Dataset for Sun dynamics from topological features

The present study presents an extensive dataset meticulously curated from solar images sourced from the Solar and Heliospheric Observatory (SOHO), encompassing a range of spectral bands. This collaborative effort spans multiple disciplines and culminates in a robust and automated methodology that tr...

Full description

Saved in:
Bibliographic Details
Published inData in brief Vol. 51; p. 109728
Main Authors Tarazona-Alvarado, M., Sierra-Porta, D.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.12.2023
Elsevier
Subjects
Online AccessGet full text
ISSN2352-3409
2352-3409
DOI10.1016/j.dib.2023.109728

Cover

Abstract The present study presents an extensive dataset meticulously curated from solar images sourced from the Solar and Heliospheric Observatory (SOHO), encompassing a range of spectral bands. This collaborative effort spans multiple disciplines and culminates in a robust and automated methodology that traverses the entire spectrum from solar imaging to the computation of spectral parameters and relevant characteristics. The significance of this undertaking lies in the profound insights yielded by the dataset. Encompassing diverse spectral bands and employing topological features, the dataset captures the multifaceted dynamics of solar activity, fostering interdisciplinary correlations and analyses with other solar phenomena. Consequently, the data's intrinsic value is greatly enhanced, affording researchers in solar physics, space climatology, and related fields the means to unravel intricate processes. To achieve this, an open-source Python library script has been developed, consolidating three pivotal stages: image acquisition, image processing, and parameter calculation. Originally conceived as discrete modules, these steps have been unified into a single script, streamlining the entire process. Applying this script to various solar image types has generated multiple datasets, subsequently synthesised into a comprehensive compilation through a data mining procedures. During the image processing phase, conventional libraries like OpenCV and Python's image analysis tools were harnessed to refine images for analysis. In contrast, image acquisition utilised established URL libraries in Python, facilitating direct access to original SOHO repository images and eliminating the need for local storage. The computation of spectral parameters involved a fusion of standard Python libraries and tailored algorithms for specific attributes. This approach ensures precise computation of a diverse array of attributes crucial for comprehensive analysis of solar images.
AbstractList The present study presents an extensive dataset meticulously curated from solar images sourced from the Solar and Heliospheric Observatory (SOHO), encompassing a range of spectral bands. This collaborative effort spans multiple disciplines and culminates in a robust and automated methodology that traverses the entire spectrum from solar imaging to the computation of spectral parameters and relevant characteristics. The significance of this undertaking lies in the profound insights yielded by the dataset. Encompassing diverse spectral bands and employing topological features, the dataset captures the multifaceted dynamics of solar activity, fostering interdisciplinary correlations and analyses with other solar phenomena. Consequently, the data's intrinsic value is greatly enhanced, affording researchers in solar physics, space climatology, and related fields the means to unravel intricate processes. To achieve this, an open-source Python library script has been developed, consolidating three pivotal stages: image acquisition, image processing, and parameter calculation. Originally conceived as discrete modules, these steps have been unified into a single script, streamlining the entire process. Applying this script to various solar image types has generated multiple datasets, subsequently synthesised into a comprehensive compilation through a data mining procedures. During the image processing phase, conventional libraries like OpenCV and Python's image analysis tools were harnessed to refine images for analysis. In contrast, image acquisition utilised established URL libraries in Python, facilitating direct access to original SOHO repository images and eliminating the need for local storage. The computation of spectral parameters involved a fusion of standard Python libraries and tailored algorithms for specific attributes. This approach ensures precise computation of a diverse array of attributes crucial for comprehensive analysis of solar images.The present study presents an extensive dataset meticulously curated from solar images sourced from the Solar and Heliospheric Observatory (SOHO), encompassing a range of spectral bands. This collaborative effort spans multiple disciplines and culminates in a robust and automated methodology that traverses the entire spectrum from solar imaging to the computation of spectral parameters and relevant characteristics. The significance of this undertaking lies in the profound insights yielded by the dataset. Encompassing diverse spectral bands and employing topological features, the dataset captures the multifaceted dynamics of solar activity, fostering interdisciplinary correlations and analyses with other solar phenomena. Consequently, the data's intrinsic value is greatly enhanced, affording researchers in solar physics, space climatology, and related fields the means to unravel intricate processes. To achieve this, an open-source Python library script has been developed, consolidating three pivotal stages: image acquisition, image processing, and parameter calculation. Originally conceived as discrete modules, these steps have been unified into a single script, streamlining the entire process. Applying this script to various solar image types has generated multiple datasets, subsequently synthesised into a comprehensive compilation through a data mining procedures. During the image processing phase, conventional libraries like OpenCV and Python's image analysis tools were harnessed to refine images for analysis. In contrast, image acquisition utilised established URL libraries in Python, facilitating direct access to original SOHO repository images and eliminating the need for local storage. The computation of spectral parameters involved a fusion of standard Python libraries and tailored algorithms for specific attributes. This approach ensures precise computation of a diverse array of attributes crucial for comprehensive analysis of solar images.
The present study presents an extensive dataset meticulously curated from solar images sourced from the Solar and Heliospheric Observatory (SOHO), encompassing a range of spectral bands. This collaborative effort spans multiple disciplines and culminates in a robust and automated methodology that traverses the entire spectrum from solar imaging to the computation of spectral parameters and relevant characteristics. The significance of this undertaking lies in the profound insights yielded by the dataset. Encompassing diverse spectral bands and employing topological features, the dataset captures the multifaceted dynamics of solar activity, fostering interdisciplinary correlations and analyses with other solar phenomena. Consequently, the data's intrinsic value is greatly enhanced, affording researchers in solar physics, space climatology, and related fields the means to unravel intricate processes. To achieve this, an open-source Python library script has been developed, consolidating three pivotal stages: image acquisition, image processing, and parameter calculation. Originally conceived as discrete modules, these steps have been unified into a single script, streamlining the entire process. Applying this script to various solar image types has generated multiple datasets, subsequently synthesised into a comprehensive compilation through a data mining procedures. During the image processing phase, conventional libraries like OpenCV and Python's image analysis tools were harnessed to refine images for analysis. In contrast, image acquisition utilised established URL libraries in Python, facilitating direct access to original SOHO repository images and eliminating the need for local storage. The computation of spectral parameters involved a fusion of standard Python libraries and tailored algorithms for specific attributes. This approach ensures precise computation of a diverse array of attributes crucial for comprehensive analysis of solar images.
The present study presents an extensive dataset meticulously curated from solar images sourced from the Solar and Heliospheric Observatory (SOHO), encompassing a range of spectral bands. This collaborative effort spans multiple disciplines and culminates in a robust and automated methodology that traverses the entire spectrum from solar imaging to the computation of spectral parameters and relevant characteristics. The significance of this undertaking lies in the profound insights yielded by the dataset. Encompassing diverse spectral bands and employing topological features, the dataset captures the multifaceted dynamics of solar activity, fostering interdisciplinary correlations and analyses with other solar phenomena. Consequently, the data's intrinsic value is greatly enhanced, affording researchers in solar physics, space climatology, and related fields the means to unravel intricate processes. To achieve this, an open-source Python library script has been developed, consolidating three pivotal stages: image acquisition, image processing, and parameter calculation. Originally conceived as discrete modules, these steps have been unified into a single script, streamlining the entire process. Applying this script to various solar image types has generated multiple datasets, subsequently synthesised into a comprehensive compilation through a data mining procedures. During the image processing phase, conventional libraries like OpenCV and Python's image analysis tools were harnessed to refine images for analysis. In contrast, image acquisition utilised established URL libraries in Python, facilitating direct access to original SOHO repository images and eliminating the need for local storage. The computation of spectral parameters involved a fusion of standard Python libraries and tailored algorithms for specific attributes. This approach ensures precise computation of a diverse array of attributes crucial for comprehensive analysis of solar images.
ArticleNumber 109728
Author Tarazona-Alvarado, M.
Sierra-Porta, D.
Author_xml – sequence: 1
  givenname: M.
  orcidid: 0000-0001-9935-1094
  surname: Tarazona-Alvarado
  fullname: Tarazona-Alvarado, M.
  email: jose.tarazona6@correo.uis.edu.co
  organization: Universidad Industrial de Santander, Escuela de Física. Car 27 #9, Bucaramanga, 680001, Santander, Colombia
– sequence: 2
  givenname: D.
  orcidid: 0000-0003-3461-1347
  surname: Sierra-Porta
  fullname: Sierra-Porta, D.
  organization: Universidad Tecnológica de Bolívar, Facultad de Ciencias Básicas, Parque Industrial y Tecnológico Carlos Vélez Pombo Km 1 Vía Turbaco, Cartagena de Indias, 130010, Bolívar, Colombia
BookMark eNqNkU9v1DAQxSNUJErpB-CWI5ddPHYcx-KAUPlXqRIHercce7x45cSL7RTtt8dLKkQ5FE62x_N7evPmeXM2xxmb5iWQLRDoX--31o9bSiirbyno8KQ5p4zTDeuIPPvj_qy5zHlPCAHe1SI_b-h7XXTG0rqY2q_L3NrjrCdvcutSnNoSDzHEnTc6tA51WRLmF81Tp0PGy_vzorn9-OH26vPm5sun66t3NxvD6VA2lEMveDeMVDIYtOw4jBZ6K5yD0YHpACTQoVoDLgyyUYJzVBhmuBZWsovmepW1Ue_VIflJp6OK2qtfhZh2SqfiTUBFLBoqwGgroBv7YZDWEkoGZhk63umqRVetZT7o4w8dwm9BIOqUodqrmqE6ZajWDCv0doUOyzihNTiXpMMDJw9_Zv9N7eJd5fsOuKRV4dW9QorfF8xFTT4bDEHPGJesGHA2dJwQ8c9WOkjCelajrK2wtpoUc07o_msW8RdjfNHFx5NzHx4l36wk1lXfeUwqG4-zQesTmlKX4R-hfwL0dM5T
CitedBy_id crossref_primary_10_1016_j_ascom_2024_100857
Cites_doi 10.1007/978-94-009-0191-9_8
10.1016/j.physa.2022.128159
10.1007/s10509-022-04151-5
10.1007/s11207-011-9842-2
10.1007/s11207-011-9834-2
10.1007/BF00768758
10.1109/TSMC.1978.4309999
ContentType Journal Article
Copyright 2023 The Author(s)
2023 The Author(s).
2023 The Author(s) 2023
Copyright_xml – notice: 2023 The Author(s)
– notice: 2023 The Author(s).
– notice: 2023 The Author(s) 2023
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
7S9
L.6
5PM
ADTOC
UNPAY
DOA
DOI 10.1016/j.dib.2023.109728
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic


AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 2352-3409
ExternalDocumentID oai_doaj_org_article_0dec271cad714b6889dd02083d3ef54a
10.1016/j.dib.2023.109728
PMC10641592
10_1016_j_dib_2023_109728
S2352340923007990
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADRAZ
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IPNFZ
KQ8
M41
M48
M~E
NCXOZ
O9-
OK1
RIG
ROL
RPM
SSZ
AAFWJ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPKN
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
7X8
7S9
L.6
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c528t-25167548b29318a9451bd16d7ff1bf1c4119128352157ce3b91ff27c3c5a7d93
IEDL.DBID UNPAY
ISSN 2352-3409
IngestDate Fri Oct 03 12:42:24 EDT 2025
Sun Oct 26 04:08:44 EDT 2025
Tue Sep 30 17:11:14 EDT 2025
Fri Jul 11 12:28:12 EDT 2025
Thu Oct 02 05:52:58 EDT 2025
Thu Apr 24 23:04:38 EDT 2025
Wed Oct 01 01:45:24 EDT 2025
Sat Apr 06 16:23:54 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Space weather
Spectral features
Image processing
Sun´s dynamics
Language English
License This is an open access article under the CC BY license.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c528t-25167548b29318a9451bd16d7ff1bf1c4119128352157ce3b91ff27c3c5a7d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3461-1347
0000-0001-9935-1094
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.dib.2023.109728
PQID 2890363931
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_0dec271cad714b6889dd02083d3ef54a
unpaywall_primary_10_1016_j_dib_2023_109728
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10641592
proquest_miscellaneous_3153845007
proquest_miscellaneous_2890363931
crossref_primary_10_1016_j_dib_2023_109728
crossref_citationtrail_10_1016_j_dib_2023_109728
elsevier_sciencedirect_doi_10_1016_j_dib_2023_109728
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Data in brief
PublicationYear 2023
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Domingo, Fleck, Poland (bib0001) 1995; 72
Delaboudiniere, Artzner, Brunaud, Gabriel, Hochedez, Millier, Song, Au, Dere, Howard (bib0004) 1995
Kohl, Esser, Gardner, Habbal, Daigneau, Dennis, Nystrom, Panasyuk, Raymond, Smith (bib0005) 1995
Sierra-Porta (bib8) 2022; 607
Schou, Scherrer, Bush, Wachter, Couvidat, Rabello-Soares, Bogart, Hoeksema, Liu, Duvall (bib0002) 2012; 275
Scherrer, Schou, Bush, Kosovichev, Bogart, Hoeksema, Liu, Duvall, Zhao, Title (bib0003) 2012; 275
Tamura, Mori, Yamawaki (bib0006) 1978; 8
Sierra-Porta (bib7) 2022; 367
Sierra-Porta (10.1016/j.dib.2023.109728_bib7) 2022; 367
Domingo (10.1016/j.dib.2023.109728_bib0001) 1995; 72
Schou (10.1016/j.dib.2023.109728_bib0002) 2012; 275
Delaboudiniere (10.1016/j.dib.2023.109728_bib0004) 1995
Tamura (10.1016/j.dib.2023.109728_bib0006) 1978; 8
Scherrer (10.1016/j.dib.2023.109728_bib0003) 2012; 275
Kohl (10.1016/j.dib.2023.109728_bib0005) 1995
Sierra-Porta (10.1016/j.dib.2023.109728_bib8) 2022; 607
References_xml – volume: 275
  start-page: 229
  year: 2012
  end-page: 259
  ident: bib0002
  article-title: Design and ground calibration of the helioseismic and magnetic imager (HMI) instrument on the solar dynamics observatory (SDO)
  publication-title: Sol. Phys.
– volume: 8
  start-page: 460
  year: 1978
  end-page: 473
  ident: bib0006
  article-title: Textural features corresponding to visual perception
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 275
  start-page: 207
  year: 2012
  end-page: 227
  ident: bib0003
  article-title: The helioseismic and magnetic imager (hmi) investigation for the solar dynamics observatory (SDO)
  publication-title: Sol. Phys.
– volume: 367
  start-page: 116
  year: 2022
  ident: bib7
  article-title: On the fractal properties of cosmic rays and Sun dynamics cross-correlations
  publication-title: Astrophys. Space Sci.
– start-page: 313
  year: 1995
  end-page: 356
  ident: bib0005
  article-title: The ultraviolet coronagraph spectrometer for the solar and heliospheric observatory
  publication-title: SOHO Mission
– volume: 72
  start-page: 81
  year: 1995
  end-page: 84
  ident: bib0001
  article-title: SOHO: the solar and heliospheric observatory
  publication-title: Space Sci. Rev.
– start-page: 291
  year: 1995
  end-page: 312
  ident: bib0004
  article-title: Eit: extreme-ultraviolet imaging telescope for the SOHO mission
  publication-title: SOHO Mission
– volume: 607
  start-page: 128159
  year: 2022
  ident: bib8
  article-title: and Andy-Rafael Domínguez-Monterroza. Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis
  publication-title: Phys. A: Stat. Mech. Appl.
– start-page: 291
  year: 1995
  ident: 10.1016/j.dib.2023.109728_bib0004
  article-title: Eit: extreme-ultraviolet imaging telescope for the SOHO mission
  publication-title: SOHO Mission
  doi: 10.1007/978-94-009-0191-9_8
– volume: 607
  start-page: 128159
  year: 2022
  ident: 10.1016/j.dib.2023.109728_bib8
  article-title: and Andy-Rafael Domínguez-Monterroza. Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis
  publication-title: Phys. A: Stat. Mech. Appl.
  doi: 10.1016/j.physa.2022.128159
– start-page: 313
  year: 1995
  ident: 10.1016/j.dib.2023.109728_bib0005
  article-title: The ultraviolet coronagraph spectrometer for the solar and heliospheric observatory
– volume: 367
  start-page: 116
  issue: 12
  year: 2022
  ident: 10.1016/j.dib.2023.109728_bib7
  article-title: On the fractal properties of cosmic rays and Sun dynamics cross-correlations
  publication-title: Astrophys. Space Sci.
  doi: 10.1007/s10509-022-04151-5
– volume: 275
  start-page: 229
  year: 2012
  ident: 10.1016/j.dib.2023.109728_bib0002
  article-title: Design and ground calibration of the helioseismic and magnetic imager (HMI) instrument on the solar dynamics observatory (SDO)
  publication-title: Sol. Phys.
  doi: 10.1007/s11207-011-9842-2
– volume: 275
  start-page: 207
  year: 2012
  ident: 10.1016/j.dib.2023.109728_bib0003
  article-title: The helioseismic and magnetic imager (hmi) investigation for the solar dynamics observatory (SDO)
  publication-title: Sol. Phys.
  doi: 10.1007/s11207-011-9834-2
– volume: 72
  start-page: 81
  year: 1995
  ident: 10.1016/j.dib.2023.109728_bib0001
  article-title: SOHO: the solar and heliospheric observatory
  publication-title: Space Sci. Rev.
  doi: 10.1007/BF00768758
– volume: 8
  start-page: 460
  issue: 6
  year: 1978
  ident: 10.1016/j.dib.2023.109728_bib0006
  article-title: Textural features corresponding to visual perception
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1978.4309999
SSID ssj0001542355
Score 2.2749867
Snippet The present study presents an extensive dataset meticulously curated from solar images sourced from the Solar and Heliospheric Observatory (SOHO), encompassing...
SourceID doaj
unpaywall
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109728
SubjectTerms automation
climatology
computer software
Data
data collection
image analysis
Image processing
physics
Python
Space weather
Spectral features
Sun´s dynamics
topology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhl_ZSmrahbtOiQg994MSyJEs69hVCIb00gdyE9SJbFid0vZT8-85Y9uItJLn0asuy_c0M8wmNviHkrVQiMqN8qVzUpZBMlxoWP6UOjWsERJ9xeBr59Edzci6-X8iLWasvrAnL8sAZuKMqRF8r5tugmHCN1iYEbCzJA49JioEaVdrMFlP5fDDQBCmnbcyhoCss3CE2Cx9UG7H7-iwRDXr9W_loxjf_rZZ8sO6u25s_7XI5S0XHj8mjkUPST_nb98hO7J6QvTFKV_TdKCX9_impv7Y9pKmeAjWlP9cdDbkB_YrisRLa5w4JaCea4iDxuXpGzo6_nX05KccuCaWXte5LIChA-oV2kLiZbg3g7QJrgkqJucS8QAk3VFWD5K585M6wlGrluZetCobvk93uqovPCdUihUboKnJphEmhBawb7prEonaVjwWpJsSsHxXEsZHF0k6lYr8sgGwRZJtBLsiHzSPXWT7jrsGf0Qybgah8PVwAf7CjP9j7_KEgYjKiHUlEJgcw1eKud7-ZDG4hwHDXpO3i1XplcSeWA4_j7PYxHPOGkMC3CqK3vGXrZ7bvdIvLQc4bFuXAokxdkI8bx7ofrBf_A6yX5CFOmctzDshu_3sdXwHJ6t3rIZ7-Aqa_Isk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKOcAFtTxEoCAjceChoHVsx_YBIQpUFVK50Eq9WX6WolW2bLKC_nvGibM0VSkXromdx4xH8408_j6EnnPBAlHClcIGWTJOZCmh-Cmlr23NIPqUTaeRD77U-0fs8zE_3kCjvFU2YHtlaZf0pI6W8ze_fpy_g4B_-6dXy0PZn3TAe0LGSt5ANyFRqaTkcJDR_nBoGLAD5-Pe5lUzJ9mpJ_GfJKkLIPRyC-WtVXNmzn-a-fxCftrbQncysMTvh5WwjTZCcxdt59Bt8YvML_3yHqo-mg5yV4cBr-Kvqwb7QZW-xemsCe4G2YTkPBxDz_vZ3keHe58OP-yXWTqhdLySXQmoBSoBJi1kcyKNAidYT2ovYiQ2EscSr1uiWoOML1ygVpEYK-Go40Z4RR-gzWbRhIcISxZ9zeQsUK6Yit5I5Wtq60iCtDMXCjQbLaZdphVP6hZzPfaPfddgZJ2MrAcjF-jVesrZwKlx3eDd5Ib1wESH3V9YLE90ji4988FVgjjjBWG2lvCNPqmPUk9D5MwUiI1O1BlZDIgBHnV63bufjQ7XEHVpK8U0YbFqddqepQDuKPn7GJqSCeMAwgokJ6tl8jPTO83pt57jGyp1gFaqKtDr9cL6t7Ee_Q9jPUa30yOHnp0dtNktV-EJIK_OPu3j6TdmCCqN
  priority: 102
  providerName: Scholars Portal
Title Dataset for Sun dynamics from topological features
URI https://dx.doi.org/10.1016/j.dib.2023.109728
https://www.proquest.com/docview/2890363931
https://www.proquest.com/docview/3153845007
https://pubmed.ncbi.nlm.nih.gov/PMC10641592
https://doi.org/10.1016/j.dib.2023.109728
https://doaj.org/article/0dec271cad714b6889dd02083d3ef54a
UnpaywallVersion publishedVersion
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2352-3409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001542355
  issn: 2352-3409
  databaseCode: KQ8
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2352-3409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001542355
  issn: 2352-3409
  databaseCode: KQ8
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2352-3409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001542355
  issn: 2352-3409
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2352-3409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001542355
  issn: 2352-3409
  databaseCode: DIK
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2352-3409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001542355
  issn: 2352-3409
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2352-3409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001542355
  issn: 2352-3409
  databaseCode: AKRWK
  dateStart: 20141201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2352-3409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001542355
  issn: 2352-3409
  databaseCode: RPM
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2352-3409
  dateEnd: 20250831
  omitProxy: true
  ssIdentifier: ssj0001542355
  issn: 2352-3409
  databaseCode: M48
  dateStart: 20140801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7B7gEu0PJQU-gqSBx4KNU6tmPnuDyqiqoVglaUkxW_RGGVVk2iqvx6xnmsmgoKXCIlsZN4PKP5Jh5_A_CcC-ZILkwitJMJ40QmEoOfRNpMZwytL9dhN_L-QbZ7xD4c8-OeLDrshRmt37d5WBZD-lDjuyVbTOVtmGYcYfcEpkcHHxdf2-JxPE0oBirDquXv-o38TkvPP3I_V-Dl9eTIO015VlxeFMvlFc-zc7_L2apawsKQcPJju6n1tvl5jc7xnwa1Bvd6_BkvOoVZh1uufADrvYVX8YuehvrlQ0jfFTW6uDpGWBt_bsrYdsXrqzhsSYnrrrpCmOPYu5YetHoEhzvvD9_uJn2FhcTwVNYJghsMGJjU6PSJLHKcK21JZoX3RHtiWKB_C4xsCAyEcVTnxPtUGGp4IWxOH8OkPC3dBsSSeZsxOXeU5yz3tpC5zajOPHFSz42LYD6IX5mefTwUwViqIc3su0KhqCAU1QklglerLmcd9cZNjd-EOV01DKzZ7QWUu-qNUM2tM6kgprCCMJ1J_EYbipRSS53nrIiADRqhegDSAQt81MlN7342aI9C4wwrLkXpTptKhVVcihiQkj-3ocHnMI5YLQI5Ur3RYMZ3ypNvLRU4BvSIwPI0gtcrLf27sDb_q_UTuBvOuhyepzCpzxu3hUis1jOYLvY-fdmbtX8y8LjP5Ky3y19mOy7u
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9VAEF709EFf1HrB1AsRfPBCytns_bFeShEsgi3Up2WvtHpIS5Mg-uudTTaHpmjVxySzSXZ2hvmGnf0GoedM0ICVcJWwQVaUYVlJSH4q6bnlFLxP2XQa-eM-3zukH47YUSaLTmdhZvv3Qx2Wh5Q-9fgeyBZreR1tcAawe4E2Dvc_7XwZmsexuiKQqEy7lr8bN4s7Az3_LPxcgJeXiyNv9M2Z-fHdrFYXIs_u7bFmqx0IC1PBybftvrPb7uclOsd_mtQddCvjz3JnNJhNdC00d9Fm9vC2fJFpqF_eQ_U700GI60qAteXnvin92Ly-LdORlLIbuyukNS5jGOhB2_voYPf9wdu9KndYqByrZVcBuIGEgUoLQR9Lo2CtrMfcixixjdjRRP-WGNkAGAgXiFU4xlo44pgRXpEHaNGcNuEhKiWNnlO5DIQpqqI3UnlOLI84SLt0oUDLSf3aZfbx1ARjpacys68alKKTUvSolAK9Wg85G6k3rhJ-k9Z0LZhYs4cboHednVAvfXC1wM54ganlEv7RpyalxJMQGTUFopNF6AxARmABrzq56tvPJuvR4Jxpx8U04bRvddrFJYABCf6zDEkxhzLAagWSM9ObTWb-pDk5HqjAIaEHBKbqAr1eW-nflbX1X9KP0M10NdbwPEaL7rwPTwCJdfZp9sFf4v0rfA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dataset+for+Sun+dynamics+from+topological+features&rft.jtitle=Data+in+brief&rft.au=M.+Tarazona-Alvarado&rft.au=D.+Sierra-Porta&rft.date=2023-12-01&rft.pub=Elsevier&rft.eissn=2352-3409&rft.volume=51&rft.spage=109728&rft_id=info:doi/10.1016%2Fj.dib.2023.109728&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0dec271cad714b6889dd02083d3ef54a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-3409&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-3409&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-3409&client=summon