Dataset for Sun dynamics from topological features
The present study presents an extensive dataset meticulously curated from solar images sourced from the Solar and Heliospheric Observatory (SOHO), encompassing a range of spectral bands. This collaborative effort spans multiple disciplines and culminates in a robust and automated methodology that tr...
        Saved in:
      
    
          | Published in | Data in brief Vol. 51; p. 109728 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Inc
    
        01.12.2023
     Elsevier  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2352-3409 2352-3409  | 
| DOI | 10.1016/j.dib.2023.109728 | 
Cover
| Abstract | The present study presents an extensive dataset meticulously curated from solar images sourced from the Solar and Heliospheric Observatory (SOHO), encompassing a range of spectral bands. This collaborative effort spans multiple disciplines and culminates in a robust and automated methodology that traverses the entire spectrum from solar imaging to the computation of spectral parameters and relevant characteristics.
The significance of this undertaking lies in the profound insights yielded by the dataset. Encompassing diverse spectral bands and employing topological features, the dataset captures the multifaceted dynamics of solar activity, fostering interdisciplinary correlations and analyses with other solar phenomena. Consequently, the data's intrinsic value is greatly enhanced, affording researchers in solar physics, space climatology, and related fields the means to unravel intricate processes.
To achieve this, an open-source Python library script has been developed, consolidating three pivotal stages: image acquisition, image processing, and parameter calculation. Originally conceived as discrete modules, these steps have been unified into a single script, streamlining the entire process. Applying this script to various solar image types has generated multiple datasets, subsequently synthesised into a comprehensive compilation through a data mining procedures.
During the image processing phase, conventional libraries like OpenCV and Python's image analysis tools were harnessed to refine images for analysis. In contrast, image acquisition utilised established URL libraries in Python, facilitating direct access to original SOHO repository images and eliminating the need for local storage.
The computation of spectral parameters involved a fusion of standard Python libraries and tailored algorithms for specific attributes. This approach ensures precise computation of a diverse array of attributes crucial for comprehensive analysis of solar images. | 
    
|---|---|
| AbstractList | The present study presents an extensive dataset meticulously curated from solar images sourced from the Solar and Heliospheric Observatory (SOHO), encompassing a range of spectral bands. This collaborative effort spans multiple disciplines and culminates in a robust and automated methodology that traverses the entire spectrum from solar imaging to the computation of spectral parameters and relevant characteristics. The significance of this undertaking lies in the profound insights yielded by the dataset. Encompassing diverse spectral bands and employing topological features, the dataset captures the multifaceted dynamics of solar activity, fostering interdisciplinary correlations and analyses with other solar phenomena. Consequently, the data's intrinsic value is greatly enhanced, affording researchers in solar physics, space climatology, and related fields the means to unravel intricate processes. To achieve this, an open-source Python library script has been developed, consolidating three pivotal stages: image acquisition, image processing, and parameter calculation. Originally conceived as discrete modules, these steps have been unified into a single script, streamlining the entire process. Applying this script to various solar image types has generated multiple datasets, subsequently synthesised into a comprehensive compilation through a data mining procedures. During the image processing phase, conventional libraries like OpenCV and Python's image analysis tools were harnessed to refine images for analysis. In contrast, image acquisition utilised established URL libraries in Python, facilitating direct access to original SOHO repository images and eliminating the need for local storage. The computation of spectral parameters involved a fusion of standard Python libraries and tailored algorithms for specific attributes. This approach ensures precise computation of a diverse array of attributes crucial for comprehensive analysis of solar images.The present study presents an extensive dataset meticulously curated from solar images sourced from the Solar and Heliospheric Observatory (SOHO), encompassing a range of spectral bands. This collaborative effort spans multiple disciplines and culminates in a robust and automated methodology that traverses the entire spectrum from solar imaging to the computation of spectral parameters and relevant characteristics. The significance of this undertaking lies in the profound insights yielded by the dataset. Encompassing diverse spectral bands and employing topological features, the dataset captures the multifaceted dynamics of solar activity, fostering interdisciplinary correlations and analyses with other solar phenomena. Consequently, the data's intrinsic value is greatly enhanced, affording researchers in solar physics, space climatology, and related fields the means to unravel intricate processes. To achieve this, an open-source Python library script has been developed, consolidating three pivotal stages: image acquisition, image processing, and parameter calculation. Originally conceived as discrete modules, these steps have been unified into a single script, streamlining the entire process. Applying this script to various solar image types has generated multiple datasets, subsequently synthesised into a comprehensive compilation through a data mining procedures. During the image processing phase, conventional libraries like OpenCV and Python's image analysis tools were harnessed to refine images for analysis. In contrast, image acquisition utilised established URL libraries in Python, facilitating direct access to original SOHO repository images and eliminating the need for local storage. The computation of spectral parameters involved a fusion of standard Python libraries and tailored algorithms for specific attributes. This approach ensures precise computation of a diverse array of attributes crucial for comprehensive analysis of solar images. The present study presents an extensive dataset meticulously curated from solar images sourced from the Solar and Heliospheric Observatory (SOHO), encompassing a range of spectral bands. This collaborative effort spans multiple disciplines and culminates in a robust and automated methodology that traverses the entire spectrum from solar imaging to the computation of spectral parameters and relevant characteristics. The significance of this undertaking lies in the profound insights yielded by the dataset. Encompassing diverse spectral bands and employing topological features, the dataset captures the multifaceted dynamics of solar activity, fostering interdisciplinary correlations and analyses with other solar phenomena. Consequently, the data's intrinsic value is greatly enhanced, affording researchers in solar physics, space climatology, and related fields the means to unravel intricate processes. To achieve this, an open-source Python library script has been developed, consolidating three pivotal stages: image acquisition, image processing, and parameter calculation. Originally conceived as discrete modules, these steps have been unified into a single script, streamlining the entire process. Applying this script to various solar image types has generated multiple datasets, subsequently synthesised into a comprehensive compilation through a data mining procedures. During the image processing phase, conventional libraries like OpenCV and Python's image analysis tools were harnessed to refine images for analysis. In contrast, image acquisition utilised established URL libraries in Python, facilitating direct access to original SOHO repository images and eliminating the need for local storage. The computation of spectral parameters involved a fusion of standard Python libraries and tailored algorithms for specific attributes. This approach ensures precise computation of a diverse array of attributes crucial for comprehensive analysis of solar images. The present study presents an extensive dataset meticulously curated from solar images sourced from the Solar and Heliospheric Observatory (SOHO), encompassing a range of spectral bands. This collaborative effort spans multiple disciplines and culminates in a robust and automated methodology that traverses the entire spectrum from solar imaging to the computation of spectral parameters and relevant characteristics. The significance of this undertaking lies in the profound insights yielded by the dataset. Encompassing diverse spectral bands and employing topological features, the dataset captures the multifaceted dynamics of solar activity, fostering interdisciplinary correlations and analyses with other solar phenomena. Consequently, the data's intrinsic value is greatly enhanced, affording researchers in solar physics, space climatology, and related fields the means to unravel intricate processes. To achieve this, an open-source Python library script has been developed, consolidating three pivotal stages: image acquisition, image processing, and parameter calculation. Originally conceived as discrete modules, these steps have been unified into a single script, streamlining the entire process. Applying this script to various solar image types has generated multiple datasets, subsequently synthesised into a comprehensive compilation through a data mining procedures. During the image processing phase, conventional libraries like OpenCV and Python's image analysis tools were harnessed to refine images for analysis. In contrast, image acquisition utilised established URL libraries in Python, facilitating direct access to original SOHO repository images and eliminating the need for local storage. The computation of spectral parameters involved a fusion of standard Python libraries and tailored algorithms for specific attributes. This approach ensures precise computation of a diverse array of attributes crucial for comprehensive analysis of solar images.  | 
    
| ArticleNumber | 109728 | 
    
| Author | Tarazona-Alvarado, M. Sierra-Porta, D.  | 
    
| Author_xml | – sequence: 1 givenname: M. orcidid: 0000-0001-9935-1094 surname: Tarazona-Alvarado fullname: Tarazona-Alvarado, M. email: jose.tarazona6@correo.uis.edu.co organization: Universidad Industrial de Santander, Escuela de Física. Car 27 #9, Bucaramanga, 680001, Santander, Colombia – sequence: 2 givenname: D. orcidid: 0000-0003-3461-1347 surname: Sierra-Porta fullname: Sierra-Porta, D. organization: Universidad Tecnológica de Bolívar, Facultad de Ciencias Básicas, Parque Industrial y Tecnológico Carlos Vélez Pombo Km 1 Vía Turbaco, Cartagena de Indias, 130010, Bolívar, Colombia  | 
    
| BookMark | eNqNkU9v1DAQxSNUJErpB-CWI5ddPHYcx-KAUPlXqRIHercce7x45cSL7RTtt8dLKkQ5FE62x_N7evPmeXM2xxmb5iWQLRDoX--31o9bSiirbyno8KQ5p4zTDeuIPPvj_qy5zHlPCAHe1SI_b-h7XXTG0rqY2q_L3NrjrCdvcutSnNoSDzHEnTc6tA51WRLmF81Tp0PGy_vzorn9-OH26vPm5sun66t3NxvD6VA2lEMveDeMVDIYtOw4jBZ6K5yD0YHpACTQoVoDLgyyUYJzVBhmuBZWsovmepW1Ue_VIflJp6OK2qtfhZh2SqfiTUBFLBoqwGgroBv7YZDWEkoGZhk63umqRVetZT7o4w8dwm9BIOqUodqrmqE6ZajWDCv0doUOyzihNTiXpMMDJw9_Zv9N7eJd5fsOuKRV4dW9QorfF8xFTT4bDEHPGJesGHA2dJwQ8c9WOkjCelajrK2wtpoUc07o_msW8RdjfNHFx5NzHx4l36wk1lXfeUwqG4-zQesTmlKX4R-hfwL0dM5T | 
    
| CitedBy_id | crossref_primary_10_1016_j_ascom_2024_100857 | 
    
| Cites_doi | 10.1007/978-94-009-0191-9_8 10.1016/j.physa.2022.128159 10.1007/s10509-022-04151-5 10.1007/s11207-011-9842-2 10.1007/s11207-011-9834-2 10.1007/BF00768758 10.1109/TSMC.1978.4309999  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 The Author(s) 2023 The Author(s). 2023 The Author(s) 2023  | 
    
| Copyright_xml | – notice: 2023 The Author(s) – notice: 2023 The Author(s). – notice: 2023 The Author(s) 2023  | 
    
| DBID | 6I. AAFTH AAYXX CITATION 7X8 7S9 L.6 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1016/j.dib.2023.109728 | 
    
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic AGRICOLA  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) Physics  | 
    
| EISSN | 2352-3409 | 
    
| ExternalDocumentID | oai_doaj_org_article_0dec271cad714b6889dd02083d3ef54a 10.1016/j.dib.2023.109728 PMC10641592 10_1016_j_dib_2023_109728 S2352340923007990  | 
    
| GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE ADRAZ AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE IPNFZ KQ8 M41 M48 M~E NCXOZ O9- OK1 RIG ROL RPM SSZ AAFWJ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPKN AFPUW AIGII AKBMS AKYEP APXCP CITATION 7X8 7S9 L.6 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c528t-25167548b29318a9451bd16d7ff1bf1c4119128352157ce3b91ff27c3c5a7d93 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2352-3409 | 
    
| IngestDate | Fri Oct 03 12:42:24 EDT 2025 Sun Oct 26 04:08:44 EDT 2025 Tue Sep 30 17:11:14 EDT 2025 Fri Jul 11 12:28:12 EDT 2025 Thu Oct 02 05:52:58 EDT 2025 Thu Apr 24 23:04:38 EDT 2025 Wed Oct 01 01:45:24 EDT 2025 Sat Apr 06 16:23:54 EDT 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Space weather Spectral features Image processing Sun´s dynamics  | 
    
| Language | English | 
    
| License | This is an open access article under the CC BY license. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c528t-25167548b29318a9451bd16d7ff1bf1c4119128352157ce3b91ff27c3c5a7d93 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0003-3461-1347 0000-0001-9935-1094  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.dib.2023.109728 | 
    
| PQID | 2890363931 | 
    
| PQPubID | 23479 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0dec271cad714b6889dd02083d3ef54a unpaywall_primary_10_1016_j_dib_2023_109728 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10641592 proquest_miscellaneous_3153845007 proquest_miscellaneous_2890363931 crossref_primary_10_1016_j_dib_2023_109728 crossref_citationtrail_10_1016_j_dib_2023_109728 elsevier_sciencedirect_doi_10_1016_j_dib_2023_109728  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-12-01 | 
    
| PublicationDateYYYYMMDD | 2023-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Data in brief | 
    
| PublicationYear | 2023 | 
    
| Publisher | Elsevier Inc Elsevier  | 
    
| Publisher_xml | – name: Elsevier Inc – name: Elsevier  | 
    
| References | Domingo, Fleck, Poland (bib0001) 1995; 72 Delaboudiniere, Artzner, Brunaud, Gabriel, Hochedez, Millier, Song, Au, Dere, Howard (bib0004) 1995 Kohl, Esser, Gardner, Habbal, Daigneau, Dennis, Nystrom, Panasyuk, Raymond, Smith (bib0005) 1995 Sierra-Porta (bib8) 2022; 607 Schou, Scherrer, Bush, Wachter, Couvidat, Rabello-Soares, Bogart, Hoeksema, Liu, Duvall (bib0002) 2012; 275 Scherrer, Schou, Bush, Kosovichev, Bogart, Hoeksema, Liu, Duvall, Zhao, Title (bib0003) 2012; 275 Tamura, Mori, Yamawaki (bib0006) 1978; 8 Sierra-Porta (bib7) 2022; 367 Sierra-Porta (10.1016/j.dib.2023.109728_bib7) 2022; 367 Domingo (10.1016/j.dib.2023.109728_bib0001) 1995; 72 Schou (10.1016/j.dib.2023.109728_bib0002) 2012; 275 Delaboudiniere (10.1016/j.dib.2023.109728_bib0004) 1995 Tamura (10.1016/j.dib.2023.109728_bib0006) 1978; 8 Scherrer (10.1016/j.dib.2023.109728_bib0003) 2012; 275 Kohl (10.1016/j.dib.2023.109728_bib0005) 1995 Sierra-Porta (10.1016/j.dib.2023.109728_bib8) 2022; 607  | 
    
| References_xml | – volume: 275 start-page: 229 year: 2012 end-page: 259 ident: bib0002 article-title: Design and ground calibration of the helioseismic and magnetic imager (HMI) instrument on the solar dynamics observatory (SDO) publication-title: Sol. Phys. – volume: 8 start-page: 460 year: 1978 end-page: 473 ident: bib0006 article-title: Textural features corresponding to visual perception publication-title: IEEE Trans. Syst. Man Cybern. – volume: 275 start-page: 207 year: 2012 end-page: 227 ident: bib0003 article-title: The helioseismic and magnetic imager (hmi) investigation for the solar dynamics observatory (SDO) publication-title: Sol. Phys. – volume: 367 start-page: 116 year: 2022 ident: bib7 article-title: On the fractal properties of cosmic rays and Sun dynamics cross-correlations publication-title: Astrophys. Space Sci. – start-page: 313 year: 1995 end-page: 356 ident: bib0005 article-title: The ultraviolet coronagraph spectrometer for the solar and heliospheric observatory publication-title: SOHO Mission – volume: 72 start-page: 81 year: 1995 end-page: 84 ident: bib0001 article-title: SOHO: the solar and heliospheric observatory publication-title: Space Sci. Rev. – start-page: 291 year: 1995 end-page: 312 ident: bib0004 article-title: Eit: extreme-ultraviolet imaging telescope for the SOHO mission publication-title: SOHO Mission – volume: 607 start-page: 128159 year: 2022 ident: bib8 article-title: and Andy-Rafael Domínguez-Monterroza. Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis publication-title: Phys. A: Stat. Mech. Appl. – start-page: 291 year: 1995 ident: 10.1016/j.dib.2023.109728_bib0004 article-title: Eit: extreme-ultraviolet imaging telescope for the SOHO mission publication-title: SOHO Mission doi: 10.1007/978-94-009-0191-9_8 – volume: 607 start-page: 128159 year: 2022 ident: 10.1016/j.dib.2023.109728_bib8 article-title: and Andy-Rafael Domínguez-Monterroza. Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis publication-title: Phys. A: Stat. Mech. Appl. doi: 10.1016/j.physa.2022.128159 – start-page: 313 year: 1995 ident: 10.1016/j.dib.2023.109728_bib0005 article-title: The ultraviolet coronagraph spectrometer for the solar and heliospheric observatory – volume: 367 start-page: 116 issue: 12 year: 2022 ident: 10.1016/j.dib.2023.109728_bib7 article-title: On the fractal properties of cosmic rays and Sun dynamics cross-correlations publication-title: Astrophys. Space Sci. doi: 10.1007/s10509-022-04151-5 – volume: 275 start-page: 229 year: 2012 ident: 10.1016/j.dib.2023.109728_bib0002 article-title: Design and ground calibration of the helioseismic and magnetic imager (HMI) instrument on the solar dynamics observatory (SDO) publication-title: Sol. Phys. doi: 10.1007/s11207-011-9842-2 – volume: 275 start-page: 207 year: 2012 ident: 10.1016/j.dib.2023.109728_bib0003 article-title: The helioseismic and magnetic imager (hmi) investigation for the solar dynamics observatory (SDO) publication-title: Sol. Phys. doi: 10.1007/s11207-011-9834-2 – volume: 72 start-page: 81 year: 1995 ident: 10.1016/j.dib.2023.109728_bib0001 article-title: SOHO: the solar and heliospheric observatory publication-title: Space Sci. Rev. doi: 10.1007/BF00768758 – volume: 8 start-page: 460 issue: 6 year: 1978 ident: 10.1016/j.dib.2023.109728_bib0006 article-title: Textural features corresponding to visual perception publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1978.4309999  | 
    
| SSID | ssj0001542355 | 
    
| Score | 2.2749867 | 
    
| Snippet | The present study presents an extensive dataset meticulously curated from solar images sourced from the Solar and Heliospheric Observatory (SOHO), encompassing... | 
    
| SourceID | doaj unpaywall pubmedcentral proquest crossref elsevier  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 109728 | 
    
| SubjectTerms | automation climatology computer software Data data collection image analysis Image processing physics Python Space weather Spectral features Sun´s dynamics topology  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhl_ZSmrahbtOiQg994MSyJEs69hVCIb00gdyE9SJbFid0vZT8-85Y9uItJLn0asuy_c0M8wmNviHkrVQiMqN8qVzUpZBMlxoWP6UOjWsERJ9xeBr59Edzci6-X8iLWasvrAnL8sAZuKMqRF8r5tugmHCN1iYEbCzJA49JioEaVdrMFlP5fDDQBCmnbcyhoCss3CE2Cx9UG7H7-iwRDXr9W_loxjf_rZZ8sO6u25s_7XI5S0XHj8mjkUPST_nb98hO7J6QvTFKV_TdKCX9_impv7Y9pKmeAjWlP9cdDbkB_YrisRLa5w4JaCea4iDxuXpGzo6_nX05KccuCaWXte5LIChA-oV2kLiZbg3g7QJrgkqJucS8QAk3VFWD5K585M6wlGrluZetCobvk93uqovPCdUihUboKnJphEmhBawb7prEonaVjwWpJsSsHxXEsZHF0k6lYr8sgGwRZJtBLsiHzSPXWT7jrsGf0Qybgah8PVwAf7CjP9j7_KEgYjKiHUlEJgcw1eKud7-ZDG4hwHDXpO3i1XplcSeWA4_j7PYxHPOGkMC3CqK3vGXrZ7bvdIvLQc4bFuXAokxdkI8bx7ofrBf_A6yX5CFOmctzDshu_3sdXwHJ6t3rIZ7-Aqa_Isk priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKOcAFtTxEoCAjceChoHVsx_YBIQpUFVK50Eq9WX6WolW2bLKC_nvGibM0VSkXromdx4xH8408_j6EnnPBAlHClcIGWTJOZCmh-Cmlr23NIPqUTaeRD77U-0fs8zE_3kCjvFU2YHtlaZf0pI6W8ze_fpy_g4B_-6dXy0PZn3TAe0LGSt5ANyFRqaTkcJDR_nBoGLAD5-Pe5lUzJ9mpJ_GfJKkLIPRyC-WtVXNmzn-a-fxCftrbQncysMTvh5WwjTZCcxdt59Bt8YvML_3yHqo-mg5yV4cBr-Kvqwb7QZW-xemsCe4G2YTkPBxDz_vZ3keHe58OP-yXWTqhdLySXQmoBSoBJi1kcyKNAidYT2ovYiQ2EscSr1uiWoOML1ygVpEYK-Go40Z4RR-gzWbRhIcISxZ9zeQsUK6Yit5I5Wtq60iCtDMXCjQbLaZdphVP6hZzPfaPfddgZJ2MrAcjF-jVesrZwKlx3eDd5Ib1wESH3V9YLE90ji4988FVgjjjBWG2lvCNPqmPUk9D5MwUiI1O1BlZDIgBHnV63bufjQ7XEHVpK8U0YbFqddqepQDuKPn7GJqSCeMAwgokJ6tl8jPTO83pt57jGyp1gFaqKtDr9cL6t7Ee_Q9jPUa30yOHnp0dtNktV-EJIK_OPu3j6TdmCCqN priority: 102 providerName: Scholars Portal  | 
    
| Title | Dataset for Sun dynamics from topological features | 
    
| URI | https://dx.doi.org/10.1016/j.dib.2023.109728 https://www.proquest.com/docview/2890363931 https://www.proquest.com/docview/3153845007 https://pubmed.ncbi.nlm.nih.gov/PMC10641592 https://doi.org/10.1016/j.dib.2023.109728 https://doaj.org/article/0dec271cad714b6889dd02083d3ef54a  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 51 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2352-3409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001542355 issn: 2352-3409 databaseCode: KQ8 dateStart: 20140101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2352-3409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001542355 issn: 2352-3409 databaseCode: KQ8 dateStart: 20141201 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2352-3409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001542355 issn: 2352-3409 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2352-3409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001542355 issn: 2352-3409 databaseCode: DIK dateStart: 20141201 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2352-3409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001542355 issn: 2352-3409 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2352-3409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001542355 issn: 2352-3409 databaseCode: AKRWK dateStart: 20141201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2352-3409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001542355 issn: 2352-3409 databaseCode: RPM dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2352-3409 dateEnd: 20250831 omitProxy: true ssIdentifier: ssj0001542355 issn: 2352-3409 databaseCode: M48 dateStart: 20140801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7B7gEu0PJQU-gqSBx4KNU6tmPnuDyqiqoVglaUkxW_RGGVVk2iqvx6xnmsmgoKXCIlsZN4PKP5Jh5_A_CcC-ZILkwitJMJ40QmEoOfRNpMZwytL9dhN_L-QbZ7xD4c8-OeLDrshRmt37d5WBZD-lDjuyVbTOVtmGYcYfcEpkcHHxdf2-JxPE0oBirDquXv-o38TkvPP3I_V-Dl9eTIO015VlxeFMvlFc-zc7_L2apawsKQcPJju6n1tvl5jc7xnwa1Bvd6_BkvOoVZh1uufADrvYVX8YuehvrlQ0jfFTW6uDpGWBt_bsrYdsXrqzhsSYnrrrpCmOPYu5YetHoEhzvvD9_uJn2FhcTwVNYJghsMGJjU6PSJLHKcK21JZoX3RHtiWKB_C4xsCAyEcVTnxPtUGGp4IWxOH8OkPC3dBsSSeZsxOXeU5yz3tpC5zajOPHFSz42LYD6IX5mefTwUwViqIc3su0KhqCAU1QklglerLmcd9cZNjd-EOV01DKzZ7QWUu-qNUM2tM6kgprCCMJ1J_EYbipRSS53nrIiADRqhegDSAQt81MlN7342aI9C4wwrLkXpTptKhVVcihiQkj-3ocHnMI5YLQI5Ur3RYMZ3ypNvLRU4BvSIwPI0gtcrLf27sDb_q_UTuBvOuhyepzCpzxu3hUis1jOYLvY-fdmbtX8y8LjP5Ky3y19mOy7u | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9VAEF709EFf1HrB1AsRfPBCytns_bFeShEsgi3Up2WvtHpIS5Mg-uudTTaHpmjVxySzSXZ2hvmGnf0GoedM0ICVcJWwQVaUYVlJSH4q6bnlFLxP2XQa-eM-3zukH47YUSaLTmdhZvv3Qx2Wh5Q-9fgeyBZreR1tcAawe4E2Dvc_7XwZmsexuiKQqEy7lr8bN4s7Az3_LPxcgJeXiyNv9M2Z-fHdrFYXIs_u7bFmqx0IC1PBybftvrPb7uclOsd_mtQddCvjz3JnNJhNdC00d9Fm9vC2fJFpqF_eQ_U700GI60qAteXnvin92Ly-LdORlLIbuyukNS5jGOhB2_voYPf9wdu9KndYqByrZVcBuIGEgUoLQR9Lo2CtrMfcixixjdjRRP-WGNkAGAgXiFU4xlo44pgRXpEHaNGcNuEhKiWNnlO5DIQpqqI3UnlOLI84SLt0oUDLSf3aZfbx1ARjpacys68alKKTUvSolAK9Wg85G6k3rhJ-k9Z0LZhYs4cboHednVAvfXC1wM54ganlEv7RpyalxJMQGTUFopNF6AxARmABrzq56tvPJuvR4Jxpx8U04bRvddrFJYABCf6zDEkxhzLAagWSM9ObTWb-pDk5HqjAIaEHBKbqAr1eW-nflbX1X9KP0M10NdbwPEaL7rwPTwCJdfZp9sFf4v0rfA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dataset+for+Sun+dynamics+from+topological+features&rft.jtitle=Data+in+brief&rft.au=M.+Tarazona-Alvarado&rft.au=D.+Sierra-Porta&rft.date=2023-12-01&rft.pub=Elsevier&rft.eissn=2352-3409&rft.volume=51&rft.spage=109728&rft_id=info:doi/10.1016%2Fj.dib.2023.109728&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0dec271cad714b6889dd02083d3ef54a | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-3409&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-3409&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-3409&client=summon |