Microplastic Shape, Polymer Type, and Concentration Affect Soil Properties and Plant Biomass
Microplastics may enter the soil in a wide range of shapes and polymers. However, little is known about the effects that microplastics of different shapes, polymers, and concentration may have on soil properties and plant performance. To address this, we selected 12 microplastics representing differ...
Saved in:
Published in | Frontiers in plant science Vol. 12; p. 616645 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
16.02.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1664-462X 1664-462X |
DOI | 10.3389/fpls.2021.616645 |
Cover
Abstract | Microplastics may enter the soil in a wide range of shapes and polymers. However, little is known about the effects that microplastics of different shapes, polymers, and concentration may have on soil properties and plant performance. To address this, we selected 12 microplastics representing different shapes (fibers, films, foams, and fragments) and polymers, and mixed them each with soil at a concentration of 0.1, 0.2, 0.3, and 0.4%. A phytometer (
Daucus carota
) grew in each pot during 4 weeks. Shoot, root mass, soil aggregation, and microbial activity were measured. All shapes increased plant biomass. Shoot mass increased by ∼27% with fibers, ∼60% with films, ∼45% with foams, and by ∼54% with fragments, as fibers hold water in the soil for longer, films decrease soil bulk density, and foams and fragments can increase soil aeration and macroporosity, which overall promote plant performance. By contrast, all shapes decreased soil aggregation by ∼25% as microplastics may introduce fracture points into aggregates and due to potential negative effects on soil biota. The latter may also explain the decrease in microbial activity with, for example, polyethylene films. Our findings show that shape, polymer type, and concentration are key properties when studying microplastic effects on terrestrial systems. |
---|---|
AbstractList | Microplastics may enter the soil in a wide range of shapes and polymers. However, little is known about the effects that microplastics of different shapes, polymers, and concentration may have on soil properties and plant performance. To address this, we selected 12 microplastics representing different shapes (fibers, films, foams, and fragments) and polymers, and mixed them each with soil at a concentration of 0.1, 0.2, 0.3, and 0.4%. A phytometer (Daucus carota) grew in each pot during 4 weeks. Shoot, root mass, soil aggregation, and microbial activity were measured. All shapes increased plant biomass. Shoot mass increased by ∼27% with fibers, ∼60% with films, ∼45% with foams, and by ∼54% with fragments, as fibers hold water in the soil for longer, films decrease soil bulk density, and foams and fragments can increase soil aeration and macroporosity, which overall promote plant performance. By contrast, all shapes decreased soil aggregation by ∼25% as microplastics may introduce fracture points into aggregates and due to potential negative effects on soil biota. The latter may also explain the decrease in microbial activity with, for example, polyethylene films. Our findings show that shape, polymer type, and concentration are key properties when studying microplastic effects on terrestrial systems. Microplastics may enter the soil in a wide range of shapes and polymers. However, little is known about the effects that microplastics of different shapes, polymers, and concentration may have on soil properties and plant performance. To address this, we selected 12 microplastics representing different shapes (fibers, films, foams, and fragments) and polymers, and mixed them each with soil at a concentration of 0.1, 0.2, 0.3, and 0.4%. A phytometer ( Daucus carota ) grew in each pot during 4 weeks. Shoot, root mass, soil aggregation, and microbial activity were measured. All shapes increased plant biomass. Shoot mass increased by ∼27% with fibers, ∼60% with films, ∼45% with foams, and by ∼54% with fragments, as fibers hold water in the soil for longer, films decrease soil bulk density, and foams and fragments can increase soil aeration and macroporosity, which overall promote plant performance. By contrast, all shapes decreased soil aggregation by ∼25% as microplastics may introduce fracture points into aggregates and due to potential negative effects on soil biota. The latter may also explain the decrease in microbial activity with, for example, polyethylene films. Our findings show that shape, polymer type, and concentration are key properties when studying microplastic effects on terrestrial systems. Microplastics may enter the soil in a wide range of shapes and polymers. However, little is known about the effects that microplastics of different shapes, polymers, and concentration may have on soil properties and plant performance. To address this, we selected 12 microplastics representing different shapes (fibers, films, foams, and fragments) and polymers, and mixed them each with soil at a concentration of 0.1, 0.2, 0.3, and 0.4%. A phytometer (Daucus carota) grew in each pot during 4 weeks. Shoot, root mass, soil aggregation, and microbial activity were measured. All shapes increased plant biomass. Shoot mass increased by ∼27% with fibers, ∼60% with films, ∼45% with foams, and by ∼54% with fragments, as fibers hold water in the soil for longer, films decrease soil bulk density, and foams and fragments can increase soil aeration and macroporosity, which overall promote plant performance. By contrast, all shapes decreased soil aggregation by ∼25% as microplastics may introduce fracture points into aggregates and due to potential negative effects on soil biota. The latter may also explain the decrease in microbial activity with, for example, polyethylene films. Our findings show that shape, polymer type, and concentration are key properties when studying microplastic effects on terrestrial systems.Microplastics may enter the soil in a wide range of shapes and polymers. However, little is known about the effects that microplastics of different shapes, polymers, and concentration may have on soil properties and plant performance. To address this, we selected 12 microplastics representing different shapes (fibers, films, foams, and fragments) and polymers, and mixed them each with soil at a concentration of 0.1, 0.2, 0.3, and 0.4%. A phytometer (Daucus carota) grew in each pot during 4 weeks. Shoot, root mass, soil aggregation, and microbial activity were measured. All shapes increased plant biomass. Shoot mass increased by ∼27% with fibers, ∼60% with films, ∼45% with foams, and by ∼54% with fragments, as fibers hold water in the soil for longer, films decrease soil bulk density, and foams and fragments can increase soil aeration and macroporosity, which overall promote plant performance. By contrast, all shapes decreased soil aggregation by ∼25% as microplastics may introduce fracture points into aggregates and due to potential negative effects on soil biota. The latter may also explain the decrease in microbial activity with, for example, polyethylene films. Our findings show that shape, polymer type, and concentration are key properties when studying microplastic effects on terrestrial systems. Microplastics may enter the soil in a wide range of shapes and polymers. However, little is known about the effects that microplastics of different shapes, polymers, and concentration may have on soil properties and plant performance. To address this, we selected 12 microplastics representing different shapes (fibers, films, foams, and fragments) and polymers, and mixed them each with soil at a concentration of 0.1, 0.2, 0.3, and 0.4%. A phytometer ( ) grew in each pot during 4 weeks. Shoot, root mass, soil aggregation, and microbial activity were measured. All shapes increased plant biomass. Shoot mass increased by ∼27% with fibers, ∼60% with films, ∼45% with foams, and by ∼54% with fragments, as fibers hold water in the soil for longer, films decrease soil bulk density, and foams and fragments can increase soil aeration and macroporosity, which overall promote plant performance. By contrast, all shapes decreased soil aggregation by ∼25% as microplastics may introduce fracture points into aggregates and due to potential negative effects on soil biota. The latter may also explain the decrease in microbial activity with, for example, polyethylene films. Our findings show that shape, polymer type, and concentration are key properties when studying microplastic effects on terrestrial systems. |
Author | Lehnert, Timon Rillig, Matthias C. Linck, Lydia T. Lehmann, Anika Lozano, Yudi M. |
AuthorAffiliation | 1 Plant Ecology, Institute of Biology, Freie Universität Berlin , Berlin , Germany 2 Berlin-Brandenburg Institute of Advanced Biodiversity Research , Berlin , Germany |
AuthorAffiliation_xml | – name: 1 Plant Ecology, Institute of Biology, Freie Universität Berlin , Berlin , Germany – name: 2 Berlin-Brandenburg Institute of Advanced Biodiversity Research , Berlin , Germany |
Author_xml | – sequence: 1 givenname: Yudi M. surname: Lozano fullname: Lozano, Yudi M. – sequence: 2 givenname: Timon surname: Lehnert fullname: Lehnert, Timon – sequence: 3 givenname: Lydia T. surname: Linck fullname: Linck, Lydia T. – sequence: 4 givenname: Anika surname: Lehmann fullname: Lehmann, Anika – sequence: 5 givenname: Matthias C. surname: Rillig fullname: Rillig, Matthias C. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33664758$$D View this record in MEDLINE/PubMed |
BookMark | eNp1Uk1v1DAQtVARLaV3TihHDuxiO_68IJUVhUpFrNQ9cECyJrbTunLiEGeR9t_XuylVi4QvY3veezP2vNfoqE-9R-gtwcu6VvpjO8S8pJiSpSBCMP4Cnezjggn68-jJ_hid5XyHy-IYay1foeO6LknJ1Qn69T3YMQ0R8hRsdX0Lg_9QrVPcdX6sNrv9CXpXrVJvfT-NMIXUV-dt6-1UXacQq3Vh-3EKPh-A6wj9VH0OqYOc36CXLcTszx7iKdpcfNmsvi2ufny9XJ1fLSynalpwULXDvNWKc3DUMi5AOSEJAJYMahCOakqACaEsb7hwTjVMCm5BOqnqU3Q5y7oEd2YYQwfjziQI5nCRxhsDpUMbvZHMEu8ajTVwJogDjR20hLNG06blpGh9mrWGbdN5Nz86PhN9nunDrblJf4zUFGvBisD7B4Ex_d76PJkuZOtj-RefttlQphXTVEpaoO-e1nos8nc6BYBnQBlRzqNvHyEEm70HzN4DZu8BM3ugUMQ_FBumw9RKtyH-n3gPpv-3ZA |
CitedBy_id | crossref_primary_10_1007_s11270_023_06684_z crossref_primary_10_1021_acsnano_3c05809 crossref_primary_10_1080_15226514_2023_2250464 crossref_primary_10_1016_j_rhisph_2022_100542 crossref_primary_10_1061_JHTRBP_HZENG_1400 crossref_primary_10_1080_00380768_2024_2439393 crossref_primary_10_1038_s41598_025_93668_0 crossref_primary_10_1016_j_chemosphere_2023_138928 crossref_primary_10_1111_1365_2745_14316 crossref_primary_10_1016_j_jhazmat_2022_129509 crossref_primary_10_1016_j_scitotenv_2023_163786 crossref_primary_10_1016_j_chemosphere_2022_134059 crossref_primary_10_1016_j_jhazmat_2023_131675 crossref_primary_10_1007_s11356_024_35441_w crossref_primary_10_1002_ldr_5239 crossref_primary_10_1016_j_jhazmat_2024_135996 crossref_primary_10_1016_j_catena_2025_108904 crossref_primary_10_1080_10643389_2023_2196230 crossref_primary_10_1016_j_jconhyd_2024_104360 crossref_primary_10_1111_gcb_15724 crossref_primary_10_1016_j_envres_2023_115891 crossref_primary_10_1016_j_ecoenv_2024_117332 crossref_primary_10_1016_j_envexpbot_2021_104635 crossref_primary_10_1007_s11104_025_07223_x crossref_primary_10_3390_su151914453 crossref_primary_10_1038_s41598_023_45662_7 crossref_primary_10_48130_VR_2023_0018 crossref_primary_10_1016_j_dwt_2024_100198 crossref_primary_10_3390_horticulturae11030305 crossref_primary_10_1007_s42773_024_00413_3 crossref_primary_10_3390_plants12040747 crossref_primary_10_1016_j_hazadv_2024_100445 crossref_primary_10_1016_j_apsoil_2024_105343 crossref_primary_10_1007_s11368_022_03387_6 crossref_primary_10_1021_acsestwater_1c00485 crossref_primary_10_1002_ep_14301 crossref_primary_10_1007_s10653_024_02325_4 crossref_primary_10_1016_j_scitotenv_2024_172876 crossref_primary_10_3390_w14213430 crossref_primary_10_1016_j_envadv_2024_100494 crossref_primary_10_1016_j_jhazmat_2023_133395 crossref_primary_10_1016_j_jhazmat_2023_133152 crossref_primary_10_1016_j_impact_2024_100509 crossref_primary_10_1007_s42729_024_01752_7 crossref_primary_10_3389_fmars_2023_1286782 crossref_primary_10_3390_microorganisms12102024 crossref_primary_10_1016_j_jhazmat_2022_130288 crossref_primary_10_1111_1462_2920_15955 crossref_primary_10_1080_10408398_2022_2132212 crossref_primary_10_1007_s11157_022_09621_4 crossref_primary_10_1186_s12870_024_05312_0 crossref_primary_10_1016_j_jenvman_2023_118013 crossref_primary_10_1016_j_scitotenv_2023_169058 crossref_primary_10_1016_j_scitotenv_2024_172089 crossref_primary_10_1016_j_ecolind_2023_111010 crossref_primary_10_1016_j_ecoenv_2024_116826 crossref_primary_10_1002_agg2_20561 crossref_primary_10_1016_j_enmm_2023_100876 crossref_primary_10_1016_j_envpol_2024_124964 crossref_primary_10_1093_jisesa_ieac005 crossref_primary_10_1016_j_apsoil_2022_104505 crossref_primary_10_1016_j_envpol_2022_120556 crossref_primary_10_1021_acs_est_3c10247 crossref_primary_10_1016_j_envpol_2022_120799 crossref_primary_10_1002_ldr_5443 crossref_primary_10_1016_j_jhazmat_2025_137208 crossref_primary_10_1016_j_chemosphere_2022_137559 crossref_primary_10_1007_s11368_022_03254_4 crossref_primary_10_3390_jrfm17100430 crossref_primary_10_1007_s10668_023_03565_7 crossref_primary_10_1016_j_scitotenv_2024_170216 crossref_primary_10_1016_j_jhazmat_2022_129176 crossref_primary_10_1360_SSC_2024_0064 crossref_primary_10_1016_j_ecoenv_2024_116022 crossref_primary_10_1016_j_plaphy_2023_01_022 crossref_primary_10_1016_j_jhazmat_2021_126035 crossref_primary_10_1016_j_scitotenv_2021_152841 crossref_primary_10_1111_1365_2664_13839 crossref_primary_10_1002_ppp3_10430 crossref_primary_10_1016_j_apsoil_2023_105202 crossref_primary_10_1016_j_envpol_2024_125141 crossref_primary_10_29121_granthaalayah_v10_i9_2022_4812 crossref_primary_10_1007_s11356_023_28513_w crossref_primary_10_1111_1365_2745_14476 crossref_primary_10_1016_j_envpol_2023_123118 crossref_primary_10_1080_02757540_2023_2297714 crossref_primary_10_1016_j_jhazmat_2024_136248 crossref_primary_10_1186_s42269_024_01268_1 crossref_primary_10_1007_s41742_023_00558_2 crossref_primary_10_1016_j_jhazmat_2021_127364 crossref_primary_10_1016_j_jhazmat_2024_135958 crossref_primary_10_3390_ijms241512421 crossref_primary_10_1007_s10653_025_02393_0 crossref_primary_10_1016_j_scitotenv_2024_171135 crossref_primary_10_1080_15226514_2023_2275152 crossref_primary_10_1016_j_impact_2023_100474 crossref_primary_10_1016_j_jhazmat_2021_126700 crossref_primary_10_1016_j_jhazmat_2022_128503 crossref_primary_10_1016_j_apsoil_2022_104486 crossref_primary_10_1016_j_apsoil_2024_105851 crossref_primary_10_1016_j_envpol_2023_122146 crossref_primary_10_1016_j_talanta_2024_127106 crossref_primary_10_1016_j_ecoenv_2023_114526 crossref_primary_10_1016_j_jafr_2023_100870 crossref_primary_10_1016_j_jhazmat_2024_134298 crossref_primary_10_1007_s10653_024_02081_5 crossref_primary_10_1016_j_scitotenv_2024_170281 crossref_primary_10_5194_soil_8_373_2022 crossref_primary_10_4236_ojss_2024_141001 crossref_primary_10_1007_s11270_025_07818_1 crossref_primary_10_1038_s41598_024_74800_y crossref_primary_10_1007_s10653_025_02416_w crossref_primary_10_1016_j_envpol_2022_118860 crossref_primary_10_1016_j_envres_2022_113815 crossref_primary_10_1016_j_scitotenv_2024_175940 crossref_primary_10_3390_microplastics2010003 crossref_primary_10_1007_s11356_022_24567_4 crossref_primary_10_1007_s11356_022_19373_x crossref_primary_10_1002_jeq2_20450 crossref_primary_10_1016_j_jece_2024_114974 crossref_primary_10_1016_j_scitotenv_2022_155097 crossref_primary_10_1016_j_chemosphere_2022_133543 crossref_primary_10_1111_plb_13612 crossref_primary_10_1016_j_envexpbot_2025_106110 crossref_primary_10_1016_j_envpol_2024_124626 crossref_primary_10_1016_j_jhazmat_2024_133432 crossref_primary_10_1016_j_scitotenv_2023_164531 crossref_primary_10_62638_ZasMat1176 crossref_primary_10_1016_j_jhazmat_2023_132942 crossref_primary_10_3390_soilsystems7010019 crossref_primary_10_1016_j_watres_2023_120581 crossref_primary_10_3389_fpls_2024_1425815 crossref_primary_10_4236_jep_2024_152008 crossref_primary_10_1016_j_envpol_2024_123791 crossref_primary_10_1007_s11783_023_1753_6 crossref_primary_10_3390_microplastics1010007 crossref_primary_10_3389_fenvs_2021_675803 crossref_primary_10_1016_j_jhazmat_2022_128721 crossref_primary_10_1007_s10653_023_01800_8 crossref_primary_10_1007_s10653_024_02274_y crossref_primary_10_1016_j_scitotenv_2024_173891 crossref_primary_10_1186_s40538_023_00493_6 crossref_primary_10_1016_j_scitotenv_2024_173890 crossref_primary_10_3389_fpls_2022_1075007 crossref_primary_10_1016_j_envpol_2021_118420 crossref_primary_10_3389_fsufs_2024_1420628 crossref_primary_10_1016_j_envpol_2022_120357 crossref_primary_10_1016_j_jhazmat_2024_136379 crossref_primary_10_3390_polym15020438 crossref_primary_10_1016_j_trac_2023_117309 crossref_primary_10_3389_fpls_2022_965576 crossref_primary_10_1016_j_envpol_2022_119374 crossref_primary_10_1016_j_jhazmat_2022_129255 crossref_primary_10_1007_s10661_022_10654_z crossref_primary_10_1016_j_chemosphere_2021_133132 crossref_primary_10_1016_j_scitotenv_2023_168155 crossref_primary_10_3390_plants14020256 crossref_primary_10_1016_j_scitotenv_2023_169489 crossref_primary_10_1002_jpln_202200062 crossref_primary_10_3389_fpls_2023_1226484 crossref_primary_10_1016_j_apsoil_2024_105648 crossref_primary_10_1016_j_marpolbul_2025_117569 crossref_primary_10_1007_s00767_022_00533_2 crossref_primary_10_1016_j_scitotenv_2023_162967 crossref_primary_10_1016_j_scitotenv_2023_161642 crossref_primary_10_1016_j_etap_2023_104209 crossref_primary_10_1016_j_scitotenv_2023_165688 crossref_primary_10_1016_j_scitotenv_2023_166776 crossref_primary_10_1016_j_scitotenv_2023_164112 crossref_primary_10_1007_s10924_023_03102_7 crossref_primary_10_1016_j_jhazmat_2022_130102 crossref_primary_10_1016_j_chemosphere_2024_143715 crossref_primary_10_3390_f16020363 crossref_primary_10_1007_s10311_021_01297_6 crossref_primary_10_3390_agriculture14091460 crossref_primary_10_1016_j_jhazmat_2024_133857 crossref_primary_10_1016_j_apsoil_2024_105651 crossref_primary_10_1016_j_apsoil_2022_104680 crossref_primary_10_1016_j_chemosphere_2024_142520 crossref_primary_10_1016_j_chemosphere_2024_142641 crossref_primary_10_1002_jeq2_20625 crossref_primary_10_1016_j_scitotenv_2023_168940 crossref_primary_10_1016_j_envpol_2022_120183 crossref_primary_10_3390_environments10100179 crossref_primary_10_1021_acsnano_4c05875 crossref_primary_10_1021_acs_est_3c06177 crossref_primary_10_1016_j_ecoenv_2023_115807 crossref_primary_10_1016_j_soilbio_2023_108940 crossref_primary_10_1111_sum_70009 crossref_primary_10_1016_j_gecco_2024_e03314 crossref_primary_10_20473_jkl_v16i2_2024_101_109 crossref_primary_10_1016_j_seh_2024_100101 crossref_primary_10_1038_s41598_022_22270_5 crossref_primary_10_1016_j_heliyon_2023_e16587 crossref_primary_10_1007_s10653_025_02417_9 crossref_primary_10_1016_j_ecoenv_2024_116086 crossref_primary_10_1016_j_envres_2023_116312 crossref_primary_10_1002_ppp3_10573 crossref_primary_10_5194_soil_8_421_2022 crossref_primary_10_1016_j_apsoil_2022_104694 crossref_primary_10_1088_1748_9326_ad0a1a crossref_primary_10_1007_s41742_024_00588_4 crossref_primary_10_3389_fenvs_2022_1017349 crossref_primary_10_1021_acs_estlett_2c00585 crossref_primary_10_1007_s11869_022_01272_2 crossref_primary_10_1016_j_envpol_2023_122897 crossref_primary_10_1186_s12302_024_01021_5 crossref_primary_10_1021_acs_estlett_2c00107 crossref_primary_10_3390_su15129836 crossref_primary_10_3390_w14233797 crossref_primary_10_1016_j_jhazmat_2025_137956 crossref_primary_10_25699_SSSB_2022_44_4_001 crossref_primary_10_3389_fmars_2025_1482946 crossref_primary_10_1016_j_chemosphere_2023_138679 crossref_primary_10_1016_j_jhazmat_2023_131932 crossref_primary_10_1007_s10661_025_13874_1 crossref_primary_10_1016_j_scitotenv_2021_150516 crossref_primary_10_1016_j_scitotenv_2022_153828 crossref_primary_10_3390_soilsystems8010023 crossref_primary_10_1016_j_rsma_2025_104089 crossref_primary_10_1111_1365_2664_14542 crossref_primary_10_3389_fenvs_2022_964230 crossref_primary_10_1016_j_jhazmat_2021_127531 crossref_primary_10_1016_j_scitotenv_2021_148333 crossref_primary_10_1186_s40068_024_00367_2 crossref_primary_10_1016_j_csbj_2022_03_041 crossref_primary_10_1016_j_geoderma_2023_116566 crossref_primary_10_1016_j_jhazmat_2025_137841 crossref_primary_10_1016_j_scitotenv_2022_154353 crossref_primary_10_1016_j_trac_2022_116869 crossref_primary_10_3390_ijerph20043106 crossref_primary_10_3832_ifor4021_015 crossref_primary_10_2323_jgam_2023_12_002 crossref_primary_10_1016_j_marenvres_2024_106430 crossref_primary_10_1016_j_jenvman_2024_121429 crossref_primary_10_3390_w16243574 crossref_primary_10_1080_10643389_2023_2252310 crossref_primary_10_1016_j_marpolbul_2024_116521 crossref_primary_10_1016_j_catena_2024_108233 crossref_primary_10_1016_j_fct_2023_113984 crossref_primary_10_1016_j_envpol_2024_124573 crossref_primary_10_1016_j_hazadv_2022_100077 crossref_primary_10_1111_1365_2435_14659 crossref_primary_10_1016_j_scitotenv_2022_160904 crossref_primary_10_1016_j_scitotenv_2024_176658 crossref_primary_10_1016_j_jhazmat_2022_129547 crossref_primary_10_1016_j_scitotenv_2023_168513 crossref_primary_10_1002_nadc_20224129512 crossref_primary_10_1016_j_foodchem_2024_139636 crossref_primary_10_53447_communc_1423616 crossref_primary_10_1007_s11356_023_30550_4 crossref_primary_10_1007_s11356_023_27151_6 crossref_primary_10_3389_fmicb_2024_1468592 crossref_primary_10_1016_j_ejsobi_2024_103666 crossref_primary_10_3390_microorganisms12091790 crossref_primary_10_1016_j_rineng_2025_104455 crossref_primary_10_1021_acs_est_2c09822 crossref_primary_10_1088_1748_9326_ac652d crossref_primary_10_1007_s11270_024_07297_w crossref_primary_10_1007_s13762_023_05207_x crossref_primary_10_1016_j_jhazmat_2023_133417 crossref_primary_10_1017_S1742170522000291 crossref_primary_10_3390_ceramics6030104 crossref_primary_10_3390_plants14020181 crossref_primary_10_1016_j_chemosphere_2023_139660 crossref_primary_10_1016_j_scitotenv_2021_151487 crossref_primary_10_1016_j_scitotenv_2023_169278 crossref_primary_10_1016_j_jenvman_2023_118437 crossref_primary_10_1016_j_jhazmat_2024_135781 crossref_primary_10_1016_j_jhazmat_2024_136993 crossref_primary_10_1016_j_scitotenv_2024_174001 crossref_primary_10_3390_polym13234069 crossref_primary_10_1016_j_scitotenv_2022_155142 crossref_primary_10_1016_j_envpol_2024_124587 crossref_primary_10_3390_agronomy12051219 crossref_primary_10_1016_j_envpol_2023_121571 crossref_primary_10_1007_s11783_025_1926_6 crossref_primary_10_1111_pce_14248 crossref_primary_10_1002_ldr_5026 crossref_primary_10_3390_su151512057 crossref_primary_10_3389_fevo_2023_1172093 crossref_primary_10_1177_1420326X241248054 crossref_primary_10_1016_j_scitotenv_2022_161211 crossref_primary_10_1016_j_marpolbul_2023_115595 crossref_primary_10_1007_s11270_023_06820_9 crossref_primary_10_1016_j_scitotenv_2023_165354 crossref_primary_10_3390_polym17050690 crossref_primary_10_1016_j_envres_2023_116427 crossref_primary_10_1002_ieam_4694 crossref_primary_10_1007_s10661_024_13232_7 crossref_primary_10_1016_j_jhazmat_2021_127750 crossref_primary_10_1016_j_envres_2024_120064 crossref_primary_10_3390_agronomy14030548 crossref_primary_10_1016_j_trac_2023_116993 crossref_primary_10_1016_j_jece_2024_114577 crossref_primary_10_1016_j_apsoil_2022_104770 crossref_primary_10_1016_j_apsoil_2022_104650 crossref_primary_10_1016_j_envpol_2024_124591 crossref_primary_10_1016_j_trac_2023_117392 crossref_primary_10_1007_s42729_023_01319_y crossref_primary_10_1016_j_scitotenv_2021_148889 crossref_primary_10_1007_s00128_022_03566_8 crossref_primary_10_1016_j_chemosphere_2025_144277 crossref_primary_10_1080_27685241_2024_2420801 crossref_primary_10_1016_j_jhazmat_2024_136423 crossref_primary_10_1016_j_spc_2024_12_018 crossref_primary_10_1016_j_resconrec_2022_106503 crossref_primary_10_2139_ssrn_4142257 crossref_primary_10_1002_ep_14230 crossref_primary_10_1016_j_spc_2023_04_010 crossref_primary_10_1016_j_jhazmat_2021_127062 crossref_primary_10_1007_s11356_024_31838_9 crossref_primary_10_48130_CAS_2021_0008 crossref_primary_10_1016_j_jhazmat_2022_128566 crossref_primary_10_1016_j_scitotenv_2021_147444 crossref_primary_10_1016_j_envres_2023_116523 crossref_primary_10_1016_j_scitotenv_2024_176641 crossref_primary_10_1016_j_envpol_2023_121235 crossref_primary_10_1080_15320383_2023_2258413 crossref_primary_10_3390_molecules27185906 crossref_primary_10_3389_fenvs_2021_790560 crossref_primary_10_1016_j_scitotenv_2022_160025 crossref_primary_10_1016_j_scitotenv_2023_162068 crossref_primary_10_1007_s13762_024_05656_y crossref_primary_10_1111_1365_2664_14514 crossref_primary_10_1016_j_jhazmat_2021_126084 crossref_primary_10_1016_j_jhazmat_2023_131229 crossref_primary_10_1016_j_jhazmat_2024_133709 crossref_primary_10_1016_j_plaphy_2023_108201 crossref_primary_10_4236_as_2024_1510059 crossref_primary_10_1016_j_envpol_2022_119895 |
Cites_doi | 10.1016/j.scitotenv.2017.08.086 10.1177/8756087906064220 10.1016/j.envpol.2018.09.122 10.1016/j.envpol.2019.112983 10.1016/j.soilbio.2013.04.018 10.1016/j.scitotenv.2019.07.209 10.1038/s41561-019-0335-5 10.1016/j.apsoil.2015.11.013 10.1111/gcb.14020 10.1111/1365-2435.13495 10.1016/j.apsoil.2012.01.006 10.1126/science.1131634 10.1016/j.jhazmat.2017.10.014 10.1016/j.scitotenv.2011.04.038 10.1111/1365-2664.13839 10.1128/aem.69.6.3593-3599.2003 10.1038/s41467-018-03798-5 10.1038/s41592-019-0470-3 10.1371/journal.pone.0035498 10.1021/acs.est.8b02212 10.1016/j.watres.2018.05.034 10.1101/2020.06.02.130054 10.1201/b15845-2 10.1016/j.scitotenv.2018.11.123 10.1016/B978-044451905-4.50006-4 10.1016/j.still.2004.03.008 10.1101/801951 10.1021/acs.est.9b01339 10.1016/j.scitotenv.2018.07.229 10.1016/j.chemosphere.2017.07.064 10.1126/science.aap8826 10.1021/acs.est.9b03520 10.3389/fmicb.2019.02018 10.1016/j.geoderma.2004.03.005 10.1002/ppp3.10071 10.1016/j.scitotenv.2016.01.153 10.1021/acs.est.0c01051 10.1038/s41559-017-0461-7 10.1021/acs.est.5b05478 10.1016/j.scitotenv.2020.138679 10.1016/j.scitotenv.2019.135634 10.1021/es302011r 10.1101/2020.07.27.223768 10.1016/j.envpol.2016.09.092 10.1126/science.aaz5819 10.1097/00010694-196104000-00012 10.1016/j.scitotenv.2018.06.004 10.1002/bimj.200810425 10.1126/sciadv.aau4578 10.1038/s41598-018-36172-y 10.1038/s41559-017-0344-y 10.3390/soilsystems3010021 10.1890/05-1839 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Lozano, Lehnert, Linck, Lehmann and Rillig. Copyright © 2021 Lozano, Lehnert, Linck, Lehmann and Rillig. 2021 Lozano, Lehnert, Linck, Lehmann and Rillig |
Copyright_xml | – notice: Copyright © 2021 Lozano, Lehnert, Linck, Lehmann and Rillig. – notice: Copyright © 2021 Lozano, Lehnert, Linck, Lehmann and Rillig. 2021 Lozano, Lehnert, Linck, Lehmann and Rillig |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fpls.2021.616645 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1664-462X |
ExternalDocumentID | oai_doaj_org_article_74c1edb909a5461da90daf154b92bf51 PMC7920964 33664758 10_3389_fpls_2021_616645 |
Genre | Journal Article |
GrantInformation_xml | – fundername: European Research Council grantid: 694368 – fundername: Bundesministerium für Forschung und Technologie grantid: 01LC1501A |
GroupedDBID | 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION EBD ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c528t-5a83d05f9855ad2c456a8d671aa074a3a6d2921a4668c5b56dd8b4765ca7d783 |
IEDL.DBID | M48 |
ISSN | 1664-462X |
IngestDate | Wed Aug 27 01:31:18 EDT 2025 Thu Aug 21 18:30:38 EDT 2025 Fri Sep 05 14:23:20 EDT 2025 Sat May 31 02:12:18 EDT 2025 Thu Apr 24 23:04:58 EDT 2025 Tue Jul 01 03:27:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | soil water status water-stable aggregates Daucus carota microresp porosity |
Language | English |
License | Copyright © 2021 Lozano, Lehnert, Linck, Lehmann and Rillig. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c528t-5a83d05f9855ad2c456a8d671aa074a3a6d2921a4668c5b56dd8b4765ca7d783 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reviewed by: Haibo Zhang, Zhejiang Agriculture and Forestry University, China; Vikki L. Rodgers, Babson College, United States This article was submitted to Functional Plant Ecology, a section of the journal Frontiers in Plant Science Edited by: Iván Prieto, Spanish National Research Council, Spain ORCID: Yudi M. Lozano, orcid.org/0000-0002-0967-8219; Matthias C. Rillig, orcid.org/0000-0003-3541-7853 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2021.616645 |
PMID | 33664758 |
PQID | 2498492772 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_74c1edb909a5461da90daf154b92bf51 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7920964 proquest_miscellaneous_2498492772 pubmed_primary_33664758 crossref_primary_10_3389_fpls_2021_616645 crossref_citationtrail_10_3389_fpls_2021_616645 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-16 |
PublicationDateYYYYMMDD | 2021-02-16 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in plant science |
PublicationTitleAlternate | Front Plant Sci |
PublicationYear | 2021 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Zeileis (B59) 2006; 16 Lozano (B34) 2020 Lehmann (B25) 2019; 3 Liang (B29) 2019; 10 Six (B51) 2004; 79 Qi (B41) 2018; 645 Carter (B7) 2006 de Souza Machado (B8); 24 Fei (B14) 2020; 707 Reynolds (B43) 2007; 316 Helmberger (B18) 2020; 34 (B37) 2005 Semchenko (B50) 2018; 4 Smith (B52) 2010 Bronick (B5) 2005; 124 Hortal (B20) 2013; 64 Hahladakis (B17) 2018; 344 Wang (B56) 2019; 691 Brahney (B3) 2020; 368 Ho (B19) 2019; 16 Manning (B36) 2018; 2 Bretz (B4) 2011 Díaz (B11) 2018; 359 (B42) 2019 Steinmetz (B53) 2016; 550 Fierer (B15) 2007; 88 Lehmann (B27) 2017; 1 Liu (B31) 2017; 185 Kemper (B24) 1986 van Kleunen (B54) 2019; 2 Lithner (B30) 2011; 409 Zhang (B60) 2018; 642 Bläsing (B2) 2018; 612 Rillig (B45) 2019; 53 Zhang (B61) 2018; 243 Lozano (B35) 2020; 54 Romera-Castillo (B48) 2018; 9 Lehmann (B26) 2020 Rojas-Tapias (B47) 2012; 61 Oksanen (B39) 2019 Lozano (B32) 2019 Lozano (B33) 2021 de Souza Machado (B9); 52 Espí (B12) 2006; 22 Yang (B57) 2020 Rillig (B44) 2012; 46 Huerta Lwanga (B23) 2016; 50 Li (B28) 2018; 142 (B13) 2019 Allen (B1) 2019; 12 de Souza Machado (B10) 2019; 53 Campbell (B6) 2003; 69 Gartzia-Bengoetxea (B16) 2016; 100 Ruser (B49) 2008 Rodriguez-Seijo (B46) 2017; 220 Neal (B38) 2012; 7 Wan (B55) 2019; 654 Hothorn (B21) 2008; 50 Huang (B22) 2019; 254 Zimmerman (B62) 1961; 91 Piehl (B40) 2018; 8 Yu (B58) 2020; 726 34267777 - Front Plant Sci. 2021 Jun 29;12:714541. doi: 10.3389/fpls.2021.714541. |
References_xml | – volume: 612 start-page: 422 year: 2018 ident: B2 article-title: Plastics in soil: analytical methods and possible sources. publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.08.086 – volume: 22 start-page: 85 year: 2006 ident: B12 article-title: PLastic films for agricultural applications. publication-title: J. Plastic Film Sheet. doi: 10.1177/8756087906064220 – volume: 243 start-page: 1550 year: 2018 ident: B61 article-title: Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: kinetics, isotherms and influencing factors. publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.09.122 – volume: 254 year: 2019 ident: B22 article-title: LDPE microplastic films alter microbial community composition and enzymatic activities in soil. publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.112983 – volume: 64 start-page: 139 year: 2013 ident: B20 article-title: Soil microbial community under a nurse-plant species changes in composition, biomass and activity as the nurse grows. publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.04.018 – year: 2019 ident: B42 publication-title: R: A Language and Environment for Statistical Computing. – volume: 691 start-page: 848 year: 2019 ident: B56 article-title: Microplastics as contaminants in the soil environment: a mini-review. publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.07.209 – volume: 12 start-page: 339 year: 2019 ident: B1 article-title: Atmospheric transport and deposition of microplastics in a remote mountain catchment. publication-title: Nat. Geosci. doi: 10.1038/s41561-019-0335-5 – volume: 100 start-page: 57 year: 2016 ident: B16 article-title: Soil microbial functional activity is governed by a combination of tree species composition and soil properties in temperate forests. publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2015.11.013 – volume: 24 start-page: 1405 ident: B8 article-title: Microplastics as an emerging threat to terrestrial ecosystems. publication-title: Glob. Change Biol. doi: 10.1111/gcb.14020 – volume: 34 start-page: 550 year: 2020 ident: B18 article-title: Towards an ecology of soil microplastics. publication-title: Funct. Ecol. doi: 10.1111/1365-2435.13495 – volume: 61 start-page: 264 year: 2012 ident: B47 article-title: Effect of inoculation with plant growth-promoting bacteria (PGPB) on ameloiration of saline stress in maize (Zea mays). publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2012.01.006 – volume: 316 start-page: 847 year: 2007 ident: B43 article-title: Global desertification: building a science for dryland development. publication-title: Science doi: 10.1126/science.1131634 – volume: 344 start-page: 179 year: 2018 ident: B17 article-title: An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.10.014 – volume: 409 start-page: 3309 year: 2011 ident: B30 article-title: Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2011.04.038 – year: 2021 ident: B33 article-title: Effects of microplastics and drought on soil ecosystem functions and multifunctionality. publication-title: J. Appl. Ecol. doi: 10.1111/1365-2664.13839 – volume: 69 start-page: 3593 year: 2003 ident: B6 article-title: A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.69.6.3593-3599.2003 – volume: 9 year: 2018 ident: B48 article-title: Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean. publication-title: Nat. Commun. doi: 10.1038/s41467-018-03798-5 – volume: 16 start-page: 565 year: 2019 ident: B19 article-title: Moving beyond P values: data analysis with estimation graphics. publication-title: Nat. Methods doi: 10.1038/s41592-019-0470-3 – volume: 7 year: 2012 ident: B38 article-title: Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the Rhizosphere. publication-title: PLoS One doi: 10.1371/journal.pone.0035498 – volume: 52 start-page: 9656 ident: B9 article-title: Impacts of microplastics on the soil biophysical environment. publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b02212 – volume: 142 start-page: 75 year: 2018 ident: B28 article-title: Microplastics in sewage sludge from the wastewater treatment plants in China. publication-title: Water Res. doi: 10.1016/j.watres.2018.05.034 – year: 2011 ident: B4 publication-title: Multiple Comparisons Using R. – year: 2020 ident: B26 article-title: Microplastics have shape- and polymer-dependent effects on soil processes. publication-title: bioRxiv doi: 10.1101/2020.06.02.130054 – volume: 16 start-page: 1 year: 2006 ident: B59 article-title: Object-oriented Computation of Sandwich Estimators. publication-title: J. Stat. Softw. doi: 10.1201/b15845-2 – volume: 654 start-page: 576 year: 2019 ident: B55 article-title: Effects of plastic contamination on water evaporation and desiccation cracking in soil. publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.11.123 – year: 2008 ident: B49 article-title: Main driving variables and effect of soil management on climate or ecosystem-relevant trace gas fluxes from fields of the FAM publication-title: Perspectives for Agroecosystem Management doi: 10.1016/B978-044451905-4.50006-4 – volume: 79 start-page: 7 year: 2004 ident: B51 article-title: A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. publication-title: Soil Tillage Res. doi: 10.1016/j.still.2004.03.008 – year: 2019 ident: B39 publication-title: vegan – year: 2019 ident: B32 article-title: Root trait responses to drought depend on plant functional group. publication-title: bioRxiv doi: 10.1101/801951 – volume: 53 start-page: 6044 year: 2019 ident: B10 article-title: Microplastics can change soil properties and affect plant performance. publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b01339 – volume: 645 start-page: 1048 year: 2018 ident: B41 article-title: Macro- and micro- plastics in soil-plant system: effects of plastic mulch film residues on wheat (Triticum aestivum) growth. publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.07.229 – volume: 185 start-page: 907 year: 2017 ident: B31 article-title: Response of soil dissolved organic matter to microplastic addition in Chinese loess soil. publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.07.064 – volume: 359 year: 2018 ident: B11 article-title: Assessing nature’s contributions to people. publication-title: Science doi: 10.1126/science.aap8826 – year: 2005 ident: B37 publication-title: Millenium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis. – volume: 53 start-page: 7925 year: 2019 ident: B45 article-title: Shaping up: toward considering the shape and form of pollutants. publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b03520 – volume: 10 year: 2019 ident: B29 article-title: Increasing temperature and microplastic fibers jointly influence soil aggregation by saprobic fungi. publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.02018 – volume: 124 start-page: 3 year: 2005 ident: B5 article-title: Soil structure and management: a review. publication-title: Geoderma doi: 10.1016/j.geoderma.2004.03.005 – volume: 2 start-page: 157 year: 2019 ident: B54 article-title: A microplastic used as infill material in artificial sport turfs reduces plant growth. publication-title: Plants People Planet doi: 10.1002/ppp3.10071 – year: 2006 ident: B7 publication-title: Soil Sampling and Methods of Analysis. – volume: 550 start-page: 690 year: 2016 ident: B53 article-title: Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.01.153 – volume: 54 start-page: 6166 year: 2020 ident: B35 article-title: Effects of microplastic fibers and drought on plant communities. publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c01051 – volume: 2 start-page: 427 year: 2018 ident: B36 article-title: Redefining ecosystem multifunctionality. publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-017-0461-7 – volume: 50 start-page: 2685 year: 2016 ident: B23 article-title: Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b05478 – volume: 726 year: 2020 ident: B58 article-title: Polystyrene microplastics (PS-MPs) toxicity induced oxidative stress and intestinal injury in nematode Caenorhabditis elegans. publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.138679 – volume: 707 year: 2020 ident: B14 article-title: Response of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil. publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.135634 – volume: 46 start-page: 6453 year: 2012 ident: B44 article-title: Microplastic in terrestrial ecosystems and the soil? publication-title: Environ. Sci. Technol. doi: 10.1021/es302011r – year: 2020 ident: B34 article-title: Microplastic shape, polymer type and concentration affect soil properties and plant biomass. publication-title: bioRxiv doi: 10.1101/2020.07.27.223768 – volume: 220 start-page: 495 year: 2017 ident: B46 article-title: Histopathological and molecular effects of microplastics in Eisenia andrei Bouché. publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.09.092 – volume: 368 year: 2020 ident: B3 article-title: Plastic rain in protected areas of the United States. publication-title: Science doi: 10.1126/science.aaz5819 – volume: 91 start-page: 280 year: 1961 ident: B62 article-title: Effect of bulk density on root growth. publication-title: Soil Sci. doi: 10.1097/00010694-196104000-00012 – volume: 642 start-page: 12 year: 2018 ident: B60 article-title: The distribution of microplastics in soil aggregate fractions in southwestern China. publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.06.004 – volume: 50 start-page: 346 year: 2008 ident: B21 article-title: Simultaneous inference in general parametric models. publication-title: Biom. J. doi: 10.1002/bimj.200810425 – volume: 4 year: 2018 ident: B50 article-title: Fungal diversity regulates plant-soil feedbacks in temperate grassland. publication-title: Sci. Adv. doi: 10.1126/sciadv.aau4578 – volume: 8 year: 2018 ident: B40 article-title: Identification and quantification of macro- and microplastics on an agricultural farmland. publication-title: Sci. Rep. doi: 10.1038/s41598-018-36172-y – start-page: 425 year: 1986 ident: B24 article-title: Aggregate stability and size distribution publication-title: Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods – volume: 1 start-page: 1828 year: 2017 ident: B27 article-title: Soil biota contributions to soil aggregation. publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-017-0344-y – volume: 3 year: 2019 ident: B25 article-title: Abiotic and biotic factors influencing the effect of microplastic on soil aggregation. publication-title: Soil Syst. doi: 10.3390/soilsystems3010021 – volume: 88 start-page: 1354 year: 2007 ident: B15 article-title: Toward an ecological classification of soil bacteria. publication-title: Ecology doi: 10.1890/05-1839 – year: 2019 ident: B13 publication-title: Floraweb [Online]. – year: 2020 ident: B57 article-title: Microplastics in soil ecosystem: insight on its fate and impacts on soil quality publication-title: The Handbook of Environmental Chemistry – year: 2010 ident: B52 publication-title: Mycorrhizal Symbiosis. – reference: 34267777 - Front Plant Sci. 2021 Jun 29;12:714541. doi: 10.3389/fpls.2021.714541. |
SSID | ssj0000500997 |
Score | 2.674441 |
Snippet | Microplastics may enter the soil in a wide range of shapes and polymers. However, little is known about the effects that microplastics of different shapes,... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 616645 |
SubjectTerms | Daucus carota microresp Plant Science porosity soil water status water-stable aggregates |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYh9NBL6btOH6jQSyDOWrKex2xoCIWUQFLIoWBGkk0WNvay3T3k33fGdpbdUtJLr5aMxMzI-j5r9A1jX6KRYOsm5CrJMlc-Aa65QuUBROkiKWb1Iq4X3835D_XtRt9slfqinLBBHngw3MSqKOoUfOFBKyMS-CJBgxt_8DI0_eVpWfhii0wNqt4EfexwLokszE-axZzUuaU4NsIYur20tQ_1cv1_w5h_pkpu7T1nz9mzETTyk2GyL9he3b5kT6YdArv7V-znBSXVLRAGYzO_uoVFfcQvu_n9Xb3kxDOPOLSJn9IFxXZUyeUnfR4Hv-pmc35JP-SXpKzad6Q6Ris-nVHm0K_X7Prs6_XpeT4WTcijlm6Va3BlKnTjndaQZESABC4ZKwAQLUAJJkkvBShjXNRBm5RcUNboCDZZV75h-23X1u8YR_oKAj8AEItGWR9CEZz1yTVB-yR1mbHJgwWrOAqKU12LeYXEgmxekc0rsnk12Dxjh5s3FoOYxiN9p-SUTT-Swe4fYHBUY3BU_wqOjH1-cGmFy4bOQqCtuzWOpLxTXiK3yNjbwcWboTA-jUIelTG74_yduey2tLPbXprbegxGow7-x-Tfs6dkD0oRF-YD218t1_VHRECr8KkP9t_q2wRt priority: 102 providerName: Directory of Open Access Journals |
Title | Microplastic Shape, Polymer Type, and Concentration Affect Soil Properties and Plant Biomass |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33664758 https://www.proquest.com/docview/2498492772 https://pubmed.ncbi.nlm.nih.gov/PMC7920964 https://doaj.org/article/74c1edb909a5461da90daf154b92bf51 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtWkoupe-6j6BCL4U4sWQ9D6VkQ9NQSAkkgT0UjGTZyYJrbzcb6P77zsjebbZse_HBHkvyjGR9I42-IeR9qbjTVe1TEXieChscjLlMpN6x3JTImBVJXE--qeML8XUsx3-ORw8KvN7o2mE-qYtZs_fr5-ITDPiP6HHCfLtfTxsk3uZsTzGlhLxL7sXdIgzkG8B-z_SNcChmWwGpVCg-7vctNxayTR5AO5XQmAz-1pQVmf03wdG_oypvTVNHj8jDAV_Sg75DPCZ3qvYJuT_qAAMunpLvJxh_NwXEDI_p2ZWbVrv0tGsWP6oZRZd0l7o20EM8y9gOhLr0IIZ80LNu0tBTXLufIQlrFMSUR3M6mmCQ0fUzcn70-fzwOB3yK6Sl5GaeSmfykMnaGild4CVgKWeC0sw5ABYudypwy5kTSplSeqlCMF5oJUungzb5c7LVdm31klDwdB2Df4Urs1po633mjbbB1F7awGWekP2lBoty4B7HFBhNAT4Iqr9A9Reo_qJXf0I-rN6Y9rwb_5EdoVFWcsiYHW90s8tiGICFFiWrgreZdVIoFpzNgqsBQHrLfS1ZQt4tTVrACMNtE9dW3Q3UJKwRloMbkpAXvYlXVS27SEL0mvHX2rL-pJ1cRRZvbTm4j-LVP8t8TbbxIzFEnKk3ZGs-u6neAgKa-524cgDXL2O2Ezv5b-EEAsc |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microplastic+Shape%2C+Polymer+Type%2C+and+Concentration+Affect+Soil+Properties+and+Plant+Biomass&rft.jtitle=Frontiers+in+plant+science&rft.au=Lozano%2C+Yudi+M&rft.au=Lehnert%2C+Timon&rft.au=Linck%2C+Lydia+T&rft.au=Lehmann%2C+Anika&rft.date=2021-02-16&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=12&rft.spage=616645&rft_id=info:doi/10.3389%2Ffpls.2021.616645&rft_id=info%3Apmid%2F33664758&rft.externalDocID=33664758 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |