Annotated normal CT data of the abdomen for deep learning: Challenges and strategies for implementation

The purpose of this study was to report procedures developed to annotate abdominal computed tomography (CT) images from subjects without pancreatic disease that will be used as the input for deep convolutional neural networks (DNN) for development of deep learning algorithms for automatic recognitio...

Full description

Saved in:
Bibliographic Details
Published inDiagnostic and interventional imaging Vol. 101; no. 1; pp. 35 - 44
Main Authors Park, S., Chu, L.C., Fishman, E.K., Yuille, A.L., Vogelstein, B., Kinzler, K.W., Horton, K.M., Hruban, R.H., Zinreich, E.S., Fadaei Fouladi, D., Shayesteh, S., Graves, J., Kawamoto, S.
Format Journal Article
LanguageEnglish
Published France Elsevier Masson SAS 01.01.2020
Subjects
Online AccessGet full text
ISSN2211-5684
2211-5684
DOI10.1016/j.diii.2019.05.008

Cover

Abstract The purpose of this study was to report procedures developed to annotate abdominal computed tomography (CT) images from subjects without pancreatic disease that will be used as the input for deep convolutional neural networks (DNN) for development of deep learning algorithms for automatic recognition of a normal pancreas. Dual-phase contrast-enhanced volumetric CT acquired from 2005 to 2009 from potential kidney donors were retrospectively assessed. Four trained human annotators manually and sequentially annotated 22 structures in each datasets, then expert radiologists confirmed the annotation. For efficient annotation and data management, a commercial software package that supports three-dimensional segmentation was used. A total of 1150 dual-phase CT datasets from 575 subjects were annotated. There were 229 men and 346 women (mean age: 45±12years; range: 18–79years). The mean intra-observer intra-subject dual-phase CT volume difference of all annotated structures was 4.27mL (7.65%). The deep network prediction for multi-organ segmentation showed high fidelity with 89.4% and 1.29mm in terms of mean Dice similarity coefficients and mean surface distances, respectively. A reliable data collection/annotation process for abdominal structures was developed. This process can be used to generate large datasets appropriate for deep learning.
AbstractList AbstractPurposeThe purpose of this study was to report procedures developed to annotate abdominal computed tomography (CT) images from subjects without pancreatic disease that will be used as the input for deep convolutional neural networks (DNN) for development of deep learning algorithms for automatic recognition of a normal pancreas. Materials and methodsDual-phase contrast-enhanced volumetric CT acquired from 2005 to 2009 from potential kidney donors were retrospectively assessed. Four trained human annotators manually and sequentially annotated 22 structures in each datasets, then expert radiologists confirmed the annotation. For efficient annotation and data management, a commercial software package that supports three-dimensional segmentation was used. ResultsA total of 1150 dual-phase CT datasets from 575 subjects were annotated. There were 229 men and 346 women (mean age: 45 ± 12 years; range: 18–79 years). The mean intra-observer intra-subject dual-phase CT volume difference of all annotated structures was 4.27 mL (7.65%). The deep network prediction for multi-organ segmentation showed high fidelity with 89.4% and 1.29 mm in terms of mean Dice similarity coefficients and mean surface distances, respectively. ConclusionsA reliable data collection/annotation process for abdominal structures was developed. This process can be used to generate large datasets appropriate for deep learning.
The purpose of this study was to report procedures developed to annotate abdominal computed tomography (CT) images from subjects without pancreatic disease that will be used as the input for deep convolutional neural networks (DNN) for development of deep learning algorithms for automatic recognition of a normal pancreas. Dual-phase contrast-enhanced volumetric CT acquired from 2005 to 2009 from potential kidney donors were retrospectively assessed. Four trained human annotators manually and sequentially annotated 22 structures in each datasets, then expert radiologists confirmed the annotation. For efficient annotation and data management, a commercial software package that supports three-dimensional segmentation was used. A total of 1150 dual-phase CT datasets from 575 subjects were annotated. There were 229 men and 346 women (mean age: 45±12years; range: 18-79years). The mean intra-observer intra-subject dual-phase CT volume difference of all annotated structures was 4.27mL (7.65%). The deep network prediction for multi-organ segmentation showed high fidelity with 89.4% and 1.29mm in terms of mean Dice similarity coefficients and mean surface distances, respectively. A reliable data collection/annotation process for abdominal structures was developed. This process can be used to generate large datasets appropriate for deep learning.
The purpose of this study was to report procedures developed to annotate abdominal computed tomography (CT) images from subjects without pancreatic disease that will be used as the input for deep convolutional neural networks (DNN) for development of deep learning algorithms for automatic recognition of a normal pancreas.PURPOSEThe purpose of this study was to report procedures developed to annotate abdominal computed tomography (CT) images from subjects without pancreatic disease that will be used as the input for deep convolutional neural networks (DNN) for development of deep learning algorithms for automatic recognition of a normal pancreas.Dual-phase contrast-enhanced volumetric CT acquired from 2005 to 2009 from potential kidney donors were retrospectively assessed. Four trained human annotators manually and sequentially annotated 22 structures in each datasets, then expert radiologists confirmed the annotation. For efficient annotation and data management, a commercial software package that supports three-dimensional segmentation was used.MATERIALS AND METHODSDual-phase contrast-enhanced volumetric CT acquired from 2005 to 2009 from potential kidney donors were retrospectively assessed. Four trained human annotators manually and sequentially annotated 22 structures in each datasets, then expert radiologists confirmed the annotation. For efficient annotation and data management, a commercial software package that supports three-dimensional segmentation was used.A total of 1150 dual-phase CT datasets from 575 subjects were annotated. There were 229 men and 346 women (mean age: 45±12years; range: 18-79years). The mean intra-observer intra-subject dual-phase CT volume difference of all annotated structures was 4.27mL (7.65%). The deep network prediction for multi-organ segmentation showed high fidelity with 89.4% and 1.29mm in terms of mean Dice similarity coefficients and mean surface distances, respectively.RESULTSA total of 1150 dual-phase CT datasets from 575 subjects were annotated. There were 229 men and 346 women (mean age: 45±12years; range: 18-79years). The mean intra-observer intra-subject dual-phase CT volume difference of all annotated structures was 4.27mL (7.65%). The deep network prediction for multi-organ segmentation showed high fidelity with 89.4% and 1.29mm in terms of mean Dice similarity coefficients and mean surface distances, respectively.A reliable data collection/annotation process for abdominal structures was developed. This process can be used to generate large datasets appropriate for deep learning.CONCLUSIONSA reliable data collection/annotation process for abdominal structures was developed. This process can be used to generate large datasets appropriate for deep learning.
Author Horton, K.M.
Park, S.
Chu, L.C.
Kinzler, K.W.
Yuille, A.L.
Graves, J.
Shayesteh, S.
Hruban, R.H.
Fadaei Fouladi, D.
Zinreich, E.S.
Kawamoto, S.
Vogelstein, B.
Fishman, E.K.
Author_xml – sequence: 1
  givenname: S.
  surname: Park
  fullname: Park, S.
  organization: The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, 601N. Caroline Street, Baltimore, MD 21287, USA
– sequence: 2
  givenname: L.C.
  surname: Chu
  fullname: Chu, L.C.
  organization: The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, 601N. Caroline Street, Baltimore, MD 21287, USA
– sequence: 3
  givenname: E.K.
  orcidid: 0000-0002-2567-1658
  surname: Fishman
  fullname: Fishman, E.K.
  organization: The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, 601N. Caroline Street, Baltimore, MD 21287, USA
– sequence: 4
  givenname: A.L.
  surname: Yuille
  fullname: Yuille, A.L.
  organization: Department of Computer Science, Johns Hopkins University, School of Arts and Sciences, Baltimore, MD 21218, USA
– sequence: 5
  givenname: B.
  surname: Vogelstein
  fullname: Vogelstein, B.
  organization: Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD 21287, USA
– sequence: 6
  givenname: K.W.
  surname: Kinzler
  fullname: Kinzler, K.W.
  organization: Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD 21287, USA
– sequence: 7
  givenname: K.M.
  surname: Horton
  fullname: Horton, K.M.
  organization: The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, 601N. Caroline Street, Baltimore, MD 21287, USA
– sequence: 8
  givenname: R.H.
  surname: Hruban
  fullname: Hruban, R.H.
  organization: Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
– sequence: 9
  givenname: E.S.
  surname: Zinreich
  fullname: Zinreich, E.S.
  organization: The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, 601N. Caroline Street, Baltimore, MD 21287, USA
– sequence: 10
  givenname: D.
  surname: Fadaei Fouladi
  fullname: Fadaei Fouladi, D.
  organization: The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, 601N. Caroline Street, Baltimore, MD 21287, USA
– sequence: 11
  givenname: S.
  surname: Shayesteh
  fullname: Shayesteh, S.
  organization: The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, 601N. Caroline Street, Baltimore, MD 21287, USA
– sequence: 12
  givenname: J.
  surname: Graves
  fullname: Graves, J.
  organization: The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, 601N. Caroline Street, Baltimore, MD 21287, USA
– sequence: 13
  givenname: S.
  orcidid: 0000-0002-3577-1388
  surname: Kawamoto
  fullname: Kawamoto, S.
  email: skawamo1@jhmi.edu
  organization: The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, 601N. Caroline Street, Baltimore, MD 21287, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31358460$$D View this record in MEDLINE/PubMed
BookMark eNqFkl1rHCEUhqWkNGmaP9CL4mVvdurHfDihFMKStIVALpJeHxw9s3Hr6FZnC_n3ddgESqCpXqj4Pq-c8_qWHIUYkJD3nFWc8fbTtrLOuUow3lesqRhTr8iJEJyvmlbVR3_tj8lZzltWRlvAun5DjiWXjapbdkI2FyHEWc9oaYhp0p6u76jVs6ZxpPM9Uj3YOGGgY0zUIu6oR52CC5tzur7X3mPYYKY6WJrnVHw2rhwXsZt2HgtZzF0M78jrUfuMZ4_rKflxdXm3_ra6vvn6fX1xvTKNUPNK89aqXneiFp2UuqvVYGUjTWdFb8olDu3YjqoZVN1LzXqlGq2LErm02FuUp-TjwXeX4q895hkmlw16rwPGfQYh2o6JMtsi_fAo3Q8TWtglN-n0AE_NKQJ1EJgUc044gnGHakqlzgNnsEQBW1iigCUKYA2UKAoqnqFP7i9Cnw8Qlgb9dpggG4fBoHUJzQw2upfxL89w411wRvuf-IB5G_cplNYDhyyAwe3yQZb_wXvJuOx5MTj_t8H_Xv8DPHnJ7A
CitedBy_id crossref_primary_10_1016_j_diii_2022_01_012
crossref_primary_10_1016_j_diii_2021_12_003
crossref_primary_10_1016_j_diii_2020_09_008
crossref_primary_10_1097_RCT_0000000000001374
crossref_primary_10_1007_s00261_021_03056_1
crossref_primary_10_21105_joss_03920
crossref_primary_10_1109_ACCESS_2021_3089704
crossref_primary_10_1016_j_diii_2020_11_001
crossref_primary_10_1016_j_media_2024_103285
crossref_primary_10_3390_app11188621
crossref_primary_10_1007_s11604_020_01057_6
crossref_primary_10_1016_j_inffus_2020_09_006
crossref_primary_10_1088_1361_6560_ac36a2
crossref_primary_10_1016_j_diii_2021_03_006
crossref_primary_10_1002_ctm2_842
crossref_primary_10_1007_s00261_023_04122_6
crossref_primary_10_1016_j_diii_2022_03_002
crossref_primary_10_1016_j_compmedimag_2024_102434
crossref_primary_10_1016_j_diii_2022_03_001
crossref_primary_10_3389_frai_2024_1446693
crossref_primary_10_1109_ACCESS_2020_3034914
crossref_primary_10_35712_aig_v1_i1_5
crossref_primary_10_1016_j_media_2021_101980
crossref_primary_10_1042_BSR20203391
crossref_primary_10_1038_s41379_020_0629_6
crossref_primary_10_1007_s11633_021_1313_0
crossref_primary_10_1007_s13246_023_01324_6
crossref_primary_10_1109_TMI_2020_3048055
crossref_primary_10_1016_j_jviscsurg_2021_01_008
crossref_primary_10_17694_bajece_1129233
crossref_primary_10_1007_s11604_021_01098_5
crossref_primary_10_3389_fonc_2022_960056
crossref_primary_10_1002_mp_15551
crossref_primary_10_1016_j_diii_2022_01_009
crossref_primary_10_1097_RCT_0000000000001169
crossref_primary_10_1007_s00261_022_03663_6
crossref_primary_10_1016_j_diii_2020_10_007
crossref_primary_10_3390_toxics12100737
crossref_primary_10_1016_S2589_7500_20_30105_9
crossref_primary_10_1097_MPA_0000000000001603
crossref_primary_10_1016_j_jchirv_2021_01_006
crossref_primary_10_1007_s00261_024_04512_4
crossref_primary_10_2196_26601
Cites_doi 10.1016/j.media.2013.12.002
10.1148/rg.2017170077
10.1097/PPO.0000000000000290
10.1016/j.radonc.2010.05.003
10.18383/j.tom.2016.00184
10.1148/radiol.2017162326
10.1109/TMI.2018.2806309
10.1097/TP.0000000000000486
10.1038/nature14539
10.1016/j.diii.2018.10.003
10.1016/j.media.2017.07.005
10.3348/kjr.2017.18.4.570
10.1038/ncomms5006
10.1016/j.diii.2018.11.002
10.1148/radiol.2015151169
10.1016/j.media.2017.06.015
10.1007/s00330-018-5695-5
10.1016/j.media.2017.03.006
10.1007/s00261-018-1613-1
10.1109/TMI.2013.2271487
10.1109/TMI.2016.2528162
10.1016/j.radonc.2012.09.023
10.1109/TMI.2016.2536809
10.1016/j.media.2016.07.007
10.1109/TMI.2016.2535302
10.1109/TMI.2016.2621185
10.1053/j.gastro.2013.11.004
10.1016/j.diii.2019.03.001
10.1109/TMI.2017.2774044
ContentType Journal Article
Copyright 2019 Société française de radiologie
Société française de radiologie
Copyright © 2019 Société française de radiologie. Published by Elsevier Masson SAS. All rights reserved.
Copyright_xml – notice: 2019 Société française de radiologie
– notice: Société française de radiologie
– notice: Copyright © 2019 Société française de radiologie. Published by Elsevier Masson SAS. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.diii.2019.05.008
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2211-5684
EndPage 44
ExternalDocumentID 31358460
10_1016_j_diii_2019_05_008
S2211568419301391
1_s2_0_S2211568419301391
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1P~
1~.
1~5
457
4G.
7-5
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACJTP
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEXQZ
AFJKZ
AFPUW
AFRHN
AFTJW
AFXBA
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
EBS
EFJIC
EFKBS
EFLBG
EJD
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
IXB
KOM
M41
MO0
O-L
O9-
OAUVE
OI~
OK1
OU0
P-8
P-9
PC.
Q38
ROL
SDF
SEM
SNG
SPCBC
SSH
SSZ
T5K
Z5R
~G-
~HD
0SF
6I.
AACTN
AAFTH
ABVKL
AFKWA
AJOXV
AMFUW
NCXOZ
RIG
AAIAV
ABLVK
ABYKQ
AISVY
AJBFU
LCYCR
NAHTW
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-c528t-a16d89a7242733a748bd353c7d29ca16eb6f6f85b8493a09885aa733e13de9de3
IEDL.DBID .~1
ISSN 2211-5684
IngestDate Wed Oct 01 14:46:21 EDT 2025
Wed Feb 19 02:29:56 EST 2025
Wed Oct 01 02:23:40 EDT 2025
Thu Apr 24 23:01:18 EDT 2025
Fri Feb 23 02:49:33 EST 2024
Sun Feb 23 10:18:52 EST 2025
Tue Oct 14 19:30:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Image segmentation
Normal structures
Artificial intelligence (AI)
Abdominal computed tomography (CT)
Machine learning
Language English
License This article is made available under the Elsevier license.
Copyright © 2019 Société française de radiologie. Published by Elsevier Masson SAS. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c528t-a16d89a7242733a748bd353c7d29ca16eb6f6f85b8493a09885aa733e13de9de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3577-1388
0000-0002-2567-1658
OpenAccessLink https://www.clinicalkey.com/#!/content/1-s2.0-S2211568419301391
PMID 31358460
PQID 2267020206
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2267020206
pubmed_primary_31358460
crossref_citationtrail_10_1016_j_diii_2019_05_008
crossref_primary_10_1016_j_diii_2019_05_008
elsevier_sciencedirect_doi_10_1016_j_diii_2019_05_008
elsevier_clinicalkeyesjournals_1_s2_0_S2211568419301391
elsevier_clinicalkey_doi_10_1016_j_diii_2019_05_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace France
PublicationPlace_xml – name: France
PublicationTitle Diagnostic and interventional imaging
PublicationTitleAlternate Diagn Interv Imaging
PublicationYear 2020
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
References van Dam, van Sörnsen de Koste, Hanna, Muirhead, Slotman, Senan (bib0335) 2010; 96
Zhang, Lu, Summers, Kebebew, Yao (bib0240) 2018; 37
Aerts, Velazquez, Leijenaar, Parmar, Grossmann, Carvalho (bib0175) 2014; 5
Gibson, Giganti, Hu, Bonmati, Bandula, Gurusamy (bib0315) 2018; 37
Setio, Traversog, de Bel, Berens, Bogaard, Cerello (bib0205) 2017; 42
Beregi, Zins, Masson, Cart, Bartoli, Silberman (bib0210) 2018; 99
Karasawa, Oda, Kitasaka, Misawa, Fujiwara, Chu (bib0235) 2017; 39
Couteaux, Si-Mohamed, Renard-Penna, Nempont, Lefevre, Popoff (bib0275) 2019; 100
Cha, Hadjiiski, Samala, Chan, Cohan, Caoili (bib0250) 2016; 2
Chartrand, Cheng, Vorontsov, Drozdzal, Turcotte, Pal (bib0260) 2017; 37
Tajbakhsh, Shin, Gurudu, Hurst, Kendall, Gotway (bib0285) 2016; 35
Lee, Jun, Cho, Lee, Kim, Seo (bib0190) 2017; 18
LeCun, Bengio, Hinton (bib0195) 2015; 521
Litjens, Kooi, Bejnordi, Setio, Ciompi, Ghafoorian (bib0185) 2017; 42
Joskowicz, Cohen, Caplan, Sosna (bib0340) 2018; 29
Gillies, Kinahan, Hricak (bib0180) 2016; 278
Guo Z, Zhang L, Lu L, Bagheri M, Summers RM, Sonka M, et al. Deep LOGISMOS: deep learning graph-based 3D segmentation of pancreatic tumors on CT scans. http://arxiv.org/abs/1801.08599.
Rajchl, Lee, Oktay, Kamnitsas, Passerat-Palmbach, Bai (bib0295) 2017; 36
Kooi, Litjens, Van Ginneken, Gubern-Mérida, Sánchez, Mann (bib0230) 2017; 35
Rios Velazquez, Aerts, Gu, Goldgof, De Ruysscher, Dekker (bib0330) 2015; 105
Setio, Ciompi, Litjens, Gerke, Jacobs, van Riel (bib0220) 2016; 35
SFR-IA Group, CERF, French Radiology Community (bib0270) 2018; 99
Chu, Goggins, Fishman (bib0305) 2017; 23
Shin, Roth, Gao, Lu, Xu, Nogues (bib0265) 2016; 35
Al-Hawary, Francis, Chari, Fishman, Hough, Lu (bib0300) 2014; 146
Lakhani, Sundaram (bib0225) 2017; 284
Nie, Zhang, Adeli, Liu, Shen (bib0245) 2016; 9901
Summers (bib0255) 2018; 44
Litjens, Toth, van de Ven, Hoeks, Kerkstra, van Ginneken (bib0200) 2014; 18
Zhang, Liu, Yao, Louie, Nguyen, Wank (bib0325) 2013; 32
Deng, Dong, Socher, Li, Li, FeiFei (bib0280) 2009
Tan, Charoensak, Ajwichai, Gritsch, Danovitch, Schulam (bib0320) 2015; 99
Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-net: learning dense volumetric segmentation from sparse annotation. https://arxiv.org/abs/1606.06650.
Wang Y, Zhou Y, Shen W, Park S, Fishman EK, Yuille AL. Abdominal multi-organ segmentation with organ-attention networks and statistical fusion. http://arxiv.org/abs/1804.08414.
Chartrand (10.1016/j.diii.2019.05.008_bib0260) 2017; 37
Shin (10.1016/j.diii.2019.05.008_bib0265) 2016; 35
Joskowicz (10.1016/j.diii.2019.05.008_bib0340) 2018; 29
Gillies (10.1016/j.diii.2019.05.008_bib0180) 2016; 278
Litjens (10.1016/j.diii.2019.05.008_bib0185) 2017; 42
10.1016/j.diii.2019.05.008_bib0215
Rajchl (10.1016/j.diii.2019.05.008_bib0295) 2017; 36
Couteaux (10.1016/j.diii.2019.05.008_bib0275) 2019; 100
Rios Velazquez (10.1016/j.diii.2019.05.008_bib0330) 2015; 105
Karasawa (10.1016/j.diii.2019.05.008_bib0235) 2017; 39
Tajbakhsh (10.1016/j.diii.2019.05.008_bib0285) 2016; 35
Lee (10.1016/j.diii.2019.05.008_bib0190) 2017; 18
Kooi (10.1016/j.diii.2019.05.008_bib0230) 2017; 35
Lakhani (10.1016/j.diii.2019.05.008_bib0225) 2017; 284
10.1016/j.diii.2019.05.008_bib0290
Setio (10.1016/j.diii.2019.05.008_bib0205) 2017; 42
Cha (10.1016/j.diii.2019.05.008_bib0250) 2016; 2
10.1016/j.diii.2019.05.008_bib0310
van Dam (10.1016/j.diii.2019.05.008_bib0335) 2010; 96
Setio (10.1016/j.diii.2019.05.008_bib0220) 2016; 35
Tan (10.1016/j.diii.2019.05.008_bib0320) 2015; 99
LeCun (10.1016/j.diii.2019.05.008_bib0195) 2015; 521
Al-Hawary (10.1016/j.diii.2019.05.008_bib0300) 2014; 146
Gibson (10.1016/j.diii.2019.05.008_bib0315) 2018; 37
Summers (10.1016/j.diii.2019.05.008_bib0255) 2018; 44
Beregi (10.1016/j.diii.2019.05.008_bib0210) 2018; 99
Zhang (10.1016/j.diii.2019.05.008_bib0325) 2013; 32
Aerts (10.1016/j.diii.2019.05.008_bib0175) 2014; 5
SFR-IA Group (10.1016/j.diii.2019.05.008_bib0270) 2018; 99
Chu (10.1016/j.diii.2019.05.008_bib0305) 2017; 23
Litjens (10.1016/j.diii.2019.05.008_bib0200) 2014; 18
Deng (10.1016/j.diii.2019.05.008_bib0280) 2009
Nie (10.1016/j.diii.2019.05.008_bib0245) 2016; 9901
Zhang (10.1016/j.diii.2019.05.008_bib0240) 2018; 37
32446597 - Diagn Interv Imaging. 2020 May 20
References_xml – volume: 37
  start-page: 2113
  year: 2017
  end-page: 2131
  ident: bib0260
  article-title: Deep learning: a primer for radiologists
  publication-title: Radiographics
– volume: 18
  start-page: 359
  year: 2014
  end-page: 373
  ident: bib0200
  article-title: Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge
  publication-title: Med Image Anal
– volume: 2
  start-page: 421
  year: 2016
  end-page: 429
  ident: bib0250
  article-title: Bladder cancer segmentation in CT for treatment response assessment: application of deep learning convolution neural network – a pilot study
  publication-title: Tomography
– volume: 35
  start-page: 1299
  year: 2016
  end-page: 1312
  ident: bib0285
  article-title: Convolutional neural networks for medical image analysis: full training or fine tuning?
  publication-title: IEEE Trans Med Imaging
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: bib0185
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med Image Anal
– volume: 37
  start-page: 1822
  year: 2018
  end-page: 1834
  ident: bib0315
  article-title: Automatic multi-organ segmentation on abdominal CT with dense V-networks
  publication-title: IEEE Trans Med Imaging
– volume: 18
  start-page: 570
  year: 2017
  end-page: 584
  ident: bib0190
  article-title: Deep learning in medical imaging: general overview
  publication-title: Korean J Radiol
– volume: 105
  start-page: 167
  year: 2015
  end-page: 173
  ident: bib0330
  article-title: A semiautomatic CT-based ensemble segmentation of lung tumors: comparison with oncologists’ delineations and with the surgical specimen
  publication-title: Radiother Oncol
– volume: 36
  start-page: 674
  year: 2017
  end-page: 683
  ident: bib0295
  article-title: DeepCut: object segmentation from bounding box annotations using convolutional neural networks
  publication-title: IEEE Trans Med Imaging
– volume: 99
  start-page: 677
  year: 2018
  end-page: 678
  ident: bib0210
  article-title: Radiology and artificial intelligence: an opportunity for our specialty
  publication-title: Diagn Interv Imaging
– volume: 5
  start-page: 4006
  year: 2014
  ident: bib0175
  article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
  publication-title: Nat Commun
– volume: 146
  start-page: 291
  year: 2014
  end-page: 304
  ident: bib0300
  article-title: Pancreatic ductal adenocarcinoma radiology reporting template: consensus statement of the society of abdominal radiology and the American pancreatic association
  publication-title: Gastroenterology
– volume: 9901
  start-page: 212
  year: 2016
  end-page: 220
  ident: bib0245
  article-title: 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients
  publication-title: Med Image Comput Comput Assist Interv
– volume: 44
  start-page: 1985
  year: 2018
  end-page: 1989
  ident: bib0255
  article-title: Are we at a crossroads or a plateau? Radiomics and machine learning in abdominal oncology imaging
  publication-title: Abdom Radiol
– volume: 39
  start-page: 18
  year: 2017
  end-page: 28
  ident: bib0235
  article-title: Multi-atlas pancreas segmentation: atlas selection based on vessel structure
  publication-title: Med Image Anal
– volume: 96
  start-page: 67
  year: 2010
  end-page: 72
  ident: bib0335
  article-title: Improving target delineation on 4-dimensional CT scans in stage I NSCLC using a deformable registration tool
  publication-title: Radiother Oncol
– reference: Guo Z, Zhang L, Lu L, Bagheri M, Summers RM, Sonka M, et al. Deep LOGISMOS: deep learning graph-based 3D segmentation of pancreatic tumors on CT scans. http://arxiv.org/abs/1801.08599.
– volume: 35
  start-page: 303
  year: 2017
  end-page: 312
  ident: bib0230
  article-title: Large-scale deep learning for computer-aided detection of mammographic lesions
  publication-title: Med Image Anal
– volume: 29
  start-page: 1391
  year: 2018
  end-page: 1399
  ident: bib0340
  article-title: Inter-observer variability of manual contour delineation of structures in CT
  publication-title: Eur Radiol
– volume: 284
  start-page: 574
  year: 2017
  end-page: 582
  ident: bib0225
  article-title: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks
  publication-title: Radiology
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib0195
  article-title: Deep learning
  publication-title: Nature
– reference: Wang Y, Zhou Y, Shen W, Park S, Fishman EK, Yuille AL. Abdominal multi-organ segmentation with organ-attention networks and statistical fusion. http://arxiv.org/abs/1804.08414.
– volume: 99
  start-page: 727
  year: 2018
  end-page: 742
  ident: bib0270
  article-title: Artificial intelligence and medical imaging 2018: French Radiology Community white paper
  publication-title: Diagn Interv Imaging
– volume: 32
  start-page: 2006
  year: 2013
  end-page: 2021
  ident: bib0325
  article-title: Mesenteric vasculature-guided small bowel segmentation on 3D CT
  publication-title: IEEE Trans Med Imaging
– reference: Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-net: learning dense volumetric segmentation from sparse annotation. https://arxiv.org/abs/1606.06650.
– volume: 35
  start-page: 1285
  year: 2016
  end-page: 1298
  ident: bib0265
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans Med Imaging
– volume: 99
  start-page: 1203
  year: 2015
  end-page: 1207
  ident: bib0320
  article-title: Prevalence of incidental findings on abdominal computed tomography angiograms on prospective renal donors
  publication-title: Transplantation
– volume: 278
  start-page: 563
  year: 2016
  end-page: 577
  ident: bib0180
  article-title: Radiomics: images are more than pictures, they are data
  publication-title: Radiology
– start-page: 248
  year: 2009
  end-page: 255
  ident: bib0280
  article-title: ImageNet: a large-scale hierarchical image database
  publication-title: Computer Vision and Pattern Recognition, 2009. IEEE Conference on. IEEE
– volume: 35
  start-page: 1160
  year: 2016
  end-page: 1169
  ident: bib0220
  article-title: Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks
  publication-title: IEEE Trans Med Imaging
– volume: 37
  start-page: 638
  year: 2018
  end-page: 648
  ident: bib0240
  article-title: Convolutional invasion and expansion networks for tumor growth prediction
  publication-title: IEEE Trans Med Imaging
– volume: 100
  start-page: 211
  year: 2019
  end-page: 217
  ident: bib0275
  article-title: Kidney cortex segmentation in 2D CT with U-Nets ensemble aggregation
  publication-title: Diagn Interv Imaging
– volume: 23
  start-page: 333
  year: 2017
  end-page: 342
  ident: bib0305
  article-title: Diagnosis and detection of pancreatic cancer
  publication-title: Cancer J
– volume: 42
  start-page: 1
  year: 2017
  end-page: 13
  ident: bib0205
  article-title: Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge
  publication-title: Med Image Anal
– volume: 18
  start-page: 359
  year: 2014
  ident: 10.1016/j.diii.2019.05.008_bib0200
  article-title: Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2013.12.002
– volume: 37
  start-page: 2113
  year: 2017
  ident: 10.1016/j.diii.2019.05.008_bib0260
  article-title: Deep learning: a primer for radiologists
  publication-title: Radiographics
  doi: 10.1148/rg.2017170077
– volume: 23
  start-page: 333
  year: 2017
  ident: 10.1016/j.diii.2019.05.008_bib0305
  article-title: Diagnosis and detection of pancreatic cancer
  publication-title: Cancer J
  doi: 10.1097/PPO.0000000000000290
– start-page: 248
  year: 2009
  ident: 10.1016/j.diii.2019.05.008_bib0280
  article-title: ImageNet: a large-scale hierarchical image database
– volume: 96
  start-page: 67
  year: 2010
  ident: 10.1016/j.diii.2019.05.008_bib0335
  article-title: Improving target delineation on 4-dimensional CT scans in stage I NSCLC using a deformable registration tool
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2010.05.003
– volume: 9901
  start-page: 212
  year: 2016
  ident: 10.1016/j.diii.2019.05.008_bib0245
  article-title: 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients
  publication-title: Med Image Comput Comput Assist Interv
– ident: 10.1016/j.diii.2019.05.008_bib0215
– volume: 2
  start-page: 421
  year: 2016
  ident: 10.1016/j.diii.2019.05.008_bib0250
  article-title: Bladder cancer segmentation in CT for treatment response assessment: application of deep learning convolution neural network – a pilot study
  publication-title: Tomography
  doi: 10.18383/j.tom.2016.00184
– volume: 284
  start-page: 574
  year: 2017
  ident: 10.1016/j.diii.2019.05.008_bib0225
  article-title: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks
  publication-title: Radiology
  doi: 10.1148/radiol.2017162326
– volume: 37
  start-page: 1822
  year: 2018
  ident: 10.1016/j.diii.2019.05.008_bib0315
  article-title: Automatic multi-organ segmentation on abdominal CT with dense V-networks
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2806309
– volume: 99
  start-page: 1203
  year: 2015
  ident: 10.1016/j.diii.2019.05.008_bib0320
  article-title: Prevalence of incidental findings on abdominal computed tomography angiograms on prospective renal donors
  publication-title: Transplantation
  doi: 10.1097/TP.0000000000000486
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.diii.2019.05.008_bib0195
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 99
  start-page: 727
  year: 2018
  ident: 10.1016/j.diii.2019.05.008_bib0270
  article-title: Artificial intelligence and medical imaging 2018: French Radiology Community white paper
  publication-title: Diagn Interv Imaging
  doi: 10.1016/j.diii.2018.10.003
– ident: 10.1016/j.diii.2019.05.008_bib0310
– volume: 42
  start-page: 60
  year: 2017
  ident: 10.1016/j.diii.2019.05.008_bib0185
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2017.07.005
– volume: 18
  start-page: 570
  year: 2017
  ident: 10.1016/j.diii.2019.05.008_bib0190
  article-title: Deep learning in medical imaging: general overview
  publication-title: Korean J Radiol
  doi: 10.3348/kjr.2017.18.4.570
– volume: 5
  start-page: 4006
  year: 2014
  ident: 10.1016/j.diii.2019.05.008_bib0175
  article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
  publication-title: Nat Commun
  doi: 10.1038/ncomms5006
– volume: 99
  start-page: 677
  year: 2018
  ident: 10.1016/j.diii.2019.05.008_bib0210
  article-title: Radiology and artificial intelligence: an opportunity for our specialty
  publication-title: Diagn Interv Imaging
  doi: 10.1016/j.diii.2018.11.002
– volume: 278
  start-page: 563
  year: 2016
  ident: 10.1016/j.diii.2019.05.008_bib0180
  article-title: Radiomics: images are more than pictures, they are data
  publication-title: Radiology
  doi: 10.1148/radiol.2015151169
– volume: 42
  start-page: 1
  year: 2017
  ident: 10.1016/j.diii.2019.05.008_bib0205
  article-title: Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2017.06.015
– volume: 29
  start-page: 1391
  year: 2018
  ident: 10.1016/j.diii.2019.05.008_bib0340
  article-title: Inter-observer variability of manual contour delineation of structures in CT
  publication-title: Eur Radiol
  doi: 10.1007/s00330-018-5695-5
– volume: 39
  start-page: 18
  year: 2017
  ident: 10.1016/j.diii.2019.05.008_bib0235
  article-title: Multi-atlas pancreas segmentation: atlas selection based on vessel structure
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2017.03.006
– volume: 44
  start-page: 1985
  year: 2018
  ident: 10.1016/j.diii.2019.05.008_bib0255
  article-title: Are we at a crossroads or a plateau? Radiomics and machine learning in abdominal oncology imaging
  publication-title: Abdom Radiol
  doi: 10.1007/s00261-018-1613-1
– volume: 32
  start-page: 2006
  year: 2013
  ident: 10.1016/j.diii.2019.05.008_bib0325
  article-title: Mesenteric vasculature-guided small bowel segmentation on 3D CT
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2013.2271487
– volume: 35
  start-page: 1285
  year: 2016
  ident: 10.1016/j.diii.2019.05.008_bib0265
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2528162
– volume: 105
  start-page: 167
  year: 2015
  ident: 10.1016/j.diii.2019.05.008_bib0330
  article-title: A semiautomatic CT-based ensemble segmentation of lung tumors: comparison with oncologists’ delineations and with the surgical specimen
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2012.09.023
– volume: 35
  start-page: 1160
  year: 2016
  ident: 10.1016/j.diii.2019.05.008_bib0220
  article-title: Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2536809
– volume: 35
  start-page: 303
  year: 2017
  ident: 10.1016/j.diii.2019.05.008_bib0230
  article-title: Large-scale deep learning for computer-aided detection of mammographic lesions
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2016.07.007
– ident: 10.1016/j.diii.2019.05.008_bib0290
– volume: 35
  start-page: 1299
  year: 2016
  ident: 10.1016/j.diii.2019.05.008_bib0285
  article-title: Convolutional neural networks for medical image analysis: full training or fine tuning?
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2535302
– volume: 36
  start-page: 674
  year: 2017
  ident: 10.1016/j.diii.2019.05.008_bib0295
  article-title: DeepCut: object segmentation from bounding box annotations using convolutional neural networks
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2621185
– volume: 146
  start-page: 291
  year: 2014
  ident: 10.1016/j.diii.2019.05.008_bib0300
  article-title: Pancreatic ductal adenocarcinoma radiology reporting template: consensus statement of the society of abdominal radiology and the American pancreatic association
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2013.11.004
– volume: 100
  start-page: 211
  year: 2019
  ident: 10.1016/j.diii.2019.05.008_bib0275
  article-title: Kidney cortex segmentation in 2D CT with U-Nets ensemble aggregation
  publication-title: Diagn Interv Imaging
  doi: 10.1016/j.diii.2019.03.001
– volume: 37
  start-page: 638
  year: 2018
  ident: 10.1016/j.diii.2019.05.008_bib0240
  article-title: Convolutional invasion and expansion networks for tumor growth prediction
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2017.2774044
– reference: 32446597 - Diagn Interv Imaging. 2020 May 20;:
SSID ssj0000601644
Score 2.3922198
Snippet The purpose of this study was to report procedures developed to annotate abdominal computed tomography (CT) images from subjects without pancreatic disease...
AbstractPurposeThe purpose of this study was to report procedures developed to annotate abdominal computed tomography (CT) images from subjects without...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 35
SubjectTerms Abdominal computed tomography (CT)
Artificial intelligence (AI)
Image segmentation
Machine learning
Normal structures
Radiology
Title Annotated normal CT data of the abdomen for deep learning: Challenges and strategies for implementation
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2211568419301391
https://www.clinicalkey.es/playcontent/1-s2.0-S2211568419301391
https://dx.doi.org/10.1016/j.diii.2019.05.008
https://www.ncbi.nlm.nih.gov/pubmed/31358460
https://www.proquest.com/docview/2267020206
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 2211-5684
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000601644
  issn: 2211-5684
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Open Access Journals
  customDbUrl:
  eissn: 2211-5684
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0000601644
  issn: 2211-5684
  databaseCode: IXB
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 2211-5684
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0000601644
  issn: 2211-5684
  databaseCode: ACRLP
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 2211-5684
  dateEnd: 20241031
  omitProxy: true
  ssIdentifier: ssj0000601644
  issn: 2211-5684
  databaseCode: AIKHN
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 2211-5684
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000601644
  issn: 2211-5684
  databaseCode: .~1
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2211-5684
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000601644
  issn: 2211-5684
  databaseCode: AKRWK
  dateStart: 20120101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhhdJLaZuk3bQJKvQWnJUty5J72ywNm5bk0gT2JvRy2JJ6l3hz7W_vjC0thDwKPdqe8WNmpPkszYOQL84UkqnaZAC-WVYK2WSqFk3mjPTgn6wJDLORzy-q2VX5fS7mW2SacmEwrDLO_cOc3s_W8cw4SnO8WizGPwv4dxGVKgGCII7pM9hLiV0Mjv_km3WWvt5I39MV6TNkiLkzQ5iXxxoO4AXrvoAndpl83D89hT97P3T6hryOAJJOhnd8S7ZC-468PI9b5DvketK2S0SQnraIR2_o9JJiHChdNhTQHjXWY9UFCmiV-hBWNDaOuP5Kp6mzSkdN62m3TnUkeuLF7xRrjsrcJVen3y6nsyx2U8icKNQ6M3nlQSkSfLLk3MhSWc8Fd9IXtYOLwVZN1ShhVVlzw2qlhDFAGXLuQ-0D3yPb7bINHwjNLTd5UzunGgA0zCpuXeWCFKD20ldiRPIkQ-1iqXHseHGjU0zZL41y1yh3zYQGuY_I0YZnNRTaeJaaJ9XolEIKk54GP_Asl3yMK3Rx3HY6112hmX5gWyMiNpz3zPOfT_yc7EbDuMXNGNOG5V2nAfZKgOoFq0bk_WBQm-_mOUdcyPb_86kfySu887BS9Ilsr2_vwgFgp7U97AfHIXkxOfsxu4Cjs_nJX0wlF0o
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQldpeUEsfbF-4EjeUrhPHsdMbWhVtW5ZLF4mb5VfQIsiuyHLtb-9MYq-EoFTqNfHIycx45rM9D0IOnCkkU7XJAHyzrBSyyVQtmswZ6cE_WRMYZiPPTqvpWfnjXJxvkUnKhcGwymj7B5veW-v4ZBy5OV4tFuNfBexdRKVKgCCIY2AL9KQUhcQd2Jff-eagpS840jd1RYIMKWLyzBDn5bGIA7jBuq_giW0mH3ZQfwOgvSM6fkF2IoKkR8NHviRbod0lT2fxjvwVuThq2yVCSE9bBKRXdDKnGAhKlw0FuEeN9Vh2gQJcpT6EFY2dIy6-0klqrdJR03rarVMhiX7w4joFm6M0X5Oz42_zyTSL7RQyJwq1zkxeeZCKBKcsOTeyVNZzwZ30Re3gZbBVUzVKWFXW3LBaKWEMjAw596H2gb8h2-2yDXuE5pabvKmdUw0gGmYVt65yQQqQe-krMSJ54qF2sdY4try40imo7FIj3zXyXTOhge8jcrihWQ2VNh4dzZNodMohBaunwRE8SiUfogpdXLidznVXaKbvKdeIiA3lHf3854yfk95oWLh4G2PasLztNOBeCVi9YNWIvB0UavPfPOcIDNm7_5x1nzybzmcn-uT76c_35DnOMhwbfSDb65vb8BGA1Np-6hfKHwyhF9s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Annotated+normal+CT+data+of+the+abdomen+for+deep+learning%3A+Challenges+and+strategies+for+implementation&rft.jtitle=Diagnostic+and+interventional+imaging&rft.au=Park%2C+S&rft.au=Chu%2C+L+C&rft.au=Fishman%2C+E+K&rft.au=Yuille%2C+A+L&rft.date=2020-01-01&rft.issn=2211-5684&rft.eissn=2211-5684&rft.volume=101&rft.issue=1&rft.spage=35&rft_id=info:doi/10.1016%2Fj.diii.2019.05.008&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F22115684%2FS2211568419X00121%2Fcov150h.gif