Automated identification of sleep states from EEG signals by means of ensemble empirical mode decomposition and random under sampling boosting

•A single lead EEG based automated sleep scoring method is proposed.•A signal processing technique, namely EEMD is employed.•We introduce RUSBoost to classify sleep stages for the first time.•Efficacy of the method is confirmed by statistical and graphical analyses.•The performance of the proposed s...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 140; pp. 201 - 210
Main Authors Hassan, Ahnaf Rashik, Bhuiyan, Mohammed Imamul Hassan
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.03.2017
Subjects
Online AccessGet full text
ISSN0169-2607
1872-7565
1872-7565
DOI10.1016/j.cmpb.2016.12.015

Cover

Abstract •A single lead EEG based automated sleep scoring method is proposed.•A signal processing technique, namely EEMD is employed.•We introduce RUSBoost to classify sleep stages for the first time.•Efficacy of the method is confirmed by statistical and graphical analyses.•The performance of the proposed scheme, compared to the existing ones is promising. Background and objective:Automatic sleep staging is essential for alleviating the burden of the physicians of analyzing a large volume of data by visual inspection. It is also a precondition for making an automated sleep monitoring system feasible. Further, computerized sleep scoring will expedite large-scale data analysis in sleep research. Nevertheless, most of the existing works on sleep staging are either multichannel or multiple physiological signal based which are uncomfortable for the user and hinder the feasibility of an in-home sleep monitoring device. So, a successful and reliable computer-assisted sleep staging scheme is yet to emerge. Methods:In this work, we propose a single channel EEG based algorithm for computerized sleep scoring. In the proposed algorithm, we decompose EEG signal segments using Ensemble Empirical Mode Decomposition (EEMD) and extract various statistical moment based features. The effectiveness of EEMD and statistical features are investigated. Statistical analysis is performed for feature selection. A newly proposed classification technique, namely – Random under sampling boosting (RUSBoost) is introduced for sleep stage classification. This is the first implementation of EEMD in conjunction with RUSBoost to the best of the authors’ knowledge. The proposed feature extraction scheme’s performance is investigated for various choices of classification models. The algorithmic performance of our scheme is evaluated against contemporary works in the literature. Results:The performance of the proposed method is comparable or better than that of the state-of-the-art ones. The proposed algorithm gives 88.07%, 83.49%, 92.66%, 94.23%, and 98.15% for 6-state to 2-state classification of sleep stages on Sleep-EDF database. Our experimental outcomes reveal that RUSBoost outperforms other classification models for the feature extraction framework presented in this work. Besides, the algorithm proposed in this work demonstrates high detection accuracy for the sleep states S1 and REM. Conclusion:Statistical moment based features in the EEMD domain distinguish the sleep states successfully and efficaciously. The automated sleep scoring scheme propounded herein can eradicate the onus of the clinicians, contribute to the device implementation of a sleep monitoring system, and benefit sleep research.
AbstractList Automatic sleep staging is essential for alleviating the burden of the physicians of analyzing a large volume of data by visual inspection. It is also a precondition for making an automated sleep monitoring system feasible. Further, computerized sleep scoring will expedite large-scale data analysis in sleep research. Nevertheless, most of the existing works on sleep staging are either multichannel or multiple physiological signal based which are uncomfortable for the user and hinder the feasibility of an in-home sleep monitoring device. So, a successful and reliable computer-assisted sleep staging scheme is yet to emerge. In this work, we propose a single channel EEG based algorithm for computerized sleep scoring. In the proposed algorithm, we decompose EEG signal segments using Ensemble Empirical Mode Decomposition (EEMD) and extract various statistical moment based features. The effectiveness of EEMD and statistical features are investigated. Statistical analysis is performed for feature selection. A newly proposed classification technique, namely - Random under sampling boosting (RUSBoost) is introduced for sleep stage classification. This is the first implementation of EEMD in conjunction with RUSBoost to the best of the authors' knowledge. The proposed feature extraction scheme's performance is investigated for various choices of classification models. The algorithmic performance of our scheme is evaluated against contemporary works in the literature. The performance of the proposed method is comparable or better than that of the state-of-the-art ones. The proposed algorithm gives 88.07%, 83.49%, 92.66%, 94.23%, and 98.15% for 6-state to 2-state classification of sleep stages on Sleep-EDF database. Our experimental outcomes reveal that RUSBoost outperforms other classification models for the feature extraction framework presented in this work. Besides, the algorithm proposed in this work demonstrates high detection accuracy for the sleep states S1 and REM. Statistical moment based features in the EEMD domain distinguish the sleep states successfully and efficaciously. The automated sleep scoring scheme propounded herein can eradicate the onus of the clinicians, contribute to the device implementation of a sleep monitoring system, and benefit sleep research.
•A single lead EEG based automated sleep scoring method is proposed.•A signal processing technique, namely EEMD is employed.•We introduce RUSBoost to classify sleep stages for the first time.•Efficacy of the method is confirmed by statistical and graphical analyses.•The performance of the proposed scheme, compared to the existing ones is promising. Background and objective:Automatic sleep staging is essential for alleviating the burden of the physicians of analyzing a large volume of data by visual inspection. It is also a precondition for making an automated sleep monitoring system feasible. Further, computerized sleep scoring will expedite large-scale data analysis in sleep research. Nevertheless, most of the existing works on sleep staging are either multichannel or multiple physiological signal based which are uncomfortable for the user and hinder the feasibility of an in-home sleep monitoring device. So, a successful and reliable computer-assisted sleep staging scheme is yet to emerge. Methods:In this work, we propose a single channel EEG based algorithm for computerized sleep scoring. In the proposed algorithm, we decompose EEG signal segments using Ensemble Empirical Mode Decomposition (EEMD) and extract various statistical moment based features. The effectiveness of EEMD and statistical features are investigated. Statistical analysis is performed for feature selection. A newly proposed classification technique, namely – Random under sampling boosting (RUSBoost) is introduced for sleep stage classification. This is the first implementation of EEMD in conjunction with RUSBoost to the best of the authors’ knowledge. The proposed feature extraction scheme’s performance is investigated for various choices of classification models. The algorithmic performance of our scheme is evaluated against contemporary works in the literature. Results:The performance of the proposed method is comparable or better than that of the state-of-the-art ones. The proposed algorithm gives 88.07%, 83.49%, 92.66%, 94.23%, and 98.15% for 6-state to 2-state classification of sleep stages on Sleep-EDF database. Our experimental outcomes reveal that RUSBoost outperforms other classification models for the feature extraction framework presented in this work. Besides, the algorithm proposed in this work demonstrates high detection accuracy for the sleep states S1 and REM. Conclusion:Statistical moment based features in the EEMD domain distinguish the sleep states successfully and efficaciously. The automated sleep scoring scheme propounded herein can eradicate the onus of the clinicians, contribute to the device implementation of a sleep monitoring system, and benefit sleep research.
Highlights • A single lead EEG based automated sleep scoring method is proposed. • A signal processing technique, namely EEMD is employed. • We introduce RUSBoost to classify sleep stages for the first time. • Efficacy of the method is confirmed by statistical and graphical analyses. • The performance of the proposed scheme, compared to the existing ones is promising.
Automatic sleep staging is essential for alleviating the burden of the physicians of analyzing a large volume of data by visual inspection. It is also a precondition for making an automated sleep monitoring system feasible. Further, computerized sleep scoring will expedite large-scale data analysis in sleep research. Nevertheless, most of the existing works on sleep staging are either multichannel or multiple physiological signal based which are uncomfortable for the user and hinder the feasibility of an in-home sleep monitoring device. So, a successful and reliable computer-assisted sleep staging scheme is yet to emerge.BACKGROUND AND OBJECTIVEAutomatic sleep staging is essential for alleviating the burden of the physicians of analyzing a large volume of data by visual inspection. It is also a precondition for making an automated sleep monitoring system feasible. Further, computerized sleep scoring will expedite large-scale data analysis in sleep research. Nevertheless, most of the existing works on sleep staging are either multichannel or multiple physiological signal based which are uncomfortable for the user and hinder the feasibility of an in-home sleep monitoring device. So, a successful and reliable computer-assisted sleep staging scheme is yet to emerge.In this work, we propose a single channel EEG based algorithm for computerized sleep scoring. In the proposed algorithm, we decompose EEG signal segments using Ensemble Empirical Mode Decomposition (EEMD) and extract various statistical moment based features. The effectiveness of EEMD and statistical features are investigated. Statistical analysis is performed for feature selection. A newly proposed classification technique, namely - Random under sampling boosting (RUSBoost) is introduced for sleep stage classification. This is the first implementation of EEMD in conjunction with RUSBoost to the best of the authors' knowledge. The proposed feature extraction scheme's performance is investigated for various choices of classification models. The algorithmic performance of our scheme is evaluated against contemporary works in the literature.METHODSIn this work, we propose a single channel EEG based algorithm for computerized sleep scoring. In the proposed algorithm, we decompose EEG signal segments using Ensemble Empirical Mode Decomposition (EEMD) and extract various statistical moment based features. The effectiveness of EEMD and statistical features are investigated. Statistical analysis is performed for feature selection. A newly proposed classification technique, namely - Random under sampling boosting (RUSBoost) is introduced for sleep stage classification. This is the first implementation of EEMD in conjunction with RUSBoost to the best of the authors' knowledge. The proposed feature extraction scheme's performance is investigated for various choices of classification models. The algorithmic performance of our scheme is evaluated against contemporary works in the literature.The performance of the proposed method is comparable or better than that of the state-of-the-art ones. The proposed algorithm gives 88.07%, 83.49%, 92.66%, 94.23%, and 98.15% for 6-state to 2-state classification of sleep stages on Sleep-EDF database. Our experimental outcomes reveal that RUSBoost outperforms other classification models for the feature extraction framework presented in this work. Besides, the algorithm proposed in this work demonstrates high detection accuracy for the sleep states S1 and REM.RESULTSThe performance of the proposed method is comparable or better than that of the state-of-the-art ones. The proposed algorithm gives 88.07%, 83.49%, 92.66%, 94.23%, and 98.15% for 6-state to 2-state classification of sleep stages on Sleep-EDF database. Our experimental outcomes reveal that RUSBoost outperforms other classification models for the feature extraction framework presented in this work. Besides, the algorithm proposed in this work demonstrates high detection accuracy for the sleep states S1 and REM.Statistical moment based features in the EEMD domain distinguish the sleep states successfully and efficaciously. The automated sleep scoring scheme propounded herein can eradicate the onus of the clinicians, contribute to the device implementation of a sleep monitoring system, and benefit sleep research.CONCLUSIONStatistical moment based features in the EEMD domain distinguish the sleep states successfully and efficaciously. The automated sleep scoring scheme propounded herein can eradicate the onus of the clinicians, contribute to the device implementation of a sleep monitoring system, and benefit sleep research.
Author Hassan, Ahnaf Rashik
Bhuiyan, Mohammed Imamul Hassan
Author_xml – sequence: 1
  givenname: Ahnaf Rashik
  orcidid: 0000-0001-9346-3765
  surname: Hassan
  fullname: Hassan, Ahnaf Rashik
– sequence: 2
  givenname: Mohammed Imamul Hassan
  surname: Bhuiyan
  fullname: Bhuiyan, Mohammed Imamul Hassan
  email: ahnaf.hassan0@gmail.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28254077$$D View this record in MEDLINE/PubMed
BookMark eNqFksFqFTEUhoNU7G31BVxIlm5mmmQmmbkiQinXVii4UNchk5wpuU6SMckI9yV8ZjO91UXBmkVy4Pz_Fzj_OUMnPnhA6DUlNSVUXOxr7eahZqWuKasJ5c_QhvYdqzou-AnalMa2YoJ0p-gspT0hhHEuXqBT1jPekq7boF-XSw5OZTDYGvDZjlarbIPHYcRpAphxyqWd8BiDw7vdNU72zqsp4eGAHSifViX4BG6YAIObbSyICbtgABvQwc0h2Xuk8gbHchXQ4g1EnJSbJ-vv8BBCyqV4iZ6PhQ2vHt5z9O3j7uvVTXX7-frT1eVtpTnrcwUdA94bYrYNV2zoBOeUNdCCMXo0W75VArRivaGa6UbQURg-NqIlqm052zbNOXp75M4x_FggZels0jBNykNYkixTbMtpmq5I3zxIl8GBkXO0TsWD_DPDImBHgY4hpQjjXwklcg1K7uUalFyDkpTJElQx9Y9M2ub7weeo7PS09f3RCmVAPy1EmbQFr8HYCDpLE-zT9g-P7LpEsEb2HQ6Q9mGJa7ySylQM8su6ROsOUdEQThtWAO_-Dfjf778B0MPY6Q
CitedBy_id crossref_primary_10_3390_diagnostics11091571
crossref_primary_10_1016_j_knosys_2018_06_025
crossref_primary_10_2174_1381612829666221201161636
crossref_primary_10_1007_s11760_022_02343_8
crossref_primary_10_1016_j_bspc_2021_103061
crossref_primary_10_1007_s10489_021_02597_8
crossref_primary_10_1016_j_cmpb_2019_105116
crossref_primary_10_1016_j_knosys_2020_106276
crossref_primary_10_1002_jnm_3224
crossref_primary_10_1016_j_cmpb_2019_04_032
crossref_primary_10_1109_JBHI_2022_3227407
crossref_primary_10_3390_biomedinformatics2010007
crossref_primary_10_1190_tle41050347_1
crossref_primary_10_1002_eng2_12367
crossref_primary_10_4018_IJeC_316774
crossref_primary_10_1016_j_eswa_2018_12_023
crossref_primary_10_1002_dac_4095
crossref_primary_10_1016_j_heliyon_2022_e12136
crossref_primary_10_1007_s00521_017_3282_3
crossref_primary_10_1016_j_heliyon_2024_e41147
crossref_primary_10_1016_j_medengphy_2024_104208
crossref_primary_10_1007_s11760_023_02734_5
crossref_primary_10_1155_2021_5515100
crossref_primary_10_1109_ACCESS_2021_3083638
crossref_primary_10_3389_fnins_2020_00168
crossref_primary_10_1080_15228916_2021_1874795
crossref_primary_10_1016_j_knosys_2019_105333
crossref_primary_10_3390_axioms12010030
crossref_primary_10_1016_j_jneumeth_2019_108320
crossref_primary_10_1016_j_biosystems_2023_105112
crossref_primary_10_1016_j_cmpb_2022_107011
crossref_primary_10_4018_IJIRR_299941
crossref_primary_10_1016_j_asoc_2018_11_007
crossref_primary_10_3390_s24041197
crossref_primary_10_1177_09544119231195177
crossref_primary_10_1093_sleep_zsac154
crossref_primary_10_3390_ijerph16040599
crossref_primary_10_1080_10255842_2021_1995721
crossref_primary_10_1109_ACCESS_2021_3109780
crossref_primary_10_1088_1741_2552_ab965a
crossref_primary_10_1016_j_knosys_2018_10_029
crossref_primary_10_1109_TNSRE_2017_2776149
crossref_primary_10_1109_RBME_2019_2951328
crossref_primary_10_1109_TIM_2022_3154838
crossref_primary_10_1109_TNSRE_2023_3309542
crossref_primary_10_1016_j_bspc_2021_103086
crossref_primary_10_1186_s12911_024_02522_2
crossref_primary_10_1016_j_heliyon_2025_e42122
crossref_primary_10_1016_j_jneumeth_2019_108312
crossref_primary_10_1016_j_bspc_2022_103760
crossref_primary_10_1016_j_bspc_2022_104299
crossref_primary_10_1016_j_bspc_2022_103486
crossref_primary_10_1007_s00521_018_3757_x
crossref_primary_10_1049_iet_smt_2019_0034
crossref_primary_10_1016_j_compbiomed_2018_03_001
crossref_primary_10_1109_ACCESS_2020_2999915
crossref_primary_10_1002_mop_33115
crossref_primary_10_3233_THC_212847
crossref_primary_10_1007_s00500_019_04174_1
crossref_primary_10_3389_fdgth_2021_707589
crossref_primary_10_1007_s42979_021_00528_5
crossref_primary_10_1002_ima_22980
crossref_primary_10_1007_s42979_022_01156_3
crossref_primary_10_1016_j_bspc_2023_105572
crossref_primary_10_1016_j_eswa_2022_118752
crossref_primary_10_1109_JIOT_2022_3146926
crossref_primary_10_1016_j_compbiomed_2018_08_022
crossref_primary_10_1016_j_neures_2022_09_009
crossref_primary_10_1016_j_bspc_2017_12_001
crossref_primary_10_1109_TNSRE_2023_3323892
crossref_primary_10_3389_fnins_2019_00207
crossref_primary_10_1016_j_bspc_2021_102898
crossref_primary_10_1016_j_bbe_2020_01_013
crossref_primary_10_3390_diagnostics13142358
crossref_primary_10_2196_40211
crossref_primary_10_1109_ACCESS_2019_2928129
crossref_primary_10_1016_j_bbe_2020_01_010
crossref_primary_10_1016_j_cmpb_2019_04_004
crossref_primary_10_1007_s42600_024_00383_2
crossref_primary_10_1016_j_rineng_2024_102664
crossref_primary_10_1016_j_bspc_2020_101998
crossref_primary_10_1515_bmt_2019_0001
crossref_primary_10_3389_fnins_2018_00809
crossref_primary_10_1016_j_knosys_2019_105367
crossref_primary_10_1016_j_compbiomed_2020_103845
crossref_primary_10_3389_fphys_2021_628502
crossref_primary_10_1016_j_bspc_2018_08_016
crossref_primary_10_1016_j_bspc_2022_104501
crossref_primary_10_1109_ACCESS_2020_3002548
crossref_primary_10_1016_j_bspc_2020_102171
crossref_primary_10_1142_S0219519421400066
crossref_primary_10_1016_j_jneumeth_2019_01_013
crossref_primary_10_1016_j_bspc_2022_103819
crossref_primary_10_3390_rs15112886
crossref_primary_10_1016_j_cmpb_2019_06_008
crossref_primary_10_1016_j_bbe_2018_05_005
crossref_primary_10_1016_j_imu_2020_100370
crossref_primary_10_1007_s40846_022_00771_y
crossref_primary_10_1016_j_eswa_2018_03_020
crossref_primary_10_1109_JBHI_2023_3337261
crossref_primary_10_1016_j_neucom_2020_05_085
crossref_primary_10_1155_2023_7317938
crossref_primary_10_3390_signals4030026
crossref_primary_10_1109_ACCESS_2024_3374223
crossref_primary_10_1140_epjp_s13360_021_01715_2
crossref_primary_10_1109_TIM_2022_3177747
crossref_primary_10_1136_bmjopen_2022_063442
crossref_primary_10_3390_s20185317
crossref_primary_10_1109_TIM_2023_3323988
crossref_primary_10_1049_cit2_12042
crossref_primary_10_3390_s20174677
crossref_primary_10_1109_JBHI_2019_2951346
crossref_primary_10_1016_j_compbiomed_2023_107259
crossref_primary_10_1109_ACCESS_2019_2924181
crossref_primary_10_1016_j_bspc_2018_08_002
crossref_primary_10_1109_ACCESS_2019_2928020
crossref_primary_10_3389_fpsyt_2022_885120
crossref_primary_10_1016_j_cmpb_2018_04_009
crossref_primary_10_3389_fnins_2023_1108059
crossref_primary_10_1016_j_chaos_2021_110712
crossref_primary_10_1016_j_measurement_2017_10_067
crossref_primary_10_1080_03772063_2019_1568206
crossref_primary_10_1016_j_artmed_2020_101981
crossref_primary_10_3390_electronics13040695
crossref_primary_10_1016_j_knosys_2021_106890
crossref_primary_10_1016_j_chaos_2021_111450
crossref_primary_10_1142_S2424922X18400016
crossref_primary_10_1111_jsr_12780
crossref_primary_10_1016_j_cmpb_2019_105253
crossref_primary_10_1109_ACCESS_2019_2939038
crossref_primary_10_1515_bmt_2020_0139
crossref_primary_10_1109_JBHI_2023_3253728
crossref_primary_10_3390_ijerph19052845
crossref_primary_10_1007_s11571_020_09641_2
crossref_primary_10_1109_JBHI_2020_2993644
crossref_primary_10_1109_JBHI_2020_3037693
crossref_primary_10_1088_1361_6579_ad02db
crossref_primary_10_1016_j_bspc_2018_04_016
crossref_primary_10_1007_s10489_021_02422_2
crossref_primary_10_1155_2020_8430986
crossref_primary_10_1371_journal_pone_0296511
crossref_primary_10_1007_s11042_022_13195_2
crossref_primary_10_1016_j_bspc_2020_102318
crossref_primary_10_3390_diagnostics11081380
crossref_primary_10_1016_j_bspc_2021_102581
crossref_primary_10_1049_iet_spr_2018_5032
crossref_primary_10_1109_ACCESS_2020_2982434
crossref_primary_10_1016_j_compbiomed_2022_105877
crossref_primary_10_3390_electronics11152364
crossref_primary_10_1016_j_bspc_2021_102981
crossref_primary_10_1016_j_eswa_2018_02_034
crossref_primary_10_1007_s11517_023_02943_7
crossref_primary_10_1016_j_physa_2020_125685
crossref_primary_10_1007_s11571_018_9477_1
crossref_primary_10_1007_s41782_024_00282_7
crossref_primary_10_1016_j_compbiomed_2022_105594
crossref_primary_10_1007_s10439_024_03486_0
crossref_primary_10_1016_j_chaos_2023_113608
crossref_primary_10_1109_ACCESS_2022_3163250
Cites_doi 10.1016/j.neucom.2016.09.011
10.1109/10.867928
10.1093/sleep/30.11.1587
10.1016/j.bspc.2016.05.009
10.1016/j.artmed.2011.06.004
10.1109/JBHI.2014.2303991
10.1016/j.bspc.2015.09.002
10.1016/j.cmpb.2016.08.013
10.1016/j.bspc.2014.08.001
10.1053/smrv.1999.0087
10.1016/j.cmpb.2015.09.005
10.1007/s10916-008-9218-9
10.1016/j.jneumeth.2016.07.012
10.1016/j.cmpb.2016.09.008
10.1007/s10527-007-0006-5
10.1109/TSMCA.2009.2029559
10.1016/j.cmpb.2011.11.005
10.1016/j.jneumeth.2014.07.002
10.1142/S1793536909000047
10.1007/s10439-015-1444-y
10.1016/j.neucom.2012.11.003
10.1016/S1474-4422(06)70476-8
10.1109/TIM.2012.2187242
10.1016/j.bbe.2015.11.001
10.1142/S1793536910000483
10.1088/2057-1976/2/3/035003
10.1016/j.jneumeth.2011.12.022
10.1016/j.smrv.2011.06.003
10.1016/j.eswa.2015.06.010
10.1016/j.jneumeth.2015.01.022
10.1016/j.compbiomed.2011.04.001
ContentType Journal Article
Copyright 2016 Elsevier Ireland Ltd
Elsevier Ireland Ltd
Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Ireland Ltd
– notice: Elsevier Ireland Ltd
– notice: Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cmpb.2016.12.015
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
EndPage 210
ExternalDocumentID 28254077
10_1016_j_cmpb_2016_12_015
S0169260716305132
1_s2_0_S0169260716305132
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
~HD
AFCTW
AGCQF
AGRNS
RIG
AACTN
AAIAV
ABLVK
ABTAH
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c528t-e72e58d0d935a2b7655123e4eddcfd959a6eca28d1c2c361f6d5f3640a4452933
IEDL.DBID .~1
ISSN 0169-2607
1872-7565
IngestDate Sun Sep 28 06:31:08 EDT 2025
Mon Jul 21 06:00:05 EDT 2025
Wed Oct 01 03:21:08 EDT 2025
Thu Apr 24 23:11:18 EDT 2025
Fri Feb 23 02:26:01 EST 2024
Fri May 16 01:02:24 EDT 2025
Tue Oct 14 19:32:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Sleep stage classification
RUSBoost
Statistical features
EEG
EEMD
Language English
License Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c528t-e72e58d0d935a2b7655123e4eddcfd959a6eca28d1c2c361f6d5f3640a4452933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9346-3765
PMID 28254077
PQID 1874444337
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1874444337
pubmed_primary_28254077
crossref_primary_10_1016_j_cmpb_2016_12_015
crossref_citationtrail_10_1016_j_cmpb_2016_12_015
elsevier_sciencedirect_doi_10_1016_j_cmpb_2016_12_015
elsevier_clinicalkeyesjournals_1_s2_0_S0169260716305132
elsevier_clinicalkey_doi_10_1016_j_cmpb_2016_12_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-01
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Liang, Kuo, Hu, Pan, Wang (bib0004) 2012; 61
Hassan (bib0027) 2016; 29
Doroshenkov, Konyshev, Selishchev (bib0032) 2007; 41
Kayikcioglu, Maleki, Eroglu (bib0007) 2015; 42
2004 (accessed 01.04.2015).
Lajnef, Chaibi, Ruby, Aguera, Eichenlaub, Samet, Kachouri, Jerbi (bib0010) 2015; 250
Hassan, Bhuiyan (bib0012) 2016; 24
Wu, Huang (bib0023) 2009; 01
Iranzo, Molinuevo, Santamaría, Serradell, Martí, Valldeoriola, Tolosa (bib0035) 2006; 5
Hassan, Bhuiyan (bib0013) 2016; 36
The dreams subjects database, URL
Liang, Kuo, Hu, Cheng (bib0034) 2012; 205
Kemp, Zwinderman, Tuk, Kamphuisen, Oberye (bib0019) 2000; 47
Long, Foussier, Fonseca, Haakma, Aarts (bib0015) 2014; 14
Penzel, Conradt (bib0002) 2000; 4
Charbonnier, Zoubek, Lesecq, Chapotot (bib0017) 2011; 41
Hassan, Haque (bib0031) 2015
Hassan, Bhuiyan (bib0036) 2017; 219
Ronzhina, Janošuek, Kolářová, Nováková, Honzík, Provazník (bib0020) 2012; 16
Tsinalis, Matthews, Guo (bib0006) 2016; 44
Hassan, Siuly, Zhang (bib0024) 2016; 137
Seiffert, Khoshgoftaar, Van Hulse, Napolitano (bib0029) 2010; 40
Koch, Christensen, Frandsen, Zoetmulder, Arvastson, Christensen, Jennum, Sorensen (bib0018) 2014; 235
Hassan, Haque (bib0028) 2016; 2
Rechtschaffen, Kales (bib0001) 1968
Dong, Liu, Zhang, Ma, Wang, Guo, Liu, Zhong, Zhang, Peng, Fang (bib0009) 2010; 2
Fraiwan, Lweesy, Khasawneh, Wenz, Dickhaus (bib0005) 2012; 108
Hassan, Subasi (bib0026) 2016; 136
Zhu, Li, Wen (bib0003) 2014; 18
Hsu, Yang, Wang, Hsu (bib0011) 2013; 104
Murphy (bib0030) 2012
Hassan, Bhuiyan (bib0008) 2016; 271
Berthomier, Drouot, Herman-Stoïca, Berthomier, Prado, Bokar-Thire, Benoit, Mattout, d’Ortho (bib0021) 2007; 30
Huang, Lin, Ko, Liu, Su, Lin (bib0016) 2014; 8
Krakovská, Mezeiová (bib0014) 2011; 53
Vural, Yildiz (bib0033) 2010; 34
Hassan, Haque (bib0025) 2015; 122
Ronzhina (10.1016/j.cmpb.2016.12.015_bib0020) 2012; 16
Kemp (10.1016/j.cmpb.2016.12.015_bib0019) 2000; 47
Hassan (10.1016/j.cmpb.2016.12.015_bib0031) 2015
Zhu (10.1016/j.cmpb.2016.12.015_bib0003) 2014; 18
Tsinalis (10.1016/j.cmpb.2016.12.015_bib0006) 2016; 44
Hassan (10.1016/j.cmpb.2016.12.015_bib0024) 2016; 137
10.1016/j.cmpb.2016.12.015_bib0022
Hassan (10.1016/j.cmpb.2016.12.015_bib0028) 2016; 2
Doroshenkov (10.1016/j.cmpb.2016.12.015_bib0032) 2007; 41
Dong (10.1016/j.cmpb.2016.12.015_bib0009) 2010; 2
Liang (10.1016/j.cmpb.2016.12.015_bib0004) 2012; 61
Wu (10.1016/j.cmpb.2016.12.015_bib0023) 2009; 01
Charbonnier (10.1016/j.cmpb.2016.12.015_bib0017) 2011; 41
Hsu (10.1016/j.cmpb.2016.12.015_bib0011) 2013; 104
Rechtschaffen (10.1016/j.cmpb.2016.12.015_bib0001) 1968
Koch (10.1016/j.cmpb.2016.12.015_bib0018) 2014; 235
Vural (10.1016/j.cmpb.2016.12.015_bib0033) 2010; 34
Liang (10.1016/j.cmpb.2016.12.015_bib0034) 2012; 205
Fraiwan (10.1016/j.cmpb.2016.12.015_bib0005) 2012; 108
Lajnef (10.1016/j.cmpb.2016.12.015_bib0010) 2015; 250
Iranzo (10.1016/j.cmpb.2016.12.015_bib0035) 2006; 5
Hassan (10.1016/j.cmpb.2016.12.015_bib0026) 2016; 136
Huang (10.1016/j.cmpb.2016.12.015_bib0016) 2014; 8
Penzel (10.1016/j.cmpb.2016.12.015_bib0002) 2000; 4
Murphy (10.1016/j.cmpb.2016.12.015_bib0030) 2012
Hassan (10.1016/j.cmpb.2016.12.015_bib0013) 2016; 36
Krakovská (10.1016/j.cmpb.2016.12.015_bib0014) 2011; 53
Berthomier (10.1016/j.cmpb.2016.12.015_bib0021) 2007; 30
Hassan (10.1016/j.cmpb.2016.12.015_bib0025) 2015; 122
Hassan (10.1016/j.cmpb.2016.12.015_bib0012) 2016; 24
Long (10.1016/j.cmpb.2016.12.015_bib0015) 2014; 14
Kayikcioglu (10.1016/j.cmpb.2016.12.015_bib0007) 2015; 42
Hassan (10.1016/j.cmpb.2016.12.015_bib0036) 2017; 219
Seiffert (10.1016/j.cmpb.2016.12.015_bib0029) 2010; 40
Hassan (10.1016/j.cmpb.2016.12.015_bib0008) 2016; 271
Hassan (10.1016/j.cmpb.2016.12.015_bib0027) 2016; 29
References_xml – volume: 136
  start-page: 65
  year: 2016
  end-page: 77
  ident: bib0026
  article-title: Automatic identification of epileptic seizures from EEG signals using linear programming boosting
  publication-title: Comput. Methods Programs Biomed.
– volume: 2
  start-page: 035003
  year: 2016
  ident: bib0028
  article-title: Computer-aided obstructive sleep apnea identification using statistical features in the EMD domain and extreme learning machine
  publication-title: Biomed. Phys. Eng. Express
– volume: 41
  start-page: 380
  year: 2011
  end-page: 389
  ident: bib0017
  article-title: Self-evaluated automatic classifier as a decision-support tool for sleep/wake staging
  publication-title: Computers in Biology and Medicine
– volume: 61
  start-page: 1649
  year: 2012
  end-page: 1657
  ident: bib0004
  article-title: Automatic stage scoring of single-channel sleep eeg by using multiscale entropy and autoregressive models
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 8
  start-page: 1
  year: 2014
  end-page: 12
  ident: bib0016
  article-title: Knowledge-based identification of sleep stages based on two forehead electroencephalogram channels
  publication-title: Front. Neurosci.
– volume: 18
  start-page: 1813
  year: 2014
  end-page: 1821
  ident: bib0003
  article-title: Analysis and classification of sleep stages based on difference visibility graphs from a single-channel eeg signal
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 14
  start-page: 197
  year: 2014
  end-page: 205
  ident: bib0015
  article-title: Analyzing respiratory effort amplitude for automated sleep stage classification
  publication-title: Biomed. Signal Process. Control
– volume: 235
  start-page: 130
  year: 2014
  end-page: 137
  ident: bib0018
  article-title: Automatic sleep classification using a data-driven topic model reveals latent sleep states
  publication-title: Journal of Neuroscience Methods
– volume: 205
  start-page: 169
  year: 2012
  end-page: 176
  ident: bib0034
  article-title: A rule-based automatic sleep staging method
  publication-title: J. Neurosci. Methods
– year: 2012
  ident: bib0030
  article-title: Machine Learning: A Probabilistic Perspective
– year: 1968
  ident: bib0001
  article-title: Manual of Standardized Terminology, Techniques and Scoring Systems for Sleep Stages of Human Subjects
– volume: 271
  start-page: 107
  year: 2016
  end-page: 118
  ident: bib0008
  article-title: A decision support system for automatic sleep staging from EEG signals using tunable
  publication-title: J. Neurosci. Methods
– volume: 29
  start-page: 22
  year: 2016
  end-page: 30
  ident: bib0027
  article-title: Computer-aided obstructive sleep apnea detection using normal inverse Gaussian parameters and adaptive boosting
  publication-title: Biomed. Signal Process. Control
– volume: 122
  start-page: 341
  year: 2015
  end-page: 353
  ident: bib0025
  article-title: Computer-aided gastrointestinal hemorrhage detection in wireless capsule endoscopy videos
  publication-title: Comput. Methods Programs Biomed.
– volume: 42
  start-page: 7825
  year: 2015
  end-page: 7830
  ident: bib0007
  article-title: Fast and accurate PLS-based classification of EEG sleep using single channel data
  publication-title: Expert Syst. Appl.
– volume: 219
  start-page: 76
  year: 2017
  end-page: 87
  ident: bib0036
  article-title: An automated method for sleep staging from EEG signals using normal inverse gaussian parameters and adaptive boosting
  publication-title: Neurocomputing
– volume: 41
  start-page: 24
  year: 2007
  end-page: 28
  ident: bib0032
  article-title: Classification of human sleep stages based on eeg processing using hidden Markov models
  publication-title: Biomed. Eng.
– volume: 4
  start-page: 131
  year: 2000
  end-page: 148
  ident: bib0002
  article-title: Computer based sleep recording and analysis
  publication-title: Sleep Med. Rev.
– volume: 5
  start-page: 572
  year: 2006
  end-page: 577
  ident: bib0035
  article-title: Rapid-eye-movement sleep behaviour disorder as an early marker for a neurodegenerative disorder: a descriptive study
  publication-title: Lancet Neurol.
– volume: 104
  start-page: 105
  year: 2013
  end-page: 114
  ident: bib0011
  article-title: Automatic sleep stage recurrent neural classifier using energy features of eeg signals
  publication-title: Neurocomputing
– volume: 53
  start-page: 25
  year: 2011
  end-page: 33
  ident: bib0014
  article-title: Automatic sleep scoring: a search for an optimal combination of measures
  publication-title: Artif. Intell. Med.
– volume: 16
  start-page: 251
  year: 2012
  end-page: 263
  ident: bib0020
  article-title: Sleep scoring using artificial neural networks
  publication-title: Sleep Med. Rev.
– volume: 47
  start-page: 1185
  year: 2000
  end-page: 1194
  ident: bib0019
  article-title: Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the eeg
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 44
  start-page: 1587
  year: 2016
  end-page: 1597
  ident: bib0006
  article-title: Automatic sleep stage scoring using time-frequency analysis and stacked sparse autoencoders
  publication-title: Ann. Biomed. Eng.
– volume: 36
  start-page: 248
  year: 2016
  end-page: 255
  ident: bib0013
  article-title: Automatic sleep scoring using statistical features in the EMD domain and ensemble methods
  publication-title: Biocybern. Biomed. Eng.
– reference: , 2004 (accessed 01.04.2015).
– volume: 137
  start-page: 247
  year: 2016
  end-page: 259
  ident: bib0024
  article-title: Epileptic seizure detection in EEG signals using tunable-
  publication-title: Comput. Methods Programs Biomed.
– start-page: 1
  year: 2015
  end-page: 6
  ident: bib0031
  article-title: Epilepsy and seizure detection using statistical features in the complete ensemble empirical mode decomposition domain
  publication-title: Proceedings of the 2015 IEEE Region 10 Conference on TENCON
– volume: 34
  start-page: 83
  year: 2010
  end-page: 89
  ident: bib0033
  article-title: Determination of sleep stage separation ability of features extracted from EEG signals using principal component analysis
  publication-title: J. Med. Syst.
– volume: 01
  start-page: 1
  year: 2009
  end-page: 41
  ident: bib0023
  article-title: Ensemble empirical mode decomposition: a noise assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
– volume: 40
  start-page: 185
  year: 2010
  end-page: 197
  ident: bib0029
  article-title: Rusboost: a hybrid approach to alleviating class imbalance
  publication-title: IEEE Trans. Syst. Man Cybern. Part A Syst. Hum.
– volume: 2
  start-page: 267
  year: 2010
  end-page: 276
  ident: bib0009
  article-title: Automated sleep staging technique based on the empirical mode decomposition algorithm: a preliminary study
  publication-title: Adv. Adapt. Data Anal.
– volume: 24
  start-page: 1
  year: 2016
  end-page: 10
  ident: bib0012
  article-title: Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating
  publication-title: Biomed. Signal Process. Control
– reference: The dreams subjects database, URL
– volume: 108
  start-page: 10
  year: 2012
  end-page: 19
  ident: bib0005
  article-title: Automated sleep stage identification system based on time–frequency analysis of a single eeg channel and random forest classifier
  publication-title: Comput. Methods Programs Biomed.
– volume: 250
  start-page: 94
  year: 2015
  end-page: 105
  ident: bib0010
  article-title: Learning machines and sleeping brains: automatic sleep stage classification using decision-tree multi-class support vector machines
  publication-title: J. Neurosci. Methods
– volume: 30
  start-page: 1587
  year: 2007
  end-page: 1595.
  ident: bib0021
  article-title: Automatic analysis of single-channel sleep EEG: validation in healthy individuals
  publication-title: Sleep
– volume: 219
  start-page: 76
  year: 2017
  ident: 10.1016/j.cmpb.2016.12.015_bib0036
  article-title: An automated method for sleep staging from EEG signals using normal inverse gaussian parameters and adaptive boosting
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.011
– volume: 8
  start-page: 1
  issue: 263
  year: 2014
  ident: 10.1016/j.cmpb.2016.12.015_bib0016
  article-title: Knowledge-based identification of sleep stages based on two forehead electroencephalogram channels
  publication-title: Front. Neurosci.
– volume: 47
  start-page: 1185
  issue: 9
  year: 2000
  ident: 10.1016/j.cmpb.2016.12.015_bib0019
  article-title: Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the eeg
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.867928
– volume: 30
  start-page: 1587
  issue: 11
  year: 2007
  ident: 10.1016/j.cmpb.2016.12.015_bib0021
  article-title: Automatic analysis of single-channel sleep EEG: validation in healthy individuals
  publication-title: Sleep
  doi: 10.1093/sleep/30.11.1587
– volume: 29
  start-page: 22
  year: 2016
  ident: 10.1016/j.cmpb.2016.12.015_bib0027
  article-title: Computer-aided obstructive sleep apnea detection using normal inverse Gaussian parameters and adaptive boosting
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2016.05.009
– volume: 53
  start-page: 25
  issue: 1
  year: 2011
  ident: 10.1016/j.cmpb.2016.12.015_bib0014
  article-title: Automatic sleep scoring: a search for an optimal combination of measures
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2011.06.004
– volume: 18
  start-page: 1813
  issue: 6
  year: 2014
  ident: 10.1016/j.cmpb.2016.12.015_bib0003
  article-title: Analysis and classification of sleep stages based on difference visibility graphs from a single-channel eeg signal
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2014.2303991
– volume: 24
  start-page: 1
  year: 2016
  ident: 10.1016/j.cmpb.2016.12.015_bib0012
  article-title: Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2015.09.002
– start-page: 1
  year: 2015
  ident: 10.1016/j.cmpb.2016.12.015_bib0031
  article-title: Epilepsy and seizure detection using statistical features in the complete ensemble empirical mode decomposition domain
– volume: 136
  start-page: 65
  year: 2016
  ident: 10.1016/j.cmpb.2016.12.015_bib0026
  article-title: Automatic identification of epileptic seizures from EEG signals using linear programming boosting
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2016.08.013
– volume: 14
  start-page: 197
  year: 2014
  ident: 10.1016/j.cmpb.2016.12.015_bib0015
  article-title: Analyzing respiratory effort amplitude for automated sleep stage classification
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2014.08.001
– volume: 4
  start-page: 131
  issue: 2
  year: 2000
  ident: 10.1016/j.cmpb.2016.12.015_bib0002
  article-title: Computer based sleep recording and analysis
  publication-title: Sleep Med. Rev.
  doi: 10.1053/smrv.1999.0087
– volume: 122
  start-page: 341
  issue: 3
  year: 2015
  ident: 10.1016/j.cmpb.2016.12.015_bib0025
  article-title: Computer-aided gastrointestinal hemorrhage detection in wireless capsule endoscopy videos
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2015.09.005
– volume: 34
  start-page: 83
  year: 2010
  ident: 10.1016/j.cmpb.2016.12.015_bib0033
  article-title: Determination of sleep stage separation ability of features extracted from EEG signals using principal component analysis
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-008-9218-9
– volume: 271
  start-page: 107
  year: 2016
  ident: 10.1016/j.cmpb.2016.12.015_bib0008
  article-title: A decision support system for automatic sleep staging from EEG signals using tunable q-factor wavelet transform and spectral features
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2016.07.012
– volume: 137
  start-page: 247
  year: 2016
  ident: 10.1016/j.cmpb.2016.12.015_bib0024
  article-title: Epileptic seizure detection in EEG signals using tunable-q factor wavelet transform and bootstrap aggregating
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2016.09.008
– ident: 10.1016/j.cmpb.2016.12.015_bib0022
– volume: 41
  start-page: 24
  issue: 1
  year: 2007
  ident: 10.1016/j.cmpb.2016.12.015_bib0032
  article-title: Classification of human sleep stages based on eeg processing using hidden Markov models
  publication-title: Biomed. Eng.
  doi: 10.1007/s10527-007-0006-5
– volume: 40
  start-page: 185
  issue: 1
  year: 2010
  ident: 10.1016/j.cmpb.2016.12.015_bib0029
  article-title: Rusboost: a hybrid approach to alleviating class imbalance
  publication-title: IEEE Trans. Syst. Man Cybern. Part A Syst. Hum.
  doi: 10.1109/TSMCA.2009.2029559
– volume: 108
  start-page: 10
  issue: 1
  year: 2012
  ident: 10.1016/j.cmpb.2016.12.015_bib0005
  article-title: Automated sleep stage identification system based on time–frequency analysis of a single eeg channel and random forest classifier
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2011.11.005
– volume: 235
  start-page: 130
  issue: 0
  year: 2014
  ident: 10.1016/j.cmpb.2016.12.015_bib0018
  article-title: Automatic sleep classification using a data-driven topic model reveals latent sleep states
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2014.07.002
– volume: 01
  start-page: 1
  issue: 01
  year: 2009
  ident: 10.1016/j.cmpb.2016.12.015_bib0023
  article-title: Ensemble empirical mode decomposition: a noise assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536909000047
– year: 2012
  ident: 10.1016/j.cmpb.2016.12.015_bib0030
– volume: 44
  start-page: 1587
  issue: 5
  year: 2016
  ident: 10.1016/j.cmpb.2016.12.015_bib0006
  article-title: Automatic sleep stage scoring using time-frequency analysis and stacked sparse autoencoders
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-015-1444-y
– volume: 104
  start-page: 105
  issue: 0
  year: 2013
  ident: 10.1016/j.cmpb.2016.12.015_bib0011
  article-title: Automatic sleep stage recurrent neural classifier using energy features of eeg signals
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.11.003
– volume: 5
  start-page: 572
  issue: 7
  year: 2006
  ident: 10.1016/j.cmpb.2016.12.015_bib0035
  article-title: Rapid-eye-movement sleep behaviour disorder as an early marker for a neurodegenerative disorder: a descriptive study
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(06)70476-8
– volume: 61
  start-page: 1649
  issue: 6
  year: 2012
  ident: 10.1016/j.cmpb.2016.12.015_bib0004
  article-title: Automatic stage scoring of single-channel sleep eeg by using multiscale entropy and autoregressive models
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2012.2187242
– volume: 36
  start-page: 248
  issue: 1
  year: 2016
  ident: 10.1016/j.cmpb.2016.12.015_bib0013
  article-title: Automatic sleep scoring using statistical features in the EMD domain and ensemble methods
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2015.11.001
– volume: 2
  start-page: 267
  issue: 2
  year: 2010
  ident: 10.1016/j.cmpb.2016.12.015_bib0009
  article-title: Automated sleep staging technique based on the empirical mode decomposition algorithm: a preliminary study
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536910000483
– volume: 2
  start-page: 035003
  issue: 3
  year: 2016
  ident: 10.1016/j.cmpb.2016.12.015_bib0028
  article-title: Computer-aided obstructive sleep apnea identification using statistical features in the EMD domain and extreme learning machine
  publication-title: Biomed. Phys. Eng. Express
  doi: 10.1088/2057-1976/2/3/035003
– volume: 205
  start-page: 169
  issue: 1
  year: 2012
  ident: 10.1016/j.cmpb.2016.12.015_bib0034
  article-title: A rule-based automatic sleep staging method
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2011.12.022
– year: 1968
  ident: 10.1016/j.cmpb.2016.12.015_bib0001
– volume: 16
  start-page: 251
  issue: 3
  year: 2012
  ident: 10.1016/j.cmpb.2016.12.015_bib0020
  article-title: Sleep scoring using artificial neural networks
  publication-title: Sleep Med. Rev.
  doi: 10.1016/j.smrv.2011.06.003
– volume: 42
  start-page: 7825
  issue: 21
  year: 2015
  ident: 10.1016/j.cmpb.2016.12.015_bib0007
  article-title: Fast and accurate PLS-based classification of EEG sleep using single channel data
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.06.010
– volume: 250
  start-page: 94
  year: 2015
  ident: 10.1016/j.cmpb.2016.12.015_bib0010
  article-title: Learning machines and sleeping brains: automatic sleep stage classification using decision-tree multi-class support vector machines
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2015.01.022
– volume: 41
  start-page: 380
  issue: 6
  year: 2011
  ident: 10.1016/j.cmpb.2016.12.015_bib0017
  article-title: Self-evaluated automatic classifier as a decision-support tool for sleep/wake staging
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2011.04.001
SSID ssj0002556
Score 2.5502105
Snippet •A single lead EEG based automated sleep scoring method is proposed.•A signal processing technique, namely EEMD is employed.•We introduce RUSBoost to classify...
Highlights • A single lead EEG based automated sleep scoring method is proposed. • A signal processing technique, namely EEMD is employed. • We introduce...
Automatic sleep staging is essential for alleviating the burden of the physicians of analyzing a large volume of data by visual inspection. It is also a...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 201
SubjectTerms Adult
Aged
Automation
EEG
EEMD
Electroencephalography - methods
Empirical Research
Female
Humans
Internal Medicine
Male
Middle Aged
Other
RUSBoost
Sleep stage classification
Sleep Stages - physiology
Statistical features
Young Adult
Title Automated identification of sleep states from EEG signals by means of ensemble empirical mode decomposition and random under sampling boosting
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260716305132
https://www.clinicalkey.es/playcontent/1-s2.0-S0169260716305132
https://dx.doi.org/10.1016/j.cmpb.2016.12.015
https://www.ncbi.nlm.nih.gov/pubmed/28254077
https://www.proquest.com/docview/1874444337
Volume 140
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - NZ
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AKRWK
  dateStart: 19850501
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiEuCMprgVZG4obCNn5ujqtqywJqL1CpN8uOJ2jRbjZqdg9c-An8ZmYSZ1FFWySu0dhOPGPPOP7mG8beShsxysBjapjomCn0QVlQoDIbja08GnTo6JrOzs38Qn261Jd77GTIhSFYZdr7-z29263Tk3GazXGzWIy_EI-IIHo0gzaLhyrKYFeWqhi8__kH5kEUWz2_d5GRdEqc6TFe5aoJBO8y3S9BKo17s3O6LfjsnNDpI_YwRY982r_gY7YH9QG7f5bux5-wX9PtZo0xKES-iAkH1E09X1e8XQI0vMsgajmllfDZ7AMnAAeaIA8_-ArQb5EkHm1hFZbAYdUsOg4RThVzeARCoCeYF_d15OjpInZEmWhXvPUET6-_cYzcW4JTP2UXp7OvJ_MsVVzISi0mmwysAD2Jx7GQ2otgDcZTQoKCGMsqFrrwBkovJjEvRSlNXpmoK2nUsVd0gSvlM7Zfr2t4wXgRAnYgwVgRVAAgHjVf6WilMl7pasTyYapdmejIqSrG0g24s--O1ONIPS4XDtUzYu92bZqejONOaTlo0A1pprgxOvQVd7ayN7WCNq3t1uWuRUn3l_2NmN61vGbC_xzxzWBeDtc2Xdj4GtZbHIlqEyglpR2x573d7b6bco7xMG5f_ueor9gDQRFKB6d7zfY3V1s4xPhqE466BXTE7k0_fp6f_waJmSTY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkYAL4s3yNBI3FLbr5-ZYVVsW6PZCK_Vm2fGkWrSbjZrdQy_9CfxmZhJnEaIUiWs0thN77JmJv_mGsffSRvQyMEwNYx0zhTYoCwpUZqOxpUeFDi1d0-zYTE_VlzN9tsMO-lwYglWms78709vTOj0Zptkc1vP58BvxiAiiRzOosxhU3WK3lRaWIrCPV79wHsSx1RF85xmJp8yZDuRVLOtA-C7T_hOk2rjXW6e_eZ-tFTp8wO4n95Hvd2_4kO1A9YjdmaUL8sfsx_5mvUInFCKfxwQEaueer0reLABq3qYQNZzySvhk8okTggN1kIdLvgQ0XCSJsS0swwI4LOt5SyLCqWQOj0AQ9ITz4r6KHE1dxI4oFe2CN57w6dU5R9e9ITz1E3Z6ODk5mGap5EJWaDFeZ2AF6HHci7nUXgRr0KESEhTEWJQx17k3UHgxjqNCFNKMShN1KY3a84pucKV8ynarVQXPGc9DwA4kGCuCCgBEpOZLHa1UxitdDtion2pXJD5yKouxcD3w7Luj5XG0PG4kHC7PgH3Ytqk7No4bpWW_gq7PM8WT0aGxuLGVva4VNGlzN27kGpR0fyjggOlty990-J8jvuvVy-HmphsbX8FqgyNRcQKlpLQD9qzTu-13U9IxRuP2xX-O-pbdnZ7MjtzR5-OvL9k9Qe5Ki617xXbXFxt4jc7WOrxpN9NPE6kmbQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+identification+of+sleep+states+from+EEG+signals+by+means+of+ensemble+empirical+mode+decomposition+and+random+under+sampling+boosting&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Hassan%2C+Ahnaf+Rashik&rft.au=Bhuiyan%2C+Mohammed+Imamul+Hassan&rft.date=2017-03-01&rft.eissn=1872-7565&rft.volume=140&rft.spage=201&rft_id=info:doi/10.1016%2Fj.cmpb.2016.12.015&rft_id=info%3Apmid%2F28254077&rft.externalDocID=28254077
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01692607%2Fcov200h.gif