyesjournals_1_s2_0_S0169260715300249 elsevier_clinicalkey_doi_10_1016_j_cmpb_2016_03_002 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2016-07-01 |
| PublicationDateYYYYMMDD | 2016-07-01 |
| PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Ireland |
| PublicationPlace_xml | – name: Ireland |
| PublicationTitle | Computer methods and programs in biomedicine |
| PublicationTitleAlternate | Comput Methods Programs Biomed |
| PublicationYear | 2016 |
| Publisher | Elsevier Ireland Ltd |
| Publisher_xml | – name: Elsevier Ireland Ltd |
| References | Silva, Saade, Sequeiros, Silva, Paiva, Bravo, Conci (bib0035) 2014; 4 Davies, Bouldin (bib0050) 1979; PAMI-1 Wishart, Campisid, Boswella, Chapmana, Shackletona, Iddlesa, Halletta, Britton (bib0120) 2010; 36 Halkidi, Batistakis, Vazirgiannis (bib0210) 2002; 31 Han, Kamber (bib0235) 2006 Ohashi, Uchida (bib0080) 1997 Hajnal, Hawkes, Hill (bib0145) 2001 Hartigan (bib0180) 1985; 2 Acharya, Ng, Tan, Sree (bib0070) 2012; 36 Krzanowski, Lai (bib0175) 1988; 44 Parisky, Sardi, Hamm, Hughes, Esserman, Rust, Callahan (bib0100) 2003; 180 Tan, Ng, Acharya U, Keith, Holmes (bib0075) 2009; 33 Arora, Martins, Ruggerio, Tousimis, Swistel, Osborne, Simmons (bib0115) 2008; 196 Chen, Jaradat, Banerjee, Tanaka, Ko, Zhang (bib0185) 2002; 12 MacQueen (bib0040) 1967 Anbar, Milescu, Naumov, Brown, Button, Carty, AlDulaimi (bib0095) 2001; 20 Gerasimova, Audit, Roux, Khalil, Gileva, Argoul, Naimark, Arneodo (bib0135) 2014; 5 Kozak (bib0165) 2012; 41 Bezerra, Oliveira, Rolim, Conci, Santos, Lyra, Lima (bib0005) 2013; 93 Thornton, Hutter, Hoos, Leyton-Brown (bib0060) 2013 Jing, Ng, Zeng (bib0200) 2010; 4 EtehadTavakol, Chandran, Ng, Kafieh (bib0065) 2013; 69 Breiman (bib0240) 2001; 45 Ohashi, Uchida (bib0085) 2000; 19 Hall (bib0225) 1999 Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (bib0220) 2009; 11 Caliński, Harabasz (bib0055) 1974; 3 Arneodo, Bacry, Muzy (bib0130) 1995; 213 Flir (bib0215) 2013 Borchartt, Conci, Lima, Resmini, Sanchez (bib0020) 2013; 93 Herman (bib0030) 2013; 8 Borchartt, Resmini, Motta, Clua, Conci, Viana, Santos, Lima, Sanchez (bib0010) 2012; 4 Lewis, Ackerman, Sa (bib0160) 2012 Sharan, Maron-Katz, Shamir (bib0190) 2003; 19 Etehadtavakol, NG (bib0015) 2013; 13 Lee, Yang (bib0230) 2010; 100 Mattes, Haynor, Vesselle, Lewellyn, Eubank (bib0150) 2001 Amalu (bib0025) 2004; 1 Kaczmarek, Nowakowski (bib0105) 2004; 8 Rousseeuw (bib0045) 1987; 20 Dudoit, Fridlyand (bib0170) 2002; 3 Kohavi (bib0245) 1995; 912 Anbar, Brown, Milescu, Babalola, Gentner (bib0090) 2000; 19 Myronenko, Song (bib0140) 2010; 29 Gerasimova, Audit, Roux, Khalil, Argoul, Naimark1, Arneodo (bib0125) 2013; 104 Bolshakova, Azuaje (bib0195) 2006; 45 Button, Li, Fisher, Rosenblatt, Dulaimy, Li, O’Hea, Salvitti, Geronimo, Geronimo, Jambawalikar, Carvelli1, Weiss (bib0110) 2004; 49 Bolshakova, Azuaje (bib0155) 2003; 83 Witten, Eibe, Hall (bib0250) 2011 Gan, Ma, Wu (bib0205) 2007 Borchartt (10.1016/j.cmpb.2016.03.002_bib0020) 2013; 93 Halkidi (10.1016/j.cmpb.2016.03.002_bib0210) 2002; 31 Bezerra (10.1016/j.cmpb.2016.03.002_bib0005) 2013; 93 Lee (10.1016/j.cmpb.2016.03.002_bib0230) 2010; 100 Mattes (10.1016/j.cmpb.2016.03.002_bib0150) 2001 Sharan (10.1016/j.cmpb.2016.03.002_bib0190) 2003; 19 Chen (10.1016/j.cmpb.2016.03.002_bib0185) 2002; 12 Anbar (10.1016/j.cmpb.2016.03.002_bib0090) 2000; 19 Gan (10.1016/j.cmpb.2016.03.002_bib0205) 2007 Wishart (10.1016/j.cmpb.2016.03.002_bib0120) 2010; 36 Ohashi (10.1016/j.cmpb.2016.03.002_bib0080) 1997 Tan (10.1016/j.cmpb.2016.03.002_bib0075) 2009; 33 EtehadTavakol (10.1016/j.cmpb.2016.03.002_bib0065) 2013; 69 Borchartt (10.1016/j.cmpb.2016.03.002_bib0010) 2012; 4 Etehadtavakol (10.1016/j.cmpb.2016.03.002_bib0015) 2013; 13 Breiman (10.1016/j.cmpb.2016.03.002_bib0240) 2001; 45 Acharya (10.1016/j.cmpb.2016.03.002_bib0070) 2012; 36 Hall (10.1016/j.cmpb.2016.03.002_bib0225) 1999 Button (10.1016/j.cmpb.2016.03.002_bib0110) 2004; 49 Myronenko (10.1016/j.cmpb.2016.03.002_bib0140) 2010; 29 Thornton (10.1016/j.cmpb.2016.03.002_bib0060) 2013 Kohavi (10.1016/j.cmpb.2016.03.002_bib0245) 1995; 912 Krzanowski (10.1016/j.cmpb.2016.03.002_bib0175) 1988; 44 Anbar (10.1016/j.cmpb.2016.03.002_bib0095) 2001; 20 Ohashi (10.1016/j.cmpb.2016.03.002_bib0085) 2000; 19 Gerasimova (10.1016/j.cmpb.2016.03.002_bib0135) 2014; 5 Rousseeuw (10.1016/j.cmpb.2016.03.002_bib0045) 1987; 20 Herman (10.1016/j.cmpb.2016.03.002_bib0030) 2013; 8 Lewis (10.1016/j.cmpb.2016.03.002_bib0160) 2012 Gerasimova (10.1016/j.cmpb.2016.03.002_bib0125) 2013; 104 Hartigan (10.1016/j.cmpb.2016.03.002_bib0180) 1985; 2 Caliński (10.1016/j.cmpb.2016.03.002_bib0055) 1974; 3 Bolshakova (10.1016/j.cmpb.2016.03.002_bib0155) 2003; 83 MacQueen (10.1016/j.cmpb.2016.03.002_bib0040) 1967 Dudoit (10.1016/j.cmpb.2016.03.002_bib0170) 2002; 3 Davies (10.1016/j.cmpb.2016.03.002_bib0050) 1979; PAMI-1 Amalu (10.1016/j.cmpb.2016.03.002_bib0025) 2004; 1 Kaczmarek (10.1016/j.cmpb.2016.03.002_bib0105) 2004; 8 Arora (10.1016/j.cmpb.2016.03.002_bib0115) 2008; 196 Han (10.1016/j.cmpb.2016.03.002_bib0235) 2006 Hajnal (10.1016/j.cmpb.2016.03.002_bib0145) 2001 Hall (10.1016/j.cmpb.2016.03.002_bib0220) 2009; 11 Kozak (10.1016/j.cmpb.2016.03.002_bib0165) 2012; 41 Bolshakova (10.1016/j.cmpb.2016.03.002_bib0195) 2006; 45 Flir (10.1016/j.cmpb.2016.03.002_bib0215) 2013 Parisky (10.1016/j.cmpb.2016.03.002_bib0100) 2003; 180 Arneodo (10.1016/j.cmpb.2016.03.002_bib0130) 1995; 213 Witten (10.1016/j.cmpb.2016.03.002_bib0250) 2011 Silva (10.1016/j.cmpb.2016.03.002_bib0035) 2014; 4 Jing (10.1016/j.cmpb.2016.03.002_bib0200) 2010; 4 |
| References_xml | – volume: 36 start-page: 1503 year: 2012 end-page: 1510 ident: bib0070 article-title: Thermography based breast cancer detection using texture features and support vector machine publication-title: J. Med. Syst. – start-page: 281 year: 1967 end-page: 297 ident: bib0040 article-title: Some methods for classification and analysis of multivariate observations publication-title: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics – volume: 93 start-page: 2785 year: 2013 end-page: 2803 ident: bib0020 article-title: Breast thermography from an image processing viewpoint: a survey publication-title: Signal Process. – start-page: 847 year: 2013 end-page: 855 ident: bib0060 article-title: Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms publication-title: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 49 start-page: 3105 year: 2004 end-page: 3116 ident: bib0110 article-title: Dynamic infrared imaging for the detection of malignancy publication-title: Phys. Med. Biol. – volume: 100 start-page: 269 year: 2010 end-page: 282 ident: bib0230 article-title: Entropy-based feature extraction and decision tree induction for breast cancer diagnosis with standardized thermograph images publication-title: Comput. Methods Progr. Biomed. – volume: 3 start-page: 1 year: 1974 end-page: 27 ident: bib0055 article-title: A dendrite method for cluster analysis publication-title: Commun. Stat. – volume: 19 start-page: 1787 year: 2003 end-page: 1799 ident: bib0190 article-title: Click and expander: a system for clustering and visualizing gene expression data publication-title: J. Classif. – volume: 19 start-page: 42 year: 2000 end-page: 51 ident: bib0085 article-title: Applying dynamic thermography in the diagnosis of breast cancer publication-title: IEEE Eng. Med. Biol. Mag. – year: 2012 ident: bib0160 article-title: Human cluster evaluation and formal quality measures: a comparative study publication-title: Proc. 34th Conf. of the Cognitive Science Society CogSci – volume: 4 start-page: 92 year: 2014 end-page: 100 ident: bib0035 article-title: A new database for breast research with infrared image publication-title: J. Med. Imaging Health Inform. – year: 2001 ident: bib0145 article-title: Medical Image Registration – volume: 8 start-page: 177 year: 2013 end-page: 184 ident: bib0030 article-title: The role of dynamic infrared imaging in melanoma diagnosis publication-title: Expert Rev. Dermatol. – volume: 44 start-page: 23 year: 1988 end-page: 34 ident: bib0175 article-title: A criterion for determining the number of groups in a data set using sum-of-squares clustering publication-title: Biometrics – volume: 69 start-page: 21 year: 2013 end-page: 36 ident: bib0065 article-title: Breast cancer detection from thermal images using bispectral invariant features publication-title: Int. J. Therm. Sci. – volume: 19 start-page: 58 year: 2000 end-page: 62 ident: bib0090 article-title: The potential of dynamic area telethermometry in assessing breast cancer publication-title: Eng. Med. Biol. Mag. IEEE – year: 2011 ident: bib0250 article-title: Data Mining: Practical Machine Learning Tools and Techniques – volume: 41 start-page: 2279 year: 2012 end-page: 2280 ident: bib0165 article-title: A dendrite method for cluster analysis by caliński and harabasz: a classical work that is far too often incorrectly cited publication-title: Commun. Stat. – Theory Methods – volume: 20 start-page: 53 year: 1987 end-page: 65 ident: bib0045 article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis publication-title: J. Comput. Appl. Math. – year: 2013 ident: bib0215 article-title: Sc620 Infrared Camera System – year: 2006 ident: bib0235 article-title: Data Mining: Concepts and Techniques – volume: 4 start-page: 163 year: 2012 end-page: 183 ident: bib0010 article-title: Combining approaches for early diagnosis of breast diseases using thermal imaging publication-title: Int. J. Innov. Comput. Appl. – start-page: 1609 year: 2001 end-page: 1620 ident: bib0150 article-title: Nonrigid multimodality image registration publication-title: Medical Imaging 2001: Image Processing, SPIE 4322 – volume: 33 start-page: 141 year: 2009 end-page: 153 ident: bib0075 article-title: Comparative study on the use of analytical software to identify the different stages of breast cancer using discrete temperature data publication-title: J. Med. Syst. – volume: 180 start-page: 263 year: 2003 end-page: 269 ident: bib0100 article-title: Efficacy of computerized infrared imaging analysis to evaluate mammographically suspicious lesions publication-title: Am. J. Roentgenol. – volume: 36 start-page: 535 year: 2010 end-page: 540 ident: bib0120 article-title: The accuracy of digital infrared imaging for breast cancer detection in women undergoing breast biopsy publication-title: Eur. J. Surg. Oncol. – volume: PAMI-1 start-page: 224 year: 1979 end-page: 227 ident: bib0050 article-title: A cluster separation measure publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 83 start-page: 825 year: 2003 end-page: 833 ident: bib0155 article-title: Cluster validation techniques for genome expression data publication-title: Signal Process. – volume: 1 start-page: 1174 year: 2004 end-page: 1177 ident: bib0025 article-title: Nondestructive testing of the human breast: the validity of dynamic stress testing in medical infrared breast imaging publication-title: Eng. Med. Biol. Soc. – volume: 4 start-page: 02 year: 2010 end-page: 20 ident: bib0200 article-title: Novel hybrid method for gene selection and cancer prediction publication-title: World Acad. Sci. Eng. Technol. – volume: 11 start-page: 10 year: 2009 end-page: 18 ident: bib0220 article-title: The weka data mining software: an update publication-title: SIGKDD Explor. – volume: 196 start-page: 523 year: 2008 end-page: 526 ident: bib0115 article-title: Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer publication-title: Am. J. Surg. – volume: 104 year: 2013 ident: bib0125 article-title: Multifractal analysis of dynamic infrared imaging of breast cancer publication-title: Europhys. Lett. – year: 1999 ident: bib0225 article-title: Correlation-based feature selection for machine learning, Ph.D. thesis – year: 2007 ident: bib0205 article-title: Data Clustering: Theory, Algorithms, and Applications, ASA-SIAM Series on Statistics and Applied Probability – volume: 45 start-page: 153 year: 2006 end-page: 157 ident: bib0195 article-title: Estimating the number of clusters in dna microarray data publication-title: Methods Inf. Med. – start-page: 670 year: 1997 end-page: 672 ident: bib0080 article-title: Some considerations on the diagnosis of breast cancer by thermography in patients with nonpalpable breast cancer publication-title: Engineering in Medicine and Biology Society, 1997. Proceedings of the 19th Annual International Conference of the IEEE 2 – volume: 31 start-page: 19 year: 2002 end-page: 27 ident: bib0210 article-title: Clustering validity checking methods. Part II publication-title: SIGMOD Rec. – volume: 912 start-page: 174 year: 1995 end-page: 189 ident: bib0245 article-title: The power of decision tables, machine learning: ECML-95 publication-title: Lect. Notes Comput. Sci. – volume: 5 start-page: 176 year: 2014 ident: bib0135 article-title: Wavelet-based multifractal analysis of dynamic infrared thermograms to assist in early breast cancer diagnosis publication-title: Front. Physiol. – volume: 213 start-page: 232 year: 1995 end-page: 275 ident: bib0130 article-title: The thermodynamics of fractals revisited with wavelets publication-title: Phys. A: Stat. Mech. Appl. – volume: 13 start-page: 1330001 year: 2013 ident: bib0015 article-title: Breast thermography as a potential non-contact method in the early detection of cancer: a review publication-title: J. Mech. Med. Biol. – volume: 2 start-page: 63 year: 1985 end-page: 76 ident: bib0180 article-title: Statistical theory in clustering publication-title: J. Classif. – volume: 12 start-page: 241 year: 2002 end-page: 262 ident: bib0185 article-title: Evaluation and comparison of clustering algorithms in anglying es cell gene expression data publication-title: Stat. Sin. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0240 article-title: Random forests publication-title: Mach. Learn. – volume: 3 year: 2002 ident: bib0170 article-title: A prediction-based resampling method for estimating the number of clusters in a dataset publication-title: Genome Biol. – volume: 20 start-page: 80 year: 2001 end-page: 91 ident: bib0095 article-title: Detection of cancerous breasts by dynamic area telethermometry publication-title: Eng. Med. Biol. Mag. IEEE – volume: 8 start-page: 259 year: 2004 end-page: 267 ident: bib0105 article-title: Active dynamic thermography in mammography publication-title: TASK Q. – volume: 29 start-page: 1882 year: 2010 end-page: 1891 ident: bib0140 article-title: Intensity-based image registration by minimizing residual complexity publication-title: IEEE Trans. Med. Imaging – volume: 93 start-page: 2851 year: 2013 end-page: 2863 ident: bib0005 article-title: Estimation of breast tumor thermal properties using infrared images publication-title: Signal Process. – volume: 180 start-page: 263 issue: 1 year: 2003 ident: 10.1016/j.cmpb.2016.03.002_bib0100 article-title: Efficacy of computerized infrared imaging analysis to evaluate mammographically suspicious lesions publication-title: Am. J. Roentgenol. doi: 10.2214/ajr.180.1.1800263 – volume: 4 start-page: 163 issue: 3–4 year: 2012 ident: 10.1016/j.cmpb.2016.03.002_bib0010 article-title: Combining approaches for early diagnosis of breast diseases using thermal imaging publication-title: Int. J. Innov. Comput. Appl. doi: 10.1504/IJICA.2012.050054 – volume: 8 start-page: 259 issue: 2 year: 2004 ident: 10.1016/j.cmpb.2016.03.002_bib0105 article-title: Active dynamic thermography in mammography publication-title: TASK Q. – volume: 2 start-page: 63 issue: 1 year: 1985 ident: 10.1016/j.cmpb.2016.03.002_bib0180 article-title: Statistical theory in clustering publication-title: J. Classif. doi: 10.1007/BF01908064 – year: 2007 ident: 10.1016/j.cmpb.2016.03.002_bib0205 – volume: 213 start-page: 232 issue: 1–2 year: 1995 ident: 10.1016/j.cmpb.2016.03.002_bib0130 article-title: The thermodynamics of fractals revisited with wavelets publication-title: Phys. A: Stat. Mech. Appl. doi: 10.1016/0378-4371(94)00163-N – volume: 4 start-page: 02 year: 2010 ident: 10.1016/j.cmpb.2016.03.002_bib0200 article-title: Novel hybrid method for gene selection and cancer prediction publication-title: World Acad. Sci. Eng. Technol. – volume: 83 start-page: 825 issue: 4 year: 2003 ident: 10.1016/j.cmpb.2016.03.002_bib0155 article-title: Cluster validation techniques for genome expression data publication-title: Signal Process. doi: 10.1016/S0165-1684(02)00475-9 – volume: 93 start-page: 2851 issue: 10 year: 2013 ident: 10.1016/j.cmpb.2016.03.002_bib0005 article-title: Estimation of breast tumor thermal properties using infrared images publication-title: Signal Process. doi: 10.1016/j.sigpro.2012.06.002 – volume: 69 start-page: 21 year: 2013 ident: 10.1016/j.cmpb.2016.03.002_bib0065 article-title: Breast cancer detection from thermal images using bispectral invariant features publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2013.03.001 – year: 2011 ident: 10.1016/j.cmpb.2016.03.002_bib0250 – volume: 1 start-page: 1174 year: 2004 ident: 10.1016/j.cmpb.2016.03.002_bib0025 article-title: Nondestructive testing of the human breast: the validity of dynamic stress testing in medical infrared breast imaging publication-title: Eng. Med. Biol. Soc. – volume: 31 start-page: 19 issue: 3 year: 2002 ident: 10.1016/j.cmpb.2016.03.002_bib0210 article-title: Clustering validity checking methods. Part II publication-title: SIGMOD Rec. doi: 10.1145/601858.601862 – year: 1999 ident: 10.1016/j.cmpb.2016.03.002_bib0225 – volume: 3 start-page: 1 issue: 1 year: 1974 ident: 10.1016/j.cmpb.2016.03.002_bib0055 article-title: A dendrite method for cluster analysis publication-title: Commun. Stat. – year: 2013 ident: 10.1016/j.cmpb.2016.03.002_bib0215 – volume: 36 start-page: 1503 year: 2012 ident: 10.1016/j.cmpb.2016.03.002_bib0070 article-title: Thermography based breast cancer detection using texture features and support vector machine publication-title: J. Med. Syst. doi: 10.1007/s10916-010-9611-z – start-page: 1609 year: 2001 ident: 10.1016/j.cmpb.2016.03.002_bib0150 article-title: Nonrigid multimodality image registration – volume: 19 start-page: 42 issue: 3 year: 2000 ident: 10.1016/j.cmpb.2016.03.002_bib0085 article-title: Applying dynamic thermography in the diagnosis of breast cancer publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/51.844379 – volume: 912 start-page: 174 year: 1995 ident: 10.1016/j.cmpb.2016.03.002_bib0245 article-title: The power of decision tables, machine learning: ECML-95 publication-title: Lect. Notes Comput. Sci. doi: 10.1007/3-540-59286-5_57 – start-page: 670 year: 1997 ident: 10.1016/j.cmpb.2016.03.002_bib0080 article-title: Some considerations on the diagnosis of breast cancer by thermography in patients with nonpalpable breast cancer – volume: 196 start-page: 523 issue: 4 year: 2008 ident: 10.1016/j.cmpb.2016.03.002_bib0115 article-title: Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer publication-title: Am. J. Surg. doi: 10.1016/j.amjsurg.2008.06.015 – year: 2012 ident: 10.1016/j.cmpb.2016.03.002_bib0160 article-title: Human cluster evaluation and formal quality measures: a comparative study – volume: 100 start-page: 269 issue: 3 year: 2010 ident: 10.1016/j.cmpb.2016.03.002_bib0230 article-title: Entropy-based feature extraction and decision tree induction for breast cancer diagnosis with standardized thermograph images publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2010.04.014 – volume: 93 start-page: 2785 year: 2013 ident: 10.1016/j.cmpb.2016.03.002_bib0020 article-title: Breast thermography from an image processing viewpoint: a survey publication-title: Signal Process. doi: 10.1016/j.sigpro.2012.08.012 – start-page: 847 year: 2013 ident: 10.1016/j.cmpb.2016.03.002_bib0060 article-title: Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms – volume: PAMI-1 start-page: 224 issue: 2 year: 1979 ident: 10.1016/j.cmpb.2016.03.002_bib0050 article-title: A cluster separation measure publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1979.4766909 – volume: 41 start-page: 2279 issue: 12 year: 2012 ident: 10.1016/j.cmpb.2016.03.002_bib0165 article-title: A dendrite method for cluster analysis by caliński and harabasz: a classical work that is far too often incorrectly cited publication-title: Commun. Stat. – Theory Methods doi: 10.1080/03610926.2011.560741 – year: 2006 ident: 10.1016/j.cmpb.2016.03.002_bib0235 – volume: 11 start-page: 10 issue: 1 year: 2009 ident: 10.1016/j.cmpb.2016.03.002_bib0220 article-title: The weka data mining software: an update publication-title: SIGKDD Explor. doi: 10.1145/1656274.1656278 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.cmpb.2016.03.002_bib0240 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 5 start-page: 176 year: 2014 ident: 10.1016/j.cmpb.2016.03.002_bib0135 article-title: Wavelet-based multifractal analysis of dynamic infrared thermograms to assist in early breast cancer diagnosis publication-title: Front. Physiol. doi: 10.3389/fphys.2014.00176 – volume: 12 start-page: 241 year: 2002 ident: 10.1016/j.cmpb.2016.03.002_bib0185 article-title: Evaluation and comparison of clustering algorithms in anglying es cell gene expression data publication-title: Stat. Sin. – volume: 3 issue: 7 year: 2002 ident: 10.1016/j.cmpb.2016.03.002_bib0170 article-title: A prediction-based resampling method for estimating the number of clusters in a dataset publication-title: Genome Biol. doi: 10.1186/gb-2002-3-7-research0036 – volume: 20 start-page: 80 issue: 5 year: 2001 ident: 10.1016/j.cmpb.2016.03.002_bib0095 article-title: Detection of cancerous breasts by dynamic area telethermometry publication-title: Eng. Med. Biol. Mag. IEEE doi: 10.1109/51.956823 – volume: 20 start-page: 53 issue: 0 year: 1987 ident: 10.1016/j.cmpb.2016.03.002_bib0045 article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis publication-title: J. Comput. Appl. Math. doi: 10.1016/0377-0427(87)90125-7 – volume: 29 start-page: 1882 issue: 11 year: 2010 ident: 10.1016/j.cmpb.2016.03.002_bib0140 article-title: Intensity-based image registration by minimizing residual complexity publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2010.2053043 – volume: 49 start-page: 3105 issue: 14 year: 2004 ident: 10.1016/j.cmpb.2016.03.002_bib0110 article-title: Dynamic infrared imaging for the detection of malignancy publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/49/14/005 – volume: 19 start-page: 58 issue: 3 year: 2000 ident: 10.1016/j.cmpb.2016.03.002_bib0090 article-title: The potential of dynamic area telethermometry in assessing breast cancer publication-title: Eng. Med. Biol. Mag. IEEE doi: 10.1109/51.844381 – volume: 19 start-page: 1787 issue: 14 year: 2003 ident: 10.1016/j.cmpb.2016.03.002_bib0190 article-title: Click and expander: a system for clustering and visualizing gene expression data publication-title: J. Classif. – year: 2001 ident: 10.1016/j.cmpb.2016.03.002_bib0145 – volume: 13 start-page: 1330001 issue: 2 year: 2013 ident: 10.1016/j.cmpb.2016.03.002_bib0015 article-title: Breast thermography as a potential non-contact method in the early detection of cancer: a review publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519413300019 – volume: 45 start-page: 153 issue: 2 year: 2006 ident: 10.1016/j.cmpb.2016.03.002_bib0195 article-title: Estimating the number of clusters in dna microarray data publication-title: Methods Inf. Med. doi: 10.1055/s-0038-1634059 – volume: 104 issue: 6 year: 2013 ident: 10.1016/j.cmpb.2016.03.002_bib0125 article-title: Multifractal analysis of dynamic infrared imaging of breast cancer publication-title: Europhys. Lett. doi: 10.1209/0295-5075/104/68001 – volume: 8 start-page: 177 issue: 2 year: 2013 ident: 10.1016/j.cmpb.2016.03.002_bib0030 article-title: The role of dynamic infrared imaging in melanoma diagnosis publication-title: Expert Rev. Dermatol. doi: 10.1586/edm.13.15 – volume: 36 start-page: 535 issue: 6 year: 2010 ident: 10.1016/j.cmpb.2016.03.002_bib0120 article-title: The accuracy of digital infrared imaging for breast cancer detection in women undergoing breast biopsy publication-title: Eur. J. Surg. Oncol. doi: 10.1016/j.ejso.2010.04.003 – volume: 4 start-page: 92 issue: 1 year: 2014 ident: 10.1016/j.cmpb.2016.03.002_bib0035 article-title: A new database for breast research with infrared image publication-title: J. Med. Imaging Health Inform. doi: 10.1166/jmihi.2014.1226 – volume: 33 start-page: 141 issue: 2 year: 2009 ident: 10.1016/j.cmpb.2016.03.002_bib0075 article-title: Comparative study on the use of analytical software to identify the different stages of breast cancer using discrete temperature data publication-title: J. Med. Syst. doi: 10.1007/s10916-008-9174-4 – start-page: 281 year: 1967 ident: 10.1016/j.cmpb.2016.03.002_bib0040 article-title: Some methods for classification and analysis of multivariate observations – volume: 44 start-page: 23 issue: 1 year: 1988 ident: 10.1016/j.cmpb.2016.03.002_bib0175 article-title: A criterion for determining the number of groups in a data set using sum-of-squares clustering publication-title: Biometrics doi: 10.2307/2531893 |
| SSID | ssj0002556 |
| Score | 2.3587172 |
| Snippet | •We have proposed a hybrid automatic method for identifying patients with breast cancer, supporting human experts.•We have applied learning techniques... Highlights • We have proposed a hybrid automatic method for identifying patients with breast cancer, supporting human experts. • We have applied learning... Breast cancer is the most common cancer among women worldwide. Diagnosis and treatment in early stages increase cure chances. The temperature of cancerous... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 142 |
| SubjectTerms | Algorithms Bayesian analysis Breast Breast cancer Breast Neoplasms - diagnosis Cancer Classification Cluster Analysis Dynamic infrared thermography Female Humans Internal Medicine Machine learning Methodology Models, Biological Other Patients Temperature time series Thermography Time and Motion Studies |
| Title | Hybrid analysis for indicating patients with breast cancer using temperature time series |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0169260715300249 https://www.clinicalkey.es/playcontent/1-s2.0-S0169260715300249 https://dx.doi.org/10.1016/j.cmpb.2016.03.002 https://www.ncbi.nlm.nih.gov/pubmed/27208529 https://www.proquest.com/docview/1790615947 https://www.proquest.com/docview/1808644005 https://www.proquest.com/docview/1825497267 |
| Volume | 130 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: AKRWK dateStart: 19850501 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iIF7Et-uLCN6kbjZt2vQooqyKXlTYW0jSRBTtLnY9ePG3O9OmK6Ku4KXQkknDZDKZZGa-IeTA9EzMXOYjmUiHt1WwpKxIoxhMB2OljX2BF_pX12n_LrkYiMEMOWlzYTCsMuj-RqfX2jp86QZudkcPD90bxBHhCI8m4hr4DjPYkwyrGBy9f4Z5IMRWg--dR9g6JM40MV72eWQwvCttgE75b5vTb8ZnvQmdLZHFYD3S42aAy2TGlStk_ir4x1fJoP-GGVhUB6gRCiYpRa80XsyV9zSgqFYUr1-pwYD0MbU48S8UI-DvKUJVBZxlinXnKYqoq9bI3dnp7Uk_CrUTIiu4HEeeFRYY44TPHUKuWQ9PLTJWMM0Kr2vvS-xNASaU9gnXiTNCC-u4lTwTebxOZsth6TYJNTlzcPBhqe75RPoUutGwqeXSGA4Gn-uQXss0ZQOwONa3eFJtBNmjQkYrZLRisQJGd8jhhGbUwGpMbR23c6HahFFQcQq0_lSq7CcqV4VVWqmeqrhi6pskdYiYUH4Rxj__uN8KioJViq4XXbrhK_wpy9F2zJNsShsJXE5Ap4ppbfBAn_EU-tloJHHCP_SoS8HzrX-Ofpss4FsTi7xDZscvr24XLK6x2auX1B6ZOz6_7F9_AKMwKSE |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa6Dth6KfZss-6hAbsNXhTZsuVjUaxItyaXJUBugiRLRYfVDer0sMt--0hbzlBsyYBefLApWaBIiiKpTwAf7Mim3BchUZnyFK1ClXIyT1J0HaxTLg0VBfQn03w8z74s5GIHTvqzMFRWGW1_Z9Nbax3fDCM3h8vLy-E3whERBI8m0xb47gE8zKQoaAf26defOg_C2OoAvsuEyOPJma7Iy10tLdV35R3Sqdi0Om3yPttV6PQJ7Ef3kR13I3wKO75-Bo8mMUH-HBbjn3QEi5mINcLQJ2WUlqbIXH3BIoxqwyj-yixVpK-Yo5m_YVQCf8EIqyoCLTO6eJ6RjPrmBcxPP89Oxkm8PCFxUqhVEnjlkDNehtIT5poL-DSy4BU3vAqmTb-kwVboQ5mQCZN5K410XjglClmmL2G3vq79ITBbco87H56bUchUyLEbg6taqawV6PH5AYx6pmkXkcXpgosfui8h-66J0ZoYrXmqkdED-Lhus-xwNbZSp_1c6P7EKNo4jWZ_a6viX618E9W00SPdCM31X6I0ALlueUca__vH972gaFRTyr2Y2l_f4p-KkpzHMiu20CjkcoZGVW6joR19IXLs56CTxDX_KKWupChf3XP07-DxeDY51-dn069HsEdfusLk17C7urn1b9D9Wtm3rXr9BkKzKrY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+analysis+for+indicating+patients+with+breast+cancer+using+temperature+time+series&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Silva%2C+Lincoln+F.&rft.au=Santos%2C+Alair+Augusto+S.M.D.&rft.au=Bravo%2C+Renato+S.&rft.au=Silva%2C+Arist%C3%B3fanes+C.&rft.date=2016-07-01&rft.issn=0169-2607&rft.volume=130&rft.spage=142&rft.epage=153&rft_id=info:doi/10.1016%2Fj.cmpb.2016.03.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cmpb_2016_03_002 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon |