The Multi-faceted Ecto-enzyme CD38: Roles in Immunomodulation, Cancer, Aging, and Metabolic Diseases
CD38 (Cluster of Differentiation 38) is a multifunctional ecto-enzyme that metabolizes NAD+ and mediates nicotinamide dinucleotide (NAD+) and extracellular nucleotide homeostasis as well as intracellular calcium. CD38 is also an emerging therapeutic target under conditions in which metabolism is alt...
Saved in:
Published in | Frontiers in immunology Vol. 10; p. 1187 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
31.05.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1664-3224 1664-3224 |
DOI | 10.3389/fimmu.2019.01187 |
Cover
Abstract | CD38 (Cluster of Differentiation 38) is a multifunctional ecto-enzyme that metabolizes NAD+ and mediates nicotinamide dinucleotide (NAD+) and extracellular nucleotide homeostasis as well as intracellular calcium. CD38 is also an emerging therapeutic target under conditions in which metabolism is altered including infection, aging, and tumorigenesis. We describe multiple enzymatic activities of CD38, which may explain the breadth of biological roles observed for this enzyme. Of greatest significance is the role of CD38 as an ecto-enzyme capable of modulating extracellular NAD+ precursor availability: 1 to bacteria unable to perform de novo synthesis of NAD+; and 2 in aged parenchyma impacted by the accumulation of immune cells during the process of 'inflammaging'. We also discuss the paradoxical role of CD38 as a modulator of intracellular NAD+, particularly in tumor immunity. Finally, we provide a summary of therapeutic approaches to CD38 inhibition and 'NAD+ boosting' for treatment of metabolic dysfunction observed during aging and in tumor immunity. The present review summarizes the role of CD38 in nicotinamide nucleotide homeostasis with special emphasis on the role of CD38 as an immunomodulator and druggable target. |
---|---|
AbstractList | CD38 (Cluster of Differentiation 38) is a multifunctional ecto-enzyme that metabolizes NAD+ and mediates nicotinamide dinucleotide (NAD+) and extracellular nucleotide homeostasis as well as intracellular calcium. CD38 is also an emerging therapeutic target under conditions in which metabolism is altered including infection, aging, and tumorigenesis. We describe multiple enzymatic activities of CD38, which may explain the breadth of biological roles observed for this enzyme. Of greatest significance is the role of CD38 as an ecto-enzyme capable of modulating extracellular NAD+ precursor availability: 1 to bacteria unable to perform de novo synthesis of NAD+; and 2 in aged parenchyma impacted by the accumulation of immune cells during the process of 'inflammaging'. We also discuss the paradoxical role of CD38 as a modulator of intracellular NAD+, particularly in tumor immunity. Finally, we provide a summary of therapeutic approaches to CD38 inhibition and 'NAD+ boosting' for treatment of metabolic dysfunction observed during aging and in tumor immunity. The present review summarizes the role of CD38 in nicotinamide nucleotide homeostasis with special emphasis on the role of CD38 as an immunomodulator and druggable target.CD38 (Cluster of Differentiation 38) is a multifunctional ecto-enzyme that metabolizes NAD+ and mediates nicotinamide dinucleotide (NAD+) and extracellular nucleotide homeostasis as well as intracellular calcium. CD38 is also an emerging therapeutic target under conditions in which metabolism is altered including infection, aging, and tumorigenesis. We describe multiple enzymatic activities of CD38, which may explain the breadth of biological roles observed for this enzyme. Of greatest significance is the role of CD38 as an ecto-enzyme capable of modulating extracellular NAD+ precursor availability: 1 to bacteria unable to perform de novo synthesis of NAD+; and 2 in aged parenchyma impacted by the accumulation of immune cells during the process of 'inflammaging'. We also discuss the paradoxical role of CD38 as a modulator of intracellular NAD+, particularly in tumor immunity. Finally, we provide a summary of therapeutic approaches to CD38 inhibition and 'NAD+ boosting' for treatment of metabolic dysfunction observed during aging and in tumor immunity. The present review summarizes the role of CD38 in nicotinamide nucleotide homeostasis with special emphasis on the role of CD38 as an immunomodulator and druggable target. CD38 (Cluster of Differentiation 38) is a multifunctional ecto-enzyme that metabolizes NAD+ and mediates nicotinamide dinucleotide (NAD+) and extracellular nucleotide homeostasis as well as intracellular calcium. CD38 is also an emerging therapeutic target under conditions in which metabolism is altered including infection, aging, and tumorigenesis. We describe multiple enzymatic activities of CD38, which may explain the breadth of biological roles observed for this enzyme. Of greatest significance is the role of CD38 as an ecto-enzyme capable of modulating extracellular NAD+ precursor availability: 1 to bacteria unable to perform de novo synthesis of NAD+; and 2 in aged parenchyma impacted by the accumulation of immune cells during the process of ‘inflammaging’. We also discuss the paradoxical role of CD38 as a modulator of intracellular NAD+, particularly in tumor immunity. Finally, we provide a summary of therapeutic approaches to CD38 inhibition and ‘NAD+ boosting’ for treatment of metabolic dysfunction observed during aging and in tumor immunity. The present review summarizes the role of CD38 in nicotinamide nucleotide homeostasis with special emphasis on the role of CD38 as an immunomodulator and druggable target. |
Author | Chini, Eduardo N. Chini, Claudia C. S. Hogan, Kelly A. |
AuthorAffiliation | Signal Transduction and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine , Rochester, MN , United States |
AuthorAffiliation_xml | – name: Signal Transduction and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine , Rochester, MN , United States |
Author_xml | – sequence: 1 givenname: Kelly A. surname: Hogan fullname: Hogan, Kelly A. – sequence: 2 givenname: Claudia C. S. surname: Chini fullname: Chini, Claudia C. S. – sequence: 3 givenname: Eduardo N. surname: Chini fullname: Chini, Eduardo N. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31214171$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ks9LHDEcxYNY1Kr3nkqOPexs83syPRRkte2CUih6DpnkO2tkJrGTTMH-9R13tWihuSR8876fd3jvLdqPKQJC7yhZcq6bj10YhmnJCG2WhFJd76EjqpSoOGNi_8X7EJ3mfEfmIxrOuTxAh5wyKmhNj5C_vgV8NfUlVJ11UMDjC1dSBfH3wwB4dc71J_wj9ZBxiHg9O8Y0JD_1toQUF3hlo4Nxgc82IW4W2EaPr6DYNvXB4fOQwWbIJ-hNZ_sMp0_3Mbr5cnG9-lZdfv-6Xp1dVk4yXSoBTDmrmbKcWE9BMqAaWi9AEdJ00GqubWu1J47XlDICsvW1bmvlhSaq48doveP6ZO_M_RgGOz6YZIPZDtK4MXYswfVgwIJunAQFlAshO9uw1ulaEUEpd17OrM871v3UDuAdxDLa_hX09U8Mt2aTfhklpWRSz4APT4Ax_ZwgFzOE7KDvbYQ0ZTMnw4WWStFZ-v6l11-T55hmgdoJ3JhyHqEzLpRtArN16A0l5rESZlsJ81gJs63EvEj-WXxm_3flD6IkubY |
CitedBy_id | crossref_primary_10_1016_j_trim_2022_101625 crossref_primary_10_3389_fimmu_2023_1126421 crossref_primary_10_1111_jcmm_15912 crossref_primary_10_1152_physrev_00046_2020 crossref_primary_10_3390_cancers13010076 crossref_primary_10_1038_s41580_020_00313_x crossref_primary_10_1016_j_eururo_2021_01_017 crossref_primary_10_1016_j_heliyon_2024_e37958 crossref_primary_10_1038_s41581_024_00874_6 crossref_primary_10_3390_antiox12061230 crossref_primary_10_1096_fj_202400453R crossref_primary_10_1016_j_imlet_2021_05_006 crossref_primary_10_26508_lsa_202302214 crossref_primary_10_3390_cancers13020309 crossref_primary_10_1038_s41514_021_00058_7 crossref_primary_10_1016_j_cmet_2021_04_003 crossref_primary_10_1177_10600280211058754 crossref_primary_10_1080_19420862_2022_2095949 crossref_primary_10_1097_BOR_0000000000000737 crossref_primary_10_1177_11772719241312776 crossref_primary_10_31857_S0041377123060032 crossref_primary_10_3390_cells10102563 crossref_primary_10_1007_s12013_024_01231_x crossref_primary_10_1016_j_neuron_2022_08_017 crossref_primary_10_3389_fimmu_2023_1182016 crossref_primary_10_3390_cells11172637 crossref_primary_10_3390_antib9040058 crossref_primary_10_3389_fimmu_2021_785774 crossref_primary_10_1093_jleuko_qiad111 crossref_primary_10_1016_j_bcp_2020_114019 crossref_primary_10_1016_j_canlet_2022_215737 crossref_primary_10_1038_s41467_020_17644_0 crossref_primary_10_1371_journal_pone_0244022 crossref_primary_10_3389_fimmu_2020_00508 crossref_primary_10_1038_s41416_022_02052_6 crossref_primary_10_1038_s41419_021_03968_2 crossref_primary_10_7554_eLife_96962_3 crossref_primary_10_1016_j_procbio_2022_10_029 crossref_primary_10_3390_cells9010228 crossref_primary_10_1016_j_bbi_2023_09_026 crossref_primary_10_1097_BOR_0000000000000824 crossref_primary_10_3389_fimmu_2023_1269896 crossref_primary_10_1080_10428194_2022_2113532 crossref_primary_10_1111_imr_13015 crossref_primary_10_18632_aging_203625 crossref_primary_10_1002_bies_201900220 crossref_primary_10_1016_j_neo_2023_100903 crossref_primary_10_1007_s11899_021_00624_6 crossref_primary_10_1016_j_dci_2020_103881 crossref_primary_10_3390_ijms23084309 crossref_primary_10_1089_ars_2023_0349 crossref_primary_10_1371_journal_pbio_3002517 crossref_primary_10_2217_fon_2021_0778 crossref_primary_10_1002_mnfr_202100274 crossref_primary_10_3390_cells13151302 crossref_primary_10_15252_emmm_202012860 crossref_primary_10_3389_fimmu_2021_704779 crossref_primary_10_1111_acel_13702 crossref_primary_10_1073_pnas_2315989121 crossref_primary_10_3390_ijms25094680 crossref_primary_10_1016_j_bbrc_2022_11_003 crossref_primary_10_3389_fmolb_2023_906606 crossref_primary_10_3389_fnins_2024_1483708 crossref_primary_10_3390_cancers14225633 crossref_primary_10_3390_vaccines13010001 crossref_primary_10_1016_j_mad_2021_111569 crossref_primary_10_1038_s41375_025_02551_4 crossref_primary_10_3389_fimmu_2023_1197265 crossref_primary_10_1016_j_semcdb_2019_12_007 crossref_primary_10_1016_j_jri_2025_104426 crossref_primary_10_3390_cells12010021 crossref_primary_10_3390_ijms242417231 crossref_primary_10_1002_jmv_29515 crossref_primary_10_3389_fgene_2021_790990 crossref_primary_10_1016_j_virol_2024_110052 crossref_primary_10_1007_s10557_020_07007_8 crossref_primary_10_1136_lupus_2024_001401 crossref_primary_10_1111_acel_14326 crossref_primary_10_1155_2023_9915178 crossref_primary_10_1016_j_bcp_2020_114322 crossref_primary_10_1056_NEJMoa2023325 crossref_primary_10_1177_1178646920910159 crossref_primary_10_1016_j_isci_2020_101902 crossref_primary_10_3389_fcvm_2022_988713 crossref_primary_10_1007_s11307_020_01542_4 crossref_primary_10_1038_s41392_021_00625_0 crossref_primary_10_1097_QAI_0000000000003080 crossref_primary_10_1016_j_metabol_2021_154923 crossref_primary_10_1016_j_bbrc_2021_10_010 crossref_primary_10_3390_biom10040513 crossref_primary_10_3390_genes12030445 crossref_primary_10_3389_fimmu_2022_1011166 crossref_primary_10_3389_fonc_2021_772145 crossref_primary_10_1007_s00204_021_03134_9 crossref_primary_10_1111_acel_13920 crossref_primary_10_3390_cells9020471 crossref_primary_10_7554_eLife_96962 crossref_primary_10_3389_fgene_2022_860161 crossref_primary_10_1016_j_tibs_2020_05_010 crossref_primary_10_1016_j_tpr_2022_100100 crossref_primary_10_3389_fimmu_2021_713697 crossref_primary_10_3390_ijms22052424 crossref_primary_10_1159_000543274 crossref_primary_10_1186_s13395_020_00249_y crossref_primary_10_3390_diagnostics13010021 crossref_primary_10_1016_j_bcp_2020_114346 crossref_primary_10_3389_fphys_2023_1217815 crossref_primary_10_1016_j_bcp_2020_114220 crossref_primary_10_1172_jci_insight_153019 crossref_primary_10_1007_s11033_023_09034_8 crossref_primary_10_2174_1567205018666210608103831 crossref_primary_10_3390_antiox10121939 crossref_primary_10_1111_bph_15477 crossref_primary_10_3389_fphys_2020_00901 crossref_primary_10_1016_j_chest_2020_01_027 crossref_primary_10_1007_s00018_020_03742_1 crossref_primary_10_1016_j_coph_2020_11_004 crossref_primary_10_1016_j_it_2020_01_008 crossref_primary_10_3389_fnut_2024_1359176 crossref_primary_10_1111_jnc_15367 crossref_primary_10_1016_j_ejmech_2024_116964 crossref_primary_10_1111_acel_13589 crossref_primary_10_1080_19420862_2023_2245111 crossref_primary_10_3390_cancers12123742 crossref_primary_10_1016_j_isci_2024_108978 crossref_primary_10_1038_s41598_023_49450_1 crossref_primary_10_1016_j_intimp_2024_113212 crossref_primary_10_3389_fimmu_2021_778830 crossref_primary_10_1002_hon_2904 crossref_primary_10_3389_fimmu_2023_1167924 crossref_primary_10_1126_sciadv_ado1331 crossref_primary_10_17650_1818_8346_2022_17_1_43_52 crossref_primary_10_31083_j_fbl2811284 crossref_primary_10_12998_wjcc_v11_i29_7091 crossref_primary_10_3389_fstro_2024_1423887 crossref_primary_10_1186_s12979_023_00398_w crossref_primary_10_3892_ol_2022_13315 crossref_primary_10_3390_ijms23158600 crossref_primary_10_1515_oncologie_2024_0596 crossref_primary_10_3390_ijms24031869 crossref_primary_10_1016_j_omton_2024_200819 crossref_primary_10_1021_acsomega_3c00624 crossref_primary_10_3389_fimmu_2024_1382977 crossref_primary_10_1164_rccm_202109_2151OC crossref_primary_10_3389_fragi_2021_785171 crossref_primary_10_3390_cancers14174169 crossref_primary_10_1016_j_tcb_2023_02_004 crossref_primary_10_3389_fimmu_2020_597959 crossref_primary_10_1016_j_phrs_2024_107068 crossref_primary_10_1002_jcp_30760 crossref_primary_10_1002_cti2_70011 crossref_primary_10_1016_j_bcp_2020_114093 crossref_primary_10_3389_fgene_2020_00369 crossref_primary_10_1097_MD_0000000000041348 crossref_primary_10_1186_s12935_022_02664_1 crossref_primary_10_3389_fphar_2022_881708 crossref_primary_10_3390_cells9040950 crossref_primary_10_1007_s00259_021_05593_9 crossref_primary_10_3389_fimmu_2024_1347259 crossref_primary_10_3390_cells9010077 crossref_primary_10_3389_fimmu_2021_714742 crossref_primary_10_3390_v14091977 crossref_primary_10_3389_fimmu_2023_1277491 crossref_primary_10_1155_2021_6630295 crossref_primary_10_1016_j_omton_2024_200841 crossref_primary_10_3390_cells10030680 crossref_primary_10_1016_j_jaci_2022_01_012 crossref_primary_10_3390_biomedicines11072086 crossref_primary_10_3390_cells12091329 crossref_primary_10_1134_S1990519X23700025 crossref_primary_10_1038_s41467_024_50650_0 crossref_primary_10_1007_s12264_023_01072_3 crossref_primary_10_1038_s41423_020_00624_1 crossref_primary_10_3390_cells11040708 crossref_primary_10_1371_journal_ppat_1008621 crossref_primary_10_1016_j_mucimm_2024_06_011 crossref_primary_10_1016_j_cpnec_2023_100209 crossref_primary_10_3892_mmr_2021_12530 crossref_primary_10_1016_j_oraloncology_2022_106296 crossref_primary_10_1038_s41419_022_04535_z crossref_primary_10_2217_bmm_2021_0575 crossref_primary_10_1152_ajpcell_00451_2021 crossref_primary_10_1002_ccs3_12018 crossref_primary_10_3389_fonc_2022_775649 crossref_primary_10_3390_cells12040595 crossref_primary_10_3390_cells12101432 crossref_primary_10_1038_s41467_021_27080_3 crossref_primary_10_1016_j_phrs_2025_107675 crossref_primary_10_3390_cells9071716 crossref_primary_10_3390_antiox10040602 crossref_primary_10_1097_MPH_0000000000002586 crossref_primary_10_1016_j_bcp_2019_08_022 crossref_primary_10_3390_cells9040802 crossref_primary_10_1371_journal_pone_0273080 crossref_primary_10_18632_aging_204425 crossref_primary_10_1165_rcmb_2021_0272OC crossref_primary_10_3390_cancers14174082 crossref_primary_10_1080_13543784_2025_2463092 crossref_primary_10_3389_fimmu_2022_1072462 crossref_primary_10_1111_acel_14298 crossref_primary_10_3390_cells9010062 crossref_primary_10_3389_fimmu_2022_1043111 crossref_primary_10_3390_ijms222312919 crossref_primary_10_1016_j_ejphar_2020_173158 crossref_primary_10_1016_j_bbrc_2020_12_048 crossref_primary_10_3389_fimmu_2022_1060695 crossref_primary_10_1016_j_toxlet_2020_01_024 crossref_primary_10_1016_j_jaut_2019_102333 crossref_primary_10_1038_s42003_025_07897_0 crossref_primary_10_1016_j_celrep_2024_114102 crossref_primary_10_1186_s13045_023_01426_4 crossref_primary_10_3389_fimmu_2024_1457629 crossref_primary_10_3390_biom14121556 crossref_primary_10_1126_scitranslmed_abg3083 crossref_primary_10_1186_s12879_022_07895_1 crossref_primary_10_18632_aging_206135 crossref_primary_10_1038_s42255_020_00298_z crossref_primary_10_1002_cam4_6619 crossref_primary_10_1159_000516642 crossref_primary_10_1016_j_imlet_2022_04_003 crossref_primary_10_1126_sciadv_ade7702 crossref_primary_10_21320_2500_2139_2022_15_4_365_376 crossref_primary_10_3390_molecules25204844 crossref_primary_10_2147_CMAR_S212526 crossref_primary_10_1182_blood_2021014485 crossref_primary_10_1016_j_imlet_2023_12_003 crossref_primary_10_1002_hlca_202300080 crossref_primary_10_3390_cells13231971 |
Cites_doi | 10.1016/j.lfs.2003.08.033 10.3324/haematol.2018.192757 10.18632/oncotarget.14695 10.1371/journal.pone.0145342 10.4161/onci.26246 10.1186/1479-5876-11-94 10.1084/jem.20151159 10.4049/jimmunol.1003032 10.1016/j.jri.2013.03.006 10.1007/s00262-017-1990-2 10.1021/bi00401a028 10.1189/jlb.69.4.605 10.1158/1078-0432.ccr-16-3192 10.1021/bi981248s 10.1038/nm1101-1209 10.1158/1078-0432.ccr-13-0150 10.1124/jpet.116.239459 10.1002/ijc.29095 10.1158/1078-0432.ccr-14-0695 10.1371/journal.ppat.1005839 10.1111/cbdd.12606 10.1073/pnas.0510511103 10.1016/j.cmet.2016.05.022 10.1152/physrev.00035.2007 10.18632/oncotarget.14434 10.1158/2159-8290.cd-17-1033 10.1021/bi0258795 10.1111/imm.12873 10.15252/embj.201386907 10.1371/journal.pone.0149125 10.1016/j.cell.2013.06.016 10.2119/molmed.2009.00146 10.1093/carcin/bgx137 10.1056/NEJMoa1506348 10.1126/science.aac4854 10.1038/nature18928 10.7554/eLife.22187 10.3390/cells4030520 10.1053/jhep.2000.7713 10.1074/jbc.270.7.3216 10.1016/j.cmet.2017.10.006 10.2337/db12-1139 10.1073/pnas.1703718114 10.1016/j.celrep.2017.01.007 10.1016/j.neuron.2017.02.022 10.1016/j.neuropharm.2009.06.012 10.1074/jbc.270.51.30327 10.1126/scisignal.2002700 10.1021/ja411046j 10.1182/blood-2016-09-740787 10.1021/acs.jmedchem.5b00992 10.1016/j.jri.2009.08.003 10.1016/j.bbrc.2019.03.199 10.1042/bj0960837 10.1371/journal.pone.0045234 10.1038/npjsba.2016.18 10.1128/IAI.71.9.5398-5401.2003 10.1158/1078-0432.ccr-18-3412. 10.1155/2012/302875 10.1006/bbrc.1995.1485 10.1073/pnas.1413493112 10.1016/j.cmet.2014.12.003 10.1016/j.cmet.2016.05.006 10.1074/jbc.M109.031005 10.1074/jbc.M117.789347 10.1016/j.cellsig.2017.10.014 10.1056/NEJMoa1616361 10.1002/prp2.402 10.1158/0008-5472.can-18-0773 10.1152/ajpcell.00638.2005 10.1111/j.0105-2896.2006.00408.x 10.1182/blood-2016-03-703439 10.1007/978-1-4939-8588-3_1 10.1074/jbc.M113.470435 10.1016/j.tcb.2014.04.002 10.1186/s40170-018-0186-3 10.3389/fnins.2012.00182 10.1099/00221287-134-10-2789 10.1111/j.1365-3024.2011.01333.x 10.1021/bi201509f 10.1016/S0021-9258(19)50133-8 10.1016/j.cell.2013.11.037 10.1016/j.bbrc.2006.08.066 10.1097/moh.0000000000000401 10.1042/bj3620125 10.1038/nsmb.2990 10.1158/1078-0432.ccr-17-2027 10.1016/j.cmet.2014.10.005 10.1016/j.bmcl.2011.05.022 10.1016/j.cmet.2018.03.016 10.1186/s12943-018-0864-3 10.1038/nrendo.2015.117 10.1016/j.neuint.2012.01.030 10.2174/138161209787185788 10.2119/molmed.2016.00198 10.1248/bpb.34.1369 10.1124/dmd.116.070920 10.1126/science.1093133 10.1016/j.it.2018.12.007 10.1182/blood-2017-06-740944 10.1681/asn.2016040385 10.1146/annurev-immunol-032712-100003 10.3389/fphar.2018.00536 10.1096/fj.05-4585fje 10.1111/acel.12950 10.1021/jm502009h 10.1128/iai.00340-13 10.1016/j.cmet.2016.09.013 10.1016/j.mce.2016.11.003 10.1016/j.bbrc.2006.05.042 10.1111/j.1365-2826.2010.01976.x |
ContentType | Journal Article |
Copyright | Copyright © 2019 Hogan, Chini and Chini. 2019 Hogan, Chini and Chini |
Copyright_xml | – notice: Copyright © 2019 Hogan, Chini and Chini. 2019 Hogan, Chini and Chini |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fimmu.2019.01187 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-3224 |
ExternalDocumentID | oai_doaj_org_article_eae89c5e6e13445fa92bc87604113cd5 PMC6555258 31214171 10_3389_fimmu_2019_01187 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: P20 CA102701 – fundername: NIA NIH HHS grantid: R01 AG026094 – fundername: NIA NIH HHS grantid: R01 AG058812 – fundername: NCI NIH HHS grantid: P50 CA102701 – fundername: Mayo Foundation for Medical Education and Research |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EBS EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM IAO IEA IHR IHW IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c528t-4e26ca826a30ad1e52e18ebd4e6009feb838aba8d0c371120e5bd78b76d4806f3 |
IEDL.DBID | M48 |
ISSN | 1664-3224 |
IngestDate | Wed Aug 27 01:32:01 EDT 2025 Thu Aug 21 18:14:07 EDT 2025 Thu Sep 04 18:55:54 EDT 2025 Thu Jan 02 22:59:27 EST 2025 Tue Jul 01 00:39:35 EDT 2025 Thu Apr 24 22:56:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | NAD senescence macrophages CD38 cancer metabolism aging NADase |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c528t-4e26ca826a30ad1e52e18ebd4e6009feb838aba8d0c371120e5bd78b76d4806f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Reviewed by: Antje Garten, Leipzig University, Germany; Yasser Mohamed El-Sherbiny, Nottingham Trent University, United Kingdom This article was submitted to Inflammation, a section of the journal Frontiers in Immunology Edited by: Silvia Deaglio, University of Turin, Italy |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fimmu.2019.01187 |
PMID | 31214171 |
PQID | 2243485661 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_eae89c5e6e13445fa92bc87604113cd5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6555258 proquest_miscellaneous_2243485661 pubmed_primary_31214171 crossref_citationtrail_10_3389_fimmu_2019_01187 crossref_primary_10_3389_fimmu_2019_01187 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-31 |
PublicationDateYYYYMMDD | 2019-05-31 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-31 day: 31 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in immunology |
PublicationTitleAlternate | Front Immunol |
PublicationYear | 2019 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Liu (B21) 2017; 114 Horenstein (B28) 2013; 2 Aarhus (B33) 1995; 270 Palmer (B49) 2019; 18 Dong (B83) 2017; 6 Kellenberger (B102) 2011; 21 Partida-Sanchez (B43) 2001; 7 Horenstein (B72) 2015; 4 Inoue (B30) 2017; 8 Higashida (B13) 2011; 34 Malavasi (B22) 2008; 88 Rustom (B79) 2004; 303 de (B95) 2011; 186 Nijhof (B97) 2016; 128 Zhao (B19) 2012; 5 van (B50) 2019; 40 Sauve (B111) 2002; 41 Tan (B82) 2015; 21 Matalonga (B18) 2017; 18 Deckert (B70) 2014; 20 Kang (B17) 2006; 20 Gomes (B4) 2013; 155 Lopatina (B15) 2012; 6 Bu (B66) 2018; 39 Raghuramulu (B54) 1965; 96 Shallis (B31) 2017; 66 Shu (B42) 2018; 42 Chini (B65) 2019; 513 Muller-Steffner (B109) 1992; 267 Yi (B88) 2018; 17 Erlebacher (B89) 2013; 31 Schultz (B6) 2016; 23 Chini (B35) 1995; 209 Lopatina (B12) 2010; 58 Boslett (B107) 2017; 361 Pasquier (B81) 2013; 11 Lu (B84) 2017; 8 Zielinska (B93) 2004; 74 Aguilar-Arnal (B53) 2015; 22 Assi (B32) 2018; 25 Jablonski (B41) 2015; 10 Hayakawa (B77) 2016; 535 Horenstein (B29) 2016; 22 Aksoy (B2) 2006; 349 Krejcik (B74) 2017; 23 Estrada-Figueroa (B45) 2011; 33 Chini (B7) 2009; 15 Spees (B80) 2006; 103 Shrimp (B20) 2014; 136 Essuman (B25) 2017; 93 Mottahedeh (B67) 2018; 6 Scheibye-Knudsen (B62) 2014; 20 Gul (B27) 2016; 11 Aksoy (B3) 2006; 345 Robertson (B91) 2009; 83 Verdin (B10) 2015; 350 Shi (B60) 2017; 377 Lokhorst (B96) 2015; 373 Golden-Mason (B1) 2000; 31 Imai (B9) 2014; 24 Higashida (B14) 2012; 61 Liu (B23) 2009; 284 Lischke (B46) 2013; 81 Chini (B34) 1995; 270 Manna (B99) 2019 Higashida (B11) 2010; 22 Jacobson (B61) 2018; 1813 Deaglio (B38) 2010; 16 Lin (B24) 2017; 292 Haffner (B104) 2015; 58 van (B76) 2018; 131 Li (B37) 2016; 44 Slama (B101) 1988; 27 Kim (B94) 2015; 112 Blacher (B71) 2015; 136 Chatterjee (B75) 2018; 27 Mouchiroud (B52) 2013; 154 Cynamon (B39) 1988; 134 Guan (B59) 2017; 28 Garten (B63) 2015; 11 Chini (B68) 2014; 20 North (B56) 2014; 33 Williams (B55) 2012; 2012 Mills (B57) 2016; 24 Becherer (B103) 2015; 58 Buck (B85) 2015; 212 Schiavoni (B108) 2018; 154 Chini (B58) 2017; 455 Sauve (B110) 1998; 37 Grozio (B69) 2013; 288 Marlein (B78) 2019; 79 Naik (B44) 2019; 104 Bahri (B48) 2012; 7 Burel (B47) 2016; 12 Soares (B36) 2007; 292 Imai (B64) 2016; 2 Aluvihare (B90) 2006; 212 Herbert (B40) 2003; 71 Escande (B8) 2013; 62 Feng (B73) 2017; 23 Zhang (B105) 2015; 86 Roepcke (B100) 2018; 6 Clark (B92) 2013; 99 Kwong (B26) 2012; 51 Wang (B86) 2018; 9 Camacho-Pereira (B5) 2016; 23 Chini (B51) 2002; 362 Chen (B87) 2018; 8 Martin (B98) 2017; 129 Musso (B16) 2001; 69 Tarrago (B106) 2018; 27 |
References_xml | – volume: 74 start-page: 1781 year: 2004 ident: B93 article-title: Metabolism of cyclic ADP-ribose: Zinc is an endogenous modulator of the cyclase/NAD glycohydrolase ratio of a CD38-like enzyme from human seminal fluid publication-title: Life Sci doi: 10.1016/j.lfs.2003.08.033 – volume: 104 start-page: e100 year: 2019 ident: B44 article-title: CD38 as a therapeutic target for adult acute myeloid leukemia and T-cell acute lymphoblastic leukemia publication-title: Haematologica doi: 10.3324/haematol.2018.192757 – volume: 8 start-page: 15539 year: 2017 ident: B84 article-title: Tunneling nanotubes promote intercellular mitochondria transfer followed by increased invasiveness in bladder cancer cells publication-title: Oncotarget doi: 10.18632/oncotarget.14695 – volume: 10 start-page: e0145342 year: 2015 ident: B41 article-title: Novel markers to delineate murine M1 and M2 macrophages publication-title: PLoS ONE doi: 10.1371/journal.pone.0145342 – volume: 2 start-page: e26246 year: 2013 ident: B28 article-title: A CD38/CD203a/CD73 ectoenzymatic pathway independent of CD39 drives a novel adenosinergic loop in human T lymphocytes publication-title: Oncoimmunology doi: 10.4161/onci.26246 – volume: 11 start-page: 94 year: 2013 ident: B81 article-title: Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance publication-title: J Transl Med doi: 10.1186/1479-5876-11-94 – volume: 212 start-page: 1345 year: 2015 ident: B85 article-title: T cell metabolism drives immunity publication-title: J Exp Med doi: 10.1084/jem.20151159 – volume: 186 start-page: 1840 year: 2011 ident: B95 article-title: Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors publication-title: J Immunol doi: 10.4049/jimmunol.1003032 – volume: 99 start-page: 46 year: 2013 ident: B92 article-title: Seminal plasma peptides may determine maternal immune response that alters success or failure of pregnancy in the abortion-prone CBAxDBA/2 model publication-title: J Reprod Immunol doi: 10.1016/j.jri.2013.03.006 – volume: 66 start-page: 697 year: 2017 ident: B31 article-title: The multi-faceted potential of CD38 antibody targeting in multiple myeloma publication-title: Cancer Immunol Immunother doi: 10.1007/s00262-017-1990-2 – volume: 27 start-page: 183 year: 1988 ident: B101 article-title: Carbanicotinamide adenine dinucleotide: synthesis and enzymological properties of a carbocyclic analogue of oxidized nicotinamide adenine dinucleotide publication-title: Biochemistry doi: 10.1021/bi00401a028 – volume: 69 start-page: 605 year: 2001 ident: B16 article-title: CD38 expression and functional activities are up-regulated by IFN-gamma on human monocytes and monocytic cell lines publication-title: J Leukoc Biol. doi: 10.1189/jlb.69.4.605 – volume: 23 start-page: 4290 year: 2017 ident: B73 article-title: Targeting CD38 suppresses induction and function of T regulatory cells to mitigate immunosuppression in multiple myeloma publication-title: Clin Cancer Res doi: 10.1158/1078-0432.ccr-16-3192 – volume: 37 start-page: 13239 year: 1998 ident: B110 article-title: The reaction mechanism for CD38. A single intermediate is responsible for cyclization, hydrolysis, and base-exchange chemistries publication-title: Biochemistry doi: 10.1021/bi981248s – volume: 7 start-page: 1209 year: 2001 ident: B43 article-title: Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo publication-title: Nat Med doi: 10.1038/nm1101-1209 – volume: 20 start-page: 120 year: 2014 ident: B68 article-title: Targeting of NAD metabolism in pancreatic cancer cells: potential novel therapy for pancreatic tumors publication-title: Clin Cancer Res doi: 10.1158/1078-0432.ccr-13-0150 – volume: 361 start-page: 99 year: 2017 ident: B107 article-title: Luteolinidin protects the postischemic heart through CD38 inhibition with preservation of NAD (P) (H) publication-title: J Pharmacol Exp Ther doi: 10.1124/jpet.116.239459 – volume: 136 start-page: 1422 year: 2015 ident: B71 article-title: Inhibition of glioma progression by a newly discovered CD38 inhibitor publication-title: Int J Cancer doi: 10.1002/ijc.29095 – volume: 20 start-page: 4574 year: 2014 ident: B70 article-title: SAR650984, a novel humanized CD38-targeting antibody, demonstrates potent antitumor activity in models of multiple myeloma and other CD38+ hematologic malignancies publication-title: Clin Cancer Res doi: 10.1158/1078-0432.ccr-14-0695 – volume: 12 start-page: e1005839 year: 2016 ident: B47 article-title: Reduced plasmodium parasite burden associates with CD38+ CD4+ T Cells Displaying Cytolytic Potential and Impaired IFN-gamma production publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1005839 – volume: 86 start-page: 1411 year: 2015 ident: B105 article-title: Comparative analysis of pharmacophore features and quantitative structure-activity relationships for CD38 covalent and non-covalent inhibitors publication-title: Chem Biol Drug Des doi: 10.1111/cbdd.12606 – volume: 103 start-page: 1283 year: 2006 ident: B80 article-title: Mitochondrial transfer between cells can rescue aerobic respiration publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0510511103 – volume: 23 start-page: 965 year: 2016 ident: B6 article-title: Why NAD (+) declines during aging: it's destroyed publication-title: Cell Metab doi: 10.1016/j.cmet.2016.05.022 – volume: 88 start-page: 841 year: 2008 ident: B22 article-title: Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology publication-title: Physiol Rev doi: 10.1152/physrev.00035.2007 – volume: 8 start-page: 8738 year: 2017 ident: B30 article-title: Prognostic impact of CD73 and A2A adenosine receptor expression in non-small-cell lung cancer publication-title: Oncotarget doi: 10.18632/oncotarget.14434 – volume: 8 start-page: 1156 year: 2018 ident: B87 article-title: CD38-Mediated Immunosuppression as a Mechanism of Tumor Cell Escape from PD-1/PD-L1 Blockade publication-title: Cancer Discov doi: 10.1158/2159-8290.cd-17-1033 – volume: 41 start-page: 8455 year: 2002 ident: B111 article-title: Mechanism-based inhibitors of CD38: a mammalian cyclic ADP-ribose synthetase publication-title: Biochemistry. doi: 10.1021/bi0258795 – volume: 154 start-page: 122 year: 2018 ident: B108 article-title: CD38 modulates respiratory syncytial virus-driven proinflammatory processes in human monocyte-derived dendritic cells publication-title: Immunology doi: 10.1111/imm.12873 – volume: 33 start-page: 1438 year: 2014 ident: B56 article-title: SIRT2 induces the checkpoint kinase BubR1 to increase lifespan publication-title: Embo J doi: 10.15252/embj.201386907 – volume: 11 start-page: e0149125 year: 2016 ident: B27 article-title: Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Cyclic ADP-Ribose (cADPR) Mediate Ca2+ signaling in cardiac hypertrophy induced by beta-adrenergic stimulation publication-title: PLoS ONE doi: 10.1371/journal.pone.0149125 – volume: 154 start-page: 430 year: 2013 ident: B52 article-title: The NAD (+)/Sirtuin Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling publication-title: Cell doi: 10.1016/j.cell.2013.06.016 – volume: 16 start-page: 87 year: 2010 ident: B38 article-title: CD38/CD31 interactions activate genetic pathways leading to proliferation and migration in chronic lymphocytic leukemia cells publication-title: Mol Med doi: 10.2119/molmed.2009.00146 – volume: 39 start-page: 242 year: 2018 ident: B66 article-title: CD38 knockout suppresses tumorigenesis in mice and clonogenic growth of human lung cancer cells publication-title: Carcinogenesis doi: 10.1093/carcin/bgx137 – volume: 373 start-page: 1207 year: 2015 ident: B96 article-title: Targeting CD38 with daratumumab monotherapy in multiple myeloma publication-title: N Engl J Med doi: 10.1056/NEJMoa1506348 – volume: 350 start-page: 1208 year: 2015 ident: B10 article-title: NAD (+) in aging, metabolism, and neurodegeneration publication-title: Science doi: 10.1126/science.aac4854 – volume: 535 start-page: 551 year: 2016 ident: B77 article-title: Transfer of mitochondria from astrocytes to neurons after stroke publication-title: Nature doi: 10.1038/nature18928 – volume: 6 start-page: e22187 year: 2017 ident: B83 article-title: Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells publication-title: Elife doi: 10.7554/eLife.22187 – volume: 4 start-page: 520 year: 2015 ident: B72 article-title: NAD (+)-metabolizing ectoenzymes in remodeling tumor-host interactions: the human myeloma model publication-title: Cells doi: 10.3390/cells4030520 – volume: 31 start-page: 1251 year: 2000 ident: B1 article-title: Differential expression of lymphoid and myeloid markers on differentiating hematopoietic stem cells in normal and tumor-bearing adult human liver publication-title: Hepatology doi: 10.1053/jhep.2000.7713 – volume: 270 start-page: 3216 year: 1995 ident: B34 article-title: Nicotinate adenine dinucleotide phosphate (NAADP) triggers a specific calcium release system in sea urchin eggs publication-title: J Biol Chem. doi: 10.1074/jbc.270.7.3216 – volume: 27 start-page: 85 year: 2018 ident: B75 article-title: CD38-NAD (+)Axis regulates immunotherapeutic anti-tumor T cell response publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.10.006 – volume: 62 start-page: 1084 year: 2013 ident: B8 article-title: Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome publication-title: Diabetes doi: 10.2337/db12-1139 – volume: 114 start-page: 8283 year: 2017 ident: B21 article-title: Cytosolic interaction of type III human CD38 with CIB1 modulates cellular cyclic ADP-ribose levels publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1703718114 – volume: 18 start-page: 1241 year: 2017 ident: B18 article-title: The nuclear receptor LXR limits bacterial infection of host macrophages through a mechanism that impacts cellular NAD Metabolism publication-title: Cell Rep doi: 10.1016/j.celrep.2017.01.007 – volume: 93 start-page: 1334 year: 2017 ident: B25 article-title: The SARM1 Toll/Interleukin-1 Receptor Domain Possesses Intrinsic NAD (+) Cleavage Activity that Promotes Pathological Axonal Degeneration publication-title: Neuron. doi: 10.1016/j.neuron.2017.02.022 – volume: 58 start-page: 50 year: 2010 ident: B12 article-title: Oxytocin-induced elevation of ADP-ribosyl cyclase activity, cyclic ADP-ribose or Ca (2+) concentrations is involved in autoregulation of oxytocin secretion in the hypothalamus and posterior pituitary in male mice publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2009.06.012 – volume: 270 start-page: 30327 year: 1995 ident: B33 article-title: ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP publication-title: J Biol Chem doi: 10.1074/jbc.270.51.30327 – volume: 5 start-page: ra67 year: 2012 ident: B19 article-title: The membrane-bound enzyme CD38 exists in two opposing orientations publication-title: Sci Signal. doi: 10.1126/scisignal.2002700 – volume: 136 start-page: 5656 year: 2014 ident: B20 article-title: Revealing CD38 cellular localization using a cell permeable, mechanism-based fluorescent small-molecule probe publication-title: J Am Chem Soc doi: 10.1021/ja411046j – volume: 129 start-page: 3294 year: 2017 ident: B98 article-title: A phase 1b study of isatuximab plus lenalidomide and dexamethasone for relapsed/refractory multiple myeloma publication-title: Blood doi: 10.1182/blood-2016-09-740787 – volume: 58 start-page: 7021 year: 2015 ident: B103 article-title: Discovery of 4-Amino-8-quinoline carboxamides as novel, submicromolar inhibitors of NAD-Hydrolyzing Enzyme CD38 publication-title: J Med Chem doi: 10.1021/acs.jmedchem.5b00992 – volume: 83 start-page: 109 year: 2009 ident: B91 article-title: Activating T regulatory cells for tolerance in early pregnancy - the contribution of seminal fluid publication-title: J Reprod Immunol doi: 10.1016/j.jri.2009.08.003 – volume: 513 start-page: 486 year: 2019 ident: B65 article-title: The NADase CD38 is induced by factors secreted from senescent cells providing a potential link between senescence and age-related cellular NAD (+) decline publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2019.03.199 – volume: 96 start-page: 837 year: 1965 ident: B54 article-title: Nicotinamide nucleotides in the erythrocytes of patients suffering from pellagra publication-title: Biochem J. doi: 10.1042/bj0960837 – volume: 7 start-page: e45234 year: 2012 ident: B48 article-title: Ectonucleotidase CD38 demarcates regulatory, memory-like CD8+ T cells with IFN-gamma-mediated suppressor activities publication-title: PLoS ONE doi: 10.1371/journal.pone.0045234 – volume: 2 start-page: 16018 year: 2016 ident: B64 article-title: The NAD World 2 publication-title: NPJ Syst Biol Appl. doi: 10.1038/npjsba.2016.18 – volume: 71 start-page: 5398 year: 2003 ident: B40 article-title: Nicotinamide ribosyl uptake mutants in Haemophilus influenzae publication-title: Infect Immun. doi: 10.1128/IAI.71.9.5398-5401.2003 – year: 2019 ident: B99 article-title: Targeting CD38 enhances the antileukemic activity of ibrutinib in chronic lymphocytic leukemia (CLL) publication-title: Clin Cancer Res. doi: 10.1158/1078-0432.ccr-18-3412. – volume: 2012 start-page: 302875 year: 2012 ident: B55 article-title: Nicotinamide, NAD (P) (H), and Methyl-Group homeostasis evolved and became a determinant of ageing diseases: hypotheses and lessons from pellagra publication-title: Curr Gerontol Geriatr Res doi: 10.1155/2012/302875 – volume: 209 start-page: 167 year: 1995 ident: B35 article-title: Enzymatic synthesis and degradation of nicotinate adenine dinucleotide phosphate (NAADP), a Ca (2+)-releasing agonist, in rat tissues publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.1995.1485 – volume: 112 start-page: 1559 year: 2015 ident: B94 article-title: Seminal CD38 is a pivotal regulator for fetomaternal tolerance publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1413493112 – volume: 21 start-page: 81 year: 2015 ident: B82 article-title: Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA publication-title: Cell Metab doi: 10.1016/j.cmet.2014.12.003 – volume: 23 start-page: 1127 year: 2016 ident: B5 article-title: CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism publication-title: Cell Metab doi: 10.1016/j.cmet.2016.05.006 – volume: 284 start-page: 27637 year: 2009 ident: B23 article-title: Structural basis for enzymatic evolution from a dedicated ADP-ribosyl cyclase to a multifunctional NAD hydrolase publication-title: J Biol Chem doi: 10.1074/jbc.M109.031005 – volume: 292 start-page: 13243 year: 2017 ident: B24 article-title: Synthesis of the Ca (2+)-mobilizing messengers NAADP and cADPR by intracellular CD38 enzyme in the mouse heart: Role in beta-adrenoceptor signaling publication-title: J Biol Chem doi: 10.1074/jbc.M117.789347 – volume: 42 start-page: 249 year: 2018 ident: B42 article-title: Blockade of CD38 diminishes lipopolysaccharide-induced macrophage classical activation and acute kidney injury involving NF-kappaB signaling suppression publication-title: Cell Signal doi: 10.1016/j.cellsig.2017.10.014 – volume: 377 start-page: 544 year: 2017 ident: B60 article-title: NAD Deficiency, Congenital Malformations, and Niacin Supplementation publication-title: N Engl J Med doi: 10.1056/NEJMoa1616361 – volume: 6 start-page: e00402 year: 2018 ident: B100 article-title: Pharmacokinetics and pharmacodynamics of the cytolytic anti-CD38 human monoclonal antibody TAK-079 in monkey - model assisted preparation for the first in human trial publication-title: Pharmacol Res Perspect doi: 10.1002/prp2.402 – volume: 79 start-page: 2285 year: 2019 ident: B78 article-title: CD38-driven mitochondrial trafficking promotes bioenergetic plasticity in multiple myeloma publication-title: Cancer Res. doi: 10.1158/0008-5472.can-18-0773 – volume: 292 start-page: C227 year: 2007 ident: B36 article-title: NAADP as a second messenger: neither CD38 nor base-exchange reaction are necessary for in vivo generation of NAADP in myometrial cells publication-title: Am J Physiol Cell Physiol doi: 10.1152/ajpcell.00638.2005 – volume: 212 start-page: 330 year: 2006 ident: B90 article-title: The role of regulatory T cells in alloantigen tolerance publication-title: Immunol Rev doi: 10.1111/j.0105-2896.2006.00408.x – volume: 128 start-page: 959 year: 2016 ident: B97 article-title: CD38 expression and complement inhibitors affect response and resistance to daratumumab therapy in myeloma publication-title: Blood doi: 10.1182/blood-2016-03-703439 – volume: 1813 start-page: 3 year: 2018 ident: B61 article-title: Vitamin B3 in health and disease: toward the second century of discovery publication-title: Methods Mol Biol doi: 10.1007/978-1-4939-8588-3_1 – volume: 288 start-page: 25938 year: 2013 ident: B69 article-title: CD73 protein as a source of extracellular precursors for sustained NAD+ biosynthesis in FK866-treated tumor cells publication-title: J Biol Chem doi: 10.1074/jbc.M113.470435 – volume: 24 start-page: 464 year: 2014 ident: B9 article-title: NAD+ and sirtuins in aging and disease publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2014.04.002 – volume: 6 start-page: 13 year: 2018 ident: B67 article-title: CD38 is methylated in prostate cancer and regulates extracellular NAD () publication-title: Cancer Metab doi: 10.1186/s40170-018-0186-3 – volume: 6 start-page: 182 year: 2012 ident: B15 article-title: The roles of oxytocin and CD38 in social or parental behaviors publication-title: Front Neurosci doi: 10.3389/fnins.2012.00182 – volume: 134 start-page: 2789 year: 1988 ident: B39 article-title: Utilization and metabolism of NAD by Haemophilus parainfluenzae publication-title: J Gen Microbiol doi: 10.1099/00221287-134-10-2789 – volume: 33 start-page: 661 year: 2011 ident: B45 article-title: Absence of CD38 delays arrival of neutrophils to the liver and innate immune response development during hepatic amoebiasis by Entamoeba histolytica publication-title: Parasite Immunol doi: 10.1111/j.1365-3024.2011.01333.x – volume: 51 start-page: 555 year: 2012 ident: B26 article-title: Catalysis-based inhibitors of the calcium signaling function of CD38 publication-title: Biochemistry doi: 10.1021/bi201509f – volume: 267 start-page: 9606 year: 1992 ident: B109 article-title: Slow-binding inhibition of NAD+ glycohydrolase by arabino analogues of beta-NAD publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)50133-8 – volume: 155 start-page: 1624 year: 2013 ident: B4 article-title: Declining NAD (+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging publication-title: Cell doi: 10.1016/j.cell.2013.11.037 – volume: 349 start-page: 353 year: 2006 ident: B2 article-title: Regulation of SIRT 1 mediated NAD dependent deacetylation: a novel role for the multifunctional enzyme CD38 publication-title: Biochem Biophys Res Commun. doi: 10.1016/j.bbrc.2006.08.066 – volume: 25 start-page: 136 year: 2018 ident: B32 article-title: Immune therapies in acute myeloid leukemia: a focus on monoclonal antibodies and immune checkpoint inhibitors publication-title: Curr Opin Hematol doi: 10.1097/moh.0000000000000401 – volume: 362 start-page: 125 year: 2002 ident: B51 article-title: CD38 is the major enzyme responsible for synthesis of nicotinic acid-adenine dinucleotide phosphate in mammalian tissues publication-title: Biochem J. doi: 10.1042/bj3620125 – volume: 22 start-page: 312 year: 2015 ident: B53 article-title: NAD (+)-SIRT1 control of H3K4 trimethylation through circadian deacetylation of MLL1 publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.2990 – volume: 23 start-page: 7498 year: 2017 ident: B74 article-title: Monocytes and Granulocytes Reduce CD38 expression levels on myeloma cells in patients treated with daratumumab publication-title: Clin Cancer Res doi: 10.1158/1078-0432.ccr-17-2027 – volume: 20 start-page: 840 year: 2014 ident: B62 article-title: A high-fat diet and NAD (+) activate Sirt1 to rescue premature aging in cockayne syndrome publication-title: Cell Metab doi: 10.1016/j.cmet.2014.10.005 – volume: 21 start-page: 3939 year: 2011 ident: B102 article-title: Flavonoids as inhibitors of human CD38 publication-title: Bioorg Med Chem Lett doi: 10.1016/j.bmcl.2011.05.022 – volume: 27 start-page: 1081 year: 2018 ident: B106 article-title: A potent and specific CD38 inhibitor ameliorates age-related metabolic dysfunction by reversing tissue NAD (+) decline publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.03.016 – volume: 17 start-page: 129 year: 2018 ident: B88 article-title: Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors publication-title: Mol Cancer doi: 10.1186/s12943-018-0864-3 – volume: 11 start-page: 535 year: 2015 ident: B63 article-title: Physiological and pathophysiological roles of NAMPT and NAD metabolism publication-title: Nat Rev Endocrinol doi: 10.1038/nrendo.2015.117 – volume: 61 start-page: 828 year: 2012 ident: B14 article-title: Social memory, amnesia, and autism: brain oxytocin secretion is regulated by NAD+ metabolites and single nucleotide polymorphisms of CD38 publication-title: Neurochem Int doi: 10.1016/j.neuint.2012.01.030 – volume: 15 start-page: 57 year: 2009 ident: B7 article-title: CD38 as a regulator of cellular NAD: a novel potential pharmacological target for metabolic conditions publication-title: Curr Pharm Des. doi: 10.2174/138161209787185788 – volume: 22 start-page: 694 year: 2016 ident: B29 article-title: Adenosine generated in the bone marrow niche through a CD38-mediated pathway correlates with progression of human myeloma publication-title: Mol Med doi: 10.2119/molmed.2016.00198 – volume: 34 start-page: 1369 year: 2011 ident: B13 article-title: CD38 gene knockout juvenile mice: a model of oxytocin signal defects in autism publication-title: Biol Pharm Bull. doi: 10.1248/bpb.34.1369 – volume: 44 start-page: 1742 year: 2016 ident: B37 article-title: A high dose of isoniazid disturbs endobiotic homeostasis in mouse liver publication-title: Drug Metab Dispos doi: 10.1124/dmd.116.070920 – volume: 303 start-page: 1007 year: 2004 ident: B79 article-title: Nanotubular highways for intercellular organelle transport publication-title: Science doi: 10.1126/science.1093133 – volume: 40 start-page: 113 year: 2019 ident: B50 article-title: Metabolic Alterations in Aging Macrophages: Ingredients for Inflammaging? publication-title: Trends Immunol. doi: 10.1016/j.it.2018.12.007 – volume: 131 start-page: 13 year: 2018 ident: B76 article-title: CD38 antibodies in multiple myeloma: back to the future publication-title: Blood. doi: 10.1182/blood-2017-06-740944 – volume: 28 start-page: 2337 year: 2017 ident: B59 article-title: Nicotinamide Mononucleotide, an NAD (+) Precursor, Rescues Age-Associated Susceptibility to AKI in a Sirtuin 1-Dependent Manner publication-title: J Am Soc Nephrol doi: 10.1681/asn.2016040385 – volume: 31 start-page: 387 year: 2013 ident: B89 article-title: Immunology of the maternal-fetal interface publication-title: Annu Rev Immunol doi: 10.1146/annurev-immunol-032712-100003 – volume: 9 start-page: 536 year: 2018 ident: B86 article-title: Regulation of PD-L1: emerging routes for targeting tumor immune evasion publication-title: Front Pharmacol doi: 10.3389/fphar.2018.00536 – volume: 20 start-page: 1000 year: 2006 ident: B17 article-title: Transcriptional regulation of CD38 expression by tumor necrosis factor-alpha in human airway smooth muscle cells: role of NF-kappaB and sensitivity to glucocorticoids publication-title: Faseb J doi: 10.1096/fj.05-4585fje – volume: 18 start-page: e12950 year: 2019 ident: B49 article-title: Targeting senescent cells alleviates obesity-induced metabolic dysfunction publication-title: Aging Cell. doi: 10.1111/acel.12950 – volume: 58 start-page: 3548 year: 2015 ident: B104 article-title: Discovery, synthesis, and biological evaluation of thiazoloquin (az)olin (on)es as potent CD38 inhibitors publication-title: J Med Chem doi: 10.1021/jm502009h – volume: 81 start-page: 4091 year: 2013 ident: B46 article-title: CD38 controls the innate immune response against Listeria monocytogenes publication-title: Infect Immun doi: 10.1128/iai.00340-13 – volume: 24 start-page: 795 year: 2016 ident: B57 article-title: Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice publication-title: Cell Metab doi: 10.1016/j.cmet.2016.09.013 – volume: 455 start-page: 62 year: 2017 ident: B58 article-title: NAD and the aging process: Role in life, death and everything in between publication-title: Mol Cell Endocrinol doi: 10.1016/j.mce.2016.11.003 – volume: 345 start-page: 1386 year: 2006 ident: B3 article-title: Regulation of intracellular levels of NAD: a novel role for CD38 publication-title: Biochem Biophys Res Commun. doi: 10.1016/j.bbrc.2006.05.042 – volume: 22 start-page: 373 year: 2010 ident: B11 article-title: Oxytocin signal and social behaviour: comparison among adult and infant oxytocin, oxytocin receptor and CD38 gene knockout mice publication-title: J Neuroendocrinol doi: 10.1111/j.1365-2826.2010.01976.x |
SSID | ssj0000493335 |
Score | 2.6157596 |
SecondaryResourceType | review_article |
Snippet | CD38 (Cluster of Differentiation 38) is a multifunctional ecto-enzyme that metabolizes NAD+ and mediates nicotinamide dinucleotide (NAD+) and extracellular... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1187 |
SubjectTerms | aging cancer CD38 Immunology metabolism NAD NADase |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOilNH1u2wQVeimsupb1sJRbsklIC-mhNJCb0GNMt2TtkngPya-vHs6yW0p76dWSbTEzQt-gme9D6L0TUkeg7AhjnhEurCM6olIiPFOcOi3bNvUOn3-RZxf886W43JD6SjVhhR64GG4GFpT2AiRQxrlora6dj1u44pQyHzJ7aaWrjWTqR8G9jDFR7iVjFqZn7WK5XKVSLv0xS2xvnUOZrv9PGPP3UsmNs-f0CXo8gkZ8WBa7ix5A9xQ9LDKSt89QiL7GuZOWtNZHFBzwiR96At3d7RLw_JipA_w1MTfhRYc_pY6QftmHUbhriufJ89dTfJgEi6bYdgGfwxCj42rh8XG5wbl5ji5OT77Nz8ionkC8qNVAONTS25g9WFbZQEHUQBW4wCFiHN2CU0xZZ1WoPGsi6qpAuNAo18jAVSVb9gLtdH0HrxCupJPKKSsVAA_xM5T7yrU16OCDt2GCZve2NH6kFk8KF1cmphjJ-iZb3yTrm2z9CfqwfuNnodX4y9yj5J71vESInR_EMDFjmJh_hckEvbt3rokbKN2K2A761Y2JGIZxFVEtnaCXxdnrXzFaU06bONJshcHWWrZHusX3TNIthRC1UK__x-LfoEfJHKVo4S3aGa5XsBex0OD2c9j_AhZOCFc priority: 102 providerName: Directory of Open Access Journals |
Title | The Multi-faceted Ecto-enzyme CD38: Roles in Immunomodulation, Cancer, Aging, and Metabolic Diseases |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31214171 https://www.proquest.com/docview/2243485661 https://pubmed.ncbi.nlm.nih.gov/PMC6555258 https://doaj.org/article/eae89c5e6e13445fa92bc87604113cd5 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZgCLQXxH3hMhmJF6Rmi-NLHCSERrcxkMYDolLfLF9OoKhNRptKlF-P7aSFosJLHhI7F5_POt_JuSH0wnBReqJsUkotTRnXJi09K025pZIRU4qqCrnDlx_FxYh9GPPx7_TofgEXO0270E9qNJ8e_fi-euM3_OtgcXp9e1xNZrNliNIqj2L37OvoRvQWhUC-nux_67gwpZR3vsqdE_fRLUpywkhBttRUrOa_i4L-HUn5h2o6v4Nu95wSn3QguIuuQX0P3ey6TK7uI-ehgGOibVpp60myw2e2bVKof65mgIenVL7Cn0JhJzyp8fuQMNLMGtf39RrgYQDGfIBPQj-jAda1w5fQevBMJxafdg6exQM0Oj_7PLxI--YKqeW5bFMGubDaGxeaZtoR4DkQCcYx8BSorMBIKrXR0mWWFp6UZcCNK6QphGMyExV9iPbqpoYDhDNhhDRSCwnAnL8NYTYzVQ6ls85ql6Dj9Voq21ceDw0wpspbIEEQKgpCBUGoKIgEvdzMuOqqbvxn7Nsgns24UC87nmjmX1S__RRokKXlIIBQxnily9xYrwgyRgi1jifo-Vq4yu-v4DTRNTTLhfIUhzLpSS9J0KNO2JtHrcGSoGILBlvvsn2lnnyNNbwF5zzn8vE_7_kE7Ydv7AIVnqK9dr6EZ57_tOYw_jfwx3djchgh_gsORAUD |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Multi-faceted+Ecto-enzyme+CD38%3A+Roles+in+Immunomodulation%2C+Cancer%2C+Aging%2C+and+Metabolic+Diseases&rft.jtitle=Frontiers+in+immunology&rft.au=Hogan%2C+Kelly+A&rft.au=Chini%2C+Claudia+C+S&rft.au=Chini%2C+Eduardo+N&rft.date=2019-05-31&rft.eissn=1664-3224&rft.volume=10&rft.spage=1187&rft_id=info:doi/10.3389%2Ffimmu.2019.01187&rft_id=info%3Apmid%2F31214171&rft.externalDocID=31214171 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon |