Automated identification of sleep states from EEG signals by means of ensemble empirical mode decomposition and random under sampling boosting
•A single lead EEG based automated sleep scoring method is proposed.•A signal processing technique, namely EEMD is employed.•We introduce RUSBoost to classify sleep stages for the first time.•Efficacy of the method is confirmed by statistical and graphical analyses.•The performance of the proposed s...
        Saved in:
      
    
          | Published in | Computer methods and programs in biomedicine Vol. 140; pp. 201 - 210 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Ireland
          Elsevier B.V
    
        01.03.2017
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0169-2607 1872-7565 1872-7565  | 
| DOI | 10.1016/j.cmpb.2016.12.015 | 
Cover
| Abstract | •A single lead EEG based automated sleep scoring method is proposed.•A signal processing technique, namely EEMD is employed.•We introduce RUSBoost to classify sleep stages for the first time.•Efficacy of the method is confirmed by statistical and graphical analyses.•The performance of the proposed scheme, compared to the existing ones is promising.
Background and objective:Automatic sleep staging is essential for alleviating the burden of the physicians of analyzing a large volume of data by visual inspection. It is also a precondition for making an automated sleep monitoring system feasible. Further, computerized sleep scoring will expedite large-scale data analysis in sleep research. Nevertheless, most of the existing works on sleep staging are either multichannel or multiple physiological signal based which are uncomfortable for the user and hinder the feasibility of an in-home sleep monitoring device. So, a successful and reliable computer-assisted sleep staging scheme is yet to emerge.
Methods:In this work, we propose a single channel EEG based algorithm for computerized sleep scoring. In the proposed algorithm, we decompose EEG signal segments using Ensemble Empirical Mode Decomposition (EEMD) and extract various statistical moment based features. The effectiveness of EEMD and statistical features are investigated. Statistical analysis is performed for feature selection. A newly proposed classification technique, namely – Random under sampling boosting (RUSBoost) is introduced for sleep stage classification. This is the first implementation of EEMD in conjunction with RUSBoost to the best of the authors’ knowledge. The proposed feature extraction scheme’s performance is investigated for various choices of classification models. The algorithmic performance of our scheme is evaluated against contemporary works in the literature.
Results:The performance of the proposed method is comparable or better than that of the state-of-the-art ones. The proposed algorithm gives 88.07%, 83.49%, 92.66%, 94.23%, and 98.15% for 6-state to 2-state classification of sleep stages on Sleep-EDF database. Our experimental outcomes reveal that RUSBoost outperforms other classification models for the feature extraction framework presented in this work. Besides, the algorithm proposed in this work demonstrates high detection accuracy for the sleep states S1 and REM.
Conclusion:Statistical moment based features in the EEMD domain distinguish the sleep states successfully and efficaciously. The automated sleep scoring scheme propounded herein can eradicate the onus of the clinicians, contribute to the device implementation of a sleep monitoring system, and benefit sleep research. | 
    
|---|---|
| AbstractList | Automatic sleep staging is essential for alleviating the burden of the physicians of analyzing a large volume of data by visual inspection. It is also a precondition for making an automated sleep monitoring system feasible. Further, computerized sleep scoring will expedite large-scale data analysis in sleep research. Nevertheless, most of the existing works on sleep staging are either multichannel or multiple physiological signal based which are uncomfortable for the user and hinder the feasibility of an in-home sleep monitoring device. So, a successful and reliable computer-assisted sleep staging scheme is yet to emerge.
In this work, we propose a single channel EEG based algorithm for computerized sleep scoring. In the proposed algorithm, we decompose EEG signal segments using Ensemble Empirical Mode Decomposition (EEMD) and extract various statistical moment based features. The effectiveness of EEMD and statistical features are investigated. Statistical analysis is performed for feature selection. A newly proposed classification technique, namely - Random under sampling boosting (RUSBoost) is introduced for sleep stage classification. This is the first implementation of EEMD in conjunction with RUSBoost to the best of the authors' knowledge. The proposed feature extraction scheme's performance is investigated for various choices of classification models. The algorithmic performance of our scheme is evaluated against contemporary works in the literature.
The performance of the proposed method is comparable or better than that of the state-of-the-art ones. The proposed algorithm gives 88.07%, 83.49%, 92.66%, 94.23%, and 98.15% for 6-state to 2-state classification of sleep stages on Sleep-EDF database. Our experimental outcomes reveal that RUSBoost outperforms other classification models for the feature extraction framework presented in this work. Besides, the algorithm proposed in this work demonstrates high detection accuracy for the sleep states S1 and REM.
Statistical moment based features in the EEMD domain distinguish the sleep states successfully and efficaciously. The automated sleep scoring scheme propounded herein can eradicate the onus of the clinicians, contribute to the device implementation of a sleep monitoring system, and benefit sleep research. •A single lead EEG based automated sleep scoring method is proposed.•A signal processing technique, namely EEMD is employed.•We introduce RUSBoost to classify sleep stages for the first time.•Efficacy of the method is confirmed by statistical and graphical analyses.•The performance of the proposed scheme, compared to the existing ones is promising. Background and objective:Automatic sleep staging is essential for alleviating the burden of the physicians of analyzing a large volume of data by visual inspection. It is also a precondition for making an automated sleep monitoring system feasible. Further, computerized sleep scoring will expedite large-scale data analysis in sleep research. Nevertheless, most of the existing works on sleep staging are either multichannel or multiple physiological signal based which are uncomfortable for the user and hinder the feasibility of an in-home sleep monitoring device. So, a successful and reliable computer-assisted sleep staging scheme is yet to emerge. Methods:In this work, we propose a single channel EEG based algorithm for computerized sleep scoring. In the proposed algorithm, we decompose EEG signal segments using Ensemble Empirical Mode Decomposition (EEMD) and extract various statistical moment based features. The effectiveness of EEMD and statistical features are investigated. Statistical analysis is performed for feature selection. A newly proposed classification technique, namely – Random under sampling boosting (RUSBoost) is introduced for sleep stage classification. This is the first implementation of EEMD in conjunction with RUSBoost to the best of the authors’ knowledge. The proposed feature extraction scheme’s performance is investigated for various choices of classification models. The algorithmic performance of our scheme is evaluated against contemporary works in the literature. Results:The performance of the proposed method is comparable or better than that of the state-of-the-art ones. The proposed algorithm gives 88.07%, 83.49%, 92.66%, 94.23%, and 98.15% for 6-state to 2-state classification of sleep stages on Sleep-EDF database. Our experimental outcomes reveal that RUSBoost outperforms other classification models for the feature extraction framework presented in this work. Besides, the algorithm proposed in this work demonstrates high detection accuracy for the sleep states S1 and REM. Conclusion:Statistical moment based features in the EEMD domain distinguish the sleep states successfully and efficaciously. The automated sleep scoring scheme propounded herein can eradicate the onus of the clinicians, contribute to the device implementation of a sleep monitoring system, and benefit sleep research. Highlights • A single lead EEG based automated sleep scoring method is proposed. • A signal processing technique, namely EEMD is employed. • We introduce RUSBoost to classify sleep stages for the first time. • Efficacy of the method is confirmed by statistical and graphical analyses. • The performance of the proposed scheme, compared to the existing ones is promising. Automatic sleep staging is essential for alleviating the burden of the physicians of analyzing a large volume of data by visual inspection. It is also a precondition for making an automated sleep monitoring system feasible. Further, computerized sleep scoring will expedite large-scale data analysis in sleep research. Nevertheless, most of the existing works on sleep staging are either multichannel or multiple physiological signal based which are uncomfortable for the user and hinder the feasibility of an in-home sleep monitoring device. So, a successful and reliable computer-assisted sleep staging scheme is yet to emerge.BACKGROUND AND OBJECTIVEAutomatic sleep staging is essential for alleviating the burden of the physicians of analyzing a large volume of data by visual inspection. It is also a precondition for making an automated sleep monitoring system feasible. Further, computerized sleep scoring will expedite large-scale data analysis in sleep research. Nevertheless, most of the existing works on sleep staging are either multichannel or multiple physiological signal based which are uncomfortable for the user and hinder the feasibility of an in-home sleep monitoring device. So, a successful and reliable computer-assisted sleep staging scheme is yet to emerge.In this work, we propose a single channel EEG based algorithm for computerized sleep scoring. In the proposed algorithm, we decompose EEG signal segments using Ensemble Empirical Mode Decomposition (EEMD) and extract various statistical moment based features. The effectiveness of EEMD and statistical features are investigated. Statistical analysis is performed for feature selection. A newly proposed classification technique, namely - Random under sampling boosting (RUSBoost) is introduced for sleep stage classification. This is the first implementation of EEMD in conjunction with RUSBoost to the best of the authors' knowledge. The proposed feature extraction scheme's performance is investigated for various choices of classification models. The algorithmic performance of our scheme is evaluated against contemporary works in the literature.METHODSIn this work, we propose a single channel EEG based algorithm for computerized sleep scoring. In the proposed algorithm, we decompose EEG signal segments using Ensemble Empirical Mode Decomposition (EEMD) and extract various statistical moment based features. The effectiveness of EEMD and statistical features are investigated. Statistical analysis is performed for feature selection. A newly proposed classification technique, namely - Random under sampling boosting (RUSBoost) is introduced for sleep stage classification. This is the first implementation of EEMD in conjunction with RUSBoost to the best of the authors' knowledge. The proposed feature extraction scheme's performance is investigated for various choices of classification models. The algorithmic performance of our scheme is evaluated against contemporary works in the literature.The performance of the proposed method is comparable or better than that of the state-of-the-art ones. The proposed algorithm gives 88.07%, 83.49%, 92.66%, 94.23%, and 98.15% for 6-state to 2-state classification of sleep stages on Sleep-EDF database. Our experimental outcomes reveal that RUSBoost outperforms other classification models for the feature extraction framework presented in this work. Besides, the algorithm proposed in this work demonstrates high detection accuracy for the sleep states S1 and REM.RESULTSThe performance of the proposed method is comparable or better than that of the state-of-the-art ones. The proposed algorithm gives 88.07%, 83.49%, 92.66%, 94.23%, and 98.15% for 6-state to 2-state classification of sleep stages on Sleep-EDF database. Our experimental outcomes reveal that RUSBoost outperforms other classification models for the feature extraction framework presented in this work. Besides, the algorithm proposed in this work demonstrates high detection accuracy for the sleep states S1 and REM.Statistical moment based features in the EEMD domain distinguish the sleep states successfully and efficaciously. The automated sleep scoring scheme propounded herein can eradicate the onus of the clinicians, contribute to the device implementation of a sleep monitoring system, and benefit sleep research.CONCLUSIONStatistical moment based features in the EEMD domain distinguish the sleep states successfully and efficaciously. The automated sleep scoring scheme propounded herein can eradicate the onus of the clinicians, contribute to the device implementation of a sleep monitoring system, and benefit sleep research.  | 
    
| Author | Hassan, Ahnaf Rashik Bhuiyan, Mohammed Imamul Hassan  | 
    
| Author_xml | – sequence: 1 givenname: Ahnaf Rashik orcidid: 0000-0001-9346-3765 surname: Hassan fullname: Hassan, Ahnaf Rashik – sequence: 2 givenname: Mohammed Imamul Hassan surname: Bhuiyan fullname: Bhuiyan, Mohammed Imamul Hassan email: ahnaf.hassan0@gmail.com  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28254077$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFksFqFTEUhoNU7G31BVxIlm5mmmQmmbkiQinXVii4UNchk5wpuU6SMckI9yV8ZjO91UXBmkVy4Pz_Fzj_OUMnPnhA6DUlNSVUXOxr7eahZqWuKasJ5c_QhvYdqzou-AnalMa2YoJ0p-gspT0hhHEuXqBT1jPekq7boF-XSw5OZTDYGvDZjlarbIPHYcRpAphxyqWd8BiDw7vdNU72zqsp4eGAHSifViX4BG6YAIObbSyICbtgABvQwc0h2Xuk8gbHchXQ4g1EnJSbJ-vv8BBCyqV4iZ6PhQ2vHt5z9O3j7uvVTXX7-frT1eVtpTnrcwUdA94bYrYNV2zoBOeUNdCCMXo0W75VArRivaGa6UbQURg-NqIlqm052zbNOXp75M4x_FggZels0jBNykNYkixTbMtpmq5I3zxIl8GBkXO0TsWD_DPDImBHgY4hpQjjXwklcg1K7uUalFyDkpTJElQx9Y9M2ub7weeo7PS09f3RCmVAPy1EmbQFr8HYCDpLE-zT9g-P7LpEsEb2HQ6Q9mGJa7ySylQM8su6ROsOUdEQThtWAO_-Dfjf778B0MPY6Q | 
    
| CitedBy_id | crossref_primary_10_3390_diagnostics11091571 crossref_primary_10_1016_j_knosys_2018_06_025 crossref_primary_10_2174_1381612829666221201161636 crossref_primary_10_1007_s11760_022_02343_8 crossref_primary_10_1016_j_bspc_2021_103061 crossref_primary_10_1007_s10489_021_02597_8 crossref_primary_10_1016_j_cmpb_2019_105116 crossref_primary_10_1016_j_knosys_2020_106276 crossref_primary_10_1002_jnm_3224 crossref_primary_10_1016_j_cmpb_2019_04_032 crossref_primary_10_1109_JBHI_2022_3227407 crossref_primary_10_3390_biomedinformatics2010007 crossref_primary_10_1190_tle41050347_1 crossref_primary_10_1002_eng2_12367 crossref_primary_10_4018_IJeC_316774 crossref_primary_10_1016_j_eswa_2018_12_023 crossref_primary_10_1002_dac_4095 crossref_primary_10_1016_j_heliyon_2022_e12136 crossref_primary_10_1007_s00521_017_3282_3 crossref_primary_10_1016_j_heliyon_2024_e41147 crossref_primary_10_1016_j_medengphy_2024_104208 crossref_primary_10_1007_s11760_023_02734_5 crossref_primary_10_1155_2021_5515100 crossref_primary_10_1109_ACCESS_2021_3083638 crossref_primary_10_3389_fnins_2020_00168 crossref_primary_10_1080_15228916_2021_1874795 crossref_primary_10_1016_j_knosys_2019_105333 crossref_primary_10_3390_axioms12010030 crossref_primary_10_1016_j_jneumeth_2019_108320 crossref_primary_10_1016_j_biosystems_2023_105112 crossref_primary_10_1016_j_cmpb_2022_107011 crossref_primary_10_4018_IJIRR_299941 crossref_primary_10_1016_j_asoc_2018_11_007 crossref_primary_10_3390_s24041197 crossref_primary_10_1177_09544119231195177 crossref_primary_10_1093_sleep_zsac154 crossref_primary_10_3390_ijerph16040599 crossref_primary_10_1080_10255842_2021_1995721 crossref_primary_10_1109_ACCESS_2021_3109780 crossref_primary_10_1088_1741_2552_ab965a crossref_primary_10_1016_j_knosys_2018_10_029 crossref_primary_10_1109_TNSRE_2017_2776149 crossref_primary_10_1109_RBME_2019_2951328 crossref_primary_10_1109_TIM_2022_3154838 crossref_primary_10_1109_TNSRE_2023_3309542 crossref_primary_10_1016_j_bspc_2021_103086 crossref_primary_10_1186_s12911_024_02522_2 crossref_primary_10_1016_j_heliyon_2025_e42122 crossref_primary_10_1016_j_jneumeth_2019_108312 crossref_primary_10_1016_j_bspc_2022_103760 crossref_primary_10_1016_j_bspc_2022_104299 crossref_primary_10_1016_j_bspc_2022_103486 crossref_primary_10_1007_s00521_018_3757_x crossref_primary_10_1049_iet_smt_2019_0034 crossref_primary_10_1016_j_compbiomed_2018_03_001 crossref_primary_10_1109_ACCESS_2020_2999915 crossref_primary_10_1002_mop_33115 crossref_primary_10_3233_THC_212847 crossref_primary_10_1007_s00500_019_04174_1 crossref_primary_10_3389_fdgth_2021_707589 crossref_primary_10_1007_s42979_021_00528_5 crossref_primary_10_1002_ima_22980 crossref_primary_10_1007_s42979_022_01156_3 crossref_primary_10_1016_j_bspc_2023_105572 crossref_primary_10_1016_j_eswa_2022_118752 crossref_primary_10_1109_JIOT_2022_3146926 crossref_primary_10_1016_j_compbiomed_2018_08_022 crossref_primary_10_1016_j_neures_2022_09_009 crossref_primary_10_1016_j_bspc_2017_12_001 crossref_primary_10_1109_TNSRE_2023_3323892 crossref_primary_10_3389_fnins_2019_00207 crossref_primary_10_1016_j_bspc_2021_102898 crossref_primary_10_1016_j_bbe_2020_01_013 crossref_primary_10_3390_diagnostics13142358 crossref_primary_10_2196_40211 crossref_primary_10_1109_ACCESS_2019_2928129 crossref_primary_10_1016_j_bbe_2020_01_010 crossref_primary_10_1016_j_cmpb_2019_04_004 crossref_primary_10_1007_s42600_024_00383_2 crossref_primary_10_1016_j_rineng_2024_102664 crossref_primary_10_1016_j_bspc_2020_101998 crossref_primary_10_1515_bmt_2019_0001 crossref_primary_10_3389_fnins_2018_00809 crossref_primary_10_1016_j_knosys_2019_105367 crossref_primary_10_1016_j_compbiomed_2020_103845 crossref_primary_10_3389_fphys_2021_628502 crossref_primary_10_1016_j_bspc_2018_08_016 crossref_primary_10_1016_j_bspc_2022_104501 crossref_primary_10_1109_ACCESS_2020_3002548 crossref_primary_10_1016_j_bspc_2020_102171 crossref_primary_10_1142_S0219519421400066 crossref_primary_10_1016_j_jneumeth_2019_01_013 crossref_primary_10_1016_j_bspc_2022_103819 crossref_primary_10_3390_rs15112886 crossref_primary_10_1016_j_cmpb_2019_06_008 crossref_primary_10_1016_j_bbe_2018_05_005 crossref_primary_10_1016_j_imu_2020_100370 crossref_primary_10_1007_s40846_022_00771_y crossref_primary_10_1016_j_eswa_2018_03_020 crossref_primary_10_1109_JBHI_2023_3337261 crossref_primary_10_1016_j_neucom_2020_05_085 crossref_primary_10_1155_2023_7317938 crossref_primary_10_3390_signals4030026 crossref_primary_10_1109_ACCESS_2024_3374223 crossref_primary_10_1140_epjp_s13360_021_01715_2 crossref_primary_10_1109_TIM_2022_3177747 crossref_primary_10_1136_bmjopen_2022_063442 crossref_primary_10_3390_s20185317 crossref_primary_10_1109_TIM_2023_3323988 crossref_primary_10_1049_cit2_12042 crossref_primary_10_3390_s20174677 crossref_primary_10_1109_JBHI_2019_2951346 crossref_primary_10_1016_j_compbiomed_2023_107259 crossref_primary_10_1109_ACCESS_2019_2924181 crossref_primary_10_1016_j_bspc_2018_08_002 crossref_primary_10_1109_ACCESS_2019_2928020 crossref_primary_10_3389_fpsyt_2022_885120 crossref_primary_10_1016_j_cmpb_2018_04_009 crossref_primary_10_3389_fnins_2023_1108059 crossref_primary_10_1016_j_chaos_2021_110712 crossref_primary_10_1016_j_measurement_2017_10_067 crossref_primary_10_1080_03772063_2019_1568206 crossref_primary_10_1016_j_artmed_2020_101981 crossref_primary_10_3390_electronics13040695 crossref_primary_10_1016_j_knosys_2021_106890 crossref_primary_10_1016_j_chaos_2021_111450 crossref_primary_10_1142_S2424922X18400016 crossref_primary_10_1111_jsr_12780 crossref_primary_10_1016_j_cmpb_2019_105253 crossref_primary_10_1109_ACCESS_2019_2939038 crossref_primary_10_1515_bmt_2020_0139 crossref_primary_10_1109_JBHI_2023_3253728 crossref_primary_10_3390_ijerph19052845 crossref_primary_10_1007_s11571_020_09641_2 crossref_primary_10_1109_JBHI_2020_2993644 crossref_primary_10_1109_JBHI_2020_3037693 crossref_primary_10_1088_1361_6579_ad02db crossref_primary_10_1016_j_bspc_2018_04_016 crossref_primary_10_1007_s10489_021_02422_2 crossref_primary_10_1155_2020_8430986 crossref_primary_10_1371_journal_pone_0296511 crossref_primary_10_1007_s11042_022_13195_2 crossref_primary_10_1016_j_bspc_2020_102318 crossref_primary_10_3390_diagnostics11081380 crossref_primary_10_1016_j_bspc_2021_102581 crossref_primary_10_1049_iet_spr_2018_5032 crossref_primary_10_1109_ACCESS_2020_2982434 crossref_primary_10_1016_j_compbiomed_2022_105877 crossref_primary_10_3390_electronics11152364 crossref_primary_10_1016_j_bspc_2021_102981 crossref_primary_10_1016_j_eswa_2018_02_034 crossref_primary_10_1007_s11517_023_02943_7 crossref_primary_10_1016_j_physa_2020_125685 crossref_primary_10_1007_s11571_018_9477_1 crossref_primary_10_1007_s41782_024_00282_7 crossref_primary_10_1016_j_compbiomed_2022_105594 crossref_primary_10_1007_s10439_024_03486_0 crossref_primary_10_1016_j_chaos_2023_113608 crossref_primary_10_1109_ACCESS_2022_3163250  | 
    
| Cites_doi | 10.1016/j.neucom.2016.09.011 10.1109/10.867928 10.1093/sleep/30.11.1587 10.1016/j.bspc.2016.05.009 10.1016/j.artmed.2011.06.004 10.1109/JBHI.2014.2303991 10.1016/j.bspc.2015.09.002 10.1016/j.cmpb.2016.08.013 10.1016/j.bspc.2014.08.001 10.1053/smrv.1999.0087 10.1016/j.cmpb.2015.09.005 10.1007/s10916-008-9218-9 10.1016/j.jneumeth.2016.07.012 10.1016/j.cmpb.2016.09.008 10.1007/s10527-007-0006-5 10.1109/TSMCA.2009.2029559 10.1016/j.cmpb.2011.11.005 10.1016/j.jneumeth.2014.07.002 10.1142/S1793536909000047 10.1007/s10439-015-1444-y 10.1016/j.neucom.2012.11.003 10.1016/S1474-4422(06)70476-8 10.1109/TIM.2012.2187242 10.1016/j.bbe.2015.11.001 10.1142/S1793536910000483 10.1088/2057-1976/2/3/035003 10.1016/j.jneumeth.2011.12.022 10.1016/j.smrv.2011.06.003 10.1016/j.eswa.2015.06.010 10.1016/j.jneumeth.2015.01.022 10.1016/j.compbiomed.2011.04.001  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2016 Elsevier Ireland Ltd Elsevier Ireland Ltd Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.  | 
    
| Copyright_xml | – notice: 2016 Elsevier Ireland Ltd – notice: Elsevier Ireland Ltd – notice: Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8  | 
    
| DOI | 10.1016/j.cmpb.2016.12.015 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 1872-7565 | 
    
| EndPage | 210 | 
    
| ExternalDocumentID | 28254077 10_1016_j_cmpb_2016_12_015 S0169260716305132 1_s2_0_S0169260716305132  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- --K --M -~X .1- .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMK HMO HVGLF HZ~ IHE J1W KOM LG9 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SBC SDF SDG SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WUQ XPP Z5R ZGI ZY4 ~G- ~HD AFCTW AGCQF AGRNS RIG AACTN AAIAV ABLVK ABTAH ABYKQ AFKWA AJBFU AJOXV AMFUW LCYCR AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8  | 
    
| ID | FETCH-LOGICAL-c528t-e72e58d0d935a2b7655123e4eddcfd959a6eca28d1c2c361f6d5f3640a4452933 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0169-2607 1872-7565  | 
    
| IngestDate | Sun Sep 28 06:31:08 EDT 2025 Mon Jul 21 06:00:05 EDT 2025 Wed Oct 01 03:21:08 EDT 2025 Thu Apr 24 23:11:18 EDT 2025 Fri Feb 23 02:26:01 EST 2024 Fri May 16 01:02:24 EDT 2025 Tue Oct 14 19:32:56 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Sleep stage classification RUSBoost Statistical features EEG EEMD  | 
    
| Language | English | 
    
| License | Copyright © 2016 Elsevier Ireland Ltd. All rights reserved. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c528t-e72e58d0d935a2b7655123e4eddcfd959a6eca28d1c2c361f6d5f3640a4452933 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0001-9346-3765 | 
    
| PMID | 28254077 | 
    
| PQID | 1874444337 | 
    
| PQPubID | 23479 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | proquest_miscellaneous_1874444337 pubmed_primary_28254077 crossref_primary_10_1016_j_cmpb_2016_12_015 crossref_citationtrail_10_1016_j_cmpb_2016_12_015 elsevier_sciencedirect_doi_10_1016_j_cmpb_2016_12_015 elsevier_clinicalkeyesjournals_1_s2_0_S0169260716305132 elsevier_clinicalkey_doi_10_1016_j_cmpb_2016_12_015  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2017-03-01 | 
    
| PublicationDateYYYYMMDD | 2017-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Ireland | 
    
| PublicationPlace_xml | – name: Ireland | 
    
| PublicationTitle | Computer methods and programs in biomedicine | 
    
| PublicationTitleAlternate | Comput Methods Programs Biomed | 
    
| PublicationYear | 2017 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Liang, Kuo, Hu, Pan, Wang (bib0004) 2012; 61 Hassan (bib0027) 2016; 29 Doroshenkov, Konyshev, Selishchev (bib0032) 2007; 41 Kayikcioglu, Maleki, Eroglu (bib0007) 2015; 42 2004 (accessed 01.04.2015). Lajnef, Chaibi, Ruby, Aguera, Eichenlaub, Samet, Kachouri, Jerbi (bib0010) 2015; 250 Hassan, Bhuiyan (bib0012) 2016; 24 Wu, Huang (bib0023) 2009; 01 Iranzo, Molinuevo, Santamaría, Serradell, Martí, Valldeoriola, Tolosa (bib0035) 2006; 5 Hassan, Bhuiyan (bib0013) 2016; 36 The dreams subjects database, URL Liang, Kuo, Hu, Cheng (bib0034) 2012; 205 Kemp, Zwinderman, Tuk, Kamphuisen, Oberye (bib0019) 2000; 47 Long, Foussier, Fonseca, Haakma, Aarts (bib0015) 2014; 14 Penzel, Conradt (bib0002) 2000; 4 Charbonnier, Zoubek, Lesecq, Chapotot (bib0017) 2011; 41 Hassan, Haque (bib0031) 2015 Hassan, Bhuiyan (bib0036) 2017; 219 Ronzhina, Janošuek, Kolářová, Nováková, Honzík, Provazník (bib0020) 2012; 16 Tsinalis, Matthews, Guo (bib0006) 2016; 44 Hassan, Siuly, Zhang (bib0024) 2016; 137 Seiffert, Khoshgoftaar, Van Hulse, Napolitano (bib0029) 2010; 40 Koch, Christensen, Frandsen, Zoetmulder, Arvastson, Christensen, Jennum, Sorensen (bib0018) 2014; 235 Hassan, Haque (bib0028) 2016; 2 Rechtschaffen, Kales (bib0001) 1968 Dong, Liu, Zhang, Ma, Wang, Guo, Liu, Zhong, Zhang, Peng, Fang (bib0009) 2010; 2 Fraiwan, Lweesy, Khasawneh, Wenz, Dickhaus (bib0005) 2012; 108 Hassan, Subasi (bib0026) 2016; 136 Zhu, Li, Wen (bib0003) 2014; 18 Hsu, Yang, Wang, Hsu (bib0011) 2013; 104 Murphy (bib0030) 2012 Hassan, Bhuiyan (bib0008) 2016; 271 Berthomier, Drouot, Herman-Stoïca, Berthomier, Prado, Bokar-Thire, Benoit, Mattout, d’Ortho (bib0021) 2007; 30 Huang, Lin, Ko, Liu, Su, Lin (bib0016) 2014; 8 Krakovská, Mezeiová (bib0014) 2011; 53 Vural, Yildiz (bib0033) 2010; 34 Hassan, Haque (bib0025) 2015; 122 Ronzhina (10.1016/j.cmpb.2016.12.015_bib0020) 2012; 16 Kemp (10.1016/j.cmpb.2016.12.015_bib0019) 2000; 47 Hassan (10.1016/j.cmpb.2016.12.015_bib0031) 2015 Zhu (10.1016/j.cmpb.2016.12.015_bib0003) 2014; 18 Tsinalis (10.1016/j.cmpb.2016.12.015_bib0006) 2016; 44 Hassan (10.1016/j.cmpb.2016.12.015_bib0024) 2016; 137 10.1016/j.cmpb.2016.12.015_bib0022 Hassan (10.1016/j.cmpb.2016.12.015_bib0028) 2016; 2 Doroshenkov (10.1016/j.cmpb.2016.12.015_bib0032) 2007; 41 Dong (10.1016/j.cmpb.2016.12.015_bib0009) 2010; 2 Liang (10.1016/j.cmpb.2016.12.015_bib0004) 2012; 61 Wu (10.1016/j.cmpb.2016.12.015_bib0023) 2009; 01 Charbonnier (10.1016/j.cmpb.2016.12.015_bib0017) 2011; 41 Hsu (10.1016/j.cmpb.2016.12.015_bib0011) 2013; 104 Rechtschaffen (10.1016/j.cmpb.2016.12.015_bib0001) 1968 Koch (10.1016/j.cmpb.2016.12.015_bib0018) 2014; 235 Vural (10.1016/j.cmpb.2016.12.015_bib0033) 2010; 34 Liang (10.1016/j.cmpb.2016.12.015_bib0034) 2012; 205 Fraiwan (10.1016/j.cmpb.2016.12.015_bib0005) 2012; 108 Lajnef (10.1016/j.cmpb.2016.12.015_bib0010) 2015; 250 Iranzo (10.1016/j.cmpb.2016.12.015_bib0035) 2006; 5 Hassan (10.1016/j.cmpb.2016.12.015_bib0026) 2016; 136 Huang (10.1016/j.cmpb.2016.12.015_bib0016) 2014; 8 Penzel (10.1016/j.cmpb.2016.12.015_bib0002) 2000; 4 Murphy (10.1016/j.cmpb.2016.12.015_bib0030) 2012 Hassan (10.1016/j.cmpb.2016.12.015_bib0013) 2016; 36 Krakovská (10.1016/j.cmpb.2016.12.015_bib0014) 2011; 53 Berthomier (10.1016/j.cmpb.2016.12.015_bib0021) 2007; 30 Hassan (10.1016/j.cmpb.2016.12.015_bib0025) 2015; 122 Hassan (10.1016/j.cmpb.2016.12.015_bib0012) 2016; 24 Long (10.1016/j.cmpb.2016.12.015_bib0015) 2014; 14 Kayikcioglu (10.1016/j.cmpb.2016.12.015_bib0007) 2015; 42 Hassan (10.1016/j.cmpb.2016.12.015_bib0036) 2017; 219 Seiffert (10.1016/j.cmpb.2016.12.015_bib0029) 2010; 40 Hassan (10.1016/j.cmpb.2016.12.015_bib0008) 2016; 271 Hassan (10.1016/j.cmpb.2016.12.015_bib0027) 2016; 29  | 
    
| References_xml | – volume: 136 start-page: 65 year: 2016 end-page: 77 ident: bib0026 article-title: Automatic identification of epileptic seizures from EEG signals using linear programming boosting publication-title: Comput. Methods Programs Biomed. – volume: 2 start-page: 035003 year: 2016 ident: bib0028 article-title: Computer-aided obstructive sleep apnea identification using statistical features in the EMD domain and extreme learning machine publication-title: Biomed. Phys. Eng. Express – volume: 41 start-page: 380 year: 2011 end-page: 389 ident: bib0017 article-title: Self-evaluated automatic classifier as a decision-support tool for sleep/wake staging publication-title: Computers in Biology and Medicine – volume: 61 start-page: 1649 year: 2012 end-page: 1657 ident: bib0004 article-title: Automatic stage scoring of single-channel sleep eeg by using multiscale entropy and autoregressive models publication-title: IEEE Trans. Instrum. Meas. – volume: 8 start-page: 1 year: 2014 end-page: 12 ident: bib0016 article-title: Knowledge-based identification of sleep stages based on two forehead electroencephalogram channels publication-title: Front. Neurosci. – volume: 18 start-page: 1813 year: 2014 end-page: 1821 ident: bib0003 article-title: Analysis and classification of sleep stages based on difference visibility graphs from a single-channel eeg signal publication-title: IEEE J. Biomed. Health Inf. – volume: 14 start-page: 197 year: 2014 end-page: 205 ident: bib0015 article-title: Analyzing respiratory effort amplitude for automated sleep stage classification publication-title: Biomed. Signal Process. Control – volume: 235 start-page: 130 year: 2014 end-page: 137 ident: bib0018 article-title: Automatic sleep classification using a data-driven topic model reveals latent sleep states publication-title: Journal of Neuroscience Methods – volume: 205 start-page: 169 year: 2012 end-page: 176 ident: bib0034 article-title: A rule-based automatic sleep staging method publication-title: J. Neurosci. Methods – year: 2012 ident: bib0030 article-title: Machine Learning: A Probabilistic Perspective – year: 1968 ident: bib0001 article-title: Manual of Standardized Terminology, Techniques and Scoring Systems for Sleep Stages of Human Subjects – volume: 271 start-page: 107 year: 2016 end-page: 118 ident: bib0008 article-title: A decision support system for automatic sleep staging from EEG signals using tunable publication-title: J. Neurosci. Methods – volume: 29 start-page: 22 year: 2016 end-page: 30 ident: bib0027 article-title: Computer-aided obstructive sleep apnea detection using normal inverse Gaussian parameters and adaptive boosting publication-title: Biomed. Signal Process. Control – volume: 122 start-page: 341 year: 2015 end-page: 353 ident: bib0025 article-title: Computer-aided gastrointestinal hemorrhage detection in wireless capsule endoscopy videos publication-title: Comput. Methods Programs Biomed. – volume: 42 start-page: 7825 year: 2015 end-page: 7830 ident: bib0007 article-title: Fast and accurate PLS-based classification of EEG sleep using single channel data publication-title: Expert Syst. Appl. – volume: 219 start-page: 76 year: 2017 end-page: 87 ident: bib0036 article-title: An automated method for sleep staging from EEG signals using normal inverse gaussian parameters and adaptive boosting publication-title: Neurocomputing – volume: 41 start-page: 24 year: 2007 end-page: 28 ident: bib0032 article-title: Classification of human sleep stages based on eeg processing using hidden Markov models publication-title: Biomed. Eng. – volume: 4 start-page: 131 year: 2000 end-page: 148 ident: bib0002 article-title: Computer based sleep recording and analysis publication-title: Sleep Med. Rev. – volume: 5 start-page: 572 year: 2006 end-page: 577 ident: bib0035 article-title: Rapid-eye-movement sleep behaviour disorder as an early marker for a neurodegenerative disorder: a descriptive study publication-title: Lancet Neurol. – volume: 104 start-page: 105 year: 2013 end-page: 114 ident: bib0011 article-title: Automatic sleep stage recurrent neural classifier using energy features of eeg signals publication-title: Neurocomputing – volume: 53 start-page: 25 year: 2011 end-page: 33 ident: bib0014 article-title: Automatic sleep scoring: a search for an optimal combination of measures publication-title: Artif. Intell. Med. – volume: 16 start-page: 251 year: 2012 end-page: 263 ident: bib0020 article-title: Sleep scoring using artificial neural networks publication-title: Sleep Med. Rev. – volume: 47 start-page: 1185 year: 2000 end-page: 1194 ident: bib0019 article-title: Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the eeg publication-title: IEEE Trans. Biomed. Eng. – volume: 44 start-page: 1587 year: 2016 end-page: 1597 ident: bib0006 article-title: Automatic sleep stage scoring using time-frequency analysis and stacked sparse autoencoders publication-title: Ann. Biomed. Eng. – volume: 36 start-page: 248 year: 2016 end-page: 255 ident: bib0013 article-title: Automatic sleep scoring using statistical features in the EMD domain and ensemble methods publication-title: Biocybern. Biomed. Eng. – reference: , 2004 (accessed 01.04.2015). – volume: 137 start-page: 247 year: 2016 end-page: 259 ident: bib0024 article-title: Epileptic seizure detection in EEG signals using tunable- publication-title: Comput. Methods Programs Biomed. – start-page: 1 year: 2015 end-page: 6 ident: bib0031 article-title: Epilepsy and seizure detection using statistical features in the complete ensemble empirical mode decomposition domain publication-title: Proceedings of the 2015 IEEE Region 10 Conference on TENCON – volume: 34 start-page: 83 year: 2010 end-page: 89 ident: bib0033 article-title: Determination of sleep stage separation ability of features extracted from EEG signals using principal component analysis publication-title: J. Med. Syst. – volume: 01 start-page: 1 year: 2009 end-page: 41 ident: bib0023 article-title: Ensemble empirical mode decomposition: a noise assisted data analysis method publication-title: Adv. Adapt. Data Anal. – volume: 40 start-page: 185 year: 2010 end-page: 197 ident: bib0029 article-title: Rusboost: a hybrid approach to alleviating class imbalance publication-title: IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. – volume: 2 start-page: 267 year: 2010 end-page: 276 ident: bib0009 article-title: Automated sleep staging technique based on the empirical mode decomposition algorithm: a preliminary study publication-title: Adv. Adapt. Data Anal. – volume: 24 start-page: 1 year: 2016 end-page: 10 ident: bib0012 article-title: Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating publication-title: Biomed. Signal Process. Control – reference: The dreams subjects database, URL – volume: 108 start-page: 10 year: 2012 end-page: 19 ident: bib0005 article-title: Automated sleep stage identification system based on time–frequency analysis of a single eeg channel and random forest classifier publication-title: Comput. Methods Programs Biomed. – volume: 250 start-page: 94 year: 2015 end-page: 105 ident: bib0010 article-title: Learning machines and sleeping brains: automatic sleep stage classification using decision-tree multi-class support vector machines publication-title: J. Neurosci. Methods – volume: 30 start-page: 1587 year: 2007 end-page: 1595. ident: bib0021 article-title: Automatic analysis of single-channel sleep EEG: validation in healthy individuals publication-title: Sleep – volume: 219 start-page: 76 year: 2017 ident: 10.1016/j.cmpb.2016.12.015_bib0036 article-title: An automated method for sleep staging from EEG signals using normal inverse gaussian parameters and adaptive boosting publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.09.011 – volume: 8 start-page: 1 issue: 263 year: 2014 ident: 10.1016/j.cmpb.2016.12.015_bib0016 article-title: Knowledge-based identification of sleep stages based on two forehead electroencephalogram channels publication-title: Front. Neurosci. – volume: 47 start-page: 1185 issue: 9 year: 2000 ident: 10.1016/j.cmpb.2016.12.015_bib0019 article-title: Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the eeg publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.867928 – volume: 30 start-page: 1587 issue: 11 year: 2007 ident: 10.1016/j.cmpb.2016.12.015_bib0021 article-title: Automatic analysis of single-channel sleep EEG: validation in healthy individuals publication-title: Sleep doi: 10.1093/sleep/30.11.1587 – volume: 29 start-page: 22 year: 2016 ident: 10.1016/j.cmpb.2016.12.015_bib0027 article-title: Computer-aided obstructive sleep apnea detection using normal inverse Gaussian parameters and adaptive boosting publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2016.05.009 – volume: 53 start-page: 25 issue: 1 year: 2011 ident: 10.1016/j.cmpb.2016.12.015_bib0014 article-title: Automatic sleep scoring: a search for an optimal combination of measures publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2011.06.004 – volume: 18 start-page: 1813 issue: 6 year: 2014 ident: 10.1016/j.cmpb.2016.12.015_bib0003 article-title: Analysis and classification of sleep stages based on difference visibility graphs from a single-channel eeg signal publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2014.2303991 – volume: 24 start-page: 1 year: 2016 ident: 10.1016/j.cmpb.2016.12.015_bib0012 article-title: Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2015.09.002 – start-page: 1 year: 2015 ident: 10.1016/j.cmpb.2016.12.015_bib0031 article-title: Epilepsy and seizure detection using statistical features in the complete ensemble empirical mode decomposition domain – volume: 136 start-page: 65 year: 2016 ident: 10.1016/j.cmpb.2016.12.015_bib0026 article-title: Automatic identification of epileptic seizures from EEG signals using linear programming boosting publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2016.08.013 – volume: 14 start-page: 197 year: 2014 ident: 10.1016/j.cmpb.2016.12.015_bib0015 article-title: Analyzing respiratory effort amplitude for automated sleep stage classification publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2014.08.001 – volume: 4 start-page: 131 issue: 2 year: 2000 ident: 10.1016/j.cmpb.2016.12.015_bib0002 article-title: Computer based sleep recording and analysis publication-title: Sleep Med. Rev. doi: 10.1053/smrv.1999.0087 – volume: 122 start-page: 341 issue: 3 year: 2015 ident: 10.1016/j.cmpb.2016.12.015_bib0025 article-title: Computer-aided gastrointestinal hemorrhage detection in wireless capsule endoscopy videos publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2015.09.005 – volume: 34 start-page: 83 year: 2010 ident: 10.1016/j.cmpb.2016.12.015_bib0033 article-title: Determination of sleep stage separation ability of features extracted from EEG signals using principal component analysis publication-title: J. Med. Syst. doi: 10.1007/s10916-008-9218-9 – volume: 271 start-page: 107 year: 2016 ident: 10.1016/j.cmpb.2016.12.015_bib0008 article-title: A decision support system for automatic sleep staging from EEG signals using tunable q-factor wavelet transform and spectral features publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2016.07.012 – volume: 137 start-page: 247 year: 2016 ident: 10.1016/j.cmpb.2016.12.015_bib0024 article-title: Epileptic seizure detection in EEG signals using tunable-q factor wavelet transform and bootstrap aggregating publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2016.09.008 – ident: 10.1016/j.cmpb.2016.12.015_bib0022 – volume: 41 start-page: 24 issue: 1 year: 2007 ident: 10.1016/j.cmpb.2016.12.015_bib0032 article-title: Classification of human sleep stages based on eeg processing using hidden Markov models publication-title: Biomed. Eng. doi: 10.1007/s10527-007-0006-5 – volume: 40 start-page: 185 issue: 1 year: 2010 ident: 10.1016/j.cmpb.2016.12.015_bib0029 article-title: Rusboost: a hybrid approach to alleviating class imbalance publication-title: IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. doi: 10.1109/TSMCA.2009.2029559 – volume: 108 start-page: 10 issue: 1 year: 2012 ident: 10.1016/j.cmpb.2016.12.015_bib0005 article-title: Automated sleep stage identification system based on time–frequency analysis of a single eeg channel and random forest classifier publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2011.11.005 – volume: 235 start-page: 130 issue: 0 year: 2014 ident: 10.1016/j.cmpb.2016.12.015_bib0018 article-title: Automatic sleep classification using a data-driven topic model reveals latent sleep states publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2014.07.002 – volume: 01 start-page: 1 issue: 01 year: 2009 ident: 10.1016/j.cmpb.2016.12.015_bib0023 article-title: Ensemble empirical mode decomposition: a noise assisted data analysis method publication-title: Adv. Adapt. Data Anal. doi: 10.1142/S1793536909000047 – year: 2012 ident: 10.1016/j.cmpb.2016.12.015_bib0030 – volume: 44 start-page: 1587 issue: 5 year: 2016 ident: 10.1016/j.cmpb.2016.12.015_bib0006 article-title: Automatic sleep stage scoring using time-frequency analysis and stacked sparse autoencoders publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-015-1444-y – volume: 104 start-page: 105 issue: 0 year: 2013 ident: 10.1016/j.cmpb.2016.12.015_bib0011 article-title: Automatic sleep stage recurrent neural classifier using energy features of eeg signals publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.11.003 – volume: 5 start-page: 572 issue: 7 year: 2006 ident: 10.1016/j.cmpb.2016.12.015_bib0035 article-title: Rapid-eye-movement sleep behaviour disorder as an early marker for a neurodegenerative disorder: a descriptive study publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(06)70476-8 – volume: 61 start-page: 1649 issue: 6 year: 2012 ident: 10.1016/j.cmpb.2016.12.015_bib0004 article-title: Automatic stage scoring of single-channel sleep eeg by using multiscale entropy and autoregressive models publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2012.2187242 – volume: 36 start-page: 248 issue: 1 year: 2016 ident: 10.1016/j.cmpb.2016.12.015_bib0013 article-title: Automatic sleep scoring using statistical features in the EMD domain and ensemble methods publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2015.11.001 – volume: 2 start-page: 267 issue: 2 year: 2010 ident: 10.1016/j.cmpb.2016.12.015_bib0009 article-title: Automated sleep staging technique based on the empirical mode decomposition algorithm: a preliminary study publication-title: Adv. Adapt. Data Anal. doi: 10.1142/S1793536910000483 – volume: 2 start-page: 035003 issue: 3 year: 2016 ident: 10.1016/j.cmpb.2016.12.015_bib0028 article-title: Computer-aided obstructive sleep apnea identification using statistical features in the EMD domain and extreme learning machine publication-title: Biomed. Phys. Eng. Express doi: 10.1088/2057-1976/2/3/035003 – volume: 205 start-page: 169 issue: 1 year: 2012 ident: 10.1016/j.cmpb.2016.12.015_bib0034 article-title: A rule-based automatic sleep staging method publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2011.12.022 – year: 1968 ident: 10.1016/j.cmpb.2016.12.015_bib0001 – volume: 16 start-page: 251 issue: 3 year: 2012 ident: 10.1016/j.cmpb.2016.12.015_bib0020 article-title: Sleep scoring using artificial neural networks publication-title: Sleep Med. Rev. doi: 10.1016/j.smrv.2011.06.003 – volume: 42 start-page: 7825 issue: 21 year: 2015 ident: 10.1016/j.cmpb.2016.12.015_bib0007 article-title: Fast and accurate PLS-based classification of EEG sleep using single channel data publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.06.010 – volume: 250 start-page: 94 year: 2015 ident: 10.1016/j.cmpb.2016.12.015_bib0010 article-title: Learning machines and sleeping brains: automatic sleep stage classification using decision-tree multi-class support vector machines publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.01.022 – volume: 41 start-page: 380 issue: 6 year: 2011 ident: 10.1016/j.cmpb.2016.12.015_bib0017 article-title: Self-evaluated automatic classifier as a decision-support tool for sleep/wake staging publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2011.04.001  | 
    
| SSID | ssj0002556 | 
    
| Score | 2.5502105 | 
    
| Snippet | •A single lead EEG based automated sleep scoring method is proposed.•A signal processing technique, namely EEMD is employed.•We introduce RUSBoost to classify... Highlights • A single lead EEG based automated sleep scoring method is proposed. • A signal processing technique, namely EEMD is employed. • We introduce... Automatic sleep staging is essential for alleviating the burden of the physicians of analyzing a large volume of data by visual inspection. It is also a...  | 
    
| SourceID | proquest pubmed crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 201 | 
    
| SubjectTerms | Adult Aged Automation EEG EEMD Electroencephalography - methods Empirical Research Female Humans Internal Medicine Male Middle Aged Other RUSBoost Sleep stage classification Sleep Stages - physiology Statistical features Young Adult  | 
    
| Title | Automated identification of sleep states from EEG signals by means of ensemble empirical mode decomposition and random under sampling boosting | 
    
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0169260716305132 https://www.clinicalkey.es/playcontent/1-s2.0-S0169260716305132 https://dx.doi.org/10.1016/j.cmpb.2016.12.015 https://www.ncbi.nlm.nih.gov/pubmed/28254077 https://www.proquest.com/docview/1874444337  | 
    
| Volume | 140 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - NZ customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: AKRWK dateStart: 19850501 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiEuCMprgVZG4obCNn5ujqtqywJqL1CpN8uOJ2jRbjZqdg9c-An8ZmYSZ1FFWySu0dhOPGPPOP7mG8beShsxysBjapjomCn0QVlQoDIbja08GnTo6JrOzs38Qn261Jd77GTIhSFYZdr7-z29263Tk3GazXGzWIy_EI-IIHo0gzaLhyrKYFeWqhi8__kH5kEUWz2_d5GRdEqc6TFe5aoJBO8y3S9BKo17s3O6LfjsnNDpI_YwRY982r_gY7YH9QG7f5bux5-wX9PtZo0xKES-iAkH1E09X1e8XQI0vMsgajmllfDZ7AMnAAeaIA8_-ArQb5EkHm1hFZbAYdUsOg4RThVzeARCoCeYF_d15OjpInZEmWhXvPUET6-_cYzcW4JTP2UXp7OvJ_MsVVzISi0mmwysAD2Jx7GQ2otgDcZTQoKCGMsqFrrwBkovJjEvRSlNXpmoK2nUsVd0gSvlM7Zfr2t4wXgRAnYgwVgRVAAgHjVf6WilMl7pasTyYapdmejIqSrG0g24s--O1ONIPS4XDtUzYu92bZqejONOaTlo0A1pprgxOvQVd7ayN7WCNq3t1uWuRUn3l_2NmN61vGbC_xzxzWBeDtc2Xdj4GtZbHIlqEyglpR2x573d7b6bco7xMG5f_ueor9gDQRFKB6d7zfY3V1s4xPhqE466BXTE7k0_fp6f_waJmSTY | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkYAL4s3yNBI3FLbr5-ZYVVsW6PZCK_Vm2fGkWrSbjZrdQy_9CfxmZhJnEaIUiWs0thN77JmJv_mGsffSRvQyMEwNYx0zhTYoCwpUZqOxpUeFDi1d0-zYTE_VlzN9tsMO-lwYglWms78709vTOj0Zptkc1vP58BvxiAiiRzOosxhU3WK3lRaWIrCPV79wHsSx1RF85xmJp8yZDuRVLOtA-C7T_hOk2rjXW6e_eZ-tFTp8wO4n95Hvd2_4kO1A9YjdmaUL8sfsx_5mvUInFCKfxwQEaueer0reLABq3qYQNZzySvhk8okTggN1kIdLvgQ0XCSJsS0swwI4LOt5SyLCqWQOj0AQ9ITz4r6KHE1dxI4oFe2CN57w6dU5R9e9ITz1E3Z6ODk5mGap5EJWaDFeZ2AF6HHci7nUXgRr0KESEhTEWJQx17k3UHgxjqNCFNKMShN1KY3a84pucKV8ynarVQXPGc9DwA4kGCuCCgBEpOZLHa1UxitdDtion2pXJD5yKouxcD3w7Luj5XG0PG4kHC7PgH3Ytqk7No4bpWW_gq7PM8WT0aGxuLGVva4VNGlzN27kGpR0fyjggOlty990-J8jvuvVy-HmphsbX8FqgyNRcQKlpLQD9qzTu-13U9IxRuP2xX-O-pbdnZ7MjtzR5-OvL9k9Qe5Ki617xXbXFxt4jc7WOrxpN9NPE6kmbQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+identification+of+sleep+states+from+EEG+signals+by+means+of+ensemble+empirical+mode+decomposition+and+random+under+sampling+boosting&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Hassan%2C+Ahnaf+Rashik&rft.au=Bhuiyan%2C+Mohammed+Imamul+Hassan&rft.date=2017-03-01&rft.eissn=1872-7565&rft.volume=140&rft.spage=201&rft_id=info:doi/10.1016%2Fj.cmpb.2016.12.015&rft_id=info%3Apmid%2F28254077&rft.externalDocID=28254077 | 
    
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01692607%2Fcov200h.gif |