Microplastic Shape, Polymer Type, and Concentration Affect Soil Properties and Plant Biomass

Microplastics may enter the soil in a wide range of shapes and polymers. However, little is known about the effects that microplastics of different shapes, polymers, and concentration may have on soil properties and plant performance. To address this, we selected 12 microplastics representing differ...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 12; p. 616645
Main Authors Lozano, Yudi M., Lehnert, Timon, Linck, Lydia T., Lehmann, Anika, Rillig, Matthias C.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 16.02.2021
Subjects
Online AccessGet full text
ISSN1664-462X
1664-462X
DOI10.3389/fpls.2021.616645

Cover

Abstract Microplastics may enter the soil in a wide range of shapes and polymers. However, little is known about the effects that microplastics of different shapes, polymers, and concentration may have on soil properties and plant performance. To address this, we selected 12 microplastics representing different shapes (fibers, films, foams, and fragments) and polymers, and mixed them each with soil at a concentration of 0.1, 0.2, 0.3, and 0.4%. A phytometer ( Daucus carota ) grew in each pot during 4 weeks. Shoot, root mass, soil aggregation, and microbial activity were measured. All shapes increased plant biomass. Shoot mass increased by ∼27% with fibers, ∼60% with films, ∼45% with foams, and by ∼54% with fragments, as fibers hold water in the soil for longer, films decrease soil bulk density, and foams and fragments can increase soil aeration and macroporosity, which overall promote plant performance. By contrast, all shapes decreased soil aggregation by ∼25% as microplastics may introduce fracture points into aggregates and due to potential negative effects on soil biota. The latter may also explain the decrease in microbial activity with, for example, polyethylene films. Our findings show that shape, polymer type, and concentration are key properties when studying microplastic effects on terrestrial systems.
AbstractList Microplastics may enter the soil in a wide range of shapes and polymers. However, little is known about the effects that microplastics of different shapes, polymers, and concentration may have on soil properties and plant performance. To address this, we selected 12 microplastics representing different shapes (fibers, films, foams, and fragments) and polymers, and mixed them each with soil at a concentration of 0.1, 0.2, 0.3, and 0.4%. A phytometer (Daucus carota) grew in each pot during 4 weeks. Shoot, root mass, soil aggregation, and microbial activity were measured. All shapes increased plant biomass. Shoot mass increased by ∼27% with fibers, ∼60% with films, ∼45% with foams, and by ∼54% with fragments, as fibers hold water in the soil for longer, films decrease soil bulk density, and foams and fragments can increase soil aeration and macroporosity, which overall promote plant performance. By contrast, all shapes decreased soil aggregation by ∼25% as microplastics may introduce fracture points into aggregates and due to potential negative effects on soil biota. The latter may also explain the decrease in microbial activity with, for example, polyethylene films. Our findings show that shape, polymer type, and concentration are key properties when studying microplastic effects on terrestrial systems.
Microplastics may enter the soil in a wide range of shapes and polymers. However, little is known about the effects that microplastics of different shapes, polymers, and concentration may have on soil properties and plant performance. To address this, we selected 12 microplastics representing different shapes (fibers, films, foams, and fragments) and polymers, and mixed them each with soil at a concentration of 0.1, 0.2, 0.3, and 0.4%. A phytometer ( Daucus carota ) grew in each pot during 4 weeks. Shoot, root mass, soil aggregation, and microbial activity were measured. All shapes increased plant biomass. Shoot mass increased by ∼27% with fibers, ∼60% with films, ∼45% with foams, and by ∼54% with fragments, as fibers hold water in the soil for longer, films decrease soil bulk density, and foams and fragments can increase soil aeration and macroporosity, which overall promote plant performance. By contrast, all shapes decreased soil aggregation by ∼25% as microplastics may introduce fracture points into aggregates and due to potential negative effects on soil biota. The latter may also explain the decrease in microbial activity with, for example, polyethylene films. Our findings show that shape, polymer type, and concentration are key properties when studying microplastic effects on terrestrial systems.
Microplastics may enter the soil in a wide range of shapes and polymers. However, little is known about the effects that microplastics of different shapes, polymers, and concentration may have on soil properties and plant performance. To address this, we selected 12 microplastics representing different shapes (fibers, films, foams, and fragments) and polymers, and mixed them each with soil at a concentration of 0.1, 0.2, 0.3, and 0.4%. A phytometer (Daucus carota) grew in each pot during 4 weeks. Shoot, root mass, soil aggregation, and microbial activity were measured. All shapes increased plant biomass. Shoot mass increased by ∼27% with fibers, ∼60% with films, ∼45% with foams, and by ∼54% with fragments, as fibers hold water in the soil for longer, films decrease soil bulk density, and foams and fragments can increase soil aeration and macroporosity, which overall promote plant performance. By contrast, all shapes decreased soil aggregation by ∼25% as microplastics may introduce fracture points into aggregates and due to potential negative effects on soil biota. The latter may also explain the decrease in microbial activity with, for example, polyethylene films. Our findings show that shape, polymer type, and concentration are key properties when studying microplastic effects on terrestrial systems.Microplastics may enter the soil in a wide range of shapes and polymers. However, little is known about the effects that microplastics of different shapes, polymers, and concentration may have on soil properties and plant performance. To address this, we selected 12 microplastics representing different shapes (fibers, films, foams, and fragments) and polymers, and mixed them each with soil at a concentration of 0.1, 0.2, 0.3, and 0.4%. A phytometer (Daucus carota) grew in each pot during 4 weeks. Shoot, root mass, soil aggregation, and microbial activity were measured. All shapes increased plant biomass. Shoot mass increased by ∼27% with fibers, ∼60% with films, ∼45% with foams, and by ∼54% with fragments, as fibers hold water in the soil for longer, films decrease soil bulk density, and foams and fragments can increase soil aeration and macroporosity, which overall promote plant performance. By contrast, all shapes decreased soil aggregation by ∼25% as microplastics may introduce fracture points into aggregates and due to potential negative effects on soil biota. The latter may also explain the decrease in microbial activity with, for example, polyethylene films. Our findings show that shape, polymer type, and concentration are key properties when studying microplastic effects on terrestrial systems.
Microplastics may enter the soil in a wide range of shapes and polymers. However, little is known about the effects that microplastics of different shapes, polymers, and concentration may have on soil properties and plant performance. To address this, we selected 12 microplastics representing different shapes (fibers, films, foams, and fragments) and polymers, and mixed them each with soil at a concentration of 0.1, 0.2, 0.3, and 0.4%. A phytometer ( ) grew in each pot during 4 weeks. Shoot, root mass, soil aggregation, and microbial activity were measured. All shapes increased plant biomass. Shoot mass increased by ∼27% with fibers, ∼60% with films, ∼45% with foams, and by ∼54% with fragments, as fibers hold water in the soil for longer, films decrease soil bulk density, and foams and fragments can increase soil aeration and macroporosity, which overall promote plant performance. By contrast, all shapes decreased soil aggregation by ∼25% as microplastics may introduce fracture points into aggregates and due to potential negative effects on soil biota. The latter may also explain the decrease in microbial activity with, for example, polyethylene films. Our findings show that shape, polymer type, and concentration are key properties when studying microplastic effects on terrestrial systems.
Author Lehnert, Timon
Rillig, Matthias C.
Linck, Lydia T.
Lehmann, Anika
Lozano, Yudi M.
AuthorAffiliation 1 Plant Ecology, Institute of Biology, Freie Universität Berlin , Berlin , Germany
2 Berlin-Brandenburg Institute of Advanced Biodiversity Research , Berlin , Germany
AuthorAffiliation_xml – name: 1 Plant Ecology, Institute of Biology, Freie Universität Berlin , Berlin , Germany
– name: 2 Berlin-Brandenburg Institute of Advanced Biodiversity Research , Berlin , Germany
Author_xml – sequence: 1
  givenname: Yudi M.
  surname: Lozano
  fullname: Lozano, Yudi M.
– sequence: 2
  givenname: Timon
  surname: Lehnert
  fullname: Lehnert, Timon
– sequence: 3
  givenname: Lydia T.
  surname: Linck
  fullname: Linck, Lydia T.
– sequence: 4
  givenname: Anika
  surname: Lehmann
  fullname: Lehmann, Anika
– sequence: 5
  givenname: Matthias C.
  surname: Rillig
  fullname: Rillig, Matthias C.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33664758$$D View this record in MEDLINE/PubMed
BookMark eNp1Uk1v1DAQtVARLaV3TihHDuxiO_68IJUVhUpFrNQ9cECyJrbTunLiEGeR9t_XuylVi4QvY3veezP2vNfoqE-9R-gtwcu6VvpjO8S8pJiSpSBCMP4Cnezjggn68-jJ_hid5XyHy-IYay1foeO6LknJ1Qn69T3YMQ0R8hRsdX0Lg_9QrVPcdX6sNrv9CXpXrVJvfT-NMIXUV-dt6-1UXacQq3Vh-3EKPh-A6wj9VH0OqYOc36CXLcTszx7iKdpcfNmsvi2ufny9XJ1fLSynalpwULXDvNWKc3DUMi5AOSEJAJYMahCOakqACaEsb7hwTjVMCm5BOqnqU3Q5y7oEd2YYQwfjziQI5nCRxhsDpUMbvZHMEu8ajTVwJogDjR20hLNG06blpGh9mrWGbdN5Nz86PhN9nunDrblJf4zUFGvBisD7B4Ex_d76PJkuZOtj-RefttlQphXTVEpaoO-e1nos8nc6BYBnQBlRzqNvHyEEm70HzN4DZu8BM3ugUMQ_FBumw9RKtyH-n3gPpv-3ZA
CitedBy_id crossref_primary_10_1007_s11270_023_06684_z
crossref_primary_10_1021_acsnano_3c05809
crossref_primary_10_1080_15226514_2023_2250464
crossref_primary_10_1016_j_rhisph_2022_100542
crossref_primary_10_1061_JHTRBP_HZENG_1400
crossref_primary_10_1080_00380768_2024_2439393
crossref_primary_10_1038_s41598_025_93668_0
crossref_primary_10_1016_j_chemosphere_2023_138928
crossref_primary_10_1111_1365_2745_14316
crossref_primary_10_1016_j_jhazmat_2022_129509
crossref_primary_10_1016_j_scitotenv_2023_163786
crossref_primary_10_1016_j_chemosphere_2022_134059
crossref_primary_10_1016_j_jhazmat_2023_131675
crossref_primary_10_1007_s11356_024_35441_w
crossref_primary_10_1002_ldr_5239
crossref_primary_10_1016_j_jhazmat_2024_135996
crossref_primary_10_1016_j_catena_2025_108904
crossref_primary_10_1080_10643389_2023_2196230
crossref_primary_10_1016_j_jconhyd_2024_104360
crossref_primary_10_1111_gcb_15724
crossref_primary_10_1016_j_envres_2023_115891
crossref_primary_10_1016_j_ecoenv_2024_117332
crossref_primary_10_1016_j_envexpbot_2021_104635
crossref_primary_10_1007_s11104_025_07223_x
crossref_primary_10_3390_su151914453
crossref_primary_10_1038_s41598_023_45662_7
crossref_primary_10_48130_VR_2023_0018
crossref_primary_10_1016_j_dwt_2024_100198
crossref_primary_10_3390_horticulturae11030305
crossref_primary_10_1007_s42773_024_00413_3
crossref_primary_10_3390_plants12040747
crossref_primary_10_1016_j_hazadv_2024_100445
crossref_primary_10_1016_j_apsoil_2024_105343
crossref_primary_10_1007_s11368_022_03387_6
crossref_primary_10_1021_acsestwater_1c00485
crossref_primary_10_1002_ep_14301
crossref_primary_10_1007_s10653_024_02325_4
crossref_primary_10_1016_j_scitotenv_2024_172876
crossref_primary_10_3390_w14213430
crossref_primary_10_1016_j_envadv_2024_100494
crossref_primary_10_1016_j_jhazmat_2023_133395
crossref_primary_10_1016_j_jhazmat_2023_133152
crossref_primary_10_1016_j_impact_2024_100509
crossref_primary_10_1007_s42729_024_01752_7
crossref_primary_10_3389_fmars_2023_1286782
crossref_primary_10_3390_microorganisms12102024
crossref_primary_10_1016_j_jhazmat_2022_130288
crossref_primary_10_1111_1462_2920_15955
crossref_primary_10_1080_10408398_2022_2132212
crossref_primary_10_1007_s11157_022_09621_4
crossref_primary_10_1186_s12870_024_05312_0
crossref_primary_10_1016_j_jenvman_2023_118013
crossref_primary_10_1016_j_scitotenv_2023_169058
crossref_primary_10_1016_j_scitotenv_2024_172089
crossref_primary_10_1016_j_ecolind_2023_111010
crossref_primary_10_1016_j_ecoenv_2024_116826
crossref_primary_10_1002_agg2_20561
crossref_primary_10_1016_j_enmm_2023_100876
crossref_primary_10_1016_j_envpol_2024_124964
crossref_primary_10_1093_jisesa_ieac005
crossref_primary_10_1016_j_apsoil_2022_104505
crossref_primary_10_1016_j_envpol_2022_120556
crossref_primary_10_1021_acs_est_3c10247
crossref_primary_10_1016_j_envpol_2022_120799
crossref_primary_10_1002_ldr_5443
crossref_primary_10_1016_j_jhazmat_2025_137208
crossref_primary_10_1016_j_chemosphere_2022_137559
crossref_primary_10_1007_s11368_022_03254_4
crossref_primary_10_3390_jrfm17100430
crossref_primary_10_1007_s10668_023_03565_7
crossref_primary_10_1016_j_scitotenv_2024_170216
crossref_primary_10_1016_j_jhazmat_2022_129176
crossref_primary_10_1360_SSC_2024_0064
crossref_primary_10_1016_j_ecoenv_2024_116022
crossref_primary_10_1016_j_plaphy_2023_01_022
crossref_primary_10_1016_j_jhazmat_2021_126035
crossref_primary_10_1016_j_scitotenv_2021_152841
crossref_primary_10_1111_1365_2664_13839
crossref_primary_10_1002_ppp3_10430
crossref_primary_10_1016_j_apsoil_2023_105202
crossref_primary_10_1016_j_envpol_2024_125141
crossref_primary_10_29121_granthaalayah_v10_i9_2022_4812
crossref_primary_10_1007_s11356_023_28513_w
crossref_primary_10_1111_1365_2745_14476
crossref_primary_10_1016_j_envpol_2023_123118
crossref_primary_10_1080_02757540_2023_2297714
crossref_primary_10_1016_j_jhazmat_2024_136248
crossref_primary_10_1186_s42269_024_01268_1
crossref_primary_10_1007_s41742_023_00558_2
crossref_primary_10_1016_j_jhazmat_2021_127364
crossref_primary_10_1016_j_jhazmat_2024_135958
crossref_primary_10_3390_ijms241512421
crossref_primary_10_1007_s10653_025_02393_0
crossref_primary_10_1016_j_scitotenv_2024_171135
crossref_primary_10_1080_15226514_2023_2275152
crossref_primary_10_1016_j_impact_2023_100474
crossref_primary_10_1016_j_jhazmat_2021_126700
crossref_primary_10_1016_j_jhazmat_2022_128503
crossref_primary_10_1016_j_apsoil_2022_104486
crossref_primary_10_1016_j_apsoil_2024_105851
crossref_primary_10_1016_j_envpol_2023_122146
crossref_primary_10_1016_j_talanta_2024_127106
crossref_primary_10_1016_j_ecoenv_2023_114526
crossref_primary_10_1016_j_jafr_2023_100870
crossref_primary_10_1016_j_jhazmat_2024_134298
crossref_primary_10_1007_s10653_024_02081_5
crossref_primary_10_1016_j_scitotenv_2024_170281
crossref_primary_10_5194_soil_8_373_2022
crossref_primary_10_4236_ojss_2024_141001
crossref_primary_10_1007_s11270_025_07818_1
crossref_primary_10_1038_s41598_024_74800_y
crossref_primary_10_1007_s10653_025_02416_w
crossref_primary_10_1016_j_envpol_2022_118860
crossref_primary_10_1016_j_envres_2022_113815
crossref_primary_10_1016_j_scitotenv_2024_175940
crossref_primary_10_3390_microplastics2010003
crossref_primary_10_1007_s11356_022_24567_4
crossref_primary_10_1007_s11356_022_19373_x
crossref_primary_10_1002_jeq2_20450
crossref_primary_10_1016_j_jece_2024_114974
crossref_primary_10_1016_j_scitotenv_2022_155097
crossref_primary_10_1016_j_chemosphere_2022_133543
crossref_primary_10_1111_plb_13612
crossref_primary_10_1016_j_envexpbot_2025_106110
crossref_primary_10_1016_j_envpol_2024_124626
crossref_primary_10_1016_j_jhazmat_2024_133432
crossref_primary_10_1016_j_scitotenv_2023_164531
crossref_primary_10_62638_ZasMat1176
crossref_primary_10_1016_j_jhazmat_2023_132942
crossref_primary_10_3390_soilsystems7010019
crossref_primary_10_1016_j_watres_2023_120581
crossref_primary_10_3389_fpls_2024_1425815
crossref_primary_10_4236_jep_2024_152008
crossref_primary_10_1016_j_envpol_2024_123791
crossref_primary_10_1007_s11783_023_1753_6
crossref_primary_10_3390_microplastics1010007
crossref_primary_10_3389_fenvs_2021_675803
crossref_primary_10_1016_j_jhazmat_2022_128721
crossref_primary_10_1007_s10653_023_01800_8
crossref_primary_10_1007_s10653_024_02274_y
crossref_primary_10_1016_j_scitotenv_2024_173891
crossref_primary_10_1186_s40538_023_00493_6
crossref_primary_10_1016_j_scitotenv_2024_173890
crossref_primary_10_3389_fpls_2022_1075007
crossref_primary_10_1016_j_envpol_2021_118420
crossref_primary_10_3389_fsufs_2024_1420628
crossref_primary_10_1016_j_envpol_2022_120357
crossref_primary_10_1016_j_jhazmat_2024_136379
crossref_primary_10_3390_polym15020438
crossref_primary_10_1016_j_trac_2023_117309
crossref_primary_10_3389_fpls_2022_965576
crossref_primary_10_1016_j_envpol_2022_119374
crossref_primary_10_1016_j_jhazmat_2022_129255
crossref_primary_10_1007_s10661_022_10654_z
crossref_primary_10_1016_j_chemosphere_2021_133132
crossref_primary_10_1016_j_scitotenv_2023_168155
crossref_primary_10_3390_plants14020256
crossref_primary_10_1016_j_scitotenv_2023_169489
crossref_primary_10_1002_jpln_202200062
crossref_primary_10_3389_fpls_2023_1226484
crossref_primary_10_1016_j_apsoil_2024_105648
crossref_primary_10_1016_j_marpolbul_2025_117569
crossref_primary_10_1007_s00767_022_00533_2
crossref_primary_10_1016_j_scitotenv_2023_162967
crossref_primary_10_1016_j_scitotenv_2023_161642
crossref_primary_10_1016_j_etap_2023_104209
crossref_primary_10_1016_j_scitotenv_2023_165688
crossref_primary_10_1016_j_scitotenv_2023_166776
crossref_primary_10_1016_j_scitotenv_2023_164112
crossref_primary_10_1007_s10924_023_03102_7
crossref_primary_10_1016_j_jhazmat_2022_130102
crossref_primary_10_1016_j_chemosphere_2024_143715
crossref_primary_10_3390_f16020363
crossref_primary_10_1007_s10311_021_01297_6
crossref_primary_10_3390_agriculture14091460
crossref_primary_10_1016_j_jhazmat_2024_133857
crossref_primary_10_1016_j_apsoil_2024_105651
crossref_primary_10_1016_j_apsoil_2022_104680
crossref_primary_10_1016_j_chemosphere_2024_142520
crossref_primary_10_1016_j_chemosphere_2024_142641
crossref_primary_10_1002_jeq2_20625
crossref_primary_10_1016_j_scitotenv_2023_168940
crossref_primary_10_1016_j_envpol_2022_120183
crossref_primary_10_3390_environments10100179
crossref_primary_10_1021_acsnano_4c05875
crossref_primary_10_1021_acs_est_3c06177
crossref_primary_10_1016_j_ecoenv_2023_115807
crossref_primary_10_1016_j_soilbio_2023_108940
crossref_primary_10_1111_sum_70009
crossref_primary_10_1016_j_gecco_2024_e03314
crossref_primary_10_20473_jkl_v16i2_2024_101_109
crossref_primary_10_1016_j_seh_2024_100101
crossref_primary_10_1038_s41598_022_22270_5
crossref_primary_10_1016_j_heliyon_2023_e16587
crossref_primary_10_1007_s10653_025_02417_9
crossref_primary_10_1016_j_ecoenv_2024_116086
crossref_primary_10_1016_j_envres_2023_116312
crossref_primary_10_1002_ppp3_10573
crossref_primary_10_5194_soil_8_421_2022
crossref_primary_10_1016_j_apsoil_2022_104694
crossref_primary_10_1088_1748_9326_ad0a1a
crossref_primary_10_1007_s41742_024_00588_4
crossref_primary_10_3389_fenvs_2022_1017349
crossref_primary_10_1021_acs_estlett_2c00585
crossref_primary_10_1007_s11869_022_01272_2
crossref_primary_10_1016_j_envpol_2023_122897
crossref_primary_10_1186_s12302_024_01021_5
crossref_primary_10_1021_acs_estlett_2c00107
crossref_primary_10_3390_su15129836
crossref_primary_10_3390_w14233797
crossref_primary_10_1016_j_jhazmat_2025_137956
crossref_primary_10_25699_SSSB_2022_44_4_001
crossref_primary_10_3389_fmars_2025_1482946
crossref_primary_10_1016_j_chemosphere_2023_138679
crossref_primary_10_1016_j_jhazmat_2023_131932
crossref_primary_10_1007_s10661_025_13874_1
crossref_primary_10_1016_j_scitotenv_2021_150516
crossref_primary_10_1016_j_scitotenv_2022_153828
crossref_primary_10_3390_soilsystems8010023
crossref_primary_10_1016_j_rsma_2025_104089
crossref_primary_10_1111_1365_2664_14542
crossref_primary_10_3389_fenvs_2022_964230
crossref_primary_10_1016_j_jhazmat_2021_127531
crossref_primary_10_1016_j_scitotenv_2021_148333
crossref_primary_10_1186_s40068_024_00367_2
crossref_primary_10_1016_j_csbj_2022_03_041
crossref_primary_10_1016_j_geoderma_2023_116566
crossref_primary_10_1016_j_jhazmat_2025_137841
crossref_primary_10_1016_j_scitotenv_2022_154353
crossref_primary_10_1016_j_trac_2022_116869
crossref_primary_10_3390_ijerph20043106
crossref_primary_10_3832_ifor4021_015
crossref_primary_10_2323_jgam_2023_12_002
crossref_primary_10_1016_j_marenvres_2024_106430
crossref_primary_10_1016_j_jenvman_2024_121429
crossref_primary_10_3390_w16243574
crossref_primary_10_1080_10643389_2023_2252310
crossref_primary_10_1016_j_marpolbul_2024_116521
crossref_primary_10_1016_j_catena_2024_108233
crossref_primary_10_1016_j_fct_2023_113984
crossref_primary_10_1016_j_envpol_2024_124573
crossref_primary_10_1016_j_hazadv_2022_100077
crossref_primary_10_1111_1365_2435_14659
crossref_primary_10_1016_j_scitotenv_2022_160904
crossref_primary_10_1016_j_scitotenv_2024_176658
crossref_primary_10_1016_j_jhazmat_2022_129547
crossref_primary_10_1016_j_scitotenv_2023_168513
crossref_primary_10_1002_nadc_20224129512
crossref_primary_10_1016_j_foodchem_2024_139636
crossref_primary_10_53447_communc_1423616
crossref_primary_10_1007_s11356_023_30550_4
crossref_primary_10_1007_s11356_023_27151_6
crossref_primary_10_3389_fmicb_2024_1468592
crossref_primary_10_1016_j_ejsobi_2024_103666
crossref_primary_10_3390_microorganisms12091790
crossref_primary_10_1016_j_rineng_2025_104455
crossref_primary_10_1021_acs_est_2c09822
crossref_primary_10_1088_1748_9326_ac652d
crossref_primary_10_1007_s11270_024_07297_w
crossref_primary_10_1007_s13762_023_05207_x
crossref_primary_10_1016_j_jhazmat_2023_133417
crossref_primary_10_1017_S1742170522000291
crossref_primary_10_3390_ceramics6030104
crossref_primary_10_3390_plants14020181
crossref_primary_10_1016_j_chemosphere_2023_139660
crossref_primary_10_1016_j_scitotenv_2021_151487
crossref_primary_10_1016_j_scitotenv_2023_169278
crossref_primary_10_1016_j_jenvman_2023_118437
crossref_primary_10_1016_j_jhazmat_2024_135781
crossref_primary_10_1016_j_jhazmat_2024_136993
crossref_primary_10_1016_j_scitotenv_2024_174001
crossref_primary_10_3390_polym13234069
crossref_primary_10_1016_j_scitotenv_2022_155142
crossref_primary_10_1016_j_envpol_2024_124587
crossref_primary_10_3390_agronomy12051219
crossref_primary_10_1016_j_envpol_2023_121571
crossref_primary_10_1007_s11783_025_1926_6
crossref_primary_10_1111_pce_14248
crossref_primary_10_1002_ldr_5026
crossref_primary_10_3390_su151512057
crossref_primary_10_3389_fevo_2023_1172093
crossref_primary_10_1177_1420326X241248054
crossref_primary_10_1016_j_scitotenv_2022_161211
crossref_primary_10_1016_j_marpolbul_2023_115595
crossref_primary_10_1007_s11270_023_06820_9
crossref_primary_10_1016_j_scitotenv_2023_165354
crossref_primary_10_3390_polym17050690
crossref_primary_10_1016_j_envres_2023_116427
crossref_primary_10_1002_ieam_4694
crossref_primary_10_1007_s10661_024_13232_7
crossref_primary_10_1016_j_jhazmat_2021_127750
crossref_primary_10_1016_j_envres_2024_120064
crossref_primary_10_3390_agronomy14030548
crossref_primary_10_1016_j_trac_2023_116993
crossref_primary_10_1016_j_jece_2024_114577
crossref_primary_10_1016_j_apsoil_2022_104770
crossref_primary_10_1016_j_apsoil_2022_104650
crossref_primary_10_1016_j_envpol_2024_124591
crossref_primary_10_1016_j_trac_2023_117392
crossref_primary_10_1007_s42729_023_01319_y
crossref_primary_10_1016_j_scitotenv_2021_148889
crossref_primary_10_1007_s00128_022_03566_8
crossref_primary_10_1016_j_chemosphere_2025_144277
crossref_primary_10_1080_27685241_2024_2420801
crossref_primary_10_1016_j_jhazmat_2024_136423
crossref_primary_10_1016_j_spc_2024_12_018
crossref_primary_10_1016_j_resconrec_2022_106503
crossref_primary_10_2139_ssrn_4142257
crossref_primary_10_1002_ep_14230
crossref_primary_10_1016_j_spc_2023_04_010
crossref_primary_10_1016_j_jhazmat_2021_127062
crossref_primary_10_1007_s11356_024_31838_9
crossref_primary_10_48130_CAS_2021_0008
crossref_primary_10_1016_j_jhazmat_2022_128566
crossref_primary_10_1016_j_scitotenv_2021_147444
crossref_primary_10_1016_j_envres_2023_116523
crossref_primary_10_1016_j_scitotenv_2024_176641
crossref_primary_10_1016_j_envpol_2023_121235
crossref_primary_10_1080_15320383_2023_2258413
crossref_primary_10_3390_molecules27185906
crossref_primary_10_3389_fenvs_2021_790560
crossref_primary_10_1016_j_scitotenv_2022_160025
crossref_primary_10_1016_j_scitotenv_2023_162068
crossref_primary_10_1007_s13762_024_05656_y
crossref_primary_10_1111_1365_2664_14514
crossref_primary_10_1016_j_jhazmat_2021_126084
crossref_primary_10_1016_j_jhazmat_2023_131229
crossref_primary_10_1016_j_jhazmat_2024_133709
crossref_primary_10_1016_j_plaphy_2023_108201
crossref_primary_10_4236_as_2024_1510059
crossref_primary_10_1016_j_envpol_2022_119895
Cites_doi 10.1016/j.scitotenv.2017.08.086
10.1177/8756087906064220
10.1016/j.envpol.2018.09.122
10.1016/j.envpol.2019.112983
10.1016/j.soilbio.2013.04.018
10.1016/j.scitotenv.2019.07.209
10.1038/s41561-019-0335-5
10.1016/j.apsoil.2015.11.013
10.1111/gcb.14020
10.1111/1365-2435.13495
10.1016/j.apsoil.2012.01.006
10.1126/science.1131634
10.1016/j.jhazmat.2017.10.014
10.1016/j.scitotenv.2011.04.038
10.1111/1365-2664.13839
10.1128/aem.69.6.3593-3599.2003
10.1038/s41467-018-03798-5
10.1038/s41592-019-0470-3
10.1371/journal.pone.0035498
10.1021/acs.est.8b02212
10.1016/j.watres.2018.05.034
10.1101/2020.06.02.130054
10.1201/b15845-2
10.1016/j.scitotenv.2018.11.123
10.1016/B978-044451905-4.50006-4
10.1016/j.still.2004.03.008
10.1101/801951
10.1021/acs.est.9b01339
10.1016/j.scitotenv.2018.07.229
10.1016/j.chemosphere.2017.07.064
10.1126/science.aap8826
10.1021/acs.est.9b03520
10.3389/fmicb.2019.02018
10.1016/j.geoderma.2004.03.005
10.1002/ppp3.10071
10.1016/j.scitotenv.2016.01.153
10.1021/acs.est.0c01051
10.1038/s41559-017-0461-7
10.1021/acs.est.5b05478
10.1016/j.scitotenv.2020.138679
10.1016/j.scitotenv.2019.135634
10.1021/es302011r
10.1101/2020.07.27.223768
10.1016/j.envpol.2016.09.092
10.1126/science.aaz5819
10.1097/00010694-196104000-00012
10.1016/j.scitotenv.2018.06.004
10.1002/bimj.200810425
10.1126/sciadv.aau4578
10.1038/s41598-018-36172-y
10.1038/s41559-017-0344-y
10.3390/soilsystems3010021
10.1890/05-1839
ContentType Journal Article
Copyright Copyright © 2021 Lozano, Lehnert, Linck, Lehmann and Rillig.
Copyright © 2021 Lozano, Lehnert, Linck, Lehmann and Rillig. 2021 Lozano, Lehnert, Linck, Lehmann and Rillig
Copyright_xml – notice: Copyright © 2021 Lozano, Lehnert, Linck, Lehmann and Rillig.
– notice: Copyright © 2021 Lozano, Lehnert, Linck, Lehmann and Rillig. 2021 Lozano, Lehnert, Linck, Lehmann and Rillig
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fpls.2021.616645
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_74c1edb909a5461da90daf154b92bf51
PMC7920964
33664758
10_3389_fpls_2021_616645
Genre Journal Article
GrantInformation_xml – fundername: European Research Council
  grantid: 694368
– fundername: Bundesministerium für Forschung und Technologie
  grantid: 01LC1501A
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c528t-5a83d05f9855ad2c456a8d671aa074a3a6d2921a4668c5b56dd8b4765ca7d783
IEDL.DBID M48
ISSN 1664-462X
IngestDate Wed Aug 27 01:31:18 EDT 2025
Thu Aug 21 18:30:38 EDT 2025
Fri Sep 05 14:23:20 EDT 2025
Sat May 31 02:12:18 EDT 2025
Thu Apr 24 23:04:58 EDT 2025
Tue Jul 01 03:27:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords soil water status
water-stable aggregates
Daucus carota
microresp
porosity
Language English
License Copyright © 2021 Lozano, Lehnert, Linck, Lehmann and Rillig.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c528t-5a83d05f9855ad2c456a8d671aa074a3a6d2921a4668c5b56dd8b4765ca7d783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Haibo Zhang, Zhejiang Agriculture and Forestry University, China; Vikki L. Rodgers, Babson College, United States
This article was submitted to Functional Plant Ecology, a section of the journal Frontiers in Plant Science
Edited by: Iván Prieto, Spanish National Research Council, Spain
ORCID: Yudi M. Lozano, orcid.org/0000-0002-0967-8219; Matthias C. Rillig, orcid.org/0000-0003-3541-7853
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2021.616645
PMID 33664758
PQID 2498492772
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_74c1edb909a5461da90daf154b92bf51
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7920964
proquest_miscellaneous_2498492772
pubmed_primary_33664758
crossref_primary_10_3389_fpls_2021_616645
crossref_citationtrail_10_3389_fpls_2021_616645
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-16
PublicationDateYYYYMMDD 2021-02-16
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-16
  day: 16
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Zeileis (B59) 2006; 16
Lozano (B34) 2020
Lehmann (B25) 2019; 3
Liang (B29) 2019; 10
Six (B51) 2004; 79
Qi (B41) 2018; 645
Carter (B7) 2006
de Souza Machado (B8); 24
Fei (B14) 2020; 707
Reynolds (B43) 2007; 316
Helmberger (B18) 2020; 34
(B37) 2005
Semchenko (B50) 2018; 4
Smith (B52) 2010
Bronick (B5) 2005; 124
Hortal (B20) 2013; 64
Hahladakis (B17) 2018; 344
Wang (B56) 2019; 691
Brahney (B3) 2020; 368
Ho (B19) 2019; 16
Manning (B36) 2018; 2
Bretz (B4) 2011
Díaz (B11) 2018; 359
(B42) 2019
Steinmetz (B53) 2016; 550
Fierer (B15) 2007; 88
Lehmann (B27) 2017; 1
Liu (B31) 2017; 185
Kemper (B24) 1986
van Kleunen (B54) 2019; 2
Lithner (B30) 2011; 409
Zhang (B60) 2018; 642
Bläsing (B2) 2018; 612
Rillig (B45) 2019; 53
Zhang (B61) 2018; 243
Lozano (B35) 2020; 54
Romera-Castillo (B48) 2018; 9
Lehmann (B26) 2020
Rojas-Tapias (B47) 2012; 61
Oksanen (B39) 2019
Lozano (B32) 2019
Lozano (B33) 2021
de Souza Machado (B9); 52
Espí (B12) 2006; 22
Yang (B57) 2020
Rillig (B44) 2012; 46
Huerta Lwanga (B23) 2016; 50
Li (B28) 2018; 142
(B13) 2019
Allen (B1) 2019; 12
de Souza Machado (B10) 2019; 53
Campbell (B6) 2003; 69
Gartzia-Bengoetxea (B16) 2016; 100
Ruser (B49) 2008
Rodriguez-Seijo (B46) 2017; 220
Neal (B38) 2012; 7
Wan (B55) 2019; 654
Hothorn (B21) 2008; 50
Huang (B22) 2019; 254
Zimmerman (B62) 1961; 91
Piehl (B40) 2018; 8
Yu (B58) 2020; 726
34267777 - Front Plant Sci. 2021 Jun 29;12:714541. doi: 10.3389/fpls.2021.714541.
References_xml – volume: 612
  start-page: 422
  year: 2018
  ident: B2
  article-title: Plastics in soil: analytical methods and possible sources.
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.08.086
– volume: 22
  start-page: 85
  year: 2006
  ident: B12
  article-title: PLastic films for agricultural applications.
  publication-title: J. Plastic Film Sheet.
  doi: 10.1177/8756087906064220
– volume: 243
  start-page: 1550
  year: 2018
  ident: B61
  article-title: Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: kinetics, isotherms and influencing factors.
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.09.122
– volume: 254
  year: 2019
  ident: B22
  article-title: LDPE microplastic films alter microbial community composition and enzymatic activities in soil.
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.112983
– volume: 64
  start-page: 139
  year: 2013
  ident: B20
  article-title: Soil microbial community under a nurse-plant species changes in composition, biomass and activity as the nurse grows.
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.04.018
– year: 2019
  ident: B42
  publication-title: R: A Language and Environment for Statistical Computing.
– volume: 691
  start-page: 848
  year: 2019
  ident: B56
  article-title: Microplastics as contaminants in the soil environment: a mini-review.
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.07.209
– volume: 12
  start-page: 339
  year: 2019
  ident: B1
  article-title: Atmospheric transport and deposition of microplastics in a remote mountain catchment.
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-019-0335-5
– volume: 100
  start-page: 57
  year: 2016
  ident: B16
  article-title: Soil microbial functional activity is governed by a combination of tree species composition and soil properties in temperate forests.
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2015.11.013
– volume: 24
  start-page: 1405
  ident: B8
  article-title: Microplastics as an emerging threat to terrestrial ecosystems.
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.14020
– volume: 34
  start-page: 550
  year: 2020
  ident: B18
  article-title: Towards an ecology of soil microplastics.
  publication-title: Funct. Ecol.
  doi: 10.1111/1365-2435.13495
– volume: 61
  start-page: 264
  year: 2012
  ident: B47
  article-title: Effect of inoculation with plant growth-promoting bacteria (PGPB) on ameloiration of saline stress in maize (Zea mays).
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2012.01.006
– volume: 316
  start-page: 847
  year: 2007
  ident: B43
  article-title: Global desertification: building a science for dryland development.
  publication-title: Science
  doi: 10.1126/science.1131634
– volume: 344
  start-page: 179
  year: 2018
  ident: B17
  article-title: An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling.
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2017.10.014
– volume: 409
  start-page: 3309
  year: 2011
  ident: B30
  article-title: Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition.
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2011.04.038
– year: 2021
  ident: B33
  article-title: Effects of microplastics and drought on soil ecosystem functions and multifunctionality.
  publication-title: J. Appl. Ecol.
  doi: 10.1111/1365-2664.13839
– volume: 69
  start-page: 3593
  year: 2003
  ident: B6
  article-title: A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil.
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.69.6.3593-3599.2003
– volume: 9
  year: 2018
  ident: B48
  article-title: Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean.
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03798-5
– volume: 16
  start-page: 565
  year: 2019
  ident: B19
  article-title: Moving beyond P values: data analysis with estimation graphics.
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0470-3
– volume: 7
  year: 2012
  ident: B38
  article-title: Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the Rhizosphere.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0035498
– volume: 52
  start-page: 9656
  ident: B9
  article-title: Impacts of microplastics on the soil biophysical environment.
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b02212
– volume: 142
  start-page: 75
  year: 2018
  ident: B28
  article-title: Microplastics in sewage sludge from the wastewater treatment plants in China.
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.05.034
– year: 2011
  ident: B4
  publication-title: Multiple Comparisons Using R.
– year: 2020
  ident: B26
  article-title: Microplastics have shape- and polymer-dependent effects on soil processes.
  publication-title: bioRxiv
  doi: 10.1101/2020.06.02.130054
– volume: 16
  start-page: 1
  year: 2006
  ident: B59
  article-title: Object-oriented Computation of Sandwich Estimators.
  publication-title: J. Stat. Softw.
  doi: 10.1201/b15845-2
– volume: 654
  start-page: 576
  year: 2019
  ident: B55
  article-title: Effects of plastic contamination on water evaporation and desiccation cracking in soil.
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.11.123
– year: 2008
  ident: B49
  article-title: Main driving variables and effect of soil management on climate or ecosystem-relevant trace gas fluxes from fields of the FAM
  publication-title: Perspectives for Agroecosystem Management
  doi: 10.1016/B978-044451905-4.50006-4
– volume: 79
  start-page: 7
  year: 2004
  ident: B51
  article-title: A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics.
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2004.03.008
– year: 2019
  ident: B39
  publication-title: vegan
– year: 2019
  ident: B32
  article-title: Root trait responses to drought depend on plant functional group.
  publication-title: bioRxiv
  doi: 10.1101/801951
– volume: 53
  start-page: 6044
  year: 2019
  ident: B10
  article-title: Microplastics can change soil properties and affect plant performance.
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b01339
– volume: 645
  start-page: 1048
  year: 2018
  ident: B41
  article-title: Macro- and micro- plastics in soil-plant system: effects of plastic mulch film residues on wheat (Triticum aestivum) growth.
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.07.229
– volume: 185
  start-page: 907
  year: 2017
  ident: B31
  article-title: Response of soil dissolved organic matter to microplastic addition in Chinese loess soil.
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.07.064
– volume: 359
  year: 2018
  ident: B11
  article-title: Assessing nature’s contributions to people.
  publication-title: Science
  doi: 10.1126/science.aap8826
– year: 2005
  ident: B37
  publication-title: Millenium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis.
– volume: 53
  start-page: 7925
  year: 2019
  ident: B45
  article-title: Shaping up: toward considering the shape and form of pollutants.
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b03520
– volume: 10
  year: 2019
  ident: B29
  article-title: Increasing temperature and microplastic fibers jointly influence soil aggregation by saprobic fungi.
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.02018
– volume: 124
  start-page: 3
  year: 2005
  ident: B5
  article-title: Soil structure and management: a review.
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2004.03.005
– volume: 2
  start-page: 157
  year: 2019
  ident: B54
  article-title: A microplastic used as infill material in artificial sport turfs reduces plant growth.
  publication-title: Plants People Planet
  doi: 10.1002/ppp3.10071
– year: 2006
  ident: B7
  publication-title: Soil Sampling and Methods of Analysis.
– volume: 550
  start-page: 690
  year: 2016
  ident: B53
  article-title: Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.01.153
– volume: 54
  start-page: 6166
  year: 2020
  ident: B35
  article-title: Effects of microplastic fibers and drought on plant communities.
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c01051
– volume: 2
  start-page: 427
  year: 2018
  ident: B36
  article-title: Redefining ecosystem multifunctionality.
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-017-0461-7
– volume: 50
  start-page: 2685
  year: 2016
  ident: B23
  article-title: Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae).
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b05478
– volume: 726
  year: 2020
  ident: B58
  article-title: Polystyrene microplastics (PS-MPs) toxicity induced oxidative stress and intestinal injury in nematode Caenorhabditis elegans.
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.138679
– volume: 707
  year: 2020
  ident: B14
  article-title: Response of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil.
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.135634
– volume: 46
  start-page: 6453
  year: 2012
  ident: B44
  article-title: Microplastic in terrestrial ecosystems and the soil?
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es302011r
– year: 2020
  ident: B34
  article-title: Microplastic shape, polymer type and concentration affect soil properties and plant biomass.
  publication-title: bioRxiv
  doi: 10.1101/2020.07.27.223768
– volume: 220
  start-page: 495
  year: 2017
  ident: B46
  article-title: Histopathological and molecular effects of microplastics in Eisenia andrei Bouché.
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.09.092
– volume: 368
  year: 2020
  ident: B3
  article-title: Plastic rain in protected areas of the United States.
  publication-title: Science
  doi: 10.1126/science.aaz5819
– volume: 91
  start-page: 280
  year: 1961
  ident: B62
  article-title: Effect of bulk density on root growth.
  publication-title: Soil Sci.
  doi: 10.1097/00010694-196104000-00012
– volume: 642
  start-page: 12
  year: 2018
  ident: B60
  article-title: The distribution of microplastics in soil aggregate fractions in southwestern China.
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.06.004
– volume: 50
  start-page: 346
  year: 2008
  ident: B21
  article-title: Simultaneous inference in general parametric models.
  publication-title: Biom. J.
  doi: 10.1002/bimj.200810425
– volume: 4
  year: 2018
  ident: B50
  article-title: Fungal diversity regulates plant-soil feedbacks in temperate grassland.
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aau4578
– volume: 8
  year: 2018
  ident: B40
  article-title: Identification and quantification of macro- and microplastics on an agricultural farmland.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-36172-y
– start-page: 425
  year: 1986
  ident: B24
  article-title: Aggregate stability and size distribution
  publication-title: Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods
– volume: 1
  start-page: 1828
  year: 2017
  ident: B27
  article-title: Soil biota contributions to soil aggregation.
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-017-0344-y
– volume: 3
  year: 2019
  ident: B25
  article-title: Abiotic and biotic factors influencing the effect of microplastic on soil aggregation.
  publication-title: Soil Syst.
  doi: 10.3390/soilsystems3010021
– volume: 88
  start-page: 1354
  year: 2007
  ident: B15
  article-title: Toward an ecological classification of soil bacteria.
  publication-title: Ecology
  doi: 10.1890/05-1839
– year: 2019
  ident: B13
  publication-title: Floraweb [Online].
– year: 2020
  ident: B57
  article-title: Microplastics in soil ecosystem: insight on its fate and impacts on soil quality
  publication-title: The Handbook of Environmental Chemistry
– year: 2010
  ident: B52
  publication-title: Mycorrhizal Symbiosis.
– reference: 34267777 - Front Plant Sci. 2021 Jun 29;12:714541. doi: 10.3389/fpls.2021.714541.
SSID ssj0000500997
Score 2.674441
Snippet Microplastics may enter the soil in a wide range of shapes and polymers. However, little is known about the effects that microplastics of different shapes,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 616645
SubjectTerms Daucus carota
microresp
Plant Science
porosity
soil water status
water-stable aggregates
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYh9NBL6btOH6jQSyDOWrKex2xoCIWUQFLIoWBGkk0WNvay3T3k33fGdpbdUtJLr5aMxMzI-j5r9A1jX6KRYOsm5CrJMlc-Aa65QuUBROkiKWb1Iq4X3835D_XtRt9slfqinLBBHngw3MSqKOoUfOFBKyMS-CJBgxt_8DI0_eVpWfhii0wNqt4EfexwLokszE-axZzUuaU4NsIYur20tQ_1cv1_w5h_pkpu7T1nz9mzETTyk2GyL9he3b5kT6YdArv7V-znBSXVLRAGYzO_uoVFfcQvu_n9Xb3kxDOPOLSJn9IFxXZUyeUnfR4Hv-pmc35JP-SXpKzad6Q6Ris-nVHm0K_X7Prs6_XpeT4WTcijlm6Va3BlKnTjndaQZESABC4ZKwAQLUAJJkkvBShjXNRBm5RcUNboCDZZV75h-23X1u8YR_oKAj8AEItGWR9CEZz1yTVB-yR1mbHJgwWrOAqKU12LeYXEgmxekc0rsnk12Dxjh5s3FoOYxiN9p-SUTT-Swe4fYHBUY3BU_wqOjH1-cGmFy4bOQqCtuzWOpLxTXiK3yNjbwcWboTA-jUIelTG74_yduey2tLPbXprbegxGow7-x-Tfs6dkD0oRF-YD218t1_VHRECr8KkP9t_q2wRt
  priority: 102
  providerName: Directory of Open Access Journals
Title Microplastic Shape, Polymer Type, and Concentration Affect Soil Properties and Plant Biomass
URI https://www.ncbi.nlm.nih.gov/pubmed/33664758
https://www.proquest.com/docview/2498492772
https://pubmed.ncbi.nlm.nih.gov/PMC7920964
https://doaj.org/article/74c1edb909a5461da90daf154b92bf51
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtWkoupe-6j6BCL4U4sWQ9D6VkQ9NQSAkkgT0UjGTZyYJrbzcb6P77zsjebbZse_HBHkvyjGR9I42-IeR9qbjTVe1TEXieChscjLlMpN6x3JTImBVJXE--qeML8XUsx3-ORw8KvN7o2mE-qYtZs_fr5-ITDPiP6HHCfLtfTxsk3uZsTzGlhLxL7sXdIgzkG8B-z_SNcChmWwGpVCg-7vctNxayTR5AO5XQmAz-1pQVmf03wdG_oypvTVNHj8jDAV_Sg75DPCZ3qvYJuT_qAAMunpLvJxh_NwXEDI_p2ZWbVrv0tGsWP6oZRZd0l7o20EM8y9gOhLr0IIZ80LNu0tBTXLufIQlrFMSUR3M6mmCQ0fUzcn70-fzwOB3yK6Sl5GaeSmfykMnaGild4CVgKWeC0sw5ABYudypwy5kTSplSeqlCMF5oJUungzb5c7LVdm31klDwdB2Df4Urs1po633mjbbB1F7awGWekP2lBoty4B7HFBhNAT4Iqr9A9Reo_qJXf0I-rN6Y9rwb_5EdoVFWcsiYHW90s8tiGICFFiWrgreZdVIoFpzNgqsBQHrLfS1ZQt4tTVrACMNtE9dW3Q3UJKwRloMbkpAXvYlXVS27SEL0mvHX2rL-pJ1cRRZvbTm4j-LVP8t8TbbxIzFEnKk3ZGs-u6neAgKa-524cgDXL2O2Ezv5b-EEAsc
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microplastic+Shape%2C+Polymer+Type%2C+and+Concentration+Affect+Soil+Properties+and+Plant+Biomass&rft.jtitle=Frontiers+in+plant+science&rft.au=Lozano%2C+Yudi+M&rft.au=Lehnert%2C+Timon&rft.au=Linck%2C+Lydia+T&rft.au=Lehmann%2C+Anika&rft.date=2021-02-16&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=12&rft.spage=616645&rft_id=info:doi/10.3389%2Ffpls.2021.616645&rft_id=info%3Apmid%2F33664758&rft.externalDocID=33664758
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon