The Multi-faceted Ecto-enzyme CD38: Roles in Immunomodulation, Cancer, Aging, and Metabolic Diseases

CD38 (Cluster of Differentiation 38) is a multifunctional ecto-enzyme that metabolizes NAD+ and mediates nicotinamide dinucleotide (NAD+) and extracellular nucleotide homeostasis as well as intracellular calcium. CD38 is also an emerging therapeutic target under conditions in which metabolism is alt...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in immunology Vol. 10; p. 1187
Main Authors Hogan, Kelly A., Chini, Claudia C. S., Chini, Eduardo N.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 31.05.2019
Subjects
Online AccessGet full text
ISSN1664-3224
1664-3224
DOI10.3389/fimmu.2019.01187

Cover

Abstract CD38 (Cluster of Differentiation 38) is a multifunctional ecto-enzyme that metabolizes NAD+ and mediates nicotinamide dinucleotide (NAD+) and extracellular nucleotide homeostasis as well as intracellular calcium. CD38 is also an emerging therapeutic target under conditions in which metabolism is altered including infection, aging, and tumorigenesis. We describe multiple enzymatic activities of CD38, which may explain the breadth of biological roles observed for this enzyme. Of greatest significance is the role of CD38 as an ecto-enzyme capable of modulating extracellular NAD+ precursor availability: 1 to bacteria unable to perform de novo synthesis of NAD+; and 2 in aged parenchyma impacted by the accumulation of immune cells during the process of 'inflammaging'. We also discuss the paradoxical role of CD38 as a modulator of intracellular NAD+, particularly in tumor immunity. Finally, we provide a summary of therapeutic approaches to CD38 inhibition and 'NAD+ boosting' for treatment of metabolic dysfunction observed during aging and in tumor immunity. The present review summarizes the role of CD38 in nicotinamide nucleotide homeostasis with special emphasis on the role of CD38 as an immunomodulator and druggable target.
AbstractList CD38 (Cluster of Differentiation 38) is a multifunctional ecto-enzyme that metabolizes NAD+ and mediates nicotinamide dinucleotide (NAD+) and extracellular nucleotide homeostasis as well as intracellular calcium. CD38 is also an emerging therapeutic target under conditions in which metabolism is altered including infection, aging, and tumorigenesis. We describe multiple enzymatic activities of CD38, which may explain the breadth of biological roles observed for this enzyme. Of greatest significance is the role of CD38 as an ecto-enzyme capable of modulating extracellular NAD+ precursor availability: 1 to bacteria unable to perform de novo synthesis of NAD+; and 2 in aged parenchyma impacted by the accumulation of immune cells during the process of 'inflammaging'. We also discuss the paradoxical role of CD38 as a modulator of intracellular NAD+, particularly in tumor immunity. Finally, we provide a summary of therapeutic approaches to CD38 inhibition and 'NAD+ boosting' for treatment of metabolic dysfunction observed during aging and in tumor immunity. The present review summarizes the role of CD38 in nicotinamide nucleotide homeostasis with special emphasis on the role of CD38 as an immunomodulator and druggable target.CD38 (Cluster of Differentiation 38) is a multifunctional ecto-enzyme that metabolizes NAD+ and mediates nicotinamide dinucleotide (NAD+) and extracellular nucleotide homeostasis as well as intracellular calcium. CD38 is also an emerging therapeutic target under conditions in which metabolism is altered including infection, aging, and tumorigenesis. We describe multiple enzymatic activities of CD38, which may explain the breadth of biological roles observed for this enzyme. Of greatest significance is the role of CD38 as an ecto-enzyme capable of modulating extracellular NAD+ precursor availability: 1 to bacteria unable to perform de novo synthesis of NAD+; and 2 in aged parenchyma impacted by the accumulation of immune cells during the process of 'inflammaging'. We also discuss the paradoxical role of CD38 as a modulator of intracellular NAD+, particularly in tumor immunity. Finally, we provide a summary of therapeutic approaches to CD38 inhibition and 'NAD+ boosting' for treatment of metabolic dysfunction observed during aging and in tumor immunity. The present review summarizes the role of CD38 in nicotinamide nucleotide homeostasis with special emphasis on the role of CD38 as an immunomodulator and druggable target.
CD38 (Cluster of Differentiation 38) is a multifunctional ecto-enzyme that metabolizes NAD+ and mediates nicotinamide dinucleotide (NAD+) and extracellular nucleotide homeostasis as well as intracellular calcium. CD38 is also an emerging therapeutic target under conditions in which metabolism is altered including infection, aging, and tumorigenesis. We describe multiple enzymatic activities of CD38, which may explain the breadth of biological roles observed for this enzyme. Of greatest significance is the role of CD38 as an ecto-enzyme capable of modulating extracellular NAD+ precursor availability: 1 to bacteria unable to perform de novo synthesis of NAD+; and 2 in aged parenchyma impacted by the accumulation of immune cells during the process of ‘inflammaging’. We also discuss the paradoxical role of CD38 as a modulator of intracellular NAD+, particularly in tumor immunity. Finally, we provide a summary of therapeutic approaches to CD38 inhibition and ‘NAD+ boosting’ for treatment of metabolic dysfunction observed during aging and in tumor immunity. The present review summarizes the role of CD38 in nicotinamide nucleotide homeostasis with special emphasis on the role of CD38 as an immunomodulator and druggable target.
Author Chini, Eduardo N.
Chini, Claudia C. S.
Hogan, Kelly A.
AuthorAffiliation Signal Transduction and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine , Rochester, MN , United States
AuthorAffiliation_xml – name: Signal Transduction and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine , Rochester, MN , United States
Author_xml – sequence: 1
  givenname: Kelly A.
  surname: Hogan
  fullname: Hogan, Kelly A.
– sequence: 2
  givenname: Claudia C. S.
  surname: Chini
  fullname: Chini, Claudia C. S.
– sequence: 3
  givenname: Eduardo N.
  surname: Chini
  fullname: Chini, Eduardo N.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31214171$$D View this record in MEDLINE/PubMed
BookMark eNp1ks9LHDEcxYNY1Kr3nkqOPexs83syPRRkte2CUih6DpnkO2tkJrGTTMH-9R13tWihuSR8876fd3jvLdqPKQJC7yhZcq6bj10YhmnJCG2WhFJd76EjqpSoOGNi_8X7EJ3mfEfmIxrOuTxAh5wyKmhNj5C_vgV8NfUlVJ11UMDjC1dSBfH3wwB4dc71J_wj9ZBxiHg9O8Y0JD_1toQUF3hlo4Nxgc82IW4W2EaPr6DYNvXB4fOQwWbIJ-hNZ_sMp0_3Mbr5cnG9-lZdfv-6Xp1dVk4yXSoBTDmrmbKcWE9BMqAaWi9AEdJ00GqubWu1J47XlDICsvW1bmvlhSaq48doveP6ZO_M_RgGOz6YZIPZDtK4MXYswfVgwIJunAQFlAshO9uw1ulaEUEpd17OrM871v3UDuAdxDLa_hX09U8Mt2aTfhklpWRSz4APT4Ax_ZwgFzOE7KDvbYQ0ZTMnw4WWStFZ-v6l11-T55hmgdoJ3JhyHqEzLpRtArN16A0l5rESZlsJ81gJs63EvEj-WXxm_3flD6IkubY
CitedBy_id crossref_primary_10_1016_j_trim_2022_101625
crossref_primary_10_3389_fimmu_2023_1126421
crossref_primary_10_1111_jcmm_15912
crossref_primary_10_1152_physrev_00046_2020
crossref_primary_10_3390_cancers13010076
crossref_primary_10_1038_s41580_020_00313_x
crossref_primary_10_1016_j_eururo_2021_01_017
crossref_primary_10_1016_j_heliyon_2024_e37958
crossref_primary_10_1038_s41581_024_00874_6
crossref_primary_10_3390_antiox12061230
crossref_primary_10_1096_fj_202400453R
crossref_primary_10_1016_j_imlet_2021_05_006
crossref_primary_10_26508_lsa_202302214
crossref_primary_10_3390_cancers13020309
crossref_primary_10_1038_s41514_021_00058_7
crossref_primary_10_1016_j_cmet_2021_04_003
crossref_primary_10_1177_10600280211058754
crossref_primary_10_1080_19420862_2022_2095949
crossref_primary_10_1097_BOR_0000000000000737
crossref_primary_10_1177_11772719241312776
crossref_primary_10_31857_S0041377123060032
crossref_primary_10_3390_cells10102563
crossref_primary_10_1007_s12013_024_01231_x
crossref_primary_10_1016_j_neuron_2022_08_017
crossref_primary_10_3389_fimmu_2023_1182016
crossref_primary_10_3390_cells11172637
crossref_primary_10_3390_antib9040058
crossref_primary_10_3389_fimmu_2021_785774
crossref_primary_10_1093_jleuko_qiad111
crossref_primary_10_1016_j_bcp_2020_114019
crossref_primary_10_1016_j_canlet_2022_215737
crossref_primary_10_1038_s41467_020_17644_0
crossref_primary_10_1371_journal_pone_0244022
crossref_primary_10_3389_fimmu_2020_00508
crossref_primary_10_1038_s41416_022_02052_6
crossref_primary_10_1038_s41419_021_03968_2
crossref_primary_10_7554_eLife_96962_3
crossref_primary_10_1016_j_procbio_2022_10_029
crossref_primary_10_3390_cells9010228
crossref_primary_10_1016_j_bbi_2023_09_026
crossref_primary_10_1097_BOR_0000000000000824
crossref_primary_10_3389_fimmu_2023_1269896
crossref_primary_10_1080_10428194_2022_2113532
crossref_primary_10_1111_imr_13015
crossref_primary_10_18632_aging_203625
crossref_primary_10_1002_bies_201900220
crossref_primary_10_1016_j_neo_2023_100903
crossref_primary_10_1007_s11899_021_00624_6
crossref_primary_10_1016_j_dci_2020_103881
crossref_primary_10_3390_ijms23084309
crossref_primary_10_1089_ars_2023_0349
crossref_primary_10_1371_journal_pbio_3002517
crossref_primary_10_2217_fon_2021_0778
crossref_primary_10_1002_mnfr_202100274
crossref_primary_10_3390_cells13151302
crossref_primary_10_15252_emmm_202012860
crossref_primary_10_3389_fimmu_2021_704779
crossref_primary_10_1111_acel_13702
crossref_primary_10_1073_pnas_2315989121
crossref_primary_10_3390_ijms25094680
crossref_primary_10_1016_j_bbrc_2022_11_003
crossref_primary_10_3389_fmolb_2023_906606
crossref_primary_10_3389_fnins_2024_1483708
crossref_primary_10_3390_cancers14225633
crossref_primary_10_3390_vaccines13010001
crossref_primary_10_1016_j_mad_2021_111569
crossref_primary_10_1038_s41375_025_02551_4
crossref_primary_10_3389_fimmu_2023_1197265
crossref_primary_10_1016_j_semcdb_2019_12_007
crossref_primary_10_1016_j_jri_2025_104426
crossref_primary_10_3390_cells12010021
crossref_primary_10_3390_ijms242417231
crossref_primary_10_1002_jmv_29515
crossref_primary_10_3389_fgene_2021_790990
crossref_primary_10_1016_j_virol_2024_110052
crossref_primary_10_1007_s10557_020_07007_8
crossref_primary_10_1136_lupus_2024_001401
crossref_primary_10_1111_acel_14326
crossref_primary_10_1155_2023_9915178
crossref_primary_10_1016_j_bcp_2020_114322
crossref_primary_10_1056_NEJMoa2023325
crossref_primary_10_1177_1178646920910159
crossref_primary_10_1016_j_isci_2020_101902
crossref_primary_10_3389_fcvm_2022_988713
crossref_primary_10_1007_s11307_020_01542_4
crossref_primary_10_1038_s41392_021_00625_0
crossref_primary_10_1097_QAI_0000000000003080
crossref_primary_10_1016_j_metabol_2021_154923
crossref_primary_10_1016_j_bbrc_2021_10_010
crossref_primary_10_3390_biom10040513
crossref_primary_10_3390_genes12030445
crossref_primary_10_3389_fimmu_2022_1011166
crossref_primary_10_3389_fonc_2021_772145
crossref_primary_10_1007_s00204_021_03134_9
crossref_primary_10_1111_acel_13920
crossref_primary_10_3390_cells9020471
crossref_primary_10_7554_eLife_96962
crossref_primary_10_3389_fgene_2022_860161
crossref_primary_10_1016_j_tibs_2020_05_010
crossref_primary_10_1016_j_tpr_2022_100100
crossref_primary_10_3389_fimmu_2021_713697
crossref_primary_10_3390_ijms22052424
crossref_primary_10_1159_000543274
crossref_primary_10_1186_s13395_020_00249_y
crossref_primary_10_3390_diagnostics13010021
crossref_primary_10_1016_j_bcp_2020_114346
crossref_primary_10_3389_fphys_2023_1217815
crossref_primary_10_1016_j_bcp_2020_114220
crossref_primary_10_1172_jci_insight_153019
crossref_primary_10_1007_s11033_023_09034_8
crossref_primary_10_2174_1567205018666210608103831
crossref_primary_10_3390_antiox10121939
crossref_primary_10_1111_bph_15477
crossref_primary_10_3389_fphys_2020_00901
crossref_primary_10_1016_j_chest_2020_01_027
crossref_primary_10_1007_s00018_020_03742_1
crossref_primary_10_1016_j_coph_2020_11_004
crossref_primary_10_1016_j_it_2020_01_008
crossref_primary_10_3389_fnut_2024_1359176
crossref_primary_10_1111_jnc_15367
crossref_primary_10_1016_j_ejmech_2024_116964
crossref_primary_10_1111_acel_13589
crossref_primary_10_1080_19420862_2023_2245111
crossref_primary_10_3390_cancers12123742
crossref_primary_10_1016_j_isci_2024_108978
crossref_primary_10_1038_s41598_023_49450_1
crossref_primary_10_1016_j_intimp_2024_113212
crossref_primary_10_3389_fimmu_2021_778830
crossref_primary_10_1002_hon_2904
crossref_primary_10_3389_fimmu_2023_1167924
crossref_primary_10_1126_sciadv_ado1331
crossref_primary_10_17650_1818_8346_2022_17_1_43_52
crossref_primary_10_31083_j_fbl2811284
crossref_primary_10_12998_wjcc_v11_i29_7091
crossref_primary_10_3389_fstro_2024_1423887
crossref_primary_10_1186_s12979_023_00398_w
crossref_primary_10_3892_ol_2022_13315
crossref_primary_10_3390_ijms23158600
crossref_primary_10_1515_oncologie_2024_0596
crossref_primary_10_3390_ijms24031869
crossref_primary_10_1016_j_omton_2024_200819
crossref_primary_10_1021_acsomega_3c00624
crossref_primary_10_3389_fimmu_2024_1382977
crossref_primary_10_1164_rccm_202109_2151OC
crossref_primary_10_3389_fragi_2021_785171
crossref_primary_10_3390_cancers14174169
crossref_primary_10_1016_j_tcb_2023_02_004
crossref_primary_10_3389_fimmu_2020_597959
crossref_primary_10_1016_j_phrs_2024_107068
crossref_primary_10_1002_jcp_30760
crossref_primary_10_1002_cti2_70011
crossref_primary_10_1016_j_bcp_2020_114093
crossref_primary_10_3389_fgene_2020_00369
crossref_primary_10_1097_MD_0000000000041348
crossref_primary_10_1186_s12935_022_02664_1
crossref_primary_10_3389_fphar_2022_881708
crossref_primary_10_3390_cells9040950
crossref_primary_10_1007_s00259_021_05593_9
crossref_primary_10_3389_fimmu_2024_1347259
crossref_primary_10_3390_cells9010077
crossref_primary_10_3389_fimmu_2021_714742
crossref_primary_10_3390_v14091977
crossref_primary_10_3389_fimmu_2023_1277491
crossref_primary_10_1155_2021_6630295
crossref_primary_10_1016_j_omton_2024_200841
crossref_primary_10_3390_cells10030680
crossref_primary_10_1016_j_jaci_2022_01_012
crossref_primary_10_3390_biomedicines11072086
crossref_primary_10_3390_cells12091329
crossref_primary_10_1134_S1990519X23700025
crossref_primary_10_1038_s41467_024_50650_0
crossref_primary_10_1007_s12264_023_01072_3
crossref_primary_10_1038_s41423_020_00624_1
crossref_primary_10_3390_cells11040708
crossref_primary_10_1371_journal_ppat_1008621
crossref_primary_10_1016_j_mucimm_2024_06_011
crossref_primary_10_1016_j_cpnec_2023_100209
crossref_primary_10_3892_mmr_2021_12530
crossref_primary_10_1016_j_oraloncology_2022_106296
crossref_primary_10_1038_s41419_022_04535_z
crossref_primary_10_2217_bmm_2021_0575
crossref_primary_10_1152_ajpcell_00451_2021
crossref_primary_10_1002_ccs3_12018
crossref_primary_10_3389_fonc_2022_775649
crossref_primary_10_3390_cells12040595
crossref_primary_10_3390_cells12101432
crossref_primary_10_1038_s41467_021_27080_3
crossref_primary_10_1016_j_phrs_2025_107675
crossref_primary_10_3390_cells9071716
crossref_primary_10_3390_antiox10040602
crossref_primary_10_1097_MPH_0000000000002586
crossref_primary_10_1016_j_bcp_2019_08_022
crossref_primary_10_3390_cells9040802
crossref_primary_10_1371_journal_pone_0273080
crossref_primary_10_18632_aging_204425
crossref_primary_10_1165_rcmb_2021_0272OC
crossref_primary_10_3390_cancers14174082
crossref_primary_10_1080_13543784_2025_2463092
crossref_primary_10_3389_fimmu_2022_1072462
crossref_primary_10_1111_acel_14298
crossref_primary_10_3390_cells9010062
crossref_primary_10_3389_fimmu_2022_1043111
crossref_primary_10_3390_ijms222312919
crossref_primary_10_1016_j_ejphar_2020_173158
crossref_primary_10_1016_j_bbrc_2020_12_048
crossref_primary_10_3389_fimmu_2022_1060695
crossref_primary_10_1016_j_toxlet_2020_01_024
crossref_primary_10_1016_j_jaut_2019_102333
crossref_primary_10_1038_s42003_025_07897_0
crossref_primary_10_1016_j_celrep_2024_114102
crossref_primary_10_1186_s13045_023_01426_4
crossref_primary_10_3389_fimmu_2024_1457629
crossref_primary_10_3390_biom14121556
crossref_primary_10_1126_scitranslmed_abg3083
crossref_primary_10_1186_s12879_022_07895_1
crossref_primary_10_18632_aging_206135
crossref_primary_10_1038_s42255_020_00298_z
crossref_primary_10_1002_cam4_6619
crossref_primary_10_1159_000516642
crossref_primary_10_1016_j_imlet_2022_04_003
crossref_primary_10_1126_sciadv_ade7702
crossref_primary_10_21320_2500_2139_2022_15_4_365_376
crossref_primary_10_3390_molecules25204844
crossref_primary_10_2147_CMAR_S212526
crossref_primary_10_1182_blood_2021014485
crossref_primary_10_1016_j_imlet_2023_12_003
crossref_primary_10_1002_hlca_202300080
crossref_primary_10_3390_cells13231971
Cites_doi 10.1016/j.lfs.2003.08.033
10.3324/haematol.2018.192757
10.18632/oncotarget.14695
10.1371/journal.pone.0145342
10.4161/onci.26246
10.1186/1479-5876-11-94
10.1084/jem.20151159
10.4049/jimmunol.1003032
10.1016/j.jri.2013.03.006
10.1007/s00262-017-1990-2
10.1021/bi00401a028
10.1189/jlb.69.4.605
10.1158/1078-0432.ccr-16-3192
10.1021/bi981248s
10.1038/nm1101-1209
10.1158/1078-0432.ccr-13-0150
10.1124/jpet.116.239459
10.1002/ijc.29095
10.1158/1078-0432.ccr-14-0695
10.1371/journal.ppat.1005839
10.1111/cbdd.12606
10.1073/pnas.0510511103
10.1016/j.cmet.2016.05.022
10.1152/physrev.00035.2007
10.18632/oncotarget.14434
10.1158/2159-8290.cd-17-1033
10.1021/bi0258795
10.1111/imm.12873
10.15252/embj.201386907
10.1371/journal.pone.0149125
10.1016/j.cell.2013.06.016
10.2119/molmed.2009.00146
10.1093/carcin/bgx137
10.1056/NEJMoa1506348
10.1126/science.aac4854
10.1038/nature18928
10.7554/eLife.22187
10.3390/cells4030520
10.1053/jhep.2000.7713
10.1074/jbc.270.7.3216
10.1016/j.cmet.2017.10.006
10.2337/db12-1139
10.1073/pnas.1703718114
10.1016/j.celrep.2017.01.007
10.1016/j.neuron.2017.02.022
10.1016/j.neuropharm.2009.06.012
10.1074/jbc.270.51.30327
10.1126/scisignal.2002700
10.1021/ja411046j
10.1182/blood-2016-09-740787
10.1021/acs.jmedchem.5b00992
10.1016/j.jri.2009.08.003
10.1016/j.bbrc.2019.03.199
10.1042/bj0960837
10.1371/journal.pone.0045234
10.1038/npjsba.2016.18
10.1128/IAI.71.9.5398-5401.2003
10.1158/1078-0432.ccr-18-3412.
10.1155/2012/302875
10.1006/bbrc.1995.1485
10.1073/pnas.1413493112
10.1016/j.cmet.2014.12.003
10.1016/j.cmet.2016.05.006
10.1074/jbc.M109.031005
10.1074/jbc.M117.789347
10.1016/j.cellsig.2017.10.014
10.1056/NEJMoa1616361
10.1002/prp2.402
10.1158/0008-5472.can-18-0773
10.1152/ajpcell.00638.2005
10.1111/j.0105-2896.2006.00408.x
10.1182/blood-2016-03-703439
10.1007/978-1-4939-8588-3_1
10.1074/jbc.M113.470435
10.1016/j.tcb.2014.04.002
10.1186/s40170-018-0186-3
10.3389/fnins.2012.00182
10.1099/00221287-134-10-2789
10.1111/j.1365-3024.2011.01333.x
10.1021/bi201509f
10.1016/S0021-9258(19)50133-8
10.1016/j.cell.2013.11.037
10.1016/j.bbrc.2006.08.066
10.1097/moh.0000000000000401
10.1042/bj3620125
10.1038/nsmb.2990
10.1158/1078-0432.ccr-17-2027
10.1016/j.cmet.2014.10.005
10.1016/j.bmcl.2011.05.022
10.1016/j.cmet.2018.03.016
10.1186/s12943-018-0864-3
10.1038/nrendo.2015.117
10.1016/j.neuint.2012.01.030
10.2174/138161209787185788
10.2119/molmed.2016.00198
10.1248/bpb.34.1369
10.1124/dmd.116.070920
10.1126/science.1093133
10.1016/j.it.2018.12.007
10.1182/blood-2017-06-740944
10.1681/asn.2016040385
10.1146/annurev-immunol-032712-100003
10.3389/fphar.2018.00536
10.1096/fj.05-4585fje
10.1111/acel.12950
10.1021/jm502009h
10.1128/iai.00340-13
10.1016/j.cmet.2016.09.013
10.1016/j.mce.2016.11.003
10.1016/j.bbrc.2006.05.042
10.1111/j.1365-2826.2010.01976.x
ContentType Journal Article
Copyright Copyright © 2019 Hogan, Chini and Chini. 2019 Hogan, Chini and Chini
Copyright_xml – notice: Copyright © 2019 Hogan, Chini and Chini. 2019 Hogan, Chini and Chini
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fimmu.2019.01187
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-3224
ExternalDocumentID oai_doaj_org_article_eae89c5e6e13445fa92bc87604113cd5
PMC6555258
31214171
10_3389_fimmu_2019_01187
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P20 CA102701
– fundername: NIA NIH HHS
  grantid: R01 AG026094
– fundername: NIA NIH HHS
  grantid: R01 AG058812
– fundername: NCI NIH HHS
  grantid: P50 CA102701
– fundername: Mayo Foundation for Medical Education and Research
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EBS
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
IAO
IEA
IHR
IHW
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c528t-4e26ca826a30ad1e52e18ebd4e6009feb838aba8d0c371120e5bd78b76d4806f3
IEDL.DBID M48
ISSN 1664-3224
IngestDate Wed Aug 27 01:32:01 EDT 2025
Thu Aug 21 18:14:07 EDT 2025
Thu Sep 04 18:55:54 EDT 2025
Thu Jan 02 22:59:27 EST 2025
Tue Jul 01 00:39:35 EDT 2025
Thu Apr 24 22:56:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords NAD
senescence
macrophages
CD38
cancer
metabolism
aging
NADase
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c528t-4e26ca826a30ad1e52e18ebd4e6009feb838aba8d0c371120e5bd78b76d4806f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Reviewed by: Antje Garten, Leipzig University, Germany; Yasser Mohamed El-Sherbiny, Nottingham Trent University, United Kingdom
This article was submitted to Inflammation, a section of the journal Frontiers in Immunology
Edited by: Silvia Deaglio, University of Turin, Italy
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fimmu.2019.01187
PMID 31214171
PQID 2243485661
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_eae89c5e6e13445fa92bc87604113cd5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6555258
proquest_miscellaneous_2243485661
pubmed_primary_31214171
crossref_citationtrail_10_3389_fimmu_2019_01187
crossref_primary_10_3389_fimmu_2019_01187
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-31
PublicationDateYYYYMMDD 2019-05-31
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-31
  day: 31
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in immunology
PublicationTitleAlternate Front Immunol
PublicationYear 2019
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Liu (B21) 2017; 114
Horenstein (B28) 2013; 2
Aarhus (B33) 1995; 270
Palmer (B49) 2019; 18
Dong (B83) 2017; 6
Kellenberger (B102) 2011; 21
Partida-Sanchez (B43) 2001; 7
Horenstein (B72) 2015; 4
Inoue (B30) 2017; 8
Higashida (B13) 2011; 34
Malavasi (B22) 2008; 88
Rustom (B79) 2004; 303
de (B95) 2011; 186
Nijhof (B97) 2016; 128
Zhao (B19) 2012; 5
van (B50) 2019; 40
Sauve (B111) 2002; 41
Tan (B82) 2015; 21
Matalonga (B18) 2017; 18
Deckert (B70) 2014; 20
Kang (B17) 2006; 20
Gomes (B4) 2013; 155
Lopatina (B15) 2012; 6
Bu (B66) 2018; 39
Raghuramulu (B54) 1965; 96
Shallis (B31) 2017; 66
Shu (B42) 2018; 42
Chini (B65) 2019; 513
Muller-Steffner (B109) 1992; 267
Yi (B88) 2018; 17
Erlebacher (B89) 2013; 31
Schultz (B6) 2016; 23
Chini (B35) 1995; 209
Lopatina (B12) 2010; 58
Boslett (B107) 2017; 361
Pasquier (B81) 2013; 11
Lu (B84) 2017; 8
Zielinska (B93) 2004; 74
Aguilar-Arnal (B53) 2015; 22
Assi (B32) 2018; 25
Jablonski (B41) 2015; 10
Hayakawa (B77) 2016; 535
Horenstein (B29) 2016; 22
Aksoy (B2) 2006; 349
Krejcik (B74) 2017; 23
Estrada-Figueroa (B45) 2011; 33
Chini (B7) 2009; 15
Spees (B80) 2006; 103
Shrimp (B20) 2014; 136
Essuman (B25) 2017; 93
Mottahedeh (B67) 2018; 6
Scheibye-Knudsen (B62) 2014; 20
Gul (B27) 2016; 11
Aksoy (B3) 2006; 345
Robertson (B91) 2009; 83
Verdin (B10) 2015; 350
Shi (B60) 2017; 377
Lokhorst (B96) 2015; 373
Golden-Mason (B1) 2000; 31
Imai (B9) 2014; 24
Higashida (B14) 2012; 61
Liu (B23) 2009; 284
Lischke (B46) 2013; 81
Chini (B34) 1995; 270
Manna (B99) 2019
Higashida (B11) 2010; 22
Jacobson (B61) 2018; 1813
Deaglio (B38) 2010; 16
Lin (B24) 2017; 292
Haffner (B104) 2015; 58
van (B76) 2018; 131
Li (B37) 2016; 44
Slama (B101) 1988; 27
Kim (B94) 2015; 112
Blacher (B71) 2015; 136
Chatterjee (B75) 2018; 27
Mouchiroud (B52) 2013; 154
Cynamon (B39) 1988; 134
Guan (B59) 2017; 28
Garten (B63) 2015; 11
Chini (B68) 2014; 20
North (B56) 2014; 33
Williams (B55) 2012; 2012
Mills (B57) 2016; 24
Becherer (B103) 2015; 58
Buck (B85) 2015; 212
Schiavoni (B108) 2018; 154
Chini (B58) 2017; 455
Sauve (B110) 1998; 37
Grozio (B69) 2013; 288
Marlein (B78) 2019; 79
Naik (B44) 2019; 104
Bahri (B48) 2012; 7
Burel (B47) 2016; 12
Soares (B36) 2007; 292
Imai (B64) 2016; 2
Aluvihare (B90) 2006; 212
Herbert (B40) 2003; 71
Escande (B8) 2013; 62
Feng (B73) 2017; 23
Zhang (B105) 2015; 86
Roepcke (B100) 2018; 6
Clark (B92) 2013; 99
Kwong (B26) 2012; 51
Wang (B86) 2018; 9
Camacho-Pereira (B5) 2016; 23
Chini (B51) 2002; 362
Chen (B87) 2018; 8
Martin (B98) 2017; 129
Musso (B16) 2001; 69
Tarrago (B106) 2018; 27
References_xml – volume: 74
  start-page: 1781
  year: 2004
  ident: B93
  article-title: Metabolism of cyclic ADP-ribose: Zinc is an endogenous modulator of the cyclase/NAD glycohydrolase ratio of a CD38-like enzyme from human seminal fluid
  publication-title: Life Sci
  doi: 10.1016/j.lfs.2003.08.033
– volume: 104
  start-page: e100
  year: 2019
  ident: B44
  article-title: CD38 as a therapeutic target for adult acute myeloid leukemia and T-cell acute lymphoblastic leukemia
  publication-title: Haematologica
  doi: 10.3324/haematol.2018.192757
– volume: 8
  start-page: 15539
  year: 2017
  ident: B84
  article-title: Tunneling nanotubes promote intercellular mitochondria transfer followed by increased invasiveness in bladder cancer cells
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.14695
– volume: 10
  start-page: e0145342
  year: 2015
  ident: B41
  article-title: Novel markers to delineate murine M1 and M2 macrophages
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0145342
– volume: 2
  start-page: e26246
  year: 2013
  ident: B28
  article-title: A CD38/CD203a/CD73 ectoenzymatic pathway independent of CD39 drives a novel adenosinergic loop in human T lymphocytes
  publication-title: Oncoimmunology
  doi: 10.4161/onci.26246
– volume: 11
  start-page: 94
  year: 2013
  ident: B81
  article-title: Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance
  publication-title: J Transl Med
  doi: 10.1186/1479-5876-11-94
– volume: 212
  start-page: 1345
  year: 2015
  ident: B85
  article-title: T cell metabolism drives immunity
  publication-title: J Exp Med
  doi: 10.1084/jem.20151159
– volume: 186
  start-page: 1840
  year: 2011
  ident: B95
  article-title: Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1003032
– volume: 99
  start-page: 46
  year: 2013
  ident: B92
  article-title: Seminal plasma peptides may determine maternal immune response that alters success or failure of pregnancy in the abortion-prone CBAxDBA/2 model
  publication-title: J Reprod Immunol
  doi: 10.1016/j.jri.2013.03.006
– volume: 66
  start-page: 697
  year: 2017
  ident: B31
  article-title: The multi-faceted potential of CD38 antibody targeting in multiple myeloma
  publication-title: Cancer Immunol Immunother
  doi: 10.1007/s00262-017-1990-2
– volume: 27
  start-page: 183
  year: 1988
  ident: B101
  article-title: Carbanicotinamide adenine dinucleotide: synthesis and enzymological properties of a carbocyclic analogue of oxidized nicotinamide adenine dinucleotide
  publication-title: Biochemistry
  doi: 10.1021/bi00401a028
– volume: 69
  start-page: 605
  year: 2001
  ident: B16
  article-title: CD38 expression and functional activities are up-regulated by IFN-gamma on human monocytes and monocytic cell lines
  publication-title: J Leukoc Biol.
  doi: 10.1189/jlb.69.4.605
– volume: 23
  start-page: 4290
  year: 2017
  ident: B73
  article-title: Targeting CD38 suppresses induction and function of T regulatory cells to mitigate immunosuppression in multiple myeloma
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.ccr-16-3192
– volume: 37
  start-page: 13239
  year: 1998
  ident: B110
  article-title: The reaction mechanism for CD38. A single intermediate is responsible for cyclization, hydrolysis, and base-exchange chemistries
  publication-title: Biochemistry
  doi: 10.1021/bi981248s
– volume: 7
  start-page: 1209
  year: 2001
  ident: B43
  article-title: Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo
  publication-title: Nat Med
  doi: 10.1038/nm1101-1209
– volume: 20
  start-page: 120
  year: 2014
  ident: B68
  article-title: Targeting of NAD metabolism in pancreatic cancer cells: potential novel therapy for pancreatic tumors
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.ccr-13-0150
– volume: 361
  start-page: 99
  year: 2017
  ident: B107
  article-title: Luteolinidin protects the postischemic heart through CD38 inhibition with preservation of NAD (P) (H)
  publication-title: J Pharmacol Exp Ther
  doi: 10.1124/jpet.116.239459
– volume: 136
  start-page: 1422
  year: 2015
  ident: B71
  article-title: Inhibition of glioma progression by a newly discovered CD38 inhibitor
  publication-title: Int J Cancer
  doi: 10.1002/ijc.29095
– volume: 20
  start-page: 4574
  year: 2014
  ident: B70
  article-title: SAR650984, a novel humanized CD38-targeting antibody, demonstrates potent antitumor activity in models of multiple myeloma and other CD38+ hematologic malignancies
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.ccr-14-0695
– volume: 12
  start-page: e1005839
  year: 2016
  ident: B47
  article-title: Reduced plasmodium parasite burden associates with CD38+ CD4+ T Cells Displaying Cytolytic Potential and Impaired IFN-gamma production
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1005839
– volume: 86
  start-page: 1411
  year: 2015
  ident: B105
  article-title: Comparative analysis of pharmacophore features and quantitative structure-activity relationships for CD38 covalent and non-covalent inhibitors
  publication-title: Chem Biol Drug Des
  doi: 10.1111/cbdd.12606
– volume: 103
  start-page: 1283
  year: 2006
  ident: B80
  article-title: Mitochondrial transfer between cells can rescue aerobic respiration
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0510511103
– volume: 23
  start-page: 965
  year: 2016
  ident: B6
  article-title: Why NAD (+) declines during aging: it's destroyed
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2016.05.022
– volume: 88
  start-page: 841
  year: 2008
  ident: B22
  article-title: Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology
  publication-title: Physiol Rev
  doi: 10.1152/physrev.00035.2007
– volume: 8
  start-page: 8738
  year: 2017
  ident: B30
  article-title: Prognostic impact of CD73 and A2A adenosine receptor expression in non-small-cell lung cancer
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.14434
– volume: 8
  start-page: 1156
  year: 2018
  ident: B87
  article-title: CD38-Mediated Immunosuppression as a Mechanism of Tumor Cell Escape from PD-1/PD-L1 Blockade
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.cd-17-1033
– volume: 41
  start-page: 8455
  year: 2002
  ident: B111
  article-title: Mechanism-based inhibitors of CD38: a mammalian cyclic ADP-ribose synthetase
  publication-title: Biochemistry.
  doi: 10.1021/bi0258795
– volume: 154
  start-page: 122
  year: 2018
  ident: B108
  article-title: CD38 modulates respiratory syncytial virus-driven proinflammatory processes in human monocyte-derived dendritic cells
  publication-title: Immunology
  doi: 10.1111/imm.12873
– volume: 33
  start-page: 1438
  year: 2014
  ident: B56
  article-title: SIRT2 induces the checkpoint kinase BubR1 to increase lifespan
  publication-title: Embo J
  doi: 10.15252/embj.201386907
– volume: 11
  start-page: e0149125
  year: 2016
  ident: B27
  article-title: Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Cyclic ADP-Ribose (cADPR) Mediate Ca2+ signaling in cardiac hypertrophy induced by beta-adrenergic stimulation
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0149125
– volume: 154
  start-page: 430
  year: 2013
  ident: B52
  article-title: The NAD (+)/Sirtuin Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling
  publication-title: Cell
  doi: 10.1016/j.cell.2013.06.016
– volume: 16
  start-page: 87
  year: 2010
  ident: B38
  article-title: CD38/CD31 interactions activate genetic pathways leading to proliferation and migration in chronic lymphocytic leukemia cells
  publication-title: Mol Med
  doi: 10.2119/molmed.2009.00146
– volume: 39
  start-page: 242
  year: 2018
  ident: B66
  article-title: CD38 knockout suppresses tumorigenesis in mice and clonogenic growth of human lung cancer cells
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgx137
– volume: 373
  start-page: 1207
  year: 2015
  ident: B96
  article-title: Targeting CD38 with daratumumab monotherapy in multiple myeloma
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1506348
– volume: 350
  start-page: 1208
  year: 2015
  ident: B10
  article-title: NAD (+) in aging, metabolism, and neurodegeneration
  publication-title: Science
  doi: 10.1126/science.aac4854
– volume: 535
  start-page: 551
  year: 2016
  ident: B77
  article-title: Transfer of mitochondria from astrocytes to neurons after stroke
  publication-title: Nature
  doi: 10.1038/nature18928
– volume: 6
  start-page: e22187
  year: 2017
  ident: B83
  article-title: Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells
  publication-title: Elife
  doi: 10.7554/eLife.22187
– volume: 4
  start-page: 520
  year: 2015
  ident: B72
  article-title: NAD (+)-metabolizing ectoenzymes in remodeling tumor-host interactions: the human myeloma model
  publication-title: Cells
  doi: 10.3390/cells4030520
– volume: 31
  start-page: 1251
  year: 2000
  ident: B1
  article-title: Differential expression of lymphoid and myeloid markers on differentiating hematopoietic stem cells in normal and tumor-bearing adult human liver
  publication-title: Hepatology
  doi: 10.1053/jhep.2000.7713
– volume: 270
  start-page: 3216
  year: 1995
  ident: B34
  article-title: Nicotinate adenine dinucleotide phosphate (NAADP) triggers a specific calcium release system in sea urchin eggs
  publication-title: J Biol Chem.
  doi: 10.1074/jbc.270.7.3216
– volume: 27
  start-page: 85
  year: 2018
  ident: B75
  article-title: CD38-NAD (+)Axis regulates immunotherapeutic anti-tumor T cell response
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2017.10.006
– volume: 62
  start-page: 1084
  year: 2013
  ident: B8
  article-title: Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome
  publication-title: Diabetes
  doi: 10.2337/db12-1139
– volume: 114
  start-page: 8283
  year: 2017
  ident: B21
  article-title: Cytosolic interaction of type III human CD38 with CIB1 modulates cellular cyclic ADP-ribose levels
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1703718114
– volume: 18
  start-page: 1241
  year: 2017
  ident: B18
  article-title: The nuclear receptor LXR limits bacterial infection of host macrophages through a mechanism that impacts cellular NAD Metabolism
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2017.01.007
– volume: 93
  start-page: 1334
  year: 2017
  ident: B25
  article-title: The SARM1 Toll/Interleukin-1 Receptor Domain Possesses Intrinsic NAD (+) Cleavage Activity that Promotes Pathological Axonal Degeneration
  publication-title: Neuron.
  doi: 10.1016/j.neuron.2017.02.022
– volume: 58
  start-page: 50
  year: 2010
  ident: B12
  article-title: Oxytocin-induced elevation of ADP-ribosyl cyclase activity, cyclic ADP-ribose or Ca (2+) concentrations is involved in autoregulation of oxytocin secretion in the hypothalamus and posterior pituitary in male mice
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2009.06.012
– volume: 270
  start-page: 30327
  year: 1995
  ident: B33
  article-title: ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP
  publication-title: J Biol Chem
  doi: 10.1074/jbc.270.51.30327
– volume: 5
  start-page: ra67
  year: 2012
  ident: B19
  article-title: The membrane-bound enzyme CD38 exists in two opposing orientations
  publication-title: Sci Signal.
  doi: 10.1126/scisignal.2002700
– volume: 136
  start-page: 5656
  year: 2014
  ident: B20
  article-title: Revealing CD38 cellular localization using a cell permeable, mechanism-based fluorescent small-molecule probe
  publication-title: J Am Chem Soc
  doi: 10.1021/ja411046j
– volume: 129
  start-page: 3294
  year: 2017
  ident: B98
  article-title: A phase 1b study of isatuximab plus lenalidomide and dexamethasone for relapsed/refractory multiple myeloma
  publication-title: Blood
  doi: 10.1182/blood-2016-09-740787
– volume: 58
  start-page: 7021
  year: 2015
  ident: B103
  article-title: Discovery of 4-Amino-8-quinoline carboxamides as novel, submicromolar inhibitors of NAD-Hydrolyzing Enzyme CD38
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.5b00992
– volume: 83
  start-page: 109
  year: 2009
  ident: B91
  article-title: Activating T regulatory cells for tolerance in early pregnancy - the contribution of seminal fluid
  publication-title: J Reprod Immunol
  doi: 10.1016/j.jri.2009.08.003
– volume: 513
  start-page: 486
  year: 2019
  ident: B65
  article-title: The NADase CD38 is induced by factors secreted from senescent cells providing a potential link between senescence and age-related cellular NAD (+) decline
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2019.03.199
– volume: 96
  start-page: 837
  year: 1965
  ident: B54
  article-title: Nicotinamide nucleotides in the erythrocytes of patients suffering from pellagra
  publication-title: Biochem J.
  doi: 10.1042/bj0960837
– volume: 7
  start-page: e45234
  year: 2012
  ident: B48
  article-title: Ectonucleotidase CD38 demarcates regulatory, memory-like CD8+ T cells with IFN-gamma-mediated suppressor activities
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0045234
– volume: 2
  start-page: 16018
  year: 2016
  ident: B64
  article-title: The NAD World 2
  publication-title: NPJ Syst Biol Appl.
  doi: 10.1038/npjsba.2016.18
– volume: 71
  start-page: 5398
  year: 2003
  ident: B40
  article-title: Nicotinamide ribosyl uptake mutants in Haemophilus influenzae
  publication-title: Infect Immun.
  doi: 10.1128/IAI.71.9.5398-5401.2003
– year: 2019
  ident: B99
  article-title: Targeting CD38 enhances the antileukemic activity of ibrutinib in chronic lymphocytic leukemia (CLL)
  publication-title: Clin Cancer Res.
  doi: 10.1158/1078-0432.ccr-18-3412.
– volume: 2012
  start-page: 302875
  year: 2012
  ident: B55
  article-title: Nicotinamide, NAD (P) (H), and Methyl-Group homeostasis evolved and became a determinant of ageing diseases: hypotheses and lessons from pellagra
  publication-title: Curr Gerontol Geriatr Res
  doi: 10.1155/2012/302875
– volume: 209
  start-page: 167
  year: 1995
  ident: B35
  article-title: Enzymatic synthesis and degradation of nicotinate adenine dinucleotide phosphate (NAADP), a Ca (2+)-releasing agonist, in rat tissues
  publication-title: Biochem Biophys Res Commun
  doi: 10.1006/bbrc.1995.1485
– volume: 112
  start-page: 1559
  year: 2015
  ident: B94
  article-title: Seminal CD38 is a pivotal regulator for fetomaternal tolerance
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1413493112
– volume: 21
  start-page: 81
  year: 2015
  ident: B82
  article-title: Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2014.12.003
– volume: 23
  start-page: 1127
  year: 2016
  ident: B5
  article-title: CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2016.05.006
– volume: 284
  start-page: 27637
  year: 2009
  ident: B23
  article-title: Structural basis for enzymatic evolution from a dedicated ADP-ribosyl cyclase to a multifunctional NAD hydrolase
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.031005
– volume: 292
  start-page: 13243
  year: 2017
  ident: B24
  article-title: Synthesis of the Ca (2+)-mobilizing messengers NAADP and cADPR by intracellular CD38 enzyme in the mouse heart: Role in beta-adrenoceptor signaling
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M117.789347
– volume: 42
  start-page: 249
  year: 2018
  ident: B42
  article-title: Blockade of CD38 diminishes lipopolysaccharide-induced macrophage classical activation and acute kidney injury involving NF-kappaB signaling suppression
  publication-title: Cell Signal
  doi: 10.1016/j.cellsig.2017.10.014
– volume: 377
  start-page: 544
  year: 2017
  ident: B60
  article-title: NAD Deficiency, Congenital Malformations, and Niacin Supplementation
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1616361
– volume: 6
  start-page: e00402
  year: 2018
  ident: B100
  article-title: Pharmacokinetics and pharmacodynamics of the cytolytic anti-CD38 human monoclonal antibody TAK-079 in monkey - model assisted preparation for the first in human trial
  publication-title: Pharmacol Res Perspect
  doi: 10.1002/prp2.402
– volume: 79
  start-page: 2285
  year: 2019
  ident: B78
  article-title: CD38-driven mitochondrial trafficking promotes bioenergetic plasticity in multiple myeloma
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.can-18-0773
– volume: 292
  start-page: C227
  year: 2007
  ident: B36
  article-title: NAADP as a second messenger: neither CD38 nor base-exchange reaction are necessary for in vivo generation of NAADP in myometrial cells
  publication-title: Am J Physiol Cell Physiol
  doi: 10.1152/ajpcell.00638.2005
– volume: 212
  start-page: 330
  year: 2006
  ident: B90
  article-title: The role of regulatory T cells in alloantigen tolerance
  publication-title: Immunol Rev
  doi: 10.1111/j.0105-2896.2006.00408.x
– volume: 128
  start-page: 959
  year: 2016
  ident: B97
  article-title: CD38 expression and complement inhibitors affect response and resistance to daratumumab therapy in myeloma
  publication-title: Blood
  doi: 10.1182/blood-2016-03-703439
– volume: 1813
  start-page: 3
  year: 2018
  ident: B61
  article-title: Vitamin B3 in health and disease: toward the second century of discovery
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-4939-8588-3_1
– volume: 288
  start-page: 25938
  year: 2013
  ident: B69
  article-title: CD73 protein as a source of extracellular precursors for sustained NAD+ biosynthesis in FK866-treated tumor cells
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M113.470435
– volume: 24
  start-page: 464
  year: 2014
  ident: B9
  article-title: NAD+ and sirtuins in aging and disease
  publication-title: Trends Cell Biol
  doi: 10.1016/j.tcb.2014.04.002
– volume: 6
  start-page: 13
  year: 2018
  ident: B67
  article-title: CD38 is methylated in prostate cancer and regulates extracellular NAD ()
  publication-title: Cancer Metab
  doi: 10.1186/s40170-018-0186-3
– volume: 6
  start-page: 182
  year: 2012
  ident: B15
  article-title: The roles of oxytocin and CD38 in social or parental behaviors
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2012.00182
– volume: 134
  start-page: 2789
  year: 1988
  ident: B39
  article-title: Utilization and metabolism of NAD by Haemophilus parainfluenzae
  publication-title: J Gen Microbiol
  doi: 10.1099/00221287-134-10-2789
– volume: 33
  start-page: 661
  year: 2011
  ident: B45
  article-title: Absence of CD38 delays arrival of neutrophils to the liver and innate immune response development during hepatic amoebiasis by Entamoeba histolytica
  publication-title: Parasite Immunol
  doi: 10.1111/j.1365-3024.2011.01333.x
– volume: 51
  start-page: 555
  year: 2012
  ident: B26
  article-title: Catalysis-based inhibitors of the calcium signaling function of CD38
  publication-title: Biochemistry
  doi: 10.1021/bi201509f
– volume: 267
  start-page: 9606
  year: 1992
  ident: B109
  article-title: Slow-binding inhibition of NAD+ glycohydrolase by arabino analogues of beta-NAD
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)50133-8
– volume: 155
  start-page: 1624
  year: 2013
  ident: B4
  article-title: Declining NAD (+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging
  publication-title: Cell
  doi: 10.1016/j.cell.2013.11.037
– volume: 349
  start-page: 353
  year: 2006
  ident: B2
  article-title: Regulation of SIRT 1 mediated NAD dependent deacetylation: a novel role for the multifunctional enzyme CD38
  publication-title: Biochem Biophys Res Commun.
  doi: 10.1016/j.bbrc.2006.08.066
– volume: 25
  start-page: 136
  year: 2018
  ident: B32
  article-title: Immune therapies in acute myeloid leukemia: a focus on monoclonal antibodies and immune checkpoint inhibitors
  publication-title: Curr Opin Hematol
  doi: 10.1097/moh.0000000000000401
– volume: 362
  start-page: 125
  year: 2002
  ident: B51
  article-title: CD38 is the major enzyme responsible for synthesis of nicotinic acid-adenine dinucleotide phosphate in mammalian tissues
  publication-title: Biochem J.
  doi: 10.1042/bj3620125
– volume: 22
  start-page: 312
  year: 2015
  ident: B53
  article-title: NAD (+)-SIRT1 control of H3K4 trimethylation through circadian deacetylation of MLL1
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.2990
– volume: 23
  start-page: 7498
  year: 2017
  ident: B74
  article-title: Monocytes and Granulocytes Reduce CD38 expression levels on myeloma cells in patients treated with daratumumab
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.ccr-17-2027
– volume: 20
  start-page: 840
  year: 2014
  ident: B62
  article-title: A high-fat diet and NAD (+) activate Sirt1 to rescue premature aging in cockayne syndrome
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2014.10.005
– volume: 21
  start-page: 3939
  year: 2011
  ident: B102
  article-title: Flavonoids as inhibitors of human CD38
  publication-title: Bioorg Med Chem Lett
  doi: 10.1016/j.bmcl.2011.05.022
– volume: 27
  start-page: 1081
  year: 2018
  ident: B106
  article-title: A potent and specific CD38 inhibitor ameliorates age-related metabolic dysfunction by reversing tissue NAD (+) decline
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2018.03.016
– volume: 17
  start-page: 129
  year: 2018
  ident: B88
  article-title: Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors
  publication-title: Mol Cancer
  doi: 10.1186/s12943-018-0864-3
– volume: 11
  start-page: 535
  year: 2015
  ident: B63
  article-title: Physiological and pathophysiological roles of NAMPT and NAD metabolism
  publication-title: Nat Rev Endocrinol
  doi: 10.1038/nrendo.2015.117
– volume: 61
  start-page: 828
  year: 2012
  ident: B14
  article-title: Social memory, amnesia, and autism: brain oxytocin secretion is regulated by NAD+ metabolites and single nucleotide polymorphisms of CD38
  publication-title: Neurochem Int
  doi: 10.1016/j.neuint.2012.01.030
– volume: 15
  start-page: 57
  year: 2009
  ident: B7
  article-title: CD38 as a regulator of cellular NAD: a novel potential pharmacological target for metabolic conditions
  publication-title: Curr Pharm Des.
  doi: 10.2174/138161209787185788
– volume: 22
  start-page: 694
  year: 2016
  ident: B29
  article-title: Adenosine generated in the bone marrow niche through a CD38-mediated pathway correlates with progression of human myeloma
  publication-title: Mol Med
  doi: 10.2119/molmed.2016.00198
– volume: 34
  start-page: 1369
  year: 2011
  ident: B13
  article-title: CD38 gene knockout juvenile mice: a model of oxytocin signal defects in autism
  publication-title: Biol Pharm Bull.
  doi: 10.1248/bpb.34.1369
– volume: 44
  start-page: 1742
  year: 2016
  ident: B37
  article-title: A high dose of isoniazid disturbs endobiotic homeostasis in mouse liver
  publication-title: Drug Metab Dispos
  doi: 10.1124/dmd.116.070920
– volume: 303
  start-page: 1007
  year: 2004
  ident: B79
  article-title: Nanotubular highways for intercellular organelle transport
  publication-title: Science
  doi: 10.1126/science.1093133
– volume: 40
  start-page: 113
  year: 2019
  ident: B50
  article-title: Metabolic Alterations in Aging Macrophages: Ingredients for Inflammaging?
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2018.12.007
– volume: 131
  start-page: 13
  year: 2018
  ident: B76
  article-title: CD38 antibodies in multiple myeloma: back to the future
  publication-title: Blood.
  doi: 10.1182/blood-2017-06-740944
– volume: 28
  start-page: 2337
  year: 2017
  ident: B59
  article-title: Nicotinamide Mononucleotide, an NAD (+) Precursor, Rescues Age-Associated Susceptibility to AKI in a Sirtuin 1-Dependent Manner
  publication-title: J Am Soc Nephrol
  doi: 10.1681/asn.2016040385
– volume: 31
  start-page: 387
  year: 2013
  ident: B89
  article-title: Immunology of the maternal-fetal interface
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev-immunol-032712-100003
– volume: 9
  start-page: 536
  year: 2018
  ident: B86
  article-title: Regulation of PD-L1: emerging routes for targeting tumor immune evasion
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2018.00536
– volume: 20
  start-page: 1000
  year: 2006
  ident: B17
  article-title: Transcriptional regulation of CD38 expression by tumor necrosis factor-alpha in human airway smooth muscle cells: role of NF-kappaB and sensitivity to glucocorticoids
  publication-title: Faseb J
  doi: 10.1096/fj.05-4585fje
– volume: 18
  start-page: e12950
  year: 2019
  ident: B49
  article-title: Targeting senescent cells alleviates obesity-induced metabolic dysfunction
  publication-title: Aging Cell.
  doi: 10.1111/acel.12950
– volume: 58
  start-page: 3548
  year: 2015
  ident: B104
  article-title: Discovery, synthesis, and biological evaluation of thiazoloquin (az)olin (on)es as potent CD38 inhibitors
  publication-title: J Med Chem
  doi: 10.1021/jm502009h
– volume: 81
  start-page: 4091
  year: 2013
  ident: B46
  article-title: CD38 controls the innate immune response against Listeria monocytogenes
  publication-title: Infect Immun
  doi: 10.1128/iai.00340-13
– volume: 24
  start-page: 795
  year: 2016
  ident: B57
  article-title: Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2016.09.013
– volume: 455
  start-page: 62
  year: 2017
  ident: B58
  article-title: NAD and the aging process: Role in life, death and everything in between
  publication-title: Mol Cell Endocrinol
  doi: 10.1016/j.mce.2016.11.003
– volume: 345
  start-page: 1386
  year: 2006
  ident: B3
  article-title: Regulation of intracellular levels of NAD: a novel role for CD38
  publication-title: Biochem Biophys Res Commun.
  doi: 10.1016/j.bbrc.2006.05.042
– volume: 22
  start-page: 373
  year: 2010
  ident: B11
  article-title: Oxytocin signal and social behaviour: comparison among adult and infant oxytocin, oxytocin receptor and CD38 gene knockout mice
  publication-title: J Neuroendocrinol
  doi: 10.1111/j.1365-2826.2010.01976.x
SSID ssj0000493335
Score 2.6157596
SecondaryResourceType review_article
Snippet CD38 (Cluster of Differentiation 38) is a multifunctional ecto-enzyme that metabolizes NAD+ and mediates nicotinamide dinucleotide (NAD+) and extracellular...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1187
SubjectTerms aging
cancer
CD38
Immunology
metabolism
NAD
NADase
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOilNH1u2wQVeimsupb1sJRbsklIC-mhNJCb0GNMt2TtkngPya-vHs6yW0p76dWSbTEzQt-gme9D6L0TUkeg7AhjnhEurCM6olIiPFOcOi3bNvUOn3-RZxf886W43JD6SjVhhR64GG4GFpT2AiRQxrlora6dj1u44pQyHzJ7aaWrjWTqR8G9jDFR7iVjFqZn7WK5XKVSLv0xS2xvnUOZrv9PGPP3UsmNs-f0CXo8gkZ8WBa7ix5A9xQ9LDKSt89QiL7GuZOWtNZHFBzwiR96At3d7RLw_JipA_w1MTfhRYc_pY6QftmHUbhriufJ89dTfJgEi6bYdgGfwxCj42rh8XG5wbl5ji5OT77Nz8ionkC8qNVAONTS25g9WFbZQEHUQBW4wCFiHN2CU0xZZ1WoPGsi6qpAuNAo18jAVSVb9gLtdH0HrxCupJPKKSsVAA_xM5T7yrU16OCDt2GCZve2NH6kFk8KF1cmphjJ-iZb3yTrm2z9CfqwfuNnodX4y9yj5J71vESInR_EMDFjmJh_hckEvbt3rokbKN2K2A761Y2JGIZxFVEtnaCXxdnrXzFaU06bONJshcHWWrZHusX3TNIthRC1UK__x-LfoEfJHKVo4S3aGa5XsBex0OD2c9j_AhZOCFc
  priority: 102
  providerName: Directory of Open Access Journals
Title The Multi-faceted Ecto-enzyme CD38: Roles in Immunomodulation, Cancer, Aging, and Metabolic Diseases
URI https://www.ncbi.nlm.nih.gov/pubmed/31214171
https://www.proquest.com/docview/2243485661
https://pubmed.ncbi.nlm.nih.gov/PMC6555258
https://doaj.org/article/eae89c5e6e13445fa92bc87604113cd5
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZgCLQXxH3hMhmJF6Rmi-NLHCSERrcxkMYDolLfLF9OoKhNRptKlF-P7aSFosJLHhI7F5_POt_JuSH0wnBReqJsUkotTRnXJi09K025pZIRU4qqCrnDlx_FxYh9GPPx7_TofgEXO0270E9qNJ8e_fi-euM3_OtgcXp9e1xNZrNliNIqj2L37OvoRvQWhUC-nux_67gwpZR3vsqdE_fRLUpywkhBttRUrOa_i4L-HUn5h2o6v4Nu95wSn3QguIuuQX0P3ey6TK7uI-ehgGOibVpp60myw2e2bVKof65mgIenVL7Cn0JhJzyp8fuQMNLMGtf39RrgYQDGfIBPQj-jAda1w5fQevBMJxafdg6exQM0Oj_7PLxI--YKqeW5bFMGubDaGxeaZtoR4DkQCcYx8BSorMBIKrXR0mWWFp6UZcCNK6QphGMyExV9iPbqpoYDhDNhhDRSCwnAnL8NYTYzVQ6ls85ql6Dj9Voq21ceDw0wpspbIEEQKgpCBUGoKIgEvdzMuOqqbvxn7Nsgns24UC87nmjmX1S__RRokKXlIIBQxnily9xYrwgyRgi1jifo-Vq4yu-v4DTRNTTLhfIUhzLpSS9J0KNO2JtHrcGSoGILBlvvsn2lnnyNNbwF5zzn8vE_7_kE7Ydv7AIVnqK9dr6EZ57_tOYw_jfwx3djchgh_gsORAUD
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Multi-faceted+Ecto-enzyme+CD38%3A+Roles+in+Immunomodulation%2C+Cancer%2C+Aging%2C+and+Metabolic+Diseases&rft.jtitle=Frontiers+in+immunology&rft.au=Hogan%2C+Kelly+A&rft.au=Chini%2C+Claudia+C+S&rft.au=Chini%2C+Eduardo+N&rft.date=2019-05-31&rft.eissn=1664-3224&rft.volume=10&rft.spage=1187&rft_id=info:doi/10.3389%2Ffimmu.2019.01187&rft_id=info%3Apmid%2F31214171&rft.externalDocID=31214171
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon