Annotated normal CT data of the abdomen for deep learning: Challenges and strategies for implementation
The purpose of this study was to report procedures developed to annotate abdominal computed tomography (CT) images from subjects without pancreatic disease that will be used as the input for deep convolutional neural networks (DNN) for development of deep learning algorithms for automatic recognitio...
Saved in:
| Published in | Diagnostic and interventional imaging Vol. 101; no. 1; pp. 35 - 44 |
|---|---|
| Main Authors | , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
France
Elsevier Masson SAS
01.01.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2211-5684 2211-5684 |
| DOI | 10.1016/j.diii.2019.05.008 |
Cover
| Abstract | The purpose of this study was to report procedures developed to annotate abdominal computed tomography (CT) images from subjects without pancreatic disease that will be used as the input for deep convolutional neural networks (DNN) for development of deep learning algorithms for automatic recognition of a normal pancreas.
Dual-phase contrast-enhanced volumetric CT acquired from 2005 to 2009 from potential kidney donors were retrospectively assessed. Four trained human annotators manually and sequentially annotated 22 structures in each datasets, then expert radiologists confirmed the annotation. For efficient annotation and data management, a commercial software package that supports three-dimensional segmentation was used.
A total of 1150 dual-phase CT datasets from 575 subjects were annotated. There were 229 men and 346 women (mean age: 45±12years; range: 18–79years). The mean intra-observer intra-subject dual-phase CT volume difference of all annotated structures was 4.27mL (7.65%). The deep network prediction for multi-organ segmentation showed high fidelity with 89.4% and 1.29mm in terms of mean Dice similarity coefficients and mean surface distances, respectively.
A reliable data collection/annotation process for abdominal structures was developed. This process can be used to generate large datasets appropriate for deep learning. |
|---|---|
| AbstractList | AbstractPurposeThe purpose of this study was to report procedures developed to annotate abdominal computed tomography (CT) images from subjects without pancreatic disease that will be used as the input for deep convolutional neural networks (DNN) for development of deep learning algorithms for automatic recognition of a normal pancreas. Materials and methodsDual-phase contrast-enhanced volumetric CT acquired from 2005 to 2009 from potential kidney donors were retrospectively assessed. Four trained human annotators manually and sequentially annotated 22 structures in each datasets, then expert radiologists confirmed the annotation. For efficient annotation and data management, a commercial software package that supports three-dimensional segmentation was used. ResultsA total of 1150 dual-phase CT datasets from 575 subjects were annotated. There were 229 men and 346 women (mean age: 45 ± 12 years; range: 18–79 years). The mean intra-observer intra-subject dual-phase CT volume difference of all annotated structures was 4.27 mL (7.65%). The deep network prediction for multi-organ segmentation showed high fidelity with 89.4% and 1.29 mm in terms of mean Dice similarity coefficients and mean surface distances, respectively. ConclusionsA reliable data collection/annotation process for abdominal structures was developed. This process can be used to generate large datasets appropriate for deep learning. The purpose of this study was to report procedures developed to annotate abdominal computed tomography (CT) images from subjects without pancreatic disease that will be used as the input for deep convolutional neural networks (DNN) for development of deep learning algorithms for automatic recognition of a normal pancreas. Dual-phase contrast-enhanced volumetric CT acquired from 2005 to 2009 from potential kidney donors were retrospectively assessed. Four trained human annotators manually and sequentially annotated 22 structures in each datasets, then expert radiologists confirmed the annotation. For efficient annotation and data management, a commercial software package that supports three-dimensional segmentation was used. A total of 1150 dual-phase CT datasets from 575 subjects were annotated. There were 229 men and 346 women (mean age: 45±12years; range: 18-79years). The mean intra-observer intra-subject dual-phase CT volume difference of all annotated structures was 4.27mL (7.65%). The deep network prediction for multi-organ segmentation showed high fidelity with 89.4% and 1.29mm in terms of mean Dice similarity coefficients and mean surface distances, respectively. A reliable data collection/annotation process for abdominal structures was developed. This process can be used to generate large datasets appropriate for deep learning. The purpose of this study was to report procedures developed to annotate abdominal computed tomography (CT) images from subjects without pancreatic disease that will be used as the input for deep convolutional neural networks (DNN) for development of deep learning algorithms for automatic recognition of a normal pancreas.PURPOSEThe purpose of this study was to report procedures developed to annotate abdominal computed tomography (CT) images from subjects without pancreatic disease that will be used as the input for deep convolutional neural networks (DNN) for development of deep learning algorithms for automatic recognition of a normal pancreas.Dual-phase contrast-enhanced volumetric CT acquired from 2005 to 2009 from potential kidney donors were retrospectively assessed. Four trained human annotators manually and sequentially annotated 22 structures in each datasets, then expert radiologists confirmed the annotation. For efficient annotation and data management, a commercial software package that supports three-dimensional segmentation was used.MATERIALS AND METHODSDual-phase contrast-enhanced volumetric CT acquired from 2005 to 2009 from potential kidney donors were retrospectively assessed. Four trained human annotators manually and sequentially annotated 22 structures in each datasets, then expert radiologists confirmed the annotation. For efficient annotation and data management, a commercial software package that supports three-dimensional segmentation was used.A total of 1150 dual-phase CT datasets from 575 subjects were annotated. There were 229 men and 346 women (mean age: 45±12years; range: 18-79years). The mean intra-observer intra-subject dual-phase CT volume difference of all annotated structures was 4.27mL (7.65%). The deep network prediction for multi-organ segmentation showed high fidelity with 89.4% and 1.29mm in terms of mean Dice similarity coefficients and mean surface distances, respectively.RESULTSA total of 1150 dual-phase CT datasets from 575 subjects were annotated. There were 229 men and 346 women (mean age: 45±12years; range: 18-79years). The mean intra-observer intra-subject dual-phase CT volume difference of all annotated structures was 4.27mL (7.65%). The deep network prediction for multi-organ segmentation showed high fidelity with 89.4% and 1.29mm in terms of mean Dice similarity coefficients and mean surface distances, respectively.A reliable data collection/annotation process for abdominal structures was developed. This process can be used to generate large datasets appropriate for deep learning.CONCLUSIONSA reliable data collection/annotation process for abdominal structures was developed. This process can be used to generate large datasets appropriate for deep learning. |
| Author | Horton, K.M. Park, S. Chu, L.C. Kinzler, K.W. Yuille, A.L. Graves, J. Shayesteh, S. Hruban, R.H. Fadaei Fouladi, D. Zinreich, E.S. Kawamoto, S. Vogelstein, B. Fishman, E.K. |
| Author_xml | – sequence: 1 givenname: S. surname: Park fullname: Park, S. organization: The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, 601N. Caroline Street, Baltimore, MD 21287, USA – sequence: 2 givenname: L.C. surname: Chu fullname: Chu, L.C. organization: The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, 601N. Caroline Street, Baltimore, MD 21287, USA – sequence: 3 givenname: E.K. orcidid: 0000-0002-2567-1658 surname: Fishman fullname: Fishman, E.K. organization: The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, 601N. Caroline Street, Baltimore, MD 21287, USA – sequence: 4 givenname: A.L. surname: Yuille fullname: Yuille, A.L. organization: Department of Computer Science, Johns Hopkins University, School of Arts and Sciences, Baltimore, MD 21218, USA – sequence: 5 givenname: B. surname: Vogelstein fullname: Vogelstein, B. organization: Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD 21287, USA – sequence: 6 givenname: K.W. surname: Kinzler fullname: Kinzler, K.W. organization: Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD 21287, USA – sequence: 7 givenname: K.M. surname: Horton fullname: Horton, K.M. organization: The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, 601N. Caroline Street, Baltimore, MD 21287, USA – sequence: 8 givenname: R.H. surname: Hruban fullname: Hruban, R.H. organization: Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA – sequence: 9 givenname: E.S. surname: Zinreich fullname: Zinreich, E.S. organization: The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, 601N. Caroline Street, Baltimore, MD 21287, USA – sequence: 10 givenname: D. surname: Fadaei Fouladi fullname: Fadaei Fouladi, D. organization: The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, 601N. Caroline Street, Baltimore, MD 21287, USA – sequence: 11 givenname: S. surname: Shayesteh fullname: Shayesteh, S. organization: The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, 601N. Caroline Street, Baltimore, MD 21287, USA – sequence: 12 givenname: J. surname: Graves fullname: Graves, J. organization: The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, 601N. Caroline Street, Baltimore, MD 21287, USA – sequence: 13 givenname: S. orcidid: 0000-0002-3577-1388 surname: Kawamoto fullname: Kawamoto, S. email: skawamo1@jhmi.edu organization: The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, 601N. Caroline Street, Baltimore, MD 21287, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31358460$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkl1rHCEUhqWkNGmaP9CL4mVvdurHfDihFMKStIVALpJeHxw9s3Hr6FZnC_n3ddgESqCpXqj4Pq-c8_qWHIUYkJD3nFWc8fbTtrLOuUow3lesqRhTr8iJEJyvmlbVR3_tj8lZzltWRlvAun5DjiWXjapbdkI2FyHEWc9oaYhp0p6u76jVs6ZxpPM9Uj3YOGGgY0zUIu6oR52CC5tzur7X3mPYYKY6WJrnVHw2rhwXsZt2HgtZzF0M78jrUfuMZ4_rKflxdXm3_ra6vvn6fX1xvTKNUPNK89aqXneiFp2UuqvVYGUjTWdFb8olDu3YjqoZVN1LzXqlGq2LErm02FuUp-TjwXeX4q895hkmlw16rwPGfQYh2o6JMtsi_fAo3Q8TWtglN-n0AE_NKQJ1EJgUc044gnGHakqlzgNnsEQBW1iigCUKYA2UKAoqnqFP7i9Cnw8Qlgb9dpggG4fBoHUJzQw2upfxL89w411wRvuf-IB5G_cplNYDhyyAwe3yQZb_wXvJuOx5MTj_t8H_Xv8DPHnJ7A |
| CitedBy_id | crossref_primary_10_1016_j_diii_2022_01_012 crossref_primary_10_1016_j_diii_2021_12_003 crossref_primary_10_1016_j_diii_2020_09_008 crossref_primary_10_1097_RCT_0000000000001374 crossref_primary_10_1007_s00261_021_03056_1 crossref_primary_10_21105_joss_03920 crossref_primary_10_1109_ACCESS_2021_3089704 crossref_primary_10_1016_j_diii_2020_11_001 crossref_primary_10_1016_j_media_2024_103285 crossref_primary_10_3390_app11188621 crossref_primary_10_1007_s11604_020_01057_6 crossref_primary_10_1016_j_inffus_2020_09_006 crossref_primary_10_1088_1361_6560_ac36a2 crossref_primary_10_1016_j_diii_2021_03_006 crossref_primary_10_1002_ctm2_842 crossref_primary_10_1007_s00261_023_04122_6 crossref_primary_10_1016_j_diii_2022_03_002 crossref_primary_10_1016_j_compmedimag_2024_102434 crossref_primary_10_1016_j_diii_2022_03_001 crossref_primary_10_3389_frai_2024_1446693 crossref_primary_10_1109_ACCESS_2020_3034914 crossref_primary_10_35712_aig_v1_i1_5 crossref_primary_10_1016_j_media_2021_101980 crossref_primary_10_1042_BSR20203391 crossref_primary_10_1038_s41379_020_0629_6 crossref_primary_10_1007_s11633_021_1313_0 crossref_primary_10_1007_s13246_023_01324_6 crossref_primary_10_1109_TMI_2020_3048055 crossref_primary_10_1016_j_jviscsurg_2021_01_008 crossref_primary_10_17694_bajece_1129233 crossref_primary_10_1007_s11604_021_01098_5 crossref_primary_10_3389_fonc_2022_960056 crossref_primary_10_1002_mp_15551 crossref_primary_10_1016_j_diii_2022_01_009 crossref_primary_10_1097_RCT_0000000000001169 crossref_primary_10_1007_s00261_022_03663_6 crossref_primary_10_1016_j_diii_2020_10_007 crossref_primary_10_3390_toxics12100737 crossref_primary_10_1016_S2589_7500_20_30105_9 crossref_primary_10_1097_MPA_0000000000001603 crossref_primary_10_1016_j_jchirv_2021_01_006 crossref_primary_10_1007_s00261_024_04512_4 crossref_primary_10_2196_26601 |
| Cites_doi | 10.1016/j.media.2013.12.002 10.1148/rg.2017170077 10.1097/PPO.0000000000000290 10.1016/j.radonc.2010.05.003 10.18383/j.tom.2016.00184 10.1148/radiol.2017162326 10.1109/TMI.2018.2806309 10.1097/TP.0000000000000486 10.1038/nature14539 10.1016/j.diii.2018.10.003 10.1016/j.media.2017.07.005 10.3348/kjr.2017.18.4.570 10.1038/ncomms5006 10.1016/j.diii.2018.11.002 10.1148/radiol.2015151169 10.1016/j.media.2017.06.015 10.1007/s00330-018-5695-5 10.1016/j.media.2017.03.006 10.1007/s00261-018-1613-1 10.1109/TMI.2013.2271487 10.1109/TMI.2016.2528162 10.1016/j.radonc.2012.09.023 10.1109/TMI.2016.2536809 10.1016/j.media.2016.07.007 10.1109/TMI.2016.2535302 10.1109/TMI.2016.2621185 10.1053/j.gastro.2013.11.004 10.1016/j.diii.2019.03.001 10.1109/TMI.2017.2774044 |
| ContentType | Journal Article |
| Copyright | 2019 Société française de radiologie Société française de radiologie Copyright © 2019 Société française de radiologie. Published by Elsevier Masson SAS. All rights reserved. |
| Copyright_xml | – notice: 2019 Société française de radiologie – notice: Société française de radiologie – notice: Copyright © 2019 Société française de radiologie. Published by Elsevier Masson SAS. All rights reserved. |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1016/j.diii.2019.05.008 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2211-5684 |
| EndPage | 44 |
| ExternalDocumentID | 31358460 10_1016_j_diii_2019_05_008 S2211568419301391 1_s2_0_S2211568419301391 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1P~ 1~. 1~5 457 4G. 7-5 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACJTP ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADNMO ADVLN AEBSH AEIPS AEKER AENEX AEUPX AEVXI AEXQZ AFJKZ AFPUW AFRHN AFTJW AFXBA AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BKOJK BLXMC BNPGV EBS EFJIC EFKBS EFLBG EJD FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ IXB KOM M41 MO0 O-L O9- OAUVE OI~ OK1 OU0 P-8 P-9 PC. Q38 ROL SDF SEM SNG SPCBC SSH SSZ T5K Z5R ~G- ~HD 0SF 6I. AACTN AAFTH ABVKL AFKWA AJOXV AMFUW NCXOZ RIG AAIAV ABLVK ABYKQ AISVY AJBFU LCYCR NAHTW AAYXX CITATION NPM 7X8 |
| ID | FETCH-LOGICAL-c528t-a16d89a7242733a748bd353c7d29ca16eb6f6f85b8493a09885aa733e13de9de3 |
| IEDL.DBID | .~1 |
| ISSN | 2211-5684 |
| IngestDate | Wed Oct 01 14:46:21 EDT 2025 Wed Feb 19 02:29:56 EST 2025 Wed Oct 01 02:23:40 EDT 2025 Thu Apr 24 23:01:18 EDT 2025 Fri Feb 23 02:49:33 EST 2024 Sun Feb 23 10:18:52 EST 2025 Tue Oct 14 19:30:17 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Image segmentation Normal structures Artificial intelligence (AI) Abdominal computed tomography (CT) Machine learning |
| Language | English |
| License | This article is made available under the Elsevier license. Copyright © 2019 Société française de radiologie. Published by Elsevier Masson SAS. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c528t-a16d89a7242733a748bd353c7d29ca16eb6f6f85b8493a09885aa733e13de9de3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-3577-1388 0000-0002-2567-1658 |
| OpenAccessLink | https://www.clinicalkey.com/#!/content/1-s2.0-S2211568419301391 |
| PMID | 31358460 |
| PQID | 2267020206 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2267020206 pubmed_primary_31358460 crossref_citationtrail_10_1016_j_diii_2019_05_008 crossref_primary_10_1016_j_diii_2019_05_008 elsevier_sciencedirect_doi_10_1016_j_diii_2019_05_008 elsevier_clinicalkeyesjournals_1_s2_0_S2211568419301391 elsevier_clinicalkey_doi_10_1016_j_diii_2019_05_008 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | France |
| PublicationPlace_xml | – name: France |
| PublicationTitle | Diagnostic and interventional imaging |
| PublicationTitleAlternate | Diagn Interv Imaging |
| PublicationYear | 2020 |
| Publisher | Elsevier Masson SAS |
| Publisher_xml | – name: Elsevier Masson SAS |
| References | van Dam, van Sörnsen de Koste, Hanna, Muirhead, Slotman, Senan (bib0335) 2010; 96 Zhang, Lu, Summers, Kebebew, Yao (bib0240) 2018; 37 Aerts, Velazquez, Leijenaar, Parmar, Grossmann, Carvalho (bib0175) 2014; 5 Gibson, Giganti, Hu, Bonmati, Bandula, Gurusamy (bib0315) 2018; 37 Setio, Traversog, de Bel, Berens, Bogaard, Cerello (bib0205) 2017; 42 Beregi, Zins, Masson, Cart, Bartoli, Silberman (bib0210) 2018; 99 Karasawa, Oda, Kitasaka, Misawa, Fujiwara, Chu (bib0235) 2017; 39 Couteaux, Si-Mohamed, Renard-Penna, Nempont, Lefevre, Popoff (bib0275) 2019; 100 Cha, Hadjiiski, Samala, Chan, Cohan, Caoili (bib0250) 2016; 2 Chartrand, Cheng, Vorontsov, Drozdzal, Turcotte, Pal (bib0260) 2017; 37 Tajbakhsh, Shin, Gurudu, Hurst, Kendall, Gotway (bib0285) 2016; 35 Lee, Jun, Cho, Lee, Kim, Seo (bib0190) 2017; 18 LeCun, Bengio, Hinton (bib0195) 2015; 521 Litjens, Kooi, Bejnordi, Setio, Ciompi, Ghafoorian (bib0185) 2017; 42 Joskowicz, Cohen, Caplan, Sosna (bib0340) 2018; 29 Gillies, Kinahan, Hricak (bib0180) 2016; 278 Guo Z, Zhang L, Lu L, Bagheri M, Summers RM, Sonka M, et al. Deep LOGISMOS: deep learning graph-based 3D segmentation of pancreatic tumors on CT scans. http://arxiv.org/abs/1801.08599. Rajchl, Lee, Oktay, Kamnitsas, Passerat-Palmbach, Bai (bib0295) 2017; 36 Kooi, Litjens, Van Ginneken, Gubern-Mérida, Sánchez, Mann (bib0230) 2017; 35 Rios Velazquez, Aerts, Gu, Goldgof, De Ruysscher, Dekker (bib0330) 2015; 105 Setio, Ciompi, Litjens, Gerke, Jacobs, van Riel (bib0220) 2016; 35 SFR-IA Group, CERF, French Radiology Community (bib0270) 2018; 99 Chu, Goggins, Fishman (bib0305) 2017; 23 Shin, Roth, Gao, Lu, Xu, Nogues (bib0265) 2016; 35 Al-Hawary, Francis, Chari, Fishman, Hough, Lu (bib0300) 2014; 146 Lakhani, Sundaram (bib0225) 2017; 284 Nie, Zhang, Adeli, Liu, Shen (bib0245) 2016; 9901 Summers (bib0255) 2018; 44 Litjens, Toth, van de Ven, Hoeks, Kerkstra, van Ginneken (bib0200) 2014; 18 Zhang, Liu, Yao, Louie, Nguyen, Wank (bib0325) 2013; 32 Deng, Dong, Socher, Li, Li, FeiFei (bib0280) 2009 Tan, Charoensak, Ajwichai, Gritsch, Danovitch, Schulam (bib0320) 2015; 99 Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-net: learning dense volumetric segmentation from sparse annotation. https://arxiv.org/abs/1606.06650. Wang Y, Zhou Y, Shen W, Park S, Fishman EK, Yuille AL. Abdominal multi-organ segmentation with organ-attention networks and statistical fusion. http://arxiv.org/abs/1804.08414. Chartrand (10.1016/j.diii.2019.05.008_bib0260) 2017; 37 Shin (10.1016/j.diii.2019.05.008_bib0265) 2016; 35 Joskowicz (10.1016/j.diii.2019.05.008_bib0340) 2018; 29 Gillies (10.1016/j.diii.2019.05.008_bib0180) 2016; 278 Litjens (10.1016/j.diii.2019.05.008_bib0185) 2017; 42 10.1016/j.diii.2019.05.008_bib0215 Rajchl (10.1016/j.diii.2019.05.008_bib0295) 2017; 36 Couteaux (10.1016/j.diii.2019.05.008_bib0275) 2019; 100 Rios Velazquez (10.1016/j.diii.2019.05.008_bib0330) 2015; 105 Karasawa (10.1016/j.diii.2019.05.008_bib0235) 2017; 39 Tajbakhsh (10.1016/j.diii.2019.05.008_bib0285) 2016; 35 Lee (10.1016/j.diii.2019.05.008_bib0190) 2017; 18 Kooi (10.1016/j.diii.2019.05.008_bib0230) 2017; 35 Lakhani (10.1016/j.diii.2019.05.008_bib0225) 2017; 284 10.1016/j.diii.2019.05.008_bib0290 Setio (10.1016/j.diii.2019.05.008_bib0205) 2017; 42 Cha (10.1016/j.diii.2019.05.008_bib0250) 2016; 2 10.1016/j.diii.2019.05.008_bib0310 van Dam (10.1016/j.diii.2019.05.008_bib0335) 2010; 96 Setio (10.1016/j.diii.2019.05.008_bib0220) 2016; 35 Tan (10.1016/j.diii.2019.05.008_bib0320) 2015; 99 LeCun (10.1016/j.diii.2019.05.008_bib0195) 2015; 521 Al-Hawary (10.1016/j.diii.2019.05.008_bib0300) 2014; 146 Gibson (10.1016/j.diii.2019.05.008_bib0315) 2018; 37 Summers (10.1016/j.diii.2019.05.008_bib0255) 2018; 44 Beregi (10.1016/j.diii.2019.05.008_bib0210) 2018; 99 Zhang (10.1016/j.diii.2019.05.008_bib0325) 2013; 32 Aerts (10.1016/j.diii.2019.05.008_bib0175) 2014; 5 SFR-IA Group (10.1016/j.diii.2019.05.008_bib0270) 2018; 99 Chu (10.1016/j.diii.2019.05.008_bib0305) 2017; 23 Litjens (10.1016/j.diii.2019.05.008_bib0200) 2014; 18 Deng (10.1016/j.diii.2019.05.008_bib0280) 2009 Nie (10.1016/j.diii.2019.05.008_bib0245) 2016; 9901 Zhang (10.1016/j.diii.2019.05.008_bib0240) 2018; 37 32446597 - Diagn Interv Imaging. 2020 May 20 |
| References_xml | – volume: 37 start-page: 2113 year: 2017 end-page: 2131 ident: bib0260 article-title: Deep learning: a primer for radiologists publication-title: Radiographics – volume: 18 start-page: 359 year: 2014 end-page: 373 ident: bib0200 article-title: Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge publication-title: Med Image Anal – volume: 2 start-page: 421 year: 2016 end-page: 429 ident: bib0250 article-title: Bladder cancer segmentation in CT for treatment response assessment: application of deep learning convolution neural network – a pilot study publication-title: Tomography – volume: 35 start-page: 1299 year: 2016 end-page: 1312 ident: bib0285 article-title: Convolutional neural networks for medical image analysis: full training or fine tuning? publication-title: IEEE Trans Med Imaging – volume: 42 start-page: 60 year: 2017 end-page: 88 ident: bib0185 article-title: A survey on deep learning in medical image analysis publication-title: Med Image Anal – volume: 37 start-page: 1822 year: 2018 end-page: 1834 ident: bib0315 article-title: Automatic multi-organ segmentation on abdominal CT with dense V-networks publication-title: IEEE Trans Med Imaging – volume: 18 start-page: 570 year: 2017 end-page: 584 ident: bib0190 article-title: Deep learning in medical imaging: general overview publication-title: Korean J Radiol – volume: 105 start-page: 167 year: 2015 end-page: 173 ident: bib0330 article-title: A semiautomatic CT-based ensemble segmentation of lung tumors: comparison with oncologists’ delineations and with the surgical specimen publication-title: Radiother Oncol – volume: 36 start-page: 674 year: 2017 end-page: 683 ident: bib0295 article-title: DeepCut: object segmentation from bounding box annotations using convolutional neural networks publication-title: IEEE Trans Med Imaging – volume: 99 start-page: 677 year: 2018 end-page: 678 ident: bib0210 article-title: Radiology and artificial intelligence: an opportunity for our specialty publication-title: Diagn Interv Imaging – volume: 5 start-page: 4006 year: 2014 ident: bib0175 article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach publication-title: Nat Commun – volume: 146 start-page: 291 year: 2014 end-page: 304 ident: bib0300 article-title: Pancreatic ductal adenocarcinoma radiology reporting template: consensus statement of the society of abdominal radiology and the American pancreatic association publication-title: Gastroenterology – volume: 9901 start-page: 212 year: 2016 end-page: 220 ident: bib0245 article-title: 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients publication-title: Med Image Comput Comput Assist Interv – volume: 44 start-page: 1985 year: 2018 end-page: 1989 ident: bib0255 article-title: Are we at a crossroads or a plateau? Radiomics and machine learning in abdominal oncology imaging publication-title: Abdom Radiol – volume: 39 start-page: 18 year: 2017 end-page: 28 ident: bib0235 article-title: Multi-atlas pancreas segmentation: atlas selection based on vessel structure publication-title: Med Image Anal – volume: 96 start-page: 67 year: 2010 end-page: 72 ident: bib0335 article-title: Improving target delineation on 4-dimensional CT scans in stage I NSCLC using a deformable registration tool publication-title: Radiother Oncol – reference: Guo Z, Zhang L, Lu L, Bagheri M, Summers RM, Sonka M, et al. Deep LOGISMOS: deep learning graph-based 3D segmentation of pancreatic tumors on CT scans. http://arxiv.org/abs/1801.08599. – volume: 35 start-page: 303 year: 2017 end-page: 312 ident: bib0230 article-title: Large-scale deep learning for computer-aided detection of mammographic lesions publication-title: Med Image Anal – volume: 29 start-page: 1391 year: 2018 end-page: 1399 ident: bib0340 article-title: Inter-observer variability of manual contour delineation of structures in CT publication-title: Eur Radiol – volume: 284 start-page: 574 year: 2017 end-page: 582 ident: bib0225 article-title: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks publication-title: Radiology – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib0195 article-title: Deep learning publication-title: Nature – reference: Wang Y, Zhou Y, Shen W, Park S, Fishman EK, Yuille AL. Abdominal multi-organ segmentation with organ-attention networks and statistical fusion. http://arxiv.org/abs/1804.08414. – volume: 99 start-page: 727 year: 2018 end-page: 742 ident: bib0270 article-title: Artificial intelligence and medical imaging 2018: French Radiology Community white paper publication-title: Diagn Interv Imaging – volume: 32 start-page: 2006 year: 2013 end-page: 2021 ident: bib0325 article-title: Mesenteric vasculature-guided small bowel segmentation on 3D CT publication-title: IEEE Trans Med Imaging – reference: Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-net: learning dense volumetric segmentation from sparse annotation. https://arxiv.org/abs/1606.06650. – volume: 35 start-page: 1285 year: 2016 end-page: 1298 ident: bib0265 article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning publication-title: IEEE Trans Med Imaging – volume: 99 start-page: 1203 year: 2015 end-page: 1207 ident: bib0320 article-title: Prevalence of incidental findings on abdominal computed tomography angiograms on prospective renal donors publication-title: Transplantation – volume: 278 start-page: 563 year: 2016 end-page: 577 ident: bib0180 article-title: Radiomics: images are more than pictures, they are data publication-title: Radiology – start-page: 248 year: 2009 end-page: 255 ident: bib0280 article-title: ImageNet: a large-scale hierarchical image database publication-title: Computer Vision and Pattern Recognition, 2009. IEEE Conference on. IEEE – volume: 35 start-page: 1160 year: 2016 end-page: 1169 ident: bib0220 article-title: Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks publication-title: IEEE Trans Med Imaging – volume: 37 start-page: 638 year: 2018 end-page: 648 ident: bib0240 article-title: Convolutional invasion and expansion networks for tumor growth prediction publication-title: IEEE Trans Med Imaging – volume: 100 start-page: 211 year: 2019 end-page: 217 ident: bib0275 article-title: Kidney cortex segmentation in 2D CT with U-Nets ensemble aggregation publication-title: Diagn Interv Imaging – volume: 23 start-page: 333 year: 2017 end-page: 342 ident: bib0305 article-title: Diagnosis and detection of pancreatic cancer publication-title: Cancer J – volume: 42 start-page: 1 year: 2017 end-page: 13 ident: bib0205 article-title: Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge publication-title: Med Image Anal – volume: 18 start-page: 359 year: 2014 ident: 10.1016/j.diii.2019.05.008_bib0200 article-title: Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge publication-title: Med Image Anal doi: 10.1016/j.media.2013.12.002 – volume: 37 start-page: 2113 year: 2017 ident: 10.1016/j.diii.2019.05.008_bib0260 article-title: Deep learning: a primer for radiologists publication-title: Radiographics doi: 10.1148/rg.2017170077 – volume: 23 start-page: 333 year: 2017 ident: 10.1016/j.diii.2019.05.008_bib0305 article-title: Diagnosis and detection of pancreatic cancer publication-title: Cancer J doi: 10.1097/PPO.0000000000000290 – start-page: 248 year: 2009 ident: 10.1016/j.diii.2019.05.008_bib0280 article-title: ImageNet: a large-scale hierarchical image database – volume: 96 start-page: 67 year: 2010 ident: 10.1016/j.diii.2019.05.008_bib0335 article-title: Improving target delineation on 4-dimensional CT scans in stage I NSCLC using a deformable registration tool publication-title: Radiother Oncol doi: 10.1016/j.radonc.2010.05.003 – volume: 9901 start-page: 212 year: 2016 ident: 10.1016/j.diii.2019.05.008_bib0245 article-title: 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients publication-title: Med Image Comput Comput Assist Interv – ident: 10.1016/j.diii.2019.05.008_bib0215 – volume: 2 start-page: 421 year: 2016 ident: 10.1016/j.diii.2019.05.008_bib0250 article-title: Bladder cancer segmentation in CT for treatment response assessment: application of deep learning convolution neural network – a pilot study publication-title: Tomography doi: 10.18383/j.tom.2016.00184 – volume: 284 start-page: 574 year: 2017 ident: 10.1016/j.diii.2019.05.008_bib0225 article-title: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks publication-title: Radiology doi: 10.1148/radiol.2017162326 – volume: 37 start-page: 1822 year: 2018 ident: 10.1016/j.diii.2019.05.008_bib0315 article-title: Automatic multi-organ segmentation on abdominal CT with dense V-networks publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2806309 – volume: 99 start-page: 1203 year: 2015 ident: 10.1016/j.diii.2019.05.008_bib0320 article-title: Prevalence of incidental findings on abdominal computed tomography angiograms on prospective renal donors publication-title: Transplantation doi: 10.1097/TP.0000000000000486 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.diii.2019.05.008_bib0195 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 99 start-page: 727 year: 2018 ident: 10.1016/j.diii.2019.05.008_bib0270 article-title: Artificial intelligence and medical imaging 2018: French Radiology Community white paper publication-title: Diagn Interv Imaging doi: 10.1016/j.diii.2018.10.003 – ident: 10.1016/j.diii.2019.05.008_bib0310 – volume: 42 start-page: 60 year: 2017 ident: 10.1016/j.diii.2019.05.008_bib0185 article-title: A survey on deep learning in medical image analysis publication-title: Med Image Anal doi: 10.1016/j.media.2017.07.005 – volume: 18 start-page: 570 year: 2017 ident: 10.1016/j.diii.2019.05.008_bib0190 article-title: Deep learning in medical imaging: general overview publication-title: Korean J Radiol doi: 10.3348/kjr.2017.18.4.570 – volume: 5 start-page: 4006 year: 2014 ident: 10.1016/j.diii.2019.05.008_bib0175 article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach publication-title: Nat Commun doi: 10.1038/ncomms5006 – volume: 99 start-page: 677 year: 2018 ident: 10.1016/j.diii.2019.05.008_bib0210 article-title: Radiology and artificial intelligence: an opportunity for our specialty publication-title: Diagn Interv Imaging doi: 10.1016/j.diii.2018.11.002 – volume: 278 start-page: 563 year: 2016 ident: 10.1016/j.diii.2019.05.008_bib0180 article-title: Radiomics: images are more than pictures, they are data publication-title: Radiology doi: 10.1148/radiol.2015151169 – volume: 42 start-page: 1 year: 2017 ident: 10.1016/j.diii.2019.05.008_bib0205 article-title: Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge publication-title: Med Image Anal doi: 10.1016/j.media.2017.06.015 – volume: 29 start-page: 1391 year: 2018 ident: 10.1016/j.diii.2019.05.008_bib0340 article-title: Inter-observer variability of manual contour delineation of structures in CT publication-title: Eur Radiol doi: 10.1007/s00330-018-5695-5 – volume: 39 start-page: 18 year: 2017 ident: 10.1016/j.diii.2019.05.008_bib0235 article-title: Multi-atlas pancreas segmentation: atlas selection based on vessel structure publication-title: Med Image Anal doi: 10.1016/j.media.2017.03.006 – volume: 44 start-page: 1985 year: 2018 ident: 10.1016/j.diii.2019.05.008_bib0255 article-title: Are we at a crossroads or a plateau? Radiomics and machine learning in abdominal oncology imaging publication-title: Abdom Radiol doi: 10.1007/s00261-018-1613-1 – volume: 32 start-page: 2006 year: 2013 ident: 10.1016/j.diii.2019.05.008_bib0325 article-title: Mesenteric vasculature-guided small bowel segmentation on 3D CT publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2013.2271487 – volume: 35 start-page: 1285 year: 2016 ident: 10.1016/j.diii.2019.05.008_bib0265 article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2528162 – volume: 105 start-page: 167 year: 2015 ident: 10.1016/j.diii.2019.05.008_bib0330 article-title: A semiautomatic CT-based ensemble segmentation of lung tumors: comparison with oncologists’ delineations and with the surgical specimen publication-title: Radiother Oncol doi: 10.1016/j.radonc.2012.09.023 – volume: 35 start-page: 1160 year: 2016 ident: 10.1016/j.diii.2019.05.008_bib0220 article-title: Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2536809 – volume: 35 start-page: 303 year: 2017 ident: 10.1016/j.diii.2019.05.008_bib0230 article-title: Large-scale deep learning for computer-aided detection of mammographic lesions publication-title: Med Image Anal doi: 10.1016/j.media.2016.07.007 – ident: 10.1016/j.diii.2019.05.008_bib0290 – volume: 35 start-page: 1299 year: 2016 ident: 10.1016/j.diii.2019.05.008_bib0285 article-title: Convolutional neural networks for medical image analysis: full training or fine tuning? publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2535302 – volume: 36 start-page: 674 year: 2017 ident: 10.1016/j.diii.2019.05.008_bib0295 article-title: DeepCut: object segmentation from bounding box annotations using convolutional neural networks publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2621185 – volume: 146 start-page: 291 year: 2014 ident: 10.1016/j.diii.2019.05.008_bib0300 article-title: Pancreatic ductal adenocarcinoma radiology reporting template: consensus statement of the society of abdominal radiology and the American pancreatic association publication-title: Gastroenterology doi: 10.1053/j.gastro.2013.11.004 – volume: 100 start-page: 211 year: 2019 ident: 10.1016/j.diii.2019.05.008_bib0275 article-title: Kidney cortex segmentation in 2D CT with U-Nets ensemble aggregation publication-title: Diagn Interv Imaging doi: 10.1016/j.diii.2019.03.001 – volume: 37 start-page: 638 year: 2018 ident: 10.1016/j.diii.2019.05.008_bib0240 article-title: Convolutional invasion and expansion networks for tumor growth prediction publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2017.2774044 – reference: 32446597 - Diagn Interv Imaging. 2020 May 20;: |
| SSID | ssj0000601644 |
| Score | 2.3922198 |
| Snippet | The purpose of this study was to report procedures developed to annotate abdominal computed tomography (CT) images from subjects without pancreatic disease... AbstractPurposeThe purpose of this study was to report procedures developed to annotate abdominal computed tomography (CT) images from subjects without... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 35 |
| SubjectTerms | Abdominal computed tomography (CT) Artificial intelligence (AI) Image segmentation Machine learning Normal structures Radiology |
| Title | Annotated normal CT data of the abdomen for deep learning: Challenges and strategies for implementation |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2211568419301391 https://www.clinicalkey.es/playcontent/1-s2.0-S2211568419301391 https://dx.doi.org/10.1016/j.diii.2019.05.008 https://www.ncbi.nlm.nih.gov/pubmed/31358460 https://www.proquest.com/docview/2267020206 |
| Volume | 101 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 2211-5684 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000601644 issn: 2211-5684 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Open Access Journals customDbUrl: eissn: 2211-5684 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0000601644 issn: 2211-5684 databaseCode: IXB dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 2211-5684 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0000601644 issn: 2211-5684 databaseCode: ACRLP dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 2211-5684 dateEnd: 20241031 omitProxy: true ssIdentifier: ssj0000601644 issn: 2211-5684 databaseCode: AIKHN dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 2211-5684 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000601644 issn: 2211-5684 databaseCode: .~1 dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2211-5684 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000601644 issn: 2211-5684 databaseCode: AKRWK dateStart: 20120101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhhdJLaZuk3bQJKvQWnJUty5J72ywNm5bk0gT2JvRy2JJ6l3hz7W_vjC0thDwKPdqe8WNmpPkszYOQL84UkqnaZAC-WVYK2WSqFk3mjPTgn6wJDLORzy-q2VX5fS7mW2SacmEwrDLO_cOc3s_W8cw4SnO8WizGPwv4dxGVKgGCII7pM9hLiV0Mjv_km3WWvt5I39MV6TNkiLkzQ5iXxxoO4AXrvoAndpl83D89hT97P3T6hryOAJJOhnd8S7ZC-468PI9b5DvketK2S0SQnraIR2_o9JJiHChdNhTQHjXWY9UFCmiV-hBWNDaOuP5Kp6mzSkdN62m3TnUkeuLF7xRrjsrcJVen3y6nsyx2U8icKNQ6M3nlQSkSfLLk3MhSWc8Fd9IXtYOLwVZN1ShhVVlzw2qlhDFAGXLuQ-0D3yPb7bINHwjNLTd5UzunGgA0zCpuXeWCFKD20ldiRPIkQ-1iqXHseHGjU0zZL41y1yh3zYQGuY_I0YZnNRTaeJaaJ9XolEIKk54GP_Asl3yMK3Rx3HY6112hmX5gWyMiNpz3zPOfT_yc7EbDuMXNGNOG5V2nAfZKgOoFq0bk_WBQm-_mOUdcyPb_86kfySu887BS9Ilsr2_vwgFgp7U97AfHIXkxOfsxu4Cjs_nJX0wlF0o |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQldpeUEsfbF-4EjeUrhPHsdMbWhVtW5ZLF4mb5VfQIsiuyHLtb-9MYq-EoFTqNfHIycx45rM9D0IOnCkkU7XJAHyzrBSyyVQtmswZ6cE_WRMYZiPPTqvpWfnjXJxvkUnKhcGwymj7B5veW-v4ZBy5OV4tFuNfBexdRKVKgCCIY2AL9KQUhcQd2Jff-eagpS840jd1RYIMKWLyzBDn5bGIA7jBuq_giW0mH3ZQfwOgvSM6fkF2IoKkR8NHviRbod0lT2fxjvwVuThq2yVCSE9bBKRXdDKnGAhKlw0FuEeN9Vh2gQJcpT6EFY2dIy6-0klqrdJR03rarVMhiX7w4joFm6M0X5Oz42_zyTSL7RQyJwq1zkxeeZCKBKcsOTeyVNZzwZ30Re3gZbBVUzVKWFXW3LBaKWEMjAw596H2gb8h2-2yDXuE5pabvKmdUw0gGmYVt65yQQqQe-krMSJ54qF2sdY4try40imo7FIj3zXyXTOhge8jcrihWQ2VNh4dzZNodMohBaunwRE8SiUfogpdXLidznVXaKbvKdeIiA3lHf3854yfk95oWLh4G2PasLztNOBeCVi9YNWIvB0UavPfPOcIDNm7_5x1nzybzmcn-uT76c_35DnOMhwbfSDb65vb8BGA1Np-6hfKHwyhF9s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Annotated+normal+CT+data+of+the+abdomen+for+deep+learning%3A+Challenges+and+strategies+for+implementation&rft.jtitle=Diagnostic+and+interventional+imaging&rft.au=Park%2C+S&rft.au=Chu%2C+L+C&rft.au=Fishman%2C+E+K&rft.au=Yuille%2C+A+L&rft.date=2020-01-01&rft.issn=2211-5684&rft.eissn=2211-5684&rft.volume=101&rft.issue=1&rft.spage=35&rft_id=info:doi/10.1016%2Fj.diii.2019.05.008&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F22115684%2FS2211568419X00121%2Fcov150h.gif |