Online sensor validation in sensor networks for bioprocess monitoring using swarm intelligence

Sensor faults can impede the functionality of monitoring and control systems for bioprocesses. Hence, suitable systems need to be developed to validate the sensor readings prior to their use in monitoring and control systems. This study presents a novel approach for online validation of sensor readi...

Full description

Saved in:
Bibliographic Details
Published inAnalytical and bioanalytical chemistry Vol. 412; no. 9; pp. 2165 - 2175
Main Authors Brunner, Vincent, Klöckner, Lukas, Kerpes, Roland, Geier, Dominik Ulrich, Becker, Thomas
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2020
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1618-2642
1618-2650
1618-2650
DOI10.1007/s00216-019-01927-7

Cover

Abstract Sensor faults can impede the functionality of monitoring and control systems for bioprocesses. Hence, suitable systems need to be developed to validate the sensor readings prior to their use in monitoring and control systems. This study presents a novel approach for online validation of sensor readings. The basic idea is to compare the original sensor reading with predictions for this sensor reading based on the remaining sensor network’s information. Deviations between original and predicted sensor readings are used to indicate sensor faults. Since especially batch processes show varying lengths and different phases (e.g., lag and exponential phase), prediction models that are dependent on process time are necessary. The binary particle swarm optimization algorithm is used to select the best prediction models for each time step. A regularization approach is utilized to avoid overfitting. Models with high complexity and prediction errors are penalized, resulting in optimal predictions for the sensor reading at each time step (5% mean relative prediction error). The sensor reliability is calculated by the Kullback–Leibler divergence between the distribution of model-based predictions and the distribution of a moving window of original sensor readings (moving window size = 10 readings). The developed system allows for the online detection of sensor faults. This is especially important when sensor data are used as input to soft sensors for critical quality attributes or the process control system. The proof-of-concept is exemplarily shown for a turbidity sensor that is used to monitor a Pichia pastoris -batch process.
AbstractList Sensor faults can impede the functionality of monitoring and control systems for bioprocesses. Hence, suitable systems need to be developed to validate the sensor readings prior to their use in monitoring and control systems. This study presents a novel approach for online validation of sensor readings. The basic idea is to compare the original sensor reading with predictions for this sensor reading based on the remaining sensor network’s information. Deviations between original and predicted sensor readings are used to indicate sensor faults. Since especially batch processes show varying lengths and different phases (e.g., lag and exponential phase), prediction models that are dependent on process time are necessary. The binary particle swarm optimization algorithm is used to select the best prediction models for each time step. A regularization approach is utilized to avoid overfitting. Models with high complexity and prediction errors are penalized, resulting in optimal predictions for the sensor reading at each time step (5% mean relative prediction error). The sensor reliability is calculated by the Kullback–Leibler divergence between the distribution of model-based predictions and the distribution of a moving window of original sensor readings (moving window size = 10 readings). The developed system allows for the online detection of sensor faults. This is especially important when sensor data are used as input to soft sensors for critical quality attributes or the process control system. The proof-of-concept is exemplarily shown for a turbidity sensor that is used to monitor a Pichia pastoris-batch process.
Sensor faults can impede the functionality of monitoring and control systems for bioprocesses. Hence, suitable systems need to be developed to validate the sensor readings prior to their use in monitoring and control systems. This study presents a novel approach for online validation of sensor readings. The basic idea is to compare the original sensor reading with predictions for this sensor reading based on the remaining sensor network's information. Deviations between original and predicted sensor readings are used to indicate sensor faults. Since especially batch processes show varying lengths and different phases (e.g., lag and exponential phase), prediction models that are dependent on process time are necessary. The binary particle swarm optimization algorithm is used to select the best prediction models for each time step. A regularization approach is utilized to avoid overfitting. Models with high complexity and prediction errors are penalized, resulting in optimal predictions for the sensor reading at each time step (5% mean relative prediction error). The sensor reliability is calculated by the Kullback-Leibler divergence between the distribution of model-based predictions and the distribution of a moving window of original sensor readings (moving window size = 10 readings). The developed system allows for the online detection of sensor faults. This is especially important when sensor data are used as input to soft sensors for critical quality attributes or the process control system. The proof-of-concept is exemplarily shown for a turbidity sensor that is used to monitor a Pichia pastoris-batch process.Sensor faults can impede the functionality of monitoring and control systems for bioprocesses. Hence, suitable systems need to be developed to validate the sensor readings prior to their use in monitoring and control systems. This study presents a novel approach for online validation of sensor readings. The basic idea is to compare the original sensor reading with predictions for this sensor reading based on the remaining sensor network's information. Deviations between original and predicted sensor readings are used to indicate sensor faults. Since especially batch processes show varying lengths and different phases (e.g., lag and exponential phase), prediction models that are dependent on process time are necessary. The binary particle swarm optimization algorithm is used to select the best prediction models for each time step. A regularization approach is utilized to avoid overfitting. Models with high complexity and prediction errors are penalized, resulting in optimal predictions for the sensor reading at each time step (5% mean relative prediction error). The sensor reliability is calculated by the Kullback-Leibler divergence between the distribution of model-based predictions and the distribution of a moving window of original sensor readings (moving window size = 10 readings). The developed system allows for the online detection of sensor faults. This is especially important when sensor data are used as input to soft sensors for critical quality attributes or the process control system. The proof-of-concept is exemplarily shown for a turbidity sensor that is used to monitor a Pichia pastoris-batch process.
Sensor faults can impede the functionality of monitoring and control systems for bioprocesses. Hence, suitable systems need to be developed to validate the sensor readings prior to their use in monitoring and control systems. This study presents a novel approach for online validation of sensor readings. The basic idea is to compare the original sensor reading with predictions for this sensor reading based on the remaining sensor network’s information. Deviations between original and predicted sensor readings are used to indicate sensor faults. Since especially batch processes show varying lengths and different phases (e.g., lag and exponential phase), prediction models that are dependent on process time are necessary. The binary particle swarm optimization algorithm is used to select the best prediction models for each time step. A regularization approach is utilized to avoid overfitting. Models with high complexity and prediction errors are penalized, resulting in optimal predictions for the sensor reading at each time step (5% mean relative prediction error). The sensor reliability is calculated by the Kullback–Leibler divergence between the distribution of model-based predictions and the distribution of a moving window of original sensor readings (moving window size = 10 readings). The developed system allows for the online detection of sensor faults. This is especially important when sensor data are used as input to soft sensors for critical quality attributes or the process control system. The proof-of-concept is exemplarily shown for a turbidity sensor that is used to monitor a Pichia pastoris -batch process.
Audience Academic
Author Klöckner, Lukas
Geier, Dominik Ulrich
Becker, Thomas
Brunner, Vincent
Kerpes, Roland
Author_xml – sequence: 1
  givenname: Vincent
  surname: Brunner
  fullname: Brunner, Vincent
  organization: Chair of Brewing and Beverage Technology, Technical University of Munich
– sequence: 2
  givenname: Lukas
  surname: Klöckner
  fullname: Klöckner, Lukas
  organization: Chair of Brewing and Beverage Technology, Technical University of Munich
– sequence: 3
  givenname: Roland
  surname: Kerpes
  fullname: Kerpes, Roland
  organization: Chair of Brewing and Beverage Technology, Technical University of Munich
– sequence: 4
  givenname: Dominik Ulrich
  surname: Geier
  fullname: Geier, Dominik Ulrich
  email: dominik.geier@tum.de
  organization: Chair of Brewing and Beverage Technology, Technical University of Munich
– sequence: 5
  givenname: Thomas
  surname: Becker
  fullname: Becker, Thomas
  organization: Chair of Brewing and Beverage Technology, Technical University of Munich
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31286180$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAQtVARbRf-AAcUiQuXFI8dO8mxqgqtVKkXuGI5yXjl4tiLnbDqv8dptkXqoSDLHn-89zTzxqfkyAePhLwHegaU1p8TpQxkSaFdJqvL-hU5AQlNyaSgR0_7ih2T05TuKAXRgHxDjjmwJr_RE_Lj1jvrsUjoU4jFb-3soCcbfGH946XHaR_iz1SYfOhs2MXQY0rFGLydQrR-W8xpWdNexzETJ3TObtH3-Ja8NtolfHeIG_L9y-W3i6vy5vbr9cX5TdkL1kwlNsAlGmM6KnXLOtm2A2dtTRkaTluoW22qAbASGnQnmw7EoDO2l4ZqROAbwlfd2e_0_V47p3bRjjreK6BqcUutbqnslHpwS9WZ9Wll5Yp-zZgmNdrU5-S1xzAnxSSXVcV5jv-EMlEJaBouMvTjM-hdmKPP5S-orCh41tyQsxW11Q6V9SZMUfd5DDjaPjfa2Hx_LqEWNaOwZPDhIDt3Iw5P9T32MgOaFdDHkFJEo3o7PfQyK1v3shHsGfW_3Dt4nnbLH8D4t84XWH8AwJfSWA
CitedBy_id crossref_primary_10_1002_elsc_202100091
crossref_primary_10_1007_s12257_024_00120_7
crossref_primary_10_3389_fbioe_2021_722202
crossref_primary_10_3390_bioengineering10020229
crossref_primary_10_3390_life11060557
crossref_primary_10_3390_s21041268
crossref_primary_10_1016_j_biortech_2022_128451
crossref_primary_10_1016_j_coche_2024_101027
crossref_primary_10_1016_j_biosx_2022_100263
crossref_primary_10_1021_acs_iecr_3c01897
Cites_doi 10.1002/cjce.22219
10.1002/14356007.n04_n05
10.1016/S0169-7439(01)00155-1
10.1108/02656711211258508
10.1109/TEVC.2007.896686
10.1021/bp070338y
10.1016/j.chemolab.2004.12.011
10.1214/aoms/1177729694
10.1016/j.jprocont.2004.06.009
10.1002/acs.859
10.1007/978-3-642-01888-6
10.1016/0005-1098(90)90018-D
10.1002/aic.690490716
10.1109/19.963215
10.1109/JSEN.2009.2030284
10.1093/comjnl/bxh142
10.1007/3-540-30368-5
10.1007/s004490050332
10.1016/j.measurement.2013.11.015
10.1080/00207720050197839
10.1385/0-89603-421-6:107
10.1016/j.chemolab.2015.04.012
10.3182/20020721-6-ES-1901.01354
10.1002/aic.690421011
10.1145/1754414.1754419
10.1177/1077546314535947
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2019
COPYRIGHT 2020 Springer
Analytical and Bioanalytical Chemistry is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: COPYRIGHT 2020 Springer
– notice: Analytical and Bioanalytical Chemistry is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7U7
7X7
7XB
88E
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K9.
KB.
KR7
L7M
LK8
L~C
L~D
M0S
M1P
M7P
P64
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
ADTOC
UNPAY
DOI 10.1007/s00216-019-01927-7
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
Biological Science Collection
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ANTE: Abstracts in New Technology & Engineering
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
Civil Engineering Abstracts
Toxicology Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
MEDLINE
AGRICOLA


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1618-2650
EndPage 2175
ExternalDocumentID oai:mediatum.ub.tum.de:node/1518765
A617572016
31286180
10_1007_s00216_019_01927_7
Genre Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GrantInformation_xml – fundername: Bundesministerium für Bildung und Forschung
  grantid: 031B0475E
  funderid: http://dx.doi.org/10.13039/501100002347
– fundername: Deutsche Forschungsgemeinschaft
  grantid: BE 2245/17-1
  funderid: http://dx.doi.org/10.13039/501100001659
– fundername: Deutsche Forschungsgemeinschaft
  grantid: BE 2245/17-1
– fundername: Bundesministerium für Bildung und Forschung
  grantid: 031B0475E
GroupedDBID ---
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
199
1N0
203
23M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5VS
67Z
6NX
78A
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUHS
ACZOJ
ADBBV
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EBD
EBLON
EBS
EIOEI
EJD
EMK
EMOBN
EPAXT
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IAO
IFM
IGS
IHE
IHR
IJ-
IKXTQ
IMOTQ
INH
INR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
ML-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9N
PDBOC
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
QOK
QOR
QOS
R89
R9I
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WH7
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8V
Z8W
Z8Z
Z91
Z92
ZMTXR
~8M
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ESTFP
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7U7
7XB
8BQ
8FD
8FK
AZQEC
C1K
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
7S9
L.6
ADTOC
UNPAY
ID FETCH-LOGICAL-c528t-e8136efffb06a92b699d329702ef309179af4d1e45a1ab68b15dab06c6f0aee13
IEDL.DBID UNPAY
ISSN 1618-2642
1618-2650
IngestDate Sun Oct 26 03:52:30 EDT 2025
Fri Sep 05 14:56:03 EDT 2025
Sun Sep 28 08:19:06 EDT 2025
Tue Oct 07 06:23:43 EDT 2025
Mon Oct 20 16:48:51 EDT 2025
Wed Feb 19 02:30:30 EST 2025
Wed Oct 01 00:55:30 EDT 2025
Thu Apr 24 23:13:29 EDT 2025
Fri Feb 21 02:41:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Sensor fault
Sensor network
Fault detection
Online validation
Particle swarm optimization
Language English
License other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c528t-e8136efffb06a92b699d329702ef309179af4d1e45a1ab68b15dab06c6f0aee13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=http://mediatum.ub.tum.de/node?id=1518765
PMID 31286180
PQID 2253645343
PQPubID 2034506
PageCount 11
ParticipantIDs unpaywall_primary_10_1007_s00216_019_01927_7
proquest_miscellaneous_2636443326
proquest_miscellaneous_2254518835
proquest_journals_2253645343
gale_infotracacademiconefile_A617572016
pubmed_primary_31286180
crossref_citationtrail_10_1007_s00216_019_01927_7
crossref_primary_10_1007_s00216_019_01927_7
springer_journals_10_1007_s00216_019_01927_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Analytical and bioanalytical chemistry
PublicationTitleAbbrev Anal Bioanal Chem
PublicationTitleAlternate Anal Bioanal Chem
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References AlagSAgoginoAMMorjariaMA methodology for intelligent sensor measurement, validation, fusion, and fault detection for equipment monitoring and diagnosticsAI EDAM2001154307320
ChongI-GJunC-HPerformance of some variable selection methods when multicollinearity is presentChemom Intell Lab Syst20057811031121:CAS:528:DC%2BD2MXlslWisbs%3D10.1016/j.chemolab.2004.12.011
ZareiJShokriERobust sensor fault detection based on nonlinear unknown input observerMeasurement.20144835536710.1016/j.measurement.2013.11.015
Khanesar MA, Teshnehlab M, Shoorehdeli MA, editors. A novel binary particle swarm optimization. Control & Automation, 2007. MED’07. Mediterranean conference on; 2007: IEEE.
FeitalTPintoJCUse of variance spectra for in-line validation of process measurements in continuous processesCan J Chem Eng2015938142614371:CAS:528:DC%2BC2MXps1elsbw%3D10.1002/cjce.22219
GouldingPRLennoxBSandozDJSmithKJMarjanovicOFault detection in continuous processes using multivariate statistical methodsInt J Syst Sci200031111459147110.1080/00207720050197839
ZhangHQYanYA wavelet-based approach to abrupt fault detection and diagnosis of sensorsIEEE Trans Instrum Meas20015051389139610.1109/19.963215
KourtiTApplication of latent variable methods to process control and multivariate statistical process control in industryInt J Adapt Control Signal Process200519421324610.1002/acs.859
Del ValleYVenayagamoorthyGKMohagheghiSHernandezJ-CHarleyRGParticle swarm optimization: basic concepts, variants and applications in power systemsIEEE Trans Evol Comput200812217119510.1109/TEVC.2007.896686
Guo T-H, Nurre J, editors. Sensor failure detection and recovery by neural networks. Neural Networks, 1991., IJCNN-91-Seattle international joint conference on; 1991: IEEE.
MehranbodNSoroushMPiovosoMOgunnaikeBAProbabilistic model for sensor fault detection and identificationAIChE J2003497178718021:CAS:528:DC%2BD3sXlsV2rsbk%3D10.1002/aic.690490716
MehranbodNSoroushMPanjapornponCA method of sensor fault detection and identificationJ Process Control20051533213391:CAS:528:DC%2BD2cXhtVKgu7zJ10.1016/j.jprocont.2004.06.009
Kennedy J, Eberhart RC, editors. A discrete binary version of the particle swarm algorithm. Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation., 1997 IEEE international conference on; 1997: IEEE.
IbargüengoytiaPHVaderaSSucarLEA probabilistic model for information and sensor validationComput J200549111312610.1093/comjnl/bxh142
Harms J, Wang X, Kim T, Yang X, Rathore AS. Defining process design space for biotech products: case study of Pichia pastoris fermentation. Biotechnol Prog. 2008;24(3):655–62.
ShiYEberhartRCParameter selection in particle swarm optimization. International conference on evolutionary programming1998BerlinSpringer
Sharma AB, Golubchik L, Govindan R. Sensor faults: detection methods and prevalence in real-world datasets. ACM TOSN. 2010;6(3):23.
Isermann R. Fault-diagnosis systems: an introduction from fault detection to fault tolerance: Springer Science & Business Media; 2006.
DuniaRQinSJEdgarTFMcAvoyTJIdentification of faulty sensors using principal component analysisAIChE J19964210279728121:CAS:528:DyaK28XmtFKktbc%3D10.1002/aic.690421011
NicolettiMJainLGiordanoRComputational intelligence techniques as tools for bioprocess modelling, optimization, supervision and control. Computational intelligence techniques for bioprocess modelling, supervision and control2009BerlinSpringer12310.1007/978-3-642-01888-6
KullbackSLeiblerRAOn information and sufficiencyAnn Math Stat1951221798610.1214/aoms/1177729694
KrauseDHusseinMBeckerTOnline monitoring of bioprocesses via multivariate sensor prediction within swarm intelligence decision makingChemom Intell Lab Syst201514548591:CAS:528:DC%2BC2MXnsF2hu7g%3D10.1016/j.chemolab.2015.04.012
Becker T, Breithaupt D, Doelle HW, Fiechter A, Schlegel G, Shimizu S, et al. Biotechnology, 5. Monitoring and modeling of bioprocesses. Ullmann’s encyclopedia of industrial chemistry. 2009.
BalabanESaxenaABansalPGoebelKFCurranSModeling, detection, and disambiguation of sensor faults for aerospace applicationsIEEE Sensors J20099121907191710.1109/JSEN.2009.2030284
Stratton J, Chiruvolu V, Meagher M. High cell-density fermentation. Pichia protocols. Berlin: Springer; 1998. p. 107–20.
ChaY-JAgrawalAKRobustness studies of sensor faults and noises for semi-active control strategies using large-scale magnetorheological dampersJ Vib Control20162251228124310.1177/1077546314535947
Ündey C, Williams BA, Cınar A. Monitoring of batch pharmaceutical fermentations: data synchronization, landmark alignment, and real-time monitoring. IFAC Proc Vol. 2002;35(1):271–6.
WoldSSjöströmMErikssonLPLS-regression: a basic tool of chemometricsChemom Intell Lab Syst20015821091301:CAS:528:DC%2BD3MXotF2mtLw%3D10.1016/S0169-7439(01)00155-1
FrankPMFault diagnosis in dynamic systems using analytical and knowledge-based redundancy: a survey and some new resultsAutomatica.199026345947410.1016/0005-1098(90)90018-D
GregoryMThornhillNThe effects of aeration and agitation on the measurement of yeast biomass using a laser turbidity probeBioprocess Eng19971663393441:CAS:528:DyaK2sXjsF2rsLw%3D10.1007/s004490050332
DasAMaitiJBanerjeeRProcess monitoring and fault detection strategies: a reviewInt J Qual Reliab Manag201229772075210.1108/02656711211258508
(1927_CR29) 1998
Y-J Cha (1927_CR5) 2016; 22
I-G Chong (1927_CR25) 2005; 78
R Dunia (1927_CR17) 1996; 42
1927_CR10
PM Frank (1927_CR20) 1990; 26
N Mehranbod (1927_CR14) 2005; 15
T Feital (1927_CR7) 2015; 93
1927_CR15
D Krause (1927_CR13) 2015; 145
PH Ibargüengoytia (1927_CR19) 2005; 49
M Gregory (1927_CR31) 1997; 16
M Nicoletti (1927_CR1) 2009
HQ Zhang (1927_CR6) 2001; 50
A Das (1927_CR9) 2012; 29
S Alag (1927_CR18) 2001; 15
1927_CR21
PR Goulding (1927_CR12) 2000; 31
1927_CR22
1927_CR23
1927_CR24
1927_CR27
1927_CR2
N Mehranbod (1927_CR4) 2003; 49
Y Del Valle (1927_CR28) 2008; 12
1927_CR8
T Kourti (1927_CR11) 2005; 19
S Kullback (1927_CR30) 1951; 22
J Zarei (1927_CR16) 2014; 48
S Wold (1927_CR26) 2001; 58
E Balaban (1927_CR3) 2009; 9
References_xml – reference: Kennedy J, Eberhart RC, editors. A discrete binary version of the particle swarm algorithm. Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation., 1997 IEEE international conference on; 1997: IEEE.
– reference: Del ValleYVenayagamoorthyGKMohagheghiSHernandezJ-CHarleyRGParticle swarm optimization: basic concepts, variants and applications in power systemsIEEE Trans Evol Comput200812217119510.1109/TEVC.2007.896686
– reference: ChaY-JAgrawalAKRobustness studies of sensor faults and noises for semi-active control strategies using large-scale magnetorheological dampersJ Vib Control20162251228124310.1177/1077546314535947
– reference: Isermann R. Fault-diagnosis systems: an introduction from fault detection to fault tolerance: Springer Science & Business Media; 2006.
– reference: MehranbodNSoroushMPanjapornponCA method of sensor fault detection and identificationJ Process Control20051533213391:CAS:528:DC%2BD2cXhtVKgu7zJ10.1016/j.jprocont.2004.06.009
– reference: Ündey C, Williams BA, Cınar A. Monitoring of batch pharmaceutical fermentations: data synchronization, landmark alignment, and real-time monitoring. IFAC Proc Vol. 2002;35(1):271–6.
– reference: MehranbodNSoroushMPiovosoMOgunnaikeBAProbabilistic model for sensor fault detection and identificationAIChE J2003497178718021:CAS:528:DC%2BD3sXlsV2rsbk%3D10.1002/aic.690490716
– reference: KourtiTApplication of latent variable methods to process control and multivariate statistical process control in industryInt J Adapt Control Signal Process200519421324610.1002/acs.859
– reference: Stratton J, Chiruvolu V, Meagher M. High cell-density fermentation. Pichia protocols. Berlin: Springer; 1998. p. 107–20.
– reference: IbargüengoytiaPHVaderaSSucarLEA probabilistic model for information and sensor validationComput J200549111312610.1093/comjnl/bxh142
– reference: Sharma AB, Golubchik L, Govindan R. Sensor faults: detection methods and prevalence in real-world datasets. ACM TOSN. 2010;6(3):23.
– reference: ZhangHQYanYA wavelet-based approach to abrupt fault detection and diagnosis of sensorsIEEE Trans Instrum Meas20015051389139610.1109/19.963215
– reference: DuniaRQinSJEdgarTFMcAvoyTJIdentification of faulty sensors using principal component analysisAIChE J19964210279728121:CAS:528:DyaK28XmtFKktbc%3D10.1002/aic.690421011
– reference: ChongI-GJunC-HPerformance of some variable selection methods when multicollinearity is presentChemom Intell Lab Syst20057811031121:CAS:528:DC%2BD2MXlslWisbs%3D10.1016/j.chemolab.2004.12.011
– reference: BalabanESaxenaABansalPGoebelKFCurranSModeling, detection, and disambiguation of sensor faults for aerospace applicationsIEEE Sensors J20099121907191710.1109/JSEN.2009.2030284
– reference: NicolettiMJainLGiordanoRComputational intelligence techniques as tools for bioprocess modelling, optimization, supervision and control. Computational intelligence techniques for bioprocess modelling, supervision and control2009BerlinSpringer12310.1007/978-3-642-01888-6
– reference: Guo T-H, Nurre J, editors. Sensor failure detection and recovery by neural networks. Neural Networks, 1991., IJCNN-91-Seattle international joint conference on; 1991: IEEE.
– reference: KullbackSLeiblerRAOn information and sufficiencyAnn Math Stat1951221798610.1214/aoms/1177729694
– reference: WoldSSjöströmMErikssonLPLS-regression: a basic tool of chemometricsChemom Intell Lab Syst20015821091301:CAS:528:DC%2BD3MXotF2mtLw%3D10.1016/S0169-7439(01)00155-1
– reference: KrauseDHusseinMBeckerTOnline monitoring of bioprocesses via multivariate sensor prediction within swarm intelligence decision makingChemom Intell Lab Syst201514548591:CAS:528:DC%2BC2MXnsF2hu7g%3D10.1016/j.chemolab.2015.04.012
– reference: ShiYEberhartRCParameter selection in particle swarm optimization. International conference on evolutionary programming1998BerlinSpringer
– reference: FrankPMFault diagnosis in dynamic systems using analytical and knowledge-based redundancy: a survey and some new resultsAutomatica.199026345947410.1016/0005-1098(90)90018-D
– reference: GouldingPRLennoxBSandozDJSmithKJMarjanovicOFault detection in continuous processes using multivariate statistical methodsInt J Syst Sci200031111459147110.1080/00207720050197839
– reference: Khanesar MA, Teshnehlab M, Shoorehdeli MA, editors. A novel binary particle swarm optimization. Control & Automation, 2007. MED’07. Mediterranean conference on; 2007: IEEE.
– reference: Harms J, Wang X, Kim T, Yang X, Rathore AS. Defining process design space for biotech products: case study of Pichia pastoris fermentation. Biotechnol Prog. 2008;24(3):655–62.
– reference: Becker T, Breithaupt D, Doelle HW, Fiechter A, Schlegel G, Shimizu S, et al. Biotechnology, 5. Monitoring and modeling of bioprocesses. Ullmann’s encyclopedia of industrial chemistry. 2009.
– reference: FeitalTPintoJCUse of variance spectra for in-line validation of process measurements in continuous processesCan J Chem Eng2015938142614371:CAS:528:DC%2BC2MXps1elsbw%3D10.1002/cjce.22219
– reference: DasAMaitiJBanerjeeRProcess monitoring and fault detection strategies: a reviewInt J Qual Reliab Manag201229772075210.1108/02656711211258508
– reference: AlagSAgoginoAMMorjariaMA methodology for intelligent sensor measurement, validation, fusion, and fault detection for equipment monitoring and diagnosticsAI EDAM2001154307320
– reference: GregoryMThornhillNThe effects of aeration and agitation on the measurement of yeast biomass using a laser turbidity probeBioprocess Eng19971663393441:CAS:528:DyaK2sXjsF2rsLw%3D10.1007/s004490050332
– reference: ZareiJShokriERobust sensor fault detection based on nonlinear unknown input observerMeasurement.20144835536710.1016/j.measurement.2013.11.015
– volume-title: Parameter selection in particle swarm optimization. International conference on evolutionary programming
  year: 1998
  ident: 1927_CR29
– volume: 93
  start-page: 1426
  issue: 8
  year: 2015
  ident: 1927_CR7
  publication-title: Can J Chem Eng
  doi: 10.1002/cjce.22219
– ident: 1927_CR8
  doi: 10.1002/14356007.n04_n05
– volume: 58
  start-page: 109
  issue: 2
  year: 2001
  ident: 1927_CR26
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/S0169-7439(01)00155-1
– volume: 29
  start-page: 720
  issue: 7
  year: 2012
  ident: 1927_CR9
  publication-title: Int J Qual Reliab Manag
  doi: 10.1108/02656711211258508
– volume: 15
  start-page: 307
  issue: 4
  year: 2001
  ident: 1927_CR18
  publication-title: AI EDAM
– volume: 12
  start-page: 171
  issue: 2
  year: 2008
  ident: 1927_CR28
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2007.896686
– ident: 1927_CR22
  doi: 10.1021/bp070338y
– volume: 78
  start-page: 103
  issue: 1
  year: 2005
  ident: 1927_CR25
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2004.12.011
– volume: 22
  start-page: 79
  issue: 1
  year: 1951
  ident: 1927_CR30
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177729694
– volume: 15
  start-page: 321
  issue: 3
  year: 2005
  ident: 1927_CR14
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2004.06.009
– volume: 19
  start-page: 213
  issue: 4
  year: 2005
  ident: 1927_CR11
  publication-title: Int J Adapt Control Signal Process
  doi: 10.1002/acs.859
– start-page: 1
  volume-title: Computational intelligence techniques as tools for bioprocess modelling, optimization, supervision and control. Computational intelligence techniques for bioprocess modelling, supervision and control
  year: 2009
  ident: 1927_CR1
  doi: 10.1007/978-3-642-01888-6
– volume: 26
  start-page: 459
  issue: 3
  year: 1990
  ident: 1927_CR20
  publication-title: Automatica.
  doi: 10.1016/0005-1098(90)90018-D
– ident: 1927_CR21
– volume: 49
  start-page: 1787
  issue: 7
  year: 2003
  ident: 1927_CR4
  publication-title: AIChE J
  doi: 10.1002/aic.690490716
– volume: 50
  start-page: 1389
  issue: 5
  year: 2001
  ident: 1927_CR6
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/19.963215
– volume: 9
  start-page: 1907
  issue: 12
  year: 2009
  ident: 1927_CR3
  publication-title: IEEE Sensors J
  doi: 10.1109/JSEN.2009.2030284
– volume: 49
  start-page: 113
  issue: 1
  year: 2005
  ident: 1927_CR19
  publication-title: Comput J
  doi: 10.1093/comjnl/bxh142
– ident: 1927_CR10
  doi: 10.1007/3-540-30368-5
– volume: 16
  start-page: 339
  issue: 6
  year: 1997
  ident: 1927_CR31
  publication-title: Bioprocess Eng
  doi: 10.1007/s004490050332
– volume: 48
  start-page: 355
  year: 2014
  ident: 1927_CR16
  publication-title: Measurement.
  doi: 10.1016/j.measurement.2013.11.015
– volume: 31
  start-page: 1459
  issue: 11
  year: 2000
  ident: 1927_CR12
  publication-title: Int J Syst Sci
  doi: 10.1080/00207720050197839
– ident: 1927_CR23
  doi: 10.1385/0-89603-421-6:107
– volume: 145
  start-page: 48
  year: 2015
  ident: 1927_CR13
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2015.04.012
– ident: 1927_CR24
  doi: 10.3182/20020721-6-ES-1901.01354
– ident: 1927_CR15
– volume: 42
  start-page: 2797
  issue: 10
  year: 1996
  ident: 1927_CR17
  publication-title: AIChE J
  doi: 10.1002/aic.690421011
– ident: 1927_CR2
  doi: 10.1145/1754414.1754419
– volume: 22
  start-page: 1228
  issue: 5
  year: 2016
  ident: 1927_CR5
  publication-title: J Vib Control
  doi: 10.1177/1077546314535947
– ident: 1927_CR27
SSID ssj0015816
Score 2.3907037
Snippet Sensor faults can impede the functionality of monitoring and control systems for bioprocesses. Hence, suitable systems need to be developed to validate the...
SourceID unpaywall
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2165
SubjectTerms Advances in Process Analytics and Control Technology
Algorithms
Analysis
Analytical Chemistry
Artificial Intelligence
Batch Cell Culture Techniques - instrumentation
Batch processes
Batch processing
Biochemistry
bioprocessing
Bioreactors
Biosensing Techniques - instrumentation
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Control systems
Divergence
Equipment Design
Error detection
Fault detection
Food Science
Intelligence
Internet
Laboratory Medicine
Mathematical optimization
Models, Biological
Monitoring
Monitoring/Environmental Analysis
On-line systems
Particle swarm optimization
Pichia pastoris
prediction
Prediction models
Process control
Process controls
processing time
Quality management
Regularization
Research Paper
Saccharomycetales - cytology
Saccharomycetales - metabolism
Sensors
Swarm intelligence
swarms
Time dependence
Turbidity
Yeast
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7aFwQLwJFGQkJA40IrFjJzkgVKpWFRIrhKjUE5Ht2NVK22TZhyr-PTPOowuHFdfESRzPZ8_YM_MNwFvDEbTGUcayVHHGuYtLy3Wco7q3Voha1nSg_3Wqzi-yL5fycg-mQy4MhVUOa2JYqOvW0hn5B8QdecxEJj4tfsVUNYq8q0MJDd2XVqg_BoqxO7DPiRlrAvufT6ffvo9-BVmEYqjEEk-xXbxPownJdKTuaHdN8UMlz-P8L1X174K9pbFGF-o9ONg0C_37Rs_nW1rq7AHc781Ldtzh4SHsueYRHJwMVd0ew8-OW5StcPvaLhnibNZVVWKzZrjYdKHhK4YGLTOzdtElE7DrMP-pE4zC5a_Y6kYvr9lsi9XzCVycnf44OY_7GguxlbxYx65IhXLee5MoXXKjyrIWvMwT7rxAWyIvtc_q1GVSp9qowqSy1tjWKp9o51LxFCZN27jnwHhRZNblpnRFnSWeG4-Ge5kKqxPvZW0jSIfhrGxPQE51MObVSJ0cRFDh8FdBBFUewfvxmUVHv7Gz9TuSUkVzE99sdZ9igP0jlqvqGM01maPJoyI4HARZ9ZN2Vd1CLII3422UD_lQdOPaTWiTEYedkDvaKHwN8cLhZ551IBk7L9AeQPAlERwNqLntwK4_OxqR9R8D8WL3772Eu5yODUIA0iFM1suNe4W21dq87ifMH74LHX0
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_0fDh9OPw8e54SQfDBK7RJkzaPy-FxCPrkwj0ZkjSRhb3ust3l8L93pl-uIou-ttN0mplkJp2Z3wC8cxyV1gWqWJYqLTgPqfbcpiWae--FqGVNP_Q_f1HX8-LTjbwZisLaMdt9DEl2O_VU7EbmiE6_lN-jeZmW9-GBJDgv1OI5n02xA1l1DU8JCZ7yt_hQKvP3MX4zR39uyntWaQqTPoLjXbO2P-7scrlnia4ew8ngQrJZL_MncC80T-H4cuzc9gy-9fihrMUj6mrDUJcWfecktmjGi02f_t0ydFqZW6zWfcEAu-3WODHBKCX-O2vv7OaWLfaQO5_D_Orj18vrdOijkHrJq20aqlyoEGN0mbKaO6V1LbguMx6iQH-h1DYWdR4KaXPrVOVyWVuk9SpmNoRcvICjZtWEl8B4VRU-lE6Hqi6yyF1E51znwtssRln7BPJxOo0fQMap18XSTPDInQgMTr_pRGDKBD5Mz6x7iI2D1O9JSobWH47s7VBGgPwRkpWZoUsmS3RrVALnoyDNsDBbg9sXBV5FIRJ4O91G-VCcxDZhtetoCsKpE_IAjcJhCPsNX3PaK8nEvECbj8qXJXAxas0vBg592cWkWf8wEWf_N_oreMjpV0GXdHQOR9vNLrxGf2rr3nTL5ydIqhPr
  priority: 102
  providerName: Springer Nature
Title Online sensor validation in sensor networks for bioprocess monitoring using swarm intelligence
URI https://link.springer.com/article/10.1007/s00216-019-01927-7
https://www.ncbi.nlm.nih.gov/pubmed/31286180
https://www.proquest.com/docview/2253645343
https://www.proquest.com/docview/2254518835
https://www.proquest.com/docview/2636443326
http://mediatum.ub.tum.de/node?id=1518765
UnpaywallVersion submittedVersion
Volume 412
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1618-2650
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0015816
  issn: 1618-2650
  databaseCode: ABDBF
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1618-2650
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0015816
  issn: 1618-2650
  databaseCode: A8Z
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1618-2650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015816
  issn: 1618-2650
  databaseCode: AFBBN
  dateStart: 18621201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1618-2650
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0015816
  issn: 1618-2650
  databaseCode: 7X7
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1618-2650
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0015816
  issn: 1618-2650
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1618-2650
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0015816
  issn: 1618-2650
  databaseCode: 8FG
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1618-2650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015816
  issn: 1618-2650
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1618-2650
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015816
  issn: 1618-2650
  databaseCode: U2A
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-x9mHwwPdHYUxGQuKBZUvs2Ekey9RuAlFNiErdC5HtOKiiTat-aIK_nrskTQtIBV6SKLkkdu7s-zm--xngteFotMZRxrJUXsi58xLLtRehu7dWiExm9EP_40BdDsP3IznakkWX6RKr9ZTiLWiXubNilrlytlQG2HLlAbSVRNjdgvZwcNW9pgGVCmKK1OLbY-nXCTJlmhw5Mho3U2RQwiMv-sUJ_d4V7_iiZnL0Dhyui7n-fqMnkx3_079XRW4tS9pCCjv5drpemVP7409Sx79X7T7crVEo61Zm8wBuueIhHJ5vFn97BF8qClK2xFHubMHQHMfV4ktsXGxOFlUE-ZIh7mVmPJtXOQdsWnYTVCNGUfVf2fJGL6ZsvEP--RiG_d7n80uvXorBs5LHK8_FgVAuz3PjK51wo5IkEzyJfO5ygZAjSnQeZoELpQ60UbEJZKZR1qrc184F4gm0ilnhngHjcRxaF5nExVno59zkiO-TQFjt57nMbAeCjW5SW_OU03IZk7RhWC71maIu01KfadSBt80984qlY6_0G1J5Sk0Yn2x1nYmA5SMyrLSLqE5GiIxUB442VpHWbXuZYg9Ic7ciFB141VxG_dBUiy7cbF3KhER1J-QeGYWPIfo4fM3TyuKawguEDWjJfgdONia4LcC-mp00ZvoPH-L5_4m_gNuc_jaUcUtH0Fot1u4lQrKVOYaDaBThNu5fHEO7e3H9oYf7d73B1Sc8O-Td47q5_gRDDjOT
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9rBwQLwJFDASiAONSGzndahQKa22tF0h1Eo9ERzHRittk2Wzq1X_HL-Nmby6cFhx6TVxHMczmYdn5huANxlHps0MVSwHoSs5N26iuXIjVPdaC5EHOR3on47C4bn8chFcbMDvrhaG0io7mVgL6rzUdEb-AfmOImZCio_TXy51jaLoatdCQ7WtFfLdGmKsLew4NldLdOGq3aPPSO-3nB8enO0P3bbLgKsDHs9dE_siNNbazAtVwrMwSXLBk8jjxgrUplGirMx9IwPlqyyMMz_IFY7VofWUMb7AeW_BlhQyQedv69PB6Ou3Po4RxHXzVUKlp1wy3pbt1MV7pF7Jm6d8pYRHbvSXavxXQaxoyD5kewcGi2KqrpZqMlnRiof34G5rzrK9hv_uw4YpHsBgv-si9xC-N1imrEJ3uZwx5Otx08WJjYvuYtGkolcMDWiWjctpU7zALmt5Q4tglJ7_k1VLNbtk4xUU0UdwfiO7_Rg2i7IwT4HxOJbaRFli4lx6lmcWHYXEF1p51ga5dsDvtjPVLeA59d2YpD1Uc02CFLc_rUmQRg6875-ZNnAfa0e_IyqlJAtwZq3akgZcH6FqpXtoHgYRmlihA9sdIdNWSFTpNUs78Lq_jfShmI0qTLmox0jCzBPBmjEhTkM4dPiaJw2T9IsXaH8g83kO7HRcc72AdV-203PWf2zEs_Wf9woGw7PTk_TkaHT8HG5zOrKok5-2YXM-W5gXaNfNs5ftz8Pgx03_r38A8PpbVw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlE4IN4NFDASiAONmthJHB8QqlpWLYWKA5X2ROo4Nlppm2z3oVX_Gr-Omby6cFhx6TVxHNvzeR72PADe5hxBm1uKWI4TP-Lc-spw7UsU98YIUcQFHeh_O02OzqIvw3i4Ab-7WBhyq-x4Ys2oi8rQGfke4o5uzEQk9lzrFvH9cPBpculTBSm6ae3KaTQQObFXSzTfZh-PD5HW7zgffP5xcOS3FQZ8E_N07ts0FIl1zuVBohXPE6UKwZUMuHUCJalU2kVFaKNYhzpP0jyMC41tTeICbW0osN9bcFsKocidUA57Yy-M07rsKuWjJy8y3gbs1GF7JFjJjidPJcWlL_8Siv-KhhXZ2F_W3oOtRTnRV0s9Hq_Iw8EDuN8qsmy_Qd5D2LDlI9g66OrHPYafTRZTNkNDuZoyRPSoqd_ERmX3sGyc0GcMVWeWj6pJE7bALmpOQ4Ng5Jj_i82WenrBRiv5Q5_A2Y2s9VPYLKvSbgPjaRoZK3Nl0yIKHM8dmggqFEYHzsWF8SDsljMzbapzqrgxzvokzTUJMlz-rCZBJj340H8zaRJ9rG39nqiUERfAno1ugxlwfJRPK9tHxTCWqFwlHux0hMxa9jDLrsHswZv-NdKHbmt0aatF3SaibHkiXtMmwW4oAx3-5lkDkn7wAjUPBF_gwW6HmusBrJvZbo-s_1iI5-un9xru4C7Nvh6fnryAu5zOKmqvpx3YnE8X9iUqdPP8Vb1zGJzf9Fb9A17-WPE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgeygcKG8CBRkJiQNNSezYSY6rqlWFRMWBlcqFyHbsasVustokquDXM5PXbou0wClRMknszNjz2Z75TMg7zcBotcWMZSH9iDHrp4YpPwZ3bwznuchxQv_zhTyfRZ8uxeWGLLpNl6ibJcZb4CG3H4syt-1qqQih5Yq7ZE8KgN0Tsje7-DL9hgMqGSYYqcU25yLoE2TaNDl0ZDhuxsiglMV-fMMJ3e6Kt3zRuDh6n-w3xUr9vFaLxZb_OTvoIreqlrYQw05-HDe1Pja__iR1_HvVHpIHPQql085sHpE7tnhM9k-Gzd-ekO8dBSmtYJRbrimY47zbfInOi-Fi0UWQVxRwL9XzctXlHNBl201gjShG1V_R6lqtl3S-Rf75lMzOTr-enPv9Vgy-ESypfZuEXFrnnA6kSpmWaZpzlsYBs44D5IhT5aI8tJFQodIy0aHIFcga6QJlbcifkUlRFvYFoSxJImNjndokjwLHtAN8n4bcqMA5kRuPhINuMtPzlON2GYtsZFhu9ZmBLrNWn1nskQ_jM6uOpWOn9HtUeYZNGN5sVJ-JAOVDMqxsCqhOxICMpEcOB6vI-rZdZdAD4totj7hH3o63QT-41KIKWzatTIRUd1zskJHwGqSPg8887yxuLDwH2ACWHHjkaDDBTQF21exoNNN_-BEv_0_8FbnHcLahjVs6JJN63djXAMlq_aZvjL8B3WMtrw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+sensor+validation+in+sensor+networks+for+bioprocess+monitoring+using+swarm+intelligence&rft.jtitle=Analytical+and+bioanalytical+chemistry&rft.au=Brunner%2C+Vincent&rft.au=Kl%C3%B6ckner%2C+Lukas&rft.au=Kerpes%2C+Roland&rft.au=Geier%2C+Dominik+Ulrich&rft.date=2020-04-01&rft.pub=Springer&rft.issn=1618-2642&rft.volume=412&rft.issue=9&rft.spage=2165&rft_id=info:doi/10.1007%2Fs00216-019-01927-7&rft.externalDocID=A617572016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1618-2642&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1618-2642&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1618-2642&client=summon