Online sensor validation in sensor networks for bioprocess monitoring using swarm intelligence
Sensor faults can impede the functionality of monitoring and control systems for bioprocesses. Hence, suitable systems need to be developed to validate the sensor readings prior to their use in monitoring and control systems. This study presents a novel approach for online validation of sensor readi...
        Saved in:
      
    
          | Published in | Analytical and bioanalytical chemistry Vol. 412; no. 9; pp. 2165 - 2175 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer Berlin Heidelberg
    
        01.04.2020
     Springer Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1618-2642 1618-2650 1618-2650  | 
| DOI | 10.1007/s00216-019-01927-7 | 
Cover
| Abstract | Sensor faults can impede the functionality of monitoring and control systems for bioprocesses. Hence, suitable systems need to be developed to validate the sensor readings prior to their use in monitoring and control systems. This study presents a novel approach for online validation of sensor readings. The basic idea is to compare the original sensor reading with predictions for this sensor reading based on the remaining sensor network’s information. Deviations between original and predicted sensor readings are used to indicate sensor faults. Since especially batch processes show varying lengths and different phases (e.g., lag and exponential phase), prediction models that are dependent on process time are necessary. The binary particle swarm optimization algorithm is used to select the best prediction models for each time step. A regularization approach is utilized to avoid overfitting. Models with high complexity and prediction errors are penalized, resulting in optimal predictions for the sensor reading at each time step (5% mean relative prediction error). The sensor reliability is calculated by the Kullback–Leibler divergence between the distribution of model-based predictions and the distribution of a moving window of original sensor readings (moving window size = 10 readings). The developed system allows for the online detection of sensor faults. This is especially important when sensor data are used as input to soft sensors for critical quality attributes or the process control system. The proof-of-concept is exemplarily shown for a turbidity sensor that is used to monitor a
Pichia pastoris
-batch process. | 
    
|---|---|
| AbstractList | Sensor faults can impede the functionality of monitoring and control systems for bioprocesses. Hence, suitable systems need to be developed to validate the sensor readings prior to their use in monitoring and control systems. This study presents a novel approach for online validation of sensor readings. The basic idea is to compare the original sensor reading with predictions for this sensor reading based on the remaining sensor network’s information. Deviations between original and predicted sensor readings are used to indicate sensor faults. Since especially batch processes show varying lengths and different phases (e.g., lag and exponential phase), prediction models that are dependent on process time are necessary. The binary particle swarm optimization algorithm is used to select the best prediction models for each time step. A regularization approach is utilized to avoid overfitting. Models with high complexity and prediction errors are penalized, resulting in optimal predictions for the sensor reading at each time step (5% mean relative prediction error). The sensor reliability is calculated by the Kullback–Leibler divergence between the distribution of model-based predictions and the distribution of a moving window of original sensor readings (moving window size = 10 readings). The developed system allows for the online detection of sensor faults. This is especially important when sensor data are used as input to soft sensors for critical quality attributes or the process control system. The proof-of-concept is exemplarily shown for a turbidity sensor that is used to monitor a Pichia pastoris-batch process. Sensor faults can impede the functionality of monitoring and control systems for bioprocesses. Hence, suitable systems need to be developed to validate the sensor readings prior to their use in monitoring and control systems. This study presents a novel approach for online validation of sensor readings. The basic idea is to compare the original sensor reading with predictions for this sensor reading based on the remaining sensor network's information. Deviations between original and predicted sensor readings are used to indicate sensor faults. Since especially batch processes show varying lengths and different phases (e.g., lag and exponential phase), prediction models that are dependent on process time are necessary. The binary particle swarm optimization algorithm is used to select the best prediction models for each time step. A regularization approach is utilized to avoid overfitting. Models with high complexity and prediction errors are penalized, resulting in optimal predictions for the sensor reading at each time step (5% mean relative prediction error). The sensor reliability is calculated by the Kullback-Leibler divergence between the distribution of model-based predictions and the distribution of a moving window of original sensor readings (moving window size = 10 readings). The developed system allows for the online detection of sensor faults. This is especially important when sensor data are used as input to soft sensors for critical quality attributes or the process control system. The proof-of-concept is exemplarily shown for a turbidity sensor that is used to monitor a Pichia pastoris-batch process.Sensor faults can impede the functionality of monitoring and control systems for bioprocesses. Hence, suitable systems need to be developed to validate the sensor readings prior to their use in monitoring and control systems. This study presents a novel approach for online validation of sensor readings. The basic idea is to compare the original sensor reading with predictions for this sensor reading based on the remaining sensor network's information. Deviations between original and predicted sensor readings are used to indicate sensor faults. Since especially batch processes show varying lengths and different phases (e.g., lag and exponential phase), prediction models that are dependent on process time are necessary. The binary particle swarm optimization algorithm is used to select the best prediction models for each time step. A regularization approach is utilized to avoid overfitting. Models with high complexity and prediction errors are penalized, resulting in optimal predictions for the sensor reading at each time step (5% mean relative prediction error). The sensor reliability is calculated by the Kullback-Leibler divergence between the distribution of model-based predictions and the distribution of a moving window of original sensor readings (moving window size = 10 readings). The developed system allows for the online detection of sensor faults. This is especially important when sensor data are used as input to soft sensors for critical quality attributes or the process control system. The proof-of-concept is exemplarily shown for a turbidity sensor that is used to monitor a Pichia pastoris-batch process. Sensor faults can impede the functionality of monitoring and control systems for bioprocesses. Hence, suitable systems need to be developed to validate the sensor readings prior to their use in monitoring and control systems. This study presents a novel approach for online validation of sensor readings. The basic idea is to compare the original sensor reading with predictions for this sensor reading based on the remaining sensor network’s information. Deviations between original and predicted sensor readings are used to indicate sensor faults. Since especially batch processes show varying lengths and different phases (e.g., lag and exponential phase), prediction models that are dependent on process time are necessary. The binary particle swarm optimization algorithm is used to select the best prediction models for each time step. A regularization approach is utilized to avoid overfitting. Models with high complexity and prediction errors are penalized, resulting in optimal predictions for the sensor reading at each time step (5% mean relative prediction error). The sensor reliability is calculated by the Kullback–Leibler divergence between the distribution of model-based predictions and the distribution of a moving window of original sensor readings (moving window size = 10 readings). The developed system allows for the online detection of sensor faults. This is especially important when sensor data are used as input to soft sensors for critical quality attributes or the process control system. The proof-of-concept is exemplarily shown for a turbidity sensor that is used to monitor a Pichia pastoris -batch process.  | 
    
| Audience | Academic | 
    
| Author | Klöckner, Lukas Geier, Dominik Ulrich Becker, Thomas Brunner, Vincent Kerpes, Roland  | 
    
| Author_xml | – sequence: 1 givenname: Vincent surname: Brunner fullname: Brunner, Vincent organization: Chair of Brewing and Beverage Technology, Technical University of Munich – sequence: 2 givenname: Lukas surname: Klöckner fullname: Klöckner, Lukas organization: Chair of Brewing and Beverage Technology, Technical University of Munich – sequence: 3 givenname: Roland surname: Kerpes fullname: Kerpes, Roland organization: Chair of Brewing and Beverage Technology, Technical University of Munich – sequence: 4 givenname: Dominik Ulrich surname: Geier fullname: Geier, Dominik Ulrich email: dominik.geier@tum.de organization: Chair of Brewing and Beverage Technology, Technical University of Munich – sequence: 5 givenname: Thomas surname: Becker fullname: Becker, Thomas organization: Chair of Brewing and Beverage Technology, Technical University of Munich  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31286180$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNUk1v1DAQtVARbRf-AAcUiQuXFI8dO8mxqgqtVKkXuGI5yXjl4tiLnbDqv8dptkXqoSDLHn-89zTzxqfkyAePhLwHegaU1p8TpQxkSaFdJqvL-hU5AQlNyaSgR0_7ih2T05TuKAXRgHxDjjmwJr_RE_Lj1jvrsUjoU4jFb-3soCcbfGH946XHaR_iz1SYfOhs2MXQY0rFGLydQrR-W8xpWdNexzETJ3TObtH3-Ja8NtolfHeIG_L9y-W3i6vy5vbr9cX5TdkL1kwlNsAlGmM6KnXLOtm2A2dtTRkaTluoW22qAbASGnQnmw7EoDO2l4ZqROAbwlfd2e_0_V47p3bRjjreK6BqcUutbqnslHpwS9WZ9Wll5Yp-zZgmNdrU5-S1xzAnxSSXVcV5jv-EMlEJaBouMvTjM-hdmKPP5S-orCh41tyQsxW11Q6V9SZMUfd5DDjaPjfa2Hx_LqEWNaOwZPDhIDt3Iw5P9T32MgOaFdDHkFJEo3o7PfQyK1v3shHsGfW_3Dt4nnbLH8D4t84XWH8AwJfSWA | 
    
| CitedBy_id | crossref_primary_10_1002_elsc_202100091 crossref_primary_10_1007_s12257_024_00120_7 crossref_primary_10_3389_fbioe_2021_722202 crossref_primary_10_3390_bioengineering10020229 crossref_primary_10_3390_life11060557 crossref_primary_10_3390_s21041268 crossref_primary_10_1016_j_biortech_2022_128451 crossref_primary_10_1016_j_coche_2024_101027 crossref_primary_10_1016_j_biosx_2022_100263 crossref_primary_10_1021_acs_iecr_3c01897  | 
    
| Cites_doi | 10.1002/cjce.22219 10.1002/14356007.n04_n05 10.1016/S0169-7439(01)00155-1 10.1108/02656711211258508 10.1109/TEVC.2007.896686 10.1021/bp070338y 10.1016/j.chemolab.2004.12.011 10.1214/aoms/1177729694 10.1016/j.jprocont.2004.06.009 10.1002/acs.859 10.1007/978-3-642-01888-6 10.1016/0005-1098(90)90018-D 10.1002/aic.690490716 10.1109/19.963215 10.1109/JSEN.2009.2030284 10.1093/comjnl/bxh142 10.1007/3-540-30368-5 10.1007/s004490050332 10.1016/j.measurement.2013.11.015 10.1080/00207720050197839 10.1385/0-89603-421-6:107 10.1016/j.chemolab.2015.04.012 10.3182/20020721-6-ES-1901.01354 10.1002/aic.690421011 10.1145/1754414.1754419 10.1177/1077546314535947  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2019 COPYRIGHT 2020 Springer Analytical and Bioanalytical Chemistry is a copyright of Springer, (2019). All Rights Reserved.  | 
    
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019 – notice: COPYRIGHT 2020 Springer – notice: Analytical and Bioanalytical Chemistry is a copyright of Springer, (2019). All Rights Reserved.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7U7 7X7 7XB 88E 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K9. KB. KR7 L7M LK8 L~C L~D M0S M1P M7P P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 ADTOC UNPAY  | 
    
| DOI | 10.1007/s00216-019-01927-7 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information Biological Science Collection ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database ProQuest Central Student ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ANTE: Abstracts in New Technology & Engineering Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection Civil Engineering Abstracts Toxicology Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional ProQuest Medical Library Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | Materials Research Database MEDLINE - Academic MEDLINE AGRICOLA  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Chemistry | 
    
| EISSN | 1618-2650 | 
    
| EndPage | 2175 | 
    
| ExternalDocumentID | oai:mediatum.ub.tum.de:node/1518765 A617572016 31286180 10_1007_s00216_019_01927_7  | 
    
| Genre | Journal Article | 
    
| GeographicLocations | Germany | 
    
| GeographicLocations_xml | – name: Germany | 
    
| GrantInformation_xml | – fundername: Bundesministerium für Bildung und Forschung grantid: 031B0475E funderid: http://dx.doi.org/10.13039/501100002347 – fundername: Deutsche Forschungsgemeinschaft grantid: BE 2245/17-1 funderid: http://dx.doi.org/10.13039/501100001659 – fundername: Deutsche Forschungsgemeinschaft grantid: BE 2245/17-1 – fundername: Bundesministerium für Bildung und Forschung grantid: 031B0475E  | 
    
| GroupedDBID | --- -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 199 1N0 203 23M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5VS 67Z 6NX 78A 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJCF ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUHS ACZOJ ADBBV ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP EAD EAP EBD EBLON EBS EIOEI EJD EMK EMOBN EPAXT EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IAO IFM IGS IHE IHR IJ- IKXTQ IMOTQ INH INR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV LAS LK8 LLZTM M1P M4Y M7P MA- ML- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P9N PDBOC PF0 PQQKQ PROAC PSQYO PT4 PT5 QOK QOR QOS R89 R9I RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 T16 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WH7 WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8U Z8V Z8W Z8Z Z91 Z92 ZMTXR ~8M ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ESTFP PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7U7 7XB 8BQ 8FD 8FK AZQEC C1K DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 PKEHL PQEST PQUKI PRINS 7X8 7S9 L.6 ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c528t-e8136efffb06a92b699d329702ef309179af4d1e45a1ab68b15dab06c6f0aee13 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1618-2642 1618-2650  | 
    
| IngestDate | Sun Oct 26 03:52:30 EDT 2025 Fri Sep 05 14:56:03 EDT 2025 Sun Sep 28 08:19:06 EDT 2025 Tue Oct 07 06:23:43 EDT 2025 Mon Oct 20 16:48:51 EDT 2025 Wed Feb 19 02:30:30 EST 2025 Wed Oct 01 00:55:30 EDT 2025 Thu Apr 24 23:13:29 EDT 2025 Fri Feb 21 02:41:13 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 9 | 
    
| Keywords | Sensor fault Sensor network Fault detection Online validation Particle swarm optimization  | 
    
| Language | English | 
    
| License | other-oa | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c528t-e8136efffb06a92b699d329702ef309179af4d1e45a1ab68b15dab06c6f0aee13 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://mediatum.ub.tum.de/node?id=1518765 | 
    
| PMID | 31286180 | 
    
| PQID | 2253645343 | 
    
| PQPubID | 2034506 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s00216_019_01927_7 proquest_miscellaneous_2636443326 proquest_miscellaneous_2254518835 proquest_journals_2253645343 gale_infotracacademiconefile_A617572016 pubmed_primary_31286180 crossref_citationtrail_10_1007_s00216_019_01927_7 crossref_primary_10_1007_s00216_019_01927_7 springer_journals_10_1007_s00216_019_01927_7  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2020-04-01 | 
    
| PublicationDateYYYYMMDD | 2020-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg  | 
    
| PublicationTitle | Analytical and bioanalytical chemistry | 
    
| PublicationTitleAbbrev | Anal Bioanal Chem | 
    
| PublicationTitleAlternate | Anal Bioanal Chem | 
    
| PublicationYear | 2020 | 
    
| Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V  | 
    
| References | AlagSAgoginoAMMorjariaMA methodology for intelligent sensor measurement, validation, fusion, and fault detection for equipment monitoring and diagnosticsAI EDAM2001154307320 ChongI-GJunC-HPerformance of some variable selection methods when multicollinearity is presentChemom Intell Lab Syst20057811031121:CAS:528:DC%2BD2MXlslWisbs%3D10.1016/j.chemolab.2004.12.011 ZareiJShokriERobust sensor fault detection based on nonlinear unknown input observerMeasurement.20144835536710.1016/j.measurement.2013.11.015 Khanesar MA, Teshnehlab M, Shoorehdeli MA, editors. A novel binary particle swarm optimization. Control & Automation, 2007. MED’07. Mediterranean conference on; 2007: IEEE. FeitalTPintoJCUse of variance spectra for in-line validation of process measurements in continuous processesCan J Chem Eng2015938142614371:CAS:528:DC%2BC2MXps1elsbw%3D10.1002/cjce.22219 GouldingPRLennoxBSandozDJSmithKJMarjanovicOFault detection in continuous processes using multivariate statistical methodsInt J Syst Sci200031111459147110.1080/00207720050197839 ZhangHQYanYA wavelet-based approach to abrupt fault detection and diagnosis of sensorsIEEE Trans Instrum Meas20015051389139610.1109/19.963215 KourtiTApplication of latent variable methods to process control and multivariate statistical process control in industryInt J Adapt Control Signal Process200519421324610.1002/acs.859 Del ValleYVenayagamoorthyGKMohagheghiSHernandezJ-CHarleyRGParticle swarm optimization: basic concepts, variants and applications in power systemsIEEE Trans Evol Comput200812217119510.1109/TEVC.2007.896686 Guo T-H, Nurre J, editors. Sensor failure detection and recovery by neural networks. Neural Networks, 1991., IJCNN-91-Seattle international joint conference on; 1991: IEEE. MehranbodNSoroushMPiovosoMOgunnaikeBAProbabilistic model for sensor fault detection and identificationAIChE J2003497178718021:CAS:528:DC%2BD3sXlsV2rsbk%3D10.1002/aic.690490716 MehranbodNSoroushMPanjapornponCA method of sensor fault detection and identificationJ Process Control20051533213391:CAS:528:DC%2BD2cXhtVKgu7zJ10.1016/j.jprocont.2004.06.009 Kennedy J, Eberhart RC, editors. A discrete binary version of the particle swarm algorithm. Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation., 1997 IEEE international conference on; 1997: IEEE. IbargüengoytiaPHVaderaSSucarLEA probabilistic model for information and sensor validationComput J200549111312610.1093/comjnl/bxh142 Harms J, Wang X, Kim T, Yang X, Rathore AS. Defining process design space for biotech products: case study of Pichia pastoris fermentation. Biotechnol Prog. 2008;24(3):655–62. ShiYEberhartRCParameter selection in particle swarm optimization. International conference on evolutionary programming1998BerlinSpringer Sharma AB, Golubchik L, Govindan R. Sensor faults: detection methods and prevalence in real-world datasets. ACM TOSN. 2010;6(3):23. Isermann R. Fault-diagnosis systems: an introduction from fault detection to fault tolerance: Springer Science & Business Media; 2006. DuniaRQinSJEdgarTFMcAvoyTJIdentification of faulty sensors using principal component analysisAIChE J19964210279728121:CAS:528:DyaK28XmtFKktbc%3D10.1002/aic.690421011 NicolettiMJainLGiordanoRComputational intelligence techniques as tools for bioprocess modelling, optimization, supervision and control. Computational intelligence techniques for bioprocess modelling, supervision and control2009BerlinSpringer12310.1007/978-3-642-01888-6 KullbackSLeiblerRAOn information and sufficiencyAnn Math Stat1951221798610.1214/aoms/1177729694 KrauseDHusseinMBeckerTOnline monitoring of bioprocesses via multivariate sensor prediction within swarm intelligence decision makingChemom Intell Lab Syst201514548591:CAS:528:DC%2BC2MXnsF2hu7g%3D10.1016/j.chemolab.2015.04.012 Becker T, Breithaupt D, Doelle HW, Fiechter A, Schlegel G, Shimizu S, et al. Biotechnology, 5. Monitoring and modeling of bioprocesses. Ullmann’s encyclopedia of industrial chemistry. 2009. BalabanESaxenaABansalPGoebelKFCurranSModeling, detection, and disambiguation of sensor faults for aerospace applicationsIEEE Sensors J20099121907191710.1109/JSEN.2009.2030284 Stratton J, Chiruvolu V, Meagher M. High cell-density fermentation. Pichia protocols. Berlin: Springer; 1998. p. 107–20. ChaY-JAgrawalAKRobustness studies of sensor faults and noises for semi-active control strategies using large-scale magnetorheological dampersJ Vib Control20162251228124310.1177/1077546314535947 Ündey C, Williams BA, Cınar A. Monitoring of batch pharmaceutical fermentations: data synchronization, landmark alignment, and real-time monitoring. IFAC Proc Vol. 2002;35(1):271–6. WoldSSjöströmMErikssonLPLS-regression: a basic tool of chemometricsChemom Intell Lab Syst20015821091301:CAS:528:DC%2BD3MXotF2mtLw%3D10.1016/S0169-7439(01)00155-1 FrankPMFault diagnosis in dynamic systems using analytical and knowledge-based redundancy: a survey and some new resultsAutomatica.199026345947410.1016/0005-1098(90)90018-D GregoryMThornhillNThe effects of aeration and agitation on the measurement of yeast biomass using a laser turbidity probeBioprocess Eng19971663393441:CAS:528:DyaK2sXjsF2rsLw%3D10.1007/s004490050332 DasAMaitiJBanerjeeRProcess monitoring and fault detection strategies: a reviewInt J Qual Reliab Manag201229772075210.1108/02656711211258508 (1927_CR29) 1998 Y-J Cha (1927_CR5) 2016; 22 I-G Chong (1927_CR25) 2005; 78 R Dunia (1927_CR17) 1996; 42 1927_CR10 PM Frank (1927_CR20) 1990; 26 N Mehranbod (1927_CR14) 2005; 15 T Feital (1927_CR7) 2015; 93 1927_CR15 D Krause (1927_CR13) 2015; 145 PH Ibargüengoytia (1927_CR19) 2005; 49 M Gregory (1927_CR31) 1997; 16 M Nicoletti (1927_CR1) 2009 HQ Zhang (1927_CR6) 2001; 50 A Das (1927_CR9) 2012; 29 S Alag (1927_CR18) 2001; 15 1927_CR21 PR Goulding (1927_CR12) 2000; 31 1927_CR22 1927_CR23 1927_CR24 1927_CR27 1927_CR2 N Mehranbod (1927_CR4) 2003; 49 Y Del Valle (1927_CR28) 2008; 12 1927_CR8 T Kourti (1927_CR11) 2005; 19 S Kullback (1927_CR30) 1951; 22 J Zarei (1927_CR16) 2014; 48 S Wold (1927_CR26) 2001; 58 E Balaban (1927_CR3) 2009; 9  | 
    
| References_xml | – reference: Kennedy J, Eberhart RC, editors. A discrete binary version of the particle swarm algorithm. Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation., 1997 IEEE international conference on; 1997: IEEE. – reference: Del ValleYVenayagamoorthyGKMohagheghiSHernandezJ-CHarleyRGParticle swarm optimization: basic concepts, variants and applications in power systemsIEEE Trans Evol Comput200812217119510.1109/TEVC.2007.896686 – reference: ChaY-JAgrawalAKRobustness studies of sensor faults and noises for semi-active control strategies using large-scale magnetorheological dampersJ Vib Control20162251228124310.1177/1077546314535947 – reference: Isermann R. Fault-diagnosis systems: an introduction from fault detection to fault tolerance: Springer Science & Business Media; 2006. – reference: MehranbodNSoroushMPanjapornponCA method of sensor fault detection and identificationJ Process Control20051533213391:CAS:528:DC%2BD2cXhtVKgu7zJ10.1016/j.jprocont.2004.06.009 – reference: Ündey C, Williams BA, Cınar A. Monitoring of batch pharmaceutical fermentations: data synchronization, landmark alignment, and real-time monitoring. IFAC Proc Vol. 2002;35(1):271–6. – reference: MehranbodNSoroushMPiovosoMOgunnaikeBAProbabilistic model for sensor fault detection and identificationAIChE J2003497178718021:CAS:528:DC%2BD3sXlsV2rsbk%3D10.1002/aic.690490716 – reference: KourtiTApplication of latent variable methods to process control and multivariate statistical process control in industryInt J Adapt Control Signal Process200519421324610.1002/acs.859 – reference: Stratton J, Chiruvolu V, Meagher M. High cell-density fermentation. Pichia protocols. Berlin: Springer; 1998. p. 107–20. – reference: IbargüengoytiaPHVaderaSSucarLEA probabilistic model for information and sensor validationComput J200549111312610.1093/comjnl/bxh142 – reference: Sharma AB, Golubchik L, Govindan R. Sensor faults: detection methods and prevalence in real-world datasets. ACM TOSN. 2010;6(3):23. – reference: ZhangHQYanYA wavelet-based approach to abrupt fault detection and diagnosis of sensorsIEEE Trans Instrum Meas20015051389139610.1109/19.963215 – reference: DuniaRQinSJEdgarTFMcAvoyTJIdentification of faulty sensors using principal component analysisAIChE J19964210279728121:CAS:528:DyaK28XmtFKktbc%3D10.1002/aic.690421011 – reference: ChongI-GJunC-HPerformance of some variable selection methods when multicollinearity is presentChemom Intell Lab Syst20057811031121:CAS:528:DC%2BD2MXlslWisbs%3D10.1016/j.chemolab.2004.12.011 – reference: BalabanESaxenaABansalPGoebelKFCurranSModeling, detection, and disambiguation of sensor faults for aerospace applicationsIEEE Sensors J20099121907191710.1109/JSEN.2009.2030284 – reference: NicolettiMJainLGiordanoRComputational intelligence techniques as tools for bioprocess modelling, optimization, supervision and control. Computational intelligence techniques for bioprocess modelling, supervision and control2009BerlinSpringer12310.1007/978-3-642-01888-6 – reference: Guo T-H, Nurre J, editors. Sensor failure detection and recovery by neural networks. Neural Networks, 1991., IJCNN-91-Seattle international joint conference on; 1991: IEEE. – reference: KullbackSLeiblerRAOn information and sufficiencyAnn Math Stat1951221798610.1214/aoms/1177729694 – reference: WoldSSjöströmMErikssonLPLS-regression: a basic tool of chemometricsChemom Intell Lab Syst20015821091301:CAS:528:DC%2BD3MXotF2mtLw%3D10.1016/S0169-7439(01)00155-1 – reference: KrauseDHusseinMBeckerTOnline monitoring of bioprocesses via multivariate sensor prediction within swarm intelligence decision makingChemom Intell Lab Syst201514548591:CAS:528:DC%2BC2MXnsF2hu7g%3D10.1016/j.chemolab.2015.04.012 – reference: ShiYEberhartRCParameter selection in particle swarm optimization. International conference on evolutionary programming1998BerlinSpringer – reference: FrankPMFault diagnosis in dynamic systems using analytical and knowledge-based redundancy: a survey and some new resultsAutomatica.199026345947410.1016/0005-1098(90)90018-D – reference: GouldingPRLennoxBSandozDJSmithKJMarjanovicOFault detection in continuous processes using multivariate statistical methodsInt J Syst Sci200031111459147110.1080/00207720050197839 – reference: Khanesar MA, Teshnehlab M, Shoorehdeli MA, editors. A novel binary particle swarm optimization. Control & Automation, 2007. MED’07. Mediterranean conference on; 2007: IEEE. – reference: Harms J, Wang X, Kim T, Yang X, Rathore AS. Defining process design space for biotech products: case study of Pichia pastoris fermentation. Biotechnol Prog. 2008;24(3):655–62. – reference: Becker T, Breithaupt D, Doelle HW, Fiechter A, Schlegel G, Shimizu S, et al. Biotechnology, 5. Monitoring and modeling of bioprocesses. Ullmann’s encyclopedia of industrial chemistry. 2009. – reference: FeitalTPintoJCUse of variance spectra for in-line validation of process measurements in continuous processesCan J Chem Eng2015938142614371:CAS:528:DC%2BC2MXps1elsbw%3D10.1002/cjce.22219 – reference: DasAMaitiJBanerjeeRProcess monitoring and fault detection strategies: a reviewInt J Qual Reliab Manag201229772075210.1108/02656711211258508 – reference: AlagSAgoginoAMMorjariaMA methodology for intelligent sensor measurement, validation, fusion, and fault detection for equipment monitoring and diagnosticsAI EDAM2001154307320 – reference: GregoryMThornhillNThe effects of aeration and agitation on the measurement of yeast biomass using a laser turbidity probeBioprocess Eng19971663393441:CAS:528:DyaK2sXjsF2rsLw%3D10.1007/s004490050332 – reference: ZareiJShokriERobust sensor fault detection based on nonlinear unknown input observerMeasurement.20144835536710.1016/j.measurement.2013.11.015 – volume-title: Parameter selection in particle swarm optimization. International conference on evolutionary programming year: 1998 ident: 1927_CR29 – volume: 93 start-page: 1426 issue: 8 year: 2015 ident: 1927_CR7 publication-title: Can J Chem Eng doi: 10.1002/cjce.22219 – ident: 1927_CR8 doi: 10.1002/14356007.n04_n05 – volume: 58 start-page: 109 issue: 2 year: 2001 ident: 1927_CR26 publication-title: Chemom Intell Lab Syst doi: 10.1016/S0169-7439(01)00155-1 – volume: 29 start-page: 720 issue: 7 year: 2012 ident: 1927_CR9 publication-title: Int J Qual Reliab Manag doi: 10.1108/02656711211258508 – volume: 15 start-page: 307 issue: 4 year: 2001 ident: 1927_CR18 publication-title: AI EDAM – volume: 12 start-page: 171 issue: 2 year: 2008 ident: 1927_CR28 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2007.896686 – ident: 1927_CR22 doi: 10.1021/bp070338y – volume: 78 start-page: 103 issue: 1 year: 2005 ident: 1927_CR25 publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2004.12.011 – volume: 22 start-page: 79 issue: 1 year: 1951 ident: 1927_CR30 publication-title: Ann Math Stat doi: 10.1214/aoms/1177729694 – volume: 15 start-page: 321 issue: 3 year: 2005 ident: 1927_CR14 publication-title: J Process Control doi: 10.1016/j.jprocont.2004.06.009 – volume: 19 start-page: 213 issue: 4 year: 2005 ident: 1927_CR11 publication-title: Int J Adapt Control Signal Process doi: 10.1002/acs.859 – start-page: 1 volume-title: Computational intelligence techniques as tools for bioprocess modelling, optimization, supervision and control. Computational intelligence techniques for bioprocess modelling, supervision and control year: 2009 ident: 1927_CR1 doi: 10.1007/978-3-642-01888-6 – volume: 26 start-page: 459 issue: 3 year: 1990 ident: 1927_CR20 publication-title: Automatica. doi: 10.1016/0005-1098(90)90018-D – ident: 1927_CR21 – volume: 49 start-page: 1787 issue: 7 year: 2003 ident: 1927_CR4 publication-title: AIChE J doi: 10.1002/aic.690490716 – volume: 50 start-page: 1389 issue: 5 year: 2001 ident: 1927_CR6 publication-title: IEEE Trans Instrum Meas doi: 10.1109/19.963215 – volume: 9 start-page: 1907 issue: 12 year: 2009 ident: 1927_CR3 publication-title: IEEE Sensors J doi: 10.1109/JSEN.2009.2030284 – volume: 49 start-page: 113 issue: 1 year: 2005 ident: 1927_CR19 publication-title: Comput J doi: 10.1093/comjnl/bxh142 – ident: 1927_CR10 doi: 10.1007/3-540-30368-5 – volume: 16 start-page: 339 issue: 6 year: 1997 ident: 1927_CR31 publication-title: Bioprocess Eng doi: 10.1007/s004490050332 – volume: 48 start-page: 355 year: 2014 ident: 1927_CR16 publication-title: Measurement. doi: 10.1016/j.measurement.2013.11.015 – volume: 31 start-page: 1459 issue: 11 year: 2000 ident: 1927_CR12 publication-title: Int J Syst Sci doi: 10.1080/00207720050197839 – ident: 1927_CR23 doi: 10.1385/0-89603-421-6:107 – volume: 145 start-page: 48 year: 2015 ident: 1927_CR13 publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2015.04.012 – ident: 1927_CR24 doi: 10.3182/20020721-6-ES-1901.01354 – ident: 1927_CR15 – volume: 42 start-page: 2797 issue: 10 year: 1996 ident: 1927_CR17 publication-title: AIChE J doi: 10.1002/aic.690421011 – ident: 1927_CR2 doi: 10.1145/1754414.1754419 – volume: 22 start-page: 1228 issue: 5 year: 2016 ident: 1927_CR5 publication-title: J Vib Control doi: 10.1177/1077546314535947 – ident: 1927_CR27  | 
    
| SSID | ssj0015816 | 
    
| Score | 2.3907037 | 
    
| Snippet | Sensor faults can impede the functionality of monitoring and control systems for bioprocesses. Hence, suitable systems need to be developed to validate the... | 
    
| SourceID | unpaywall proquest gale pubmed crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 2165 | 
    
| SubjectTerms | Advances in Process Analytics and Control Technology Algorithms Analysis Analytical Chemistry Artificial Intelligence Batch Cell Culture Techniques - instrumentation Batch processes Batch processing Biochemistry bioprocessing Bioreactors Biosensing Techniques - instrumentation Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Control systems Divergence Equipment Design Error detection Fault detection Food Science Intelligence Internet Laboratory Medicine Mathematical optimization Models, Biological Monitoring Monitoring/Environmental Analysis On-line systems Particle swarm optimization Pichia pastoris prediction Prediction models Process control Process controls processing time Quality management Regularization Research Paper Saccharomycetales - cytology Saccharomycetales - metabolism Sensors Swarm intelligence swarms Time dependence Turbidity Yeast  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7aFwQLwJFGQkJA40IrFjJzkgVKpWFRIrhKjUE5Ht2NVK22TZhyr-PTPOowuHFdfESRzPZ8_YM_MNwFvDEbTGUcayVHHGuYtLy3Wco7q3Voha1nSg_3Wqzi-yL5fycg-mQy4MhVUOa2JYqOvW0hn5B8QdecxEJj4tfsVUNYq8q0MJDd2XVqg_BoqxO7DPiRlrAvufT6ffvo9-BVmEYqjEEk-xXbxPownJdKTuaHdN8UMlz-P8L1X174K9pbFGF-o9ONg0C_37Rs_nW1rq7AHc781Ldtzh4SHsueYRHJwMVd0ew8-OW5StcPvaLhnibNZVVWKzZrjYdKHhK4YGLTOzdtElE7DrMP-pE4zC5a_Y6kYvr9lsi9XzCVycnf44OY_7GguxlbxYx65IhXLee5MoXXKjyrIWvMwT7rxAWyIvtc_q1GVSp9qowqSy1tjWKp9o51LxFCZN27jnwHhRZNblpnRFnSWeG4-Ge5kKqxPvZW0jSIfhrGxPQE51MObVSJ0cRFDh8FdBBFUewfvxmUVHv7Gz9TuSUkVzE99sdZ9igP0jlqvqGM01maPJoyI4HARZ9ZN2Vd1CLII3422UD_lQdOPaTWiTEYedkDvaKHwN8cLhZ551IBk7L9AeQPAlERwNqLntwK4_OxqR9R8D8WL3772Eu5yODUIA0iFM1suNe4W21dq87ifMH74LHX0 priority: 102 providerName: ProQuest – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_0fDh9OPw8e54SQfDBK7RJkzaPy-FxCPrkwj0ZkjSRhb3ust3l8L93pl-uIou-ttN0mplkJp2Z3wC8cxyV1gWqWJYqLTgPqfbcpiWae--FqGVNP_Q_f1HX8-LTjbwZisLaMdt9DEl2O_VU7EbmiE6_lN-jeZmW9-GBJDgv1OI5n02xA1l1DU8JCZ7yt_hQKvP3MX4zR39uyntWaQqTPoLjXbO2P-7scrlnia4ew8ngQrJZL_MncC80T-H4cuzc9gy-9fihrMUj6mrDUJcWfecktmjGi02f_t0ydFqZW6zWfcEAu-3WODHBKCX-O2vv7OaWLfaQO5_D_Orj18vrdOijkHrJq20aqlyoEGN0mbKaO6V1LbguMx6iQH-h1DYWdR4KaXPrVOVyWVuk9SpmNoRcvICjZtWEl8B4VRU-lE6Hqi6yyF1E51znwtssRln7BPJxOo0fQMap18XSTPDInQgMTr_pRGDKBD5Mz6x7iI2D1O9JSobWH47s7VBGgPwRkpWZoUsmS3RrVALnoyDNsDBbg9sXBV5FIRJ4O91G-VCcxDZhtetoCsKpE_IAjcJhCPsNX3PaK8nEvECbj8qXJXAxas0vBg592cWkWf8wEWf_N_oreMjpV0GXdHQOR9vNLrxGf2rr3nTL5ydIqhPr priority: 102 providerName: Springer Nature  | 
    
| Title | Online sensor validation in sensor networks for bioprocess monitoring using swarm intelligence | 
    
| URI | https://link.springer.com/article/10.1007/s00216-019-01927-7 https://www.ncbi.nlm.nih.gov/pubmed/31286180 https://www.proquest.com/docview/2253645343 https://www.proquest.com/docview/2254518835 https://www.proquest.com/docview/2636443326 http://mediatum.ub.tum.de/node?id=1518765  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 412 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1618-2650 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0015816 issn: 1618-2650 databaseCode: ABDBF dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1618-2650 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0015816 issn: 1618-2650 databaseCode: A8Z dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1618-2650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015816 issn: 1618-2650 databaseCode: AFBBN dateStart: 18621201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1618-2650 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0015816 issn: 1618-2650 databaseCode: 7X7 dateStart: 20130101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1618-2650 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0015816 issn: 1618-2650 databaseCode: BENPR dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1618-2650 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0015816 issn: 1618-2650 databaseCode: 8FG dateStart: 20130101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1618-2650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015816 issn: 1618-2650 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1618-2650 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015816 issn: 1618-2650 databaseCode: U2A dateStart: 20020101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-x9mHwwPdHYUxGQuKBZUvs2Ekey9RuAlFNiErdC5HtOKiiTat-aIK_nrskTQtIBV6SKLkkdu7s-zm--xngteFotMZRxrJUXsi58xLLtRehu7dWiExm9EP_40BdDsP3IznakkWX6RKr9ZTiLWiXubNilrlytlQG2HLlAbSVRNjdgvZwcNW9pgGVCmKK1OLbY-nXCTJlmhw5Mho3U2RQwiMv-sUJ_d4V7_iiZnL0Dhyui7n-fqMnkx3_079XRW4tS9pCCjv5drpemVP7409Sx79X7T7crVEo61Zm8wBuueIhHJ5vFn97BF8qClK2xFHubMHQHMfV4ktsXGxOFlUE-ZIh7mVmPJtXOQdsWnYTVCNGUfVf2fJGL6ZsvEP--RiG_d7n80uvXorBs5LHK8_FgVAuz3PjK51wo5IkEzyJfO5ygZAjSnQeZoELpQ60UbEJZKZR1qrc184F4gm0ilnhngHjcRxaF5nExVno59zkiO-TQFjt57nMbAeCjW5SW_OU03IZk7RhWC71maIu01KfadSBt80984qlY6_0G1J5Sk0Yn2x1nYmA5SMyrLSLqE5GiIxUB442VpHWbXuZYg9Ic7ciFB141VxG_dBUiy7cbF3KhER1J-QeGYWPIfo4fM3TyuKawguEDWjJfgdONia4LcC-mp00ZvoPH-L5_4m_gNuc_jaUcUtH0Fot1u4lQrKVOYaDaBThNu5fHEO7e3H9oYf7d73B1Sc8O-Td47q5_gRDDjOT | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9rBwQLwJFDASiAONSGzndahQKa22tF0h1Eo9ERzHRittk2Wzq1X_HL-Nmby6cFhx6TVxHMczmYdn5huANxlHps0MVSwHoSs5N26iuXIjVPdaC5EHOR3on47C4bn8chFcbMDvrhaG0io7mVgL6rzUdEb-AfmOImZCio_TXy51jaLoatdCQ7WtFfLdGmKsLew4NldLdOGq3aPPSO-3nB8enO0P3bbLgKsDHs9dE_siNNbazAtVwrMwSXLBk8jjxgrUplGirMx9IwPlqyyMMz_IFY7VofWUMb7AeW_BlhQyQedv69PB6Ou3Po4RxHXzVUKlp1wy3pbt1MV7pF7Jm6d8pYRHbvSXavxXQaxoyD5kewcGi2KqrpZqMlnRiof34G5rzrK9hv_uw4YpHsBgv-si9xC-N1imrEJ3uZwx5Otx08WJjYvuYtGkolcMDWiWjctpU7zALmt5Q4tglJ7_k1VLNbtk4xUU0UdwfiO7_Rg2i7IwT4HxOJbaRFli4lx6lmcWHYXEF1p51ga5dsDvtjPVLeA59d2YpD1Uc02CFLc_rUmQRg6875-ZNnAfa0e_IyqlJAtwZq3akgZcH6FqpXtoHgYRmlihA9sdIdNWSFTpNUs78Lq_jfShmI0qTLmox0jCzBPBmjEhTkM4dPiaJw2T9IsXaH8g83kO7HRcc72AdV-203PWf2zEs_Wf9woGw7PTk_TkaHT8HG5zOrKok5-2YXM-W5gXaNfNs5ftz8Pgx03_r38A8PpbVw | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlE4IN4NFDASiAONmthJHB8QqlpWLYWKA5X2ROo4Nlppm2z3oVX_Gr-Omby6cFhx6TVxHNvzeR72PADe5hxBm1uKWI4TP-Lc-spw7UsU98YIUcQFHeh_O02OzqIvw3i4Ab-7WBhyq-x4Ys2oi8rQGfke4o5uzEQk9lzrFvH9cPBpculTBSm6ae3KaTQQObFXSzTfZh-PD5HW7zgffP5xcOS3FQZ8E_N07ts0FIl1zuVBohXPE6UKwZUMuHUCJalU2kVFaKNYhzpP0jyMC41tTeICbW0osN9bcFsKocidUA57Yy-M07rsKuWjJy8y3gbs1GF7JFjJjidPJcWlL_8Siv-KhhXZ2F_W3oOtRTnRV0s9Hq_Iw8EDuN8qsmy_Qd5D2LDlI9g66OrHPYafTRZTNkNDuZoyRPSoqd_ERmX3sGyc0GcMVWeWj6pJE7bALmpOQ4Ng5Jj_i82WenrBRiv5Q5_A2Y2s9VPYLKvSbgPjaRoZK3Nl0yIKHM8dmggqFEYHzsWF8SDsljMzbapzqrgxzvokzTUJMlz-rCZBJj340H8zaRJ9rG39nqiUERfAno1ugxlwfJRPK9tHxTCWqFwlHux0hMxa9jDLrsHswZv-NdKHbmt0aatF3SaibHkiXtMmwW4oAx3-5lkDkn7wAjUPBF_gwW6HmusBrJvZbo-s_1iI5-un9xru4C7Nvh6fnryAu5zOKmqvpx3YnE8X9iUqdPP8Vb1zGJzf9Fb9A17-WPE | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgeygcKG8CBRkJiQNNSezYSY6rqlWFRMWBlcqFyHbsasVustokquDXM5PXbou0wClRMknszNjz2Z75TMg7zcBotcWMZSH9iDHrp4YpPwZ3bwznuchxQv_zhTyfRZ8uxeWGLLpNl6ibJcZb4CG3H4syt-1qqQih5Yq7ZE8KgN0Tsje7-DL9hgMqGSYYqcU25yLoE2TaNDl0ZDhuxsiglMV-fMMJ3e6Kt3zRuDh6n-w3xUr9vFaLxZb_OTvoIreqlrYQw05-HDe1Pja__iR1_HvVHpIHPQql085sHpE7tnhM9k-Gzd-ekO8dBSmtYJRbrimY47zbfInOi-Fi0UWQVxRwL9XzctXlHNBl201gjShG1V_R6lqtl3S-Rf75lMzOTr-enPv9Vgy-ESypfZuEXFrnnA6kSpmWaZpzlsYBs44D5IhT5aI8tJFQodIy0aHIFcga6QJlbcifkUlRFvYFoSxJImNjndokjwLHtAN8n4bcqMA5kRuPhINuMtPzlON2GYtsZFhu9ZmBLrNWn1nskQ_jM6uOpWOn9HtUeYZNGN5sVJ-JAOVDMqxsCqhOxICMpEcOB6vI-rZdZdAD4totj7hH3o63QT-41KIKWzatTIRUd1zskJHwGqSPg8887yxuLDwH2ACWHHjkaDDBTQF21exoNNN_-BEv_0_8FbnHcLahjVs6JJN63djXAMlq_aZvjL8B3WMtrw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+sensor+validation+in+sensor+networks+for+bioprocess+monitoring+using+swarm+intelligence&rft.jtitle=Analytical+and+bioanalytical+chemistry&rft.au=Brunner%2C+Vincent&rft.au=Kl%C3%B6ckner%2C+Lukas&rft.au=Kerpes%2C+Roland&rft.au=Geier%2C+Dominik+Ulrich&rft.date=2020-04-01&rft.pub=Springer&rft.issn=1618-2642&rft.volume=412&rft.issue=9&rft.spage=2165&rft_id=info:doi/10.1007%2Fs00216-019-01927-7&rft.externalDocID=A617572016 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1618-2642&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1618-2642&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1618-2642&client=summon |