Synaptic gene dysregulation within hippocampal CA1 pyramidal neurons in mild cognitive impairment

Clinical neuropathologic studies suggest that the selective vulnerability of hippocampal CA1 pyramidal projection neurons plays a key role in the onset of cognitive impairment during the early phases of Alzheimer's disease (AD). Disruption of this neuronal population likely affects hippocampal...

Full description

Saved in:
Bibliographic Details
Published inNeuropharmacology Vol. 79; pp. 172 - 179
Main Authors Counts, Scott E., Alldred, Melissa J., Che, Shaoli, Ginsberg, Stephen D., Mufson, Elliott J.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.04.2014
Subjects
Online AccessGet full text
ISSN0028-3908
1873-7064
1873-7064
DOI10.1016/j.neuropharm.2013.10.018

Cover

Abstract Clinical neuropathologic studies suggest that the selective vulnerability of hippocampal CA1 pyramidal projection neurons plays a key role in the onset of cognitive impairment during the early phases of Alzheimer's disease (AD). Disruption of this neuronal population likely affects hippocampal pre- and postsynaptic efficacy underlying episodic memory circuits. Therefore, identifying perturbations in the expression of synaptic gene products within CA1 neurons prior to frank AD is crucial for the development of disease modifying therapies. Here we used custom-designed microarrays to examine progressive alterations in synaptic gene expression within CA1 neurons in cases harvested from the Rush Religious Orders Study who died with a clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI, a putative prodromal AD stage), or mild/moderate AD. Quantitative analysis revealed that 21 out of 28 different transcripts encoding regulators of synaptic function were significantly downregulated (1.4–1.8 fold) in CA1 neurons in MCI and AD compared to NCI, whereas synaptic transcript levels were not significantly different between MCI and AD. The downregulated transcripts encoded regulators of presynaptic vesicle trafficking, including synaptophysin and synaptogyrin, regulators of vesicle docking and fusion/release, such as synaptotagmin and syntaxin 1, and regulators of glutamatergic postsynaptic function, including PSD-95 and synaptopodin. Clinical pathologic correlation analysis revealed that downregulation of these synaptic markers was strongly associated with poorer antemortem cognitive status and postmortem AD pathological criteria such as Braak stage, NIA-Reagan, and CERAD diagnosis. In contrast to the widespread loss of synaptic gene expression observed in CA1 neurons in MCI, transcripts encoding β-amyloid precursor protein (APP), APP family members, and regulators of APP metabolism were not differentially regulated in CA1 neurons across the clinical diagnostic groups. Taken together, these data suggest that CA1 synaptic gene dysregulation occurs early in the cascade of pathogenic molecular events prior to the onset of AD, which may form the basis for novel pharmacological treatment approaches for this dementing disorder. This article is part of a Special Issue entitled ‘Neurodegenerative Disorders’. •Hippocampal CA1 neurons display widespread synaptic gene downregulation in MCI and AD.•Genes encoding APP and APP family members were unaffected in MCI and AD.•Synaptic mRNA levels correlate with poorer cognition and increased AD pathology.•CA1 synaptic dysregulation is a very early pathogenic event in AD.
AbstractList Clinical neuropathologic studies suggest that the selective vulnerability of hippocampal CA1 pyramidal projection neurons plays a key role in the onset of cognitive impairment during the early phases of Alzheimer's disease (AD). Disruption of this neuronal population likely affects hippocampal pre- and postsynaptic efficacy underlying episodic memory circuits. Therefore, identifying perturbations in the expression of synaptic gene products within CA1 neurons prior to frank AD is crucial for the development of disease modifying therapies. Here we used custom-designed microarrays to examine progressive alterations in synaptic gene expression within CA1 neurons in cases harvested from the Rush Religious Orders Study who died with a clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI, a putative prodromal AD stage), or mild/moderate AD. Quantitative analysis revealed that 21 out of 28 different transcripts encoding regulators of synaptic function were significantly downregulated (1.4–1.8 fold) in CA1 neurons in MCI and AD compared to NCI, whereas synaptic transcript levels were not significantly different between MCI and AD. The downregulated transcripts encoded regulators of presynaptic vesicle trafficking, including synaptophysin and synaptogyrin, regulators of vesicle docking and fusion/release, such as synaptotagmin and syntaxin 1, and regulators of glutamatergic postsynaptic function, including PSD-95 and synaptopodin. Clinical pathologic correlation analysis revealed that downregulation of these synaptic markers was strongly associated with poorer antemortem cognitive status and postmortem AD pathological criteria such as Braak stage, NIA-Reagan, and CERAD diagnosis. In contrast to the widespread loss of synaptic gene expression observed in CA1 neurons in MCI, transcripts encoding β-amyloid precursor protein (APP), APP family members, and regulators of APP metabolism were not differentially regulated in CA1 neurons across the clinical diagnostic groups. Taken together, these data suggest that CA1 synaptic gene dysregulation occurs early in the cascade of pathogenic molecular events prior to the onset of AD, which may form the basis for novel pharmacological treatment approaches for this dementing disorder. This article is part of a Special Issue entitled ‘Neurodegenerative Disorders’. •Hippocampal CA1 neurons display widespread synaptic gene downregulation in MCI and AD.•Genes encoding APP and APP family members were unaffected in MCI and AD.•Synaptic mRNA levels correlate with poorer cognition and increased AD pathology.•CA1 synaptic dysregulation is a very early pathogenic event in AD.
Clinical neuropathologic studies suggest that the selective vulnerability of hippocampal CA1 pyramidal projection neurons plays a key role in the onset of cognitive impairment during the early phases of Alzheimer's disease (AD). Disruption of this neuronal population likely affects hippocampal pre- and postsynaptic efficacy underlying episodic memory circuits. Therefore, identifying perturbations in the expression of synaptic gene products within CA1 neurons prior to frank AD is crucial for the development of disease modifying therapies. Here we used custom-designed microarrays to examine progressive alterations in synaptic gene expression within CA1 neurons in cases harvested from the Rush Religious Orders Study who died with a clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI, a putative prodromal AD stage), or mild/moderate AD. Quantitative analysis revealed that 21 out of 28 different transcripts encoding regulators of synaptic function were significantly downregulated (1.4-1.8 fold) in CA1 neurons in MCI and AD compared to NCI, whereas synaptic transcript levels were not significantly different between MCI and AD. The downregulated transcripts encoded regulators of presynaptic vesicle trafficking, including synaptophysin and synaptogyrin, regulators of vesicle docking and fusion/release, such as synaptotagmin and syntaxin 1, and regulators of glutamatergic postsynaptic function, including PSD-95 and synaptopodin. Clinical pathologic correlation analysis revealed that downregulation of these synaptic markers was strongly associated with poorer antemortem cognitive status and postmortem AD pathological criteria such as Braak stage, NIA-Reagan, and CERAD diagnosis. In contrast to the widespread loss of synaptic gene expression observed in CA1 neurons in MCI, transcripts encoding beta -amyloid precursor protein (APP), APP family members, and regulators of APP metabolism were not differentially regulated in CA1 neurons across the clinical diagnostic groups. Taken together, these data suggest that CA1 synaptic gene dysregulation occurs early in the cascade of pathogenic molecular events prior to the onset of AD, which may form the basis for novel pharmacological treatment approaches for this dementing disorder.
Clinical neuropathologic studies suggest that the selective vulnerability of hippocampal CA1 pyramidal projection neurons plays a key role in the onset of cognitive impairment during the early phases of Alzheimer’s disease (AD). Disruption of this neuronal population likely affects hippocampal pre- and postsynaptic efficacy underlying episodic memory circuits. Therefore, identifying perturbations in the expression of synaptic gene products within CA1 neurons prior to frank AD is crucial for the development of disease modifying therapies. Here we used custom-designed microarrays to examine progressive alterations in synaptic gene expression within CA1 neurons in cases harvested from the Rush Religious Orders Study who died with a clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI, a putative prodromal AD stage), or mild/moderate AD. Quantitative analysis revealed that 21 out of 28 different transcripts encoding regulators of synaptic function were significantly downregulated (1.4 to 1.8 fold) in CA1 neurons in MCI and AD compared to NCI, whereas synaptic transcript levels were not significantly different between MCI and AD. The downregulated transcripts encoded regulators of presynaptic vesicle trafficking, including synaptophysin and synaptogyrin, regulators of vesicle docking and fusion/release, such as synaptotagmin and syntaxin 1, and regulators of glutamatergic postsynaptic function, including PSD-95 and synaptopodin. Clinical pathologic correlation analysis revealed that downregulation of these synaptic markers was strongly associated with poorer antemortem cognitive status and postmortem AD pathological criteria such as Braak stage, NIA-Reagan, and CERAD diagnosis. In contrast to the widespread loss of synaptic gene expression observed in CA1 neurons in MCI, transcripts encoding β-amyloid precursor protein (APP), APP family members, and regulators of APP metabolism were not differentially regulated in CA1 neurons across the clinical diagnostic groups. Taken together, these data suggest that CA1 synaptic gene dysregulation occurs early in the cascade of pathogenic molecular events prior to the onset of AD, which may form the basis for novel pharmacological treatment approaches for this dementing disorder.
Clinical neuropathologic studies suggest that the selective vulnerability of hippocampal CA1 pyramidal projection neurons plays a key role in the onset of cognitive impairment during the early phases of Alzheimer's disease (AD). Disruption of this neuronal population likely affects hippocampal pre- and postsynaptic efficacy underlying episodic memory circuits. Therefore, identifying perturbations in the expression of synaptic gene products within CA1 neurons prior to frank AD is crucial for the development of disease modifying therapies. Here we used custom-designed microarrays to examine progressive alterations in synaptic gene expression within CA1 neurons in cases harvested from the Rush Religious Orders Study who died with a clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI, a putative prodromal AD stage), or mild/moderate AD. Quantitative analysis revealed that 21 out of 28 different transcripts encoding regulators of synaptic function were significantly downregulated (1.4-1.8 fold) in CA1 neurons in MCI and AD compared to NCI, whereas synaptic transcript levels were not significantly different between MCI and AD. The downregulated transcripts encoded regulators of presynaptic vesicle trafficking, including synaptophysin and synaptogyrin, regulators of vesicle docking and fusion/release, such as synaptotagmin and syntaxin 1, and regulators of glutamatergic postsynaptic function, including PSD-95 and synaptopodin. Clinical pathologic correlation analysis revealed that downregulation of these synaptic markers was strongly associated with poorer antemortem cognitive status and postmortem AD pathological criteria such as Braak stage, NIA-Reagan, and CERAD diagnosis. In contrast to the widespread loss of synaptic gene expression observed in CA1 neurons in MCI, transcripts encoding β-amyloid precursor protein (APP), APP family members, and regulators of APP metabolism were not differentially regulated in CA1 neurons across the clinical diagnostic groups. Taken together, these data suggest that CA1 synaptic gene dysregulation occurs early in the cascade of pathogenic molecular events prior to the onset of AD, which may form the basis for novel pharmacological treatment approaches for this dementing disorder. This article is part of a Special Issue entitled 'Neurodegenerative Disorders'.
Clinical neuropathologic studies suggest that the selective vulnerability of hippocampal CA1 pyramidal projection neurons plays a key role in the onset of cognitive impairment during the early phases of Alzheimer's disease (AD). Disruption of this neuronal population likely affects hippocampal pre- and postsynaptic efficacy underlying episodic memory circuits. Therefore, identifying perturbations in the expression of synaptic gene products within CA1 neurons prior to frank AD is crucial for the development of disease modifying therapies. Here we used custom-designed microarrays to examine progressive alterations in synaptic gene expression within CA1 neurons in cases harvested from the Rush Religious Orders Study who died with a clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI, a putative prodromal AD stage), or mild/moderate AD. Quantitative analysis revealed that 21 out of 28 different transcripts encoding regulators of synaptic function were significantly downregulated (1.4-1.8 fold) in CA1 neurons in MCI and AD compared to NCI, whereas synaptic transcript levels were not significantly different between MCI and AD. The downregulated transcripts encoded regulators of presynaptic vesicle trafficking, including synaptophysin and synaptogyrin, regulators of vesicle docking and fusion/release, such as synaptotagmin and syntaxin 1, and regulators of glutamatergic postsynaptic function, including PSD-95 and synaptopodin. Clinical pathologic correlation analysis revealed that downregulation of these synaptic markers was strongly associated with poorer antemortem cognitive status and postmortem AD pathological criteria such as Braak stage, NIA-Reagan, and CERAD diagnosis. In contrast to the widespread loss of synaptic gene expression observed in CA1 neurons in MCI, transcripts encoding β-amyloid precursor protein (APP), APP family members, and regulators of APP metabolism were not differentially regulated in CA1 neurons across the clinical diagnostic groups. Taken together, these data suggest that CA1 synaptic gene dysregulation occurs early in the cascade of pathogenic molecular events prior to the onset of AD, which may form the basis for novel pharmacological treatment approaches for this dementing disorder. This article is part of a Special Issue entitled 'Neurodegenerative Disorders'.Clinical neuropathologic studies suggest that the selective vulnerability of hippocampal CA1 pyramidal projection neurons plays a key role in the onset of cognitive impairment during the early phases of Alzheimer's disease (AD). Disruption of this neuronal population likely affects hippocampal pre- and postsynaptic efficacy underlying episodic memory circuits. Therefore, identifying perturbations in the expression of synaptic gene products within CA1 neurons prior to frank AD is crucial for the development of disease modifying therapies. Here we used custom-designed microarrays to examine progressive alterations in synaptic gene expression within CA1 neurons in cases harvested from the Rush Religious Orders Study who died with a clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI, a putative prodromal AD stage), or mild/moderate AD. Quantitative analysis revealed that 21 out of 28 different transcripts encoding regulators of synaptic function were significantly downregulated (1.4-1.8 fold) in CA1 neurons in MCI and AD compared to NCI, whereas synaptic transcript levels were not significantly different between MCI and AD. The downregulated transcripts encoded regulators of presynaptic vesicle trafficking, including synaptophysin and synaptogyrin, regulators of vesicle docking and fusion/release, such as synaptotagmin and syntaxin 1, and regulators of glutamatergic postsynaptic function, including PSD-95 and synaptopodin. Clinical pathologic correlation analysis revealed that downregulation of these synaptic markers was strongly associated with poorer antemortem cognitive status and postmortem AD pathological criteria such as Braak stage, NIA-Reagan, and CERAD diagnosis. In contrast to the widespread loss of synaptic gene expression observed in CA1 neurons in MCI, transcripts encoding β-amyloid precursor protein (APP), APP family members, and regulators of APP metabolism were not differentially regulated in CA1 neurons across the clinical diagnostic groups. Taken together, these data suggest that CA1 synaptic gene dysregulation occurs early in the cascade of pathogenic molecular events prior to the onset of AD, which may form the basis for novel pharmacological treatment approaches for this dementing disorder. This article is part of a Special Issue entitled 'Neurodegenerative Disorders'.
Author Mufson, Elliott J.
Ginsberg, Stephen D.
Che, Shaoli
Alldred, Melissa J.
Counts, Scott E.
AuthorAffiliation 3 Department of Psychiatry, New York University School of Medicine, Orangeburg, New York, USA
4 Department of Physiology and Neuroscience, New York University School of Medicine, Orangeburg, New York, USA
2 Center for Dementia Research, Nathan Kline Institute, New York University School of Medicine, Orangeburg, New York, USA
1 Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
AuthorAffiliation_xml – name: 1 Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
– name: 4 Department of Physiology and Neuroscience, New York University School of Medicine, Orangeburg, New York, USA
– name: 2 Center for Dementia Research, Nathan Kline Institute, New York University School of Medicine, Orangeburg, New York, USA
– name: 3 Department of Psychiatry, New York University School of Medicine, Orangeburg, New York, USA
Author_xml – sequence: 1
  givenname: Scott E.
  surname: Counts
  fullname: Counts, Scott E.
  email: scott.counts@hc.msu.edu
  organization: Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
– sequence: 2
  givenname: Melissa J.
  surname: Alldred
  fullname: Alldred, Melissa J.
  organization: Center for Dementia Research, Nathan Kline Institute, New York University School of Medicine, Orangeburg, NY, USA
– sequence: 3
  givenname: Shaoli
  surname: Che
  fullname: Che, Shaoli
  organization: Center for Dementia Research, Nathan Kline Institute, New York University School of Medicine, Orangeburg, NY, USA
– sequence: 4
  givenname: Stephen D.
  surname: Ginsberg
  fullname: Ginsberg, Stephen D.
  organization: Center for Dementia Research, Nathan Kline Institute, New York University School of Medicine, Orangeburg, NY, USA
– sequence: 5
  givenname: Elliott J.
  surname: Mufson
  fullname: Mufson, Elliott J.
  email: emufson@rush.edu
  organization: Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24445080$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v1DAQhi1URLeFv4B85LLL-COJc0EqK76kShzK3XKdye6sEjs4yaL993i7ZQsnerLsefx6xs8VuwgxIGNcwEqAKN_vVgHnFIetS_1KglD5eAXCvGALYSq1rKDUF2wBIM1S1WAu2dU47gBAG2FesUuptS7AwIK5u0Nww0SebzAgbw5jws3cuYli4L9o2lLgWxqG6F0_uI6vbwQfDsn11OTdQxdh5BnqqWu4j5tAE-2RU6Yp9Rim1-xl67oR3zyu1-zu86cf66_L2-9fvq1vbpe-kGZaCiyFcdhKfV_mRZS-aJtGmbKUrgGna-XBCFX4CtpalSUaVXttnNMeaqWu2YdT6jDf99j4_HBynR0S9S4dbHRk_60E2tpN3FtVFwLqOge8ewxI8eeM42R7Gj12nQsY59GKQoKqjFTVM1DQGZfyiL79u61zP38EZMCcAJ_imP--PSMC7NG13dkn1_bo-ljJrp9GPl_1ND2IywNS95yAj6cAzFr2hMmOnjB4bCihn2wT6f8hvwGs_88h
CitedBy_id crossref_primary_10_1136_jnnp_2021_328646
crossref_primary_10_1093_braincomms_fcac162
crossref_primary_10_1007_s00429_014_0848_z
crossref_primary_10_1155_2017_2652560
crossref_primary_10_4252_wjsc_v12_i8_787
crossref_primary_10_1523_JNEUROSCI_2920_18_2019
crossref_primary_10_1093_jnen_nlz023
crossref_primary_10_3389_fnins_2019_00820
crossref_primary_10_1177_0271678X231153730
crossref_primary_10_1007_s00401_019_01965_6
crossref_primary_10_1186_s13041_016_0210_x
crossref_primary_10_1038_s41598_019_52324_0
crossref_primary_10_1074_jbc_M116_773820
crossref_primary_10_1134_S2079059715060118
crossref_primary_10_2174_1386207326666230606114448
crossref_primary_10_1186_s13195_018_0407_6
crossref_primary_10_3389_fncel_2019_00545
crossref_primary_10_1007_s00429_014_0839_0
crossref_primary_10_1074_mcp_RA118_001290
crossref_primary_10_1007_s12031_020_01747_w
crossref_primary_10_1007_s10103_017_2156_3
crossref_primary_10_1186_s40478_014_0135_5
crossref_primary_10_3233_JAD_210031
crossref_primary_10_1186_s12964_023_01072_w
crossref_primary_10_1111_epi_17746
crossref_primary_10_1074_mcp_RA119_001737
crossref_primary_10_1016_j_nbd_2024_106785
crossref_primary_10_1016_j_semcdb_2022_05_007
crossref_primary_10_3389_fnins_2015_00430
crossref_primary_10_7554_eLife_62944
crossref_primary_10_1016_j_neuropharm_2020_108042
crossref_primary_10_1007_s10571_019_00695_3
crossref_primary_10_1016_j_neurobiolaging_2016_02_031
crossref_primary_10_1515_revneuro_2019_0058
crossref_primary_10_1016_j_expneurol_2019_03_016
crossref_primary_10_1038_s42003_021_02792_w
crossref_primary_10_1136_jnnp_2020_324306
crossref_primary_10_3389_fnmol_2017_00043
crossref_primary_10_1016_j_neurobiolaging_2014_03_031
crossref_primary_10_1016_j_bbr_2016_05_030
crossref_primary_10_3390_ijms23063349
crossref_primary_10_1002_hipo_22832
crossref_primary_10_1007_s12035_018_0974_3
crossref_primary_10_1016_j_expneurol_2014_04_033
crossref_primary_10_1186_s40478_023_01552_7
crossref_primary_10_1186_s40478_022_01324_9
crossref_primary_10_1007_s11011_023_01257_9
crossref_primary_10_1177_13872877251326879
crossref_primary_10_1016_j_arr_2014_09_004
crossref_primary_10_1016_j_celrep_2025_115422
crossref_primary_10_3389_fphar_2024_1386224
crossref_primary_10_1007_s12035_019_1475_8
crossref_primary_10_3389_fncir_2023_1223891
crossref_primary_10_1007_s11064_021_03233_0
crossref_primary_10_1002_cne_23663
crossref_primary_10_1007_s00726_019_02810_6
crossref_primary_10_1186_s12906_015_0656_x
crossref_primary_10_1007_s12035_019_01671_0
crossref_primary_10_1021_acschemneuro_1c00648
crossref_primary_10_3390_biomedicines11020355
crossref_primary_10_1093_jnen_nlw109
crossref_primary_10_3389_fnagi_2022_858162
crossref_primary_10_1007_s11011_021_00673_z
crossref_primary_10_1007_s11064_025_04353_7
crossref_primary_10_1002_adma_202110194
crossref_primary_10_1016_j_neuroscience_2014_09_041
crossref_primary_10_3389_fcell_2023_1117454
crossref_primary_10_3389_fncel_2015_00318
crossref_primary_10_1093_brain_awaa406
crossref_primary_10_2174_1567205016666190730155926
crossref_primary_10_1002_alz_70019
crossref_primary_10_3390_cells12010013
crossref_primary_10_1038_mp_2016_186
crossref_primary_10_3390_ijms222111637
crossref_primary_10_1016_j_neuroscience_2015_03_006
crossref_primary_10_1016_j_bbi_2024_07_021
crossref_primary_10_3233_JAD_170237
crossref_primary_10_1002_glia_23174
crossref_primary_10_1080_15548627_2019_1580096
crossref_primary_10_1111_ejn_13792
crossref_primary_10_4103_1673_5374_230292
crossref_primary_10_1186_s13195_025_01704_y
crossref_primary_10_1111_bpa_13114
crossref_primary_10_1016_j_jpha_2024_101057
crossref_primary_10_1016_j_nbd_2018_05_021
crossref_primary_10_1093_sleep_zsac246
crossref_primary_10_2139_ssrn_4126599
crossref_primary_10_1016_j_celrep_2023_112717
crossref_primary_10_1371_journal_pone_0250278
crossref_primary_10_4103_1673_5374_235292
crossref_primary_10_1097_WNR_0000000000000260
crossref_primary_10_1038_s41380_025_02901_9
crossref_primary_10_1096_fj_202200184RR
crossref_primary_10_1007_s12576_019_00664_x
crossref_primary_10_1111_jnc_15525
crossref_primary_10_1111_nan_12252
crossref_primary_10_1002_alz_12481
crossref_primary_10_1523_JNEUROSCI_1996_20_2020
Cites_doi 10.1126/science.6474172
10.1001/archneur.58.12.1985
10.1002/1531-8249(200007)48:1<77::AID-ANA12>3.0.CO;2-A
10.1523/JNEUROSCI.21-21-08310.2001
10.3233/JAD-2005-7203
10.1016/0197-4580(93)90113-P
10.1523/JNEUROSCI.3269-07.2007
10.1007/BF00308809
10.1016/j.jalz.2011.10.007
10.1073/pnas.1832384100
10.1073/pnas.0308512100
10.1016/j.jneumeth.2008.10.027
10.1001/archneur.64.12.1771
10.1006/exnr.1999.7086
10.1038/nrn1685
10.1016/0006-8993(91)90493-F
10.1097/NEN.0b013e31818fc72f
10.1097/00005072-200606000-00007
10.1016/j.biopsych.2010.05.030
10.1093/brain/awq258
10.1023/A:1020952704398
10.1016/j.ajpath.2011.07.044
10.1007/978-1-59745-188-8_10
10.1016/j.ymeth.2005.09.003
10.1016/j.nbd.2011.07.013
10.1159/000333122
10.1016/j.jchemneu.2011.06.007
10.1212/WNL.59.2.198
10.1212/01.wnl.0000260698.46517.8f
10.1212/01.wnl.0000256697.20968.d7
10.1212/WNL.41.4.479
10.1016/j.neurobiolaging.2005.09.012
10.3233/JAD-2009-1196
10.1371/journal.pone.0004936
10.1016/j.neurobiolaging.2012.11.024
10.1002/ana.410410211
10.1146/annurev.neuro.26.041002.131445
10.1111/j.1471-4159.2004.02888.x
10.1016/0197-4580(95)00035-D
10.1002/jnr.22227
10.1016/j.nbd.2011.10.022
10.1212/WNL.34.7.939
10.1002/jnr.10351
10.1016/j.neurobiolaging.2008.05.013
10.1038/labinvest.3700005
10.1523/JNEUROSCI.07-11-03474.1987
10.1016/S0079-6123(07)63040-4
ContentType Journal Article
Copyright 2013 Elsevier Ltd
Copyright © 2013 Elsevier Ltd. All rights reserved.
2013 Elsevier Ltd. All rights reserved. 2013
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: Copyright © 2013 Elsevier Ltd. All rights reserved.
– notice: 2013 Elsevier Ltd. All rights reserved. 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
8FD
FR3
P64
RC3
5PM
DOI 10.1016/j.neuropharm.2013.10.018
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
Genetics Abstracts

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1873-7064
EndPage 179
ExternalDocumentID PMC3951099
24445080
10_1016_j_neuropharm_2013_10_018
S0028390813004942
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: R21 AG044712
– fundername: NIA NIH HHS
  grantid: AG42146
– fundername: NIA NIH HHS
  grantid: P01 AG009466
– fundername: NIA NIH HHS
  grantid: R01 AG043375
– fundername: NIA NIH HHS
  grantid: AG043375
– fundername: NIA NIH HHS
  grantid: R21 AG042146
– fundername: NIA NIH HHS
  grantid: P01 AG017617
– fundername: NIA NIH HHS
  grantid: AG014449
– fundername: NIA NIH HHS
  grantid: AG17617
– fundername: NIA NIH HHS
  grantid: P01 AG014449
GroupedDBID ---
--K
--M
-~X
.55
.GJ
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
3O-
4.4
41~
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATCM
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABXDB
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHPSJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
C45
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMQ
HMT
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
M2V
M34
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPCBC
SPT
SSN
SSP
SSZ
T5K
TEORI
WUQ
X7M
XOL
ZGI
ZXP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
7TK
8FD
FR3
P64
RC3
5PM
ID FETCH-LOGICAL-c528t-1e618aef24b6aef16c5fdd38662ad0a493c08135c70f9366e839c48aa4c0933
IEDL.DBID .~1
ISSN 0028-3908
1873-7064
IngestDate Tue Sep 30 15:46:14 EDT 2025
Sat Sep 27 16:40:23 EDT 2025
Sat Sep 27 20:23:26 EDT 2025
Wed Feb 19 01:57:13 EST 2025
Thu Apr 24 23:04:41 EDT 2025
Wed Oct 01 02:33:35 EDT 2025
Fri Feb 23 02:30:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Synaptic
Microarray
Mild cognitive impairment
Alzheimer's disease
Gene regulation
Hippocampus
Language English
License Copyright © 2013 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c528t-1e618aef24b6aef16c5fdd38662ad0a493c08135c70f9366e839c48aa4c0933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
Current Address: Department of Translational Science and Molecular Medicine, Department of Family Medicine, Michigan State University, Grand Rapids, MI, USA
PMID 24445080
PQID 1504152227
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3951099
proquest_miscellaneous_1520378237
proquest_miscellaneous_1504152227
pubmed_primary_24445080
crossref_primary_10_1016_j_neuropharm_2013_10_018
crossref_citationtrail_10_1016_j_neuropharm_2013_10_018
elsevier_sciencedirect_doi_10_1016_j_neuropharm_2013_10_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-04-01
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Neuropharmacology
PublicationTitleAlternate Neuropharmacology
PublicationYear 2014
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kennedy, Beale, Carlisle, Washburn (bib31) 2005; 6
Colangelo, Schurr, Ball, Pelaez, Bazan, Lukiw (bib12) 2002; 70
Lee, Carden, Schlaepfer, Trojanowski (bib33) 1987; 7
Mufson, Counts, Ginsberg (bib38) 2002; 27
Che, Ginsberg (bib11) 2004; 84
Ginsberg, Alldred, Che (bib24) 2012; 45
Callahan, Coleman (bib10) 1995; 16
Hanks, Flood (bib28) 1991; 540
Scheff, Price, Schmitt, DeKosky, Mufson (bib42) 2007; 68
West (bib46) 1993; 14
Blalock, Buechel, Popovic, Geddes, Landfield (bib6) 2011; 42
Counts, He, Nadeem, Wuu, Scheff, Mufson (bib15) 2012; 10
Eberwine, Kacharmina, Andrews, Miyashiro, McIntosh, Becker, Barrett, Hinkle, Dent, Marciano (bib20) 2001; 21
Alldred, Che, Ginsberg (bib1) 2009; 177
Mufson, Chen, Cochran, Beckett, Bennett, Kordower (bib37) 1999; 158
Hyman, Phelps, Beach, Bigio, Cairns, Carrillo, Dickson, Duyckaerts, Frosch, Masliah, Mirra, Nelson, Schneider, Thal, Thies, Trojanowski, Vinters, Montine (bib29) 2012; 8
Scheff, Price, Schmitt, Mufson (bib43) 2006 Oct; 27
Mirra, Heyman, McKeel, Sumi, Crain, Brownlee, Vogel, Hughes, van Belle, Berg (bib36) 1991; 41
Counts, He, Che, Ginsberg, Mufson (bib13) 2009; 18
Vana, Kanaan, Ugwu, Wuu, Mufson, Binder (bib45) 2011; 179
Blalock, Geddes, Chen, Porter, Markesbery, Landfield (bib7) 2004; 101
Ginsberg, Hemby, Lee, Eberwine, Trojanowski (bib27) 2000; 48
Williams, Mehrian Shai, Wu, Hsu, Sitzer, Spann, McCleary, Mo, Miller (bib47) 2009; 4
Braak, Braak (bib9) 1991; 82
Ginsberg (bib22) 2005; 37
Ginsberg, Alldred, Counts, Cataldo, Neve, Jiang, Wuu, Chao, Mufson, Nixon, Che (bib25) 2010; 68
Ginsberg (bib23) 2008; 439
Petersen, Doody, Kurz, Mohs, Morris, Rabins, Ritchie, Rossor, Thal, Winblad (bib40) 2001; 58
Counts, He, Che, Ikonomovic, DeKosky, Ginsberg, Mufson (bib14) 2007; 64
Bossers, Wirz, Meerhoff, Essing, van Dongen, Houba, Kruse, Verhaagen, Swaab (bib8) 2010; 133
Liang, Dunckley, Beach, Grover, Mastroeni, Ramsey, Caselli, Kukull, McKeel, Morris, Hulette, Schmechel, Reiman, Rogers, Stephan (bib34) 2010; 31
Deller, Korte, Chabanis, Drakew, Schwegler, Stefani, Zuniga, Schwarz, Bonhoeffer, Zeller, Frotscher, Mundel (bib17) 2003; 100
Reddy, Mani, Park, Jacques, Murdoch, Whetsell, Kaye, Manczak (bib41) 2005; 7
Murthy, De Camilli (bib39) 2003; 26
Bennett, Wilson, Schneider, Evans, Beckett, Aggarwal, Barnes, Fox, Bach (bib4) 2002; 59
Bell, Bennett, Cuello (bib3) 2007; 27
Ginsberg, Crino, Lee, Eberwine, Trojanowski (bib26) 1997; 41
Hyman, Van Hoesen, Damasio, Barnes (bib30) 1984; 225
Kremerskothen, Plaas, Kindler, Frotscher, Barnekow (bib32) 2005; 92
Counts, Nadeem, Lad, Wuu, Mufson (bib16) 2006; 65
McKhann, Drachman, Folstein, Katzman, Price, Stadlan (bib35) 1984; 34
Sultana, Banks, Butterfield (bib44) 2010; 88
Devanand, Pradhaban, Liu, Khandji, De Santi, Segal, Rusinek, Pelton, Honig, Mayeux, Stern, Tabert, de Leon (bib19) 2007; 68
Berchtold, Coleman, Cribbs, Rogers, Gillen, Cotman (bib5) 2013; 34
deToledo-Morrell, Stoub, Wang (bib18) 2007; 163
Freeman, Kandel, Cruz, Rozkalne, Newell, Frosch, Hedley-Whyte, Locascio, Lipsitz, Hyman (bib21) 2008; 67
Alldred, Duff, Ginsberg (bib2) 2012; 45
Blalock (10.1016/j.neuropharm.2013.10.018_bib7) 2004; 101
Callahan (10.1016/j.neuropharm.2013.10.018_bib10) 1995; 16
Che (10.1016/j.neuropharm.2013.10.018_bib11) 2004; 84
Hyman (10.1016/j.neuropharm.2013.10.018_bib30) 1984; 225
Ginsberg (10.1016/j.neuropharm.2013.10.018_bib24) 2012; 45
Ginsberg (10.1016/j.neuropharm.2013.10.018_bib27) 2000; 48
Alldred (10.1016/j.neuropharm.2013.10.018_bib2) 2012; 45
Bossers (10.1016/j.neuropharm.2013.10.018_bib8) 2010; 133
Counts (10.1016/j.neuropharm.2013.10.018_bib15) 2012; 10
McKhann (10.1016/j.neuropharm.2013.10.018_bib35) 1984; 34
Berchtold (10.1016/j.neuropharm.2013.10.018_bib5) 2013; 34
Ginsberg (10.1016/j.neuropharm.2013.10.018_bib25) 2010; 68
Lee (10.1016/j.neuropharm.2013.10.018_bib33) 1987; 7
Deller (10.1016/j.neuropharm.2013.10.018_bib17) 2003; 100
Hyman (10.1016/j.neuropharm.2013.10.018_bib29) 2012; 8
Bennett (10.1016/j.neuropharm.2013.10.018_bib4) 2002; 59
West (10.1016/j.neuropharm.2013.10.018_bib46) 1993; 14
Alldred (10.1016/j.neuropharm.2013.10.018_bib1) 2009; 177
deToledo-Morrell (10.1016/j.neuropharm.2013.10.018_bib18) 2007; 163
Ginsberg (10.1016/j.neuropharm.2013.10.018_bib22) 2005; 37
Ginsberg (10.1016/j.neuropharm.2013.10.018_bib23) 2008; 439
Scheff (10.1016/j.neuropharm.2013.10.018_bib42) 2007; 68
Braak (10.1016/j.neuropharm.2013.10.018_bib9) 1991; 82
Freeman (10.1016/j.neuropharm.2013.10.018_bib21) 2008; 67
Kennedy (10.1016/j.neuropharm.2013.10.018_bib31) 2005; 6
Liang (10.1016/j.neuropharm.2013.10.018_bib34) 2010; 31
Devanand (10.1016/j.neuropharm.2013.10.018_bib19) 2007; 68
Vana (10.1016/j.neuropharm.2013.10.018_bib45) 2011; 179
Kremerskothen (10.1016/j.neuropharm.2013.10.018_bib32) 2005; 92
Reddy (10.1016/j.neuropharm.2013.10.018_bib41) 2005; 7
Counts (10.1016/j.neuropharm.2013.10.018_bib16) 2006; 65
Blalock (10.1016/j.neuropharm.2013.10.018_bib6) 2011; 42
Counts (10.1016/j.neuropharm.2013.10.018_bib14) 2007; 64
Sultana (10.1016/j.neuropharm.2013.10.018_bib44) 2010; 88
Williams (10.1016/j.neuropharm.2013.10.018_bib47) 2009; 4
Mufson (10.1016/j.neuropharm.2013.10.018_bib37) 1999; 158
Colangelo (10.1016/j.neuropharm.2013.10.018_bib12) 2002; 70
Eberwine (10.1016/j.neuropharm.2013.10.018_bib20) 2001; 21
Counts (10.1016/j.neuropharm.2013.10.018_bib13) 2009; 18
Petersen (10.1016/j.neuropharm.2013.10.018_bib40) 2001; 58
Mirra (10.1016/j.neuropharm.2013.10.018_bib36) 1991; 41
Mufson (10.1016/j.neuropharm.2013.10.018_bib38) 2002; 27
Ginsberg (10.1016/j.neuropharm.2013.10.018_bib26) 1997; 41
Murthy (10.1016/j.neuropharm.2013.10.018_bib39) 2003; 26
Scheff (10.1016/j.neuropharm.2013.10.018_bib43) 2006; 27
Bell (10.1016/j.neuropharm.2013.10.018_bib3) 2007; 27
Hanks (10.1016/j.neuropharm.2013.10.018_bib28) 1991; 540
18071042 - Arch Neurol. 2007 Dec;64(12):1771-6
10415154 - Exp Neurol. 1999 Aug;158(2):469-90
12462403 - Neurochem Res. 2002 Oct;27(10):1035-48
16289476 - Neurobiol Aging. 2006 Oct;27(10):1372-84
22079237 - Neurobiol Dis. 2012 Feb;45(2):751-62
18572275 - Neurobiol Aging. 2010 Apr;31(4):549-66
11735772 - Arch Neurol. 2001 Dec;58(12):1985-92
6610841 - Neurology. 1984 Jul;34(7):939-44
12391607 - J Neurosci Res. 2002 Nov 1;70(3):462-73
8367010 - Neurobiol Aging. 1993 Jul-Aug;14(4):287-93
14527272 - Annu Rev Neurosci. 2003;26:701-28
17765748 - Prog Brain Res. 2007;163:741-53
21821124 - Neurobiol Dis. 2012 Jan;45(1):99-107
2054634 - Brain Res. 1991 Feb 1;540(1-2):63-82
20889584 - Brain. 2010 Dec;133(Pt 12):3699-723
17470753 - Neurology. 2007 May 1;68(18):1501-8
16308152 - Methods. 2005 Nov;37(3):229-37
16783169 - J Neuropathol Exp Neurol. 2006 Jun;65(6):592-601
17353470 - Neurology. 2007 Mar 13;68(11):828-36
7566340 - Neurobiol Aging. 1995 May-Jun;16(3):311-4
9029069 - Ann Neurol. 1997 Feb;41(2):200-9
15659229 - J Neurochem. 2005 Feb;92(3):597-606
21945902 - Am J Pathol. 2011 Nov;179(5):2533-50
1759558 - Acta Neuropathol. 1991;82(4):239-59
15851848 - J Alzheimers Dis. 2005 Apr;7(2):103-17; discussion 173-80
11606616 - J Neurosci. 2001 Nov 1;21(21):8310-4
19295912 - PLoS One. 2009;4(3):e4936
19018241 - J Neuropathol Exp Neurol. 2008 Dec;67(12):1205-12
12928494 - Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10494-9
17913914 - J Neurosci. 2007 Oct 3;27(40):10810-7
6474172 - Science. 1984 Sep 14;225(4667):1168-70
20655510 - Biol Psychiatry. 2010 Nov 15;68(10):885-93
14647400 - Lab Invest. 2004 Jan;84(1):131-7
12136057 - Neurology. 2002 Jul 23;59(2):198-205
23273601 - Neurobiol Aging. 2013 Jun;34(6):1653-61
2011243 - Neurology. 1991 Apr;41(4):479-86
22310934 - Neurodegener Dis. 2012;10(1-4):216-9
14769913 - Proc Natl Acad Sci U S A. 2004 Feb 17;101(7):2173-8
19774677 - J Neurosci Res. 2010 Feb 15;88(3):469-77
18370101 - Methods Mol Biol. 2008;439:147-58
19749437 - J Alzheimers Dis. 2009;18(4):885-96
22265587 - Alzheimers Dement. 2012 Jan;8(1):1-13
15928715 - Nat Rev Neurosci. 2005 Jun;6(6):423-34
19026688 - J Neurosci Methods. 2009 Mar 15;177(2):381-5
3119789 - J Neurosci. 1987 Nov;7(11):3474-88
21756998 - J Chem Neuroanat. 2011 Oct;42(2):118-26
10894219 - Ann Neurol. 2000 Jul;48(1):77-87
References_xml – volume: 18
  start-page: 885
  year: 2009
  end-page: 896
  ident: bib13
  article-title: Galanin fiber hyperinnervation preserves neuroprotective gene expression in cholinergic basal forebrain neurons in Alzheimer's disease
  publication-title: J. Alzheimers Dis.
– volume: 45
  start-page: 99
  year: 2012
  end-page: 107
  ident: bib24
  article-title: Gene expression levels assessed by CA1 pyramidal neuron and regional hippocampal dissections in Alzheimer's disease
  publication-title: Neurobiol. Dis.
– volume: 37
  start-page: 229
  year: 2005
  end-page: 237
  ident: bib22
  article-title: RNA amplification strategies for small sample populations
  publication-title: Methods
– volume: 59
  start-page: 198
  year: 2002
  end-page: 205
  ident: bib4
  article-title: Natural history of mild cognitive impairment in older persons
  publication-title: Neurology
– volume: 100
  start-page: 10494
  year: 2003
  end-page: 10499
  ident: bib17
  article-title: Synaptopodin-deficient mice lack a spine apparatus and show deficits in synaptic plasticity
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 67
  start-page: 1205
  year: 2008
  end-page: 1212
  ident: bib21
  article-title: Preservation of neuronal number despite age-related cortical brain atrophy in elderly subjects without Alzheimer disease
  publication-title: J. Neuropathol. Exp. Neurol.
– volume: 14
  start-page: 287
  year: 1993
  end-page: 293
  ident: bib46
  article-title: Regionally specific loss of neurons in the aging human hippocampus
  publication-title: Neurobiol. Aging
– volume: 34
  start-page: 1653
  year: 2013
  end-page: 1661
  ident: bib5
  article-title: Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and Alzheimer's disease
  publication-title: Neurobiol. Aging
– volume: 84
  start-page: 131
  year: 2004
  end-page: 137
  ident: bib11
  article-title: Amplification of RNA transcripts using terminal continuation
  publication-title: Lab. Invest.
– volume: 21
  start-page: 8310
  year: 2001
  end-page: 8314
  ident: bib20
  article-title: mRna expression analysis of tissue sections and single cells
  publication-title: J. Neurosci.
– volume: 4
  start-page: e4936
  year: 2009
  ident: bib47
  article-title: Transcriptome analysis of synaptoneurosomes identifies neuroplasticity genes overexpressed in incipient Alzheimer's disease
  publication-title: PLoS One
– volume: 10
  start-page: 216
  year: 2012
  end-page: 219
  ident: bib15
  article-title: Hippocampal drebrin loss in mild cognitive impairment
  publication-title: Neurodegener. Dis.
– volume: 439
  start-page: 147
  year: 2008
  end-page: 158
  ident: bib23
  article-title: Transcriptional profiling of small samples in the central nervous system
  publication-title: Methods Mol. Biol.
– volume: 26
  start-page: 701
  year: 2003
  end-page: 728
  ident: bib39
  article-title: Cell biology of the presynaptic terminal
  publication-title: Annu. Rev. Neurosci.
– volume: 70
  start-page: 462
  year: 2002
  end-page: 473
  ident: bib12
  article-title: Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling
  publication-title: J. Neurosci. Res.
– volume: 177
  start-page: 381
  year: 2009
  end-page: 385
  ident: bib1
  article-title: Terminal continuation (TC) RNA amplification without second strand synthesis
  publication-title: J. Neurosci. Methods
– volume: 163
  start-page: 741
  year: 2007
  end-page: 753
  ident: bib18
  article-title: Hippocampal atrophy and disconnection in incipient and mild Alzheimer's disease
  publication-title: Prog. Brain Res.
– volume: 158
  start-page: 469
  year: 1999
  end-page: 490
  ident: bib37
  article-title: Entorhinal cortex beta-amyloid load in individuals with mild cognitive impairment
  publication-title: Exp. Neurol.
– volume: 6
  start-page: 423
  year: 2005
  end-page: 434
  ident: bib31
  article-title: Integration of biochemical signalling in spines
  publication-title: Nat. Rev. Neurosci.
– volume: 68
  start-page: 1501
  year: 2007
  end-page: 1508
  ident: bib42
  article-title: Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment
  publication-title: Neurology
– volume: 48
  start-page: 77
  year: 2000
  end-page: 87
  ident: bib27
  article-title: Expression profile of transcripts in Alzheimer's disease tangle-bearing CA1 neurons
  publication-title: Ann. Neurol.
– volume: 88
  start-page: 469
  year: 2010
  end-page: 477
  ident: bib44
  article-title: Decreased levels of PSD95 and two associated proteins and increased levels of BCl2 and caspase 3 in hippocampus from subjects with amnestic mild cognitive impairment: Insights into their potential roles for loss of synapses and memory, accumulation of Abeta, and neurodegeneration in a prodromal stage of Alzheimer's disease
  publication-title: J. Neurosci. Res.
– volume: 8
  start-page: 1
  year: 2012
  end-page: 13
  ident: bib29
  article-title: National Institute on Aging-Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease
  publication-title: Alzheimers Dement
– volume: 82
  start-page: 239
  year: 1991
  end-page: 259
  ident: bib9
  article-title: Neuropathological stageing of Alzheimer-related changes
  publication-title: Acta Neuropathol.
– volume: 42
  start-page: 118
  year: 2011
  end-page: 126
  ident: bib6
  article-title: Microarray analyses of laser-captured hippocampus reveal distinct gray and white matter signatures associated with incipient Alzheimer's disease
  publication-title: J. Chem. Neuroanat.
– volume: 133
  start-page: 3699
  year: 2010
  end-page: 3723
  ident: bib8
  article-title: Concerted changes in transcripts in the prefrontal cortex precede neuropathology in Alzheimer's disease
  publication-title: Brain
– volume: 58
  start-page: 1985
  year: 2001
  end-page: 1992
  ident: bib40
  article-title: Current concepts in mild cognitive impairment
  publication-title: Arch. Neurol.
– volume: 540
  start-page: 63
  year: 1991
  end-page: 82
  ident: bib28
  article-title: Region-specific stability of dendritic extent in normal human aging and regression in Alzheimer's disease. I. CA1 of hippocampus
  publication-title: Brain Res.
– volume: 101
  start-page: 2173
  year: 2004
  end-page: 2178
  ident: bib7
  article-title: Incipient Alzheimer's disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 179
  start-page: 2533
  year: 2011
  end-page: 2550
  ident: bib45
  article-title: Progression of tau pathology in cholinergic Basal forebrain neurons in mild cognitive impairment and Alzheimer's disease
  publication-title: Am. J. Pathol.
– volume: 7
  start-page: 103
  year: 2005
  end-page: 117
  ident: bib41
  article-title: Differential loss of synaptic proteins in Alzheimer's disease: implications for synaptic dysfunction
  publication-title: J. Alzheimers Dis.
– volume: 64
  start-page: 1771
  year: 2007
  end-page: 1776
  ident: bib14
  article-title: Alpha7 nicotinic receptor up-regulation in cholinergic basal forebrain neurons in Alzheimer disease
  publication-title: Arch. Neurol.
– volume: 7
  start-page: 3474
  year: 1987
  end-page: 3488
  ident: bib33
  article-title: Monoclonal antibodies distinguish several differentially phosphorylated states of the two largest rat neurofilament subunits (NF-H and NF-M) and demonstrate their existence in the normal nervous system of adult rats
  publication-title: J. Neurosci.
– volume: 68
  start-page: 828
  year: 2007
  end-page: 836
  ident: bib19
  article-title: Hippocampal and entorhinal atrophy in mild cognitive impairment: prediction of Alzheimer disease
  publication-title: Neurology
– volume: 34
  start-page: 939
  year: 1984
  end-page: 944
  ident: bib35
  article-title: Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease
  publication-title: Neurology
– volume: 27
  start-page: 10810
  year: 2007
  end-page: 10817
  ident: bib3
  article-title: Paradoxical upregulation of glutamatergic presynaptic boutons during mild cognitive impairment
  publication-title: J. Neurosci.
– volume: 41
  start-page: 200
  year: 1997
  end-page: 209
  ident: bib26
  article-title: Sequestration of RNA in Alzheimer's disease neurofibrillary tangles and senile plaques
  publication-title: Ann. Neurol.
– volume: 92
  start-page: 597
  year: 2005
  end-page: 606
  ident: bib32
  article-title: Synaptopodin, a molecule involved in the formation of the dendritic spine apparatus, is a dual actin/alpha-actinin binding protein
  publication-title: J. Neurochem.
– volume: 16
  start-page: 311
  year: 1995
  end-page: 314
  ident: bib10
  article-title: Neurons bearing neurofibrillary tangles are responsible for selected synaptic deficits in Alzheimer's disease
  publication-title: Neurobiol. Aging
– volume: 65
  start-page: 592
  year: 2006
  end-page: 601
  ident: bib16
  article-title: Differential expression of synaptic proteins in the frontal and temporal cortex of elderly subjects with mild cognitive impairment
  publication-title: J. Neuropathol. Exp. Neurol.
– volume: 225
  start-page: 1168
  year: 1984
  end-page: 1170
  ident: bib30
  article-title: Alzheimer's disease: cell-specific pathology isolates the hippocampal formation
  publication-title: Science
– volume: 68
  start-page: 885
  year: 2010
  end-page: 893
  ident: bib25
  article-title: Microarray analysis of hippocampal CA1 neurons implicates early endosomal dysfunction during Alzheimer's disease progression
  publication-title: Biol. Psychiatry
– volume: 45
  start-page: 751
  year: 2012
  end-page: 762
  ident: bib2
  article-title: Microarray analysis of CA1 pyramidal neurons in a mouse model of tauopathy reveals progressive synaptic dysfunction
  publication-title: Neurobiol. Dis.
– volume: 41
  start-page: 479
  year: 1991
  end-page: 486
  ident: bib36
  article-title: The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease
  publication-title: Neurology
– volume: 27
  start-page: 1035
  year: 2002
  end-page: 1048
  ident: bib38
  article-title: Gene expression profiles of cholinergic nucleus basalis neurons in Alzheimer's disease
  publication-title: Neurochem. Res.
– volume: 31
  start-page: 549
  year: 2010
  end-page: 566
  ident: bib34
  article-title: Neuronal gene expression in non-demented individuals with intermediate Alzheimer's Disease neuropathology
  publication-title: Neurobiol. Aging
– volume: 27
  start-page: 1372
  year: 2006 Oct
  end-page: 1384
  ident: bib43
  article-title: Hippocampal synaptic loss in early Alzheimer's disease and mild cognitive impairment
  publication-title: Neurobiol. Aging
– volume: 225
  start-page: 1168
  year: 1984
  ident: 10.1016/j.neuropharm.2013.10.018_bib30
  article-title: Alzheimer's disease: cell-specific pathology isolates the hippocampal formation
  publication-title: Science
  doi: 10.1126/science.6474172
– volume: 58
  start-page: 1985
  year: 2001
  ident: 10.1016/j.neuropharm.2013.10.018_bib40
  article-title: Current concepts in mild cognitive impairment
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.58.12.1985
– volume: 48
  start-page: 77
  year: 2000
  ident: 10.1016/j.neuropharm.2013.10.018_bib27
  article-title: Expression profile of transcripts in Alzheimer's disease tangle-bearing CA1 neurons
  publication-title: Ann. Neurol.
  doi: 10.1002/1531-8249(200007)48:1<77::AID-ANA12>3.0.CO;2-A
– volume: 21
  start-page: 8310
  year: 2001
  ident: 10.1016/j.neuropharm.2013.10.018_bib20
  article-title: mRna expression analysis of tissue sections and single cells
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.21-21-08310.2001
– volume: 7
  start-page: 103
  year: 2005
  ident: 10.1016/j.neuropharm.2013.10.018_bib41
  article-title: Differential loss of synaptic proteins in Alzheimer's disease: implications for synaptic dysfunction
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-2005-7203
– volume: 14
  start-page: 287
  year: 1993
  ident: 10.1016/j.neuropharm.2013.10.018_bib46
  article-title: Regionally specific loss of neurons in the aging human hippocampus
  publication-title: Neurobiol. Aging
  doi: 10.1016/0197-4580(93)90113-P
– volume: 27
  start-page: 10810
  year: 2007
  ident: 10.1016/j.neuropharm.2013.10.018_bib3
  article-title: Paradoxical upregulation of glutamatergic presynaptic boutons during mild cognitive impairment
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3269-07.2007
– volume: 82
  start-page: 239
  year: 1991
  ident: 10.1016/j.neuropharm.2013.10.018_bib9
  article-title: Neuropathological stageing of Alzheimer-related changes
  publication-title: Acta Neuropathol.
  doi: 10.1007/BF00308809
– volume: 8
  start-page: 1
  year: 2012
  ident: 10.1016/j.neuropharm.2013.10.018_bib29
  article-title: National Institute on Aging-Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2011.10.007
– volume: 100
  start-page: 10494
  year: 2003
  ident: 10.1016/j.neuropharm.2013.10.018_bib17
  article-title: Synaptopodin-deficient mice lack a spine apparatus and show deficits in synaptic plasticity
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1832384100
– volume: 101
  start-page: 2173
  year: 2004
  ident: 10.1016/j.neuropharm.2013.10.018_bib7
  article-title: Incipient Alzheimer's disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0308512100
– volume: 177
  start-page: 381
  year: 2009
  ident: 10.1016/j.neuropharm.2013.10.018_bib1
  article-title: Terminal continuation (TC) RNA amplification without second strand synthesis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2008.10.027
– volume: 64
  start-page: 1771
  year: 2007
  ident: 10.1016/j.neuropharm.2013.10.018_bib14
  article-title: Alpha7 nicotinic receptor up-regulation in cholinergic basal forebrain neurons in Alzheimer disease
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.64.12.1771
– volume: 158
  start-page: 469
  year: 1999
  ident: 10.1016/j.neuropharm.2013.10.018_bib37
  article-title: Entorhinal cortex beta-amyloid load in individuals with mild cognitive impairment
  publication-title: Exp. Neurol.
  doi: 10.1006/exnr.1999.7086
– volume: 6
  start-page: 423
  year: 2005
  ident: 10.1016/j.neuropharm.2013.10.018_bib31
  article-title: Integration of biochemical signalling in spines
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn1685
– volume: 540
  start-page: 63
  year: 1991
  ident: 10.1016/j.neuropharm.2013.10.018_bib28
  article-title: Region-specific stability of dendritic extent in normal human aging and regression in Alzheimer's disease. I. CA1 of hippocampus
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(91)90493-F
– volume: 67
  start-page: 1205
  year: 2008
  ident: 10.1016/j.neuropharm.2013.10.018_bib21
  article-title: Preservation of neuronal number despite age-related cortical brain atrophy in elderly subjects without Alzheimer disease
  publication-title: J. Neuropathol. Exp. Neurol.
  doi: 10.1097/NEN.0b013e31818fc72f
– volume: 65
  start-page: 592
  year: 2006
  ident: 10.1016/j.neuropharm.2013.10.018_bib16
  article-title: Differential expression of synaptic proteins in the frontal and temporal cortex of elderly subjects with mild cognitive impairment
  publication-title: J. Neuropathol. Exp. Neurol.
  doi: 10.1097/00005072-200606000-00007
– volume: 68
  start-page: 885
  year: 2010
  ident: 10.1016/j.neuropharm.2013.10.018_bib25
  article-title: Microarray analysis of hippocampal CA1 neurons implicates early endosomal dysfunction during Alzheimer's disease progression
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2010.05.030
– volume: 133
  start-page: 3699
  year: 2010
  ident: 10.1016/j.neuropharm.2013.10.018_bib8
  article-title: Concerted changes in transcripts in the prefrontal cortex precede neuropathology in Alzheimer's disease
  publication-title: Brain
  doi: 10.1093/brain/awq258
– volume: 27
  start-page: 1035
  year: 2002
  ident: 10.1016/j.neuropharm.2013.10.018_bib38
  article-title: Gene expression profiles of cholinergic nucleus basalis neurons in Alzheimer's disease
  publication-title: Neurochem. Res.
  doi: 10.1023/A:1020952704398
– volume: 179
  start-page: 2533
  year: 2011
  ident: 10.1016/j.neuropharm.2013.10.018_bib45
  article-title: Progression of tau pathology in cholinergic Basal forebrain neurons in mild cognitive impairment and Alzheimer's disease
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2011.07.044
– volume: 439
  start-page: 147
  year: 2008
  ident: 10.1016/j.neuropharm.2013.10.018_bib23
  article-title: Transcriptional profiling of small samples in the central nervous system
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-59745-188-8_10
– volume: 37
  start-page: 229
  year: 2005
  ident: 10.1016/j.neuropharm.2013.10.018_bib22
  article-title: RNA amplification strategies for small sample populations
  publication-title: Methods
  doi: 10.1016/j.ymeth.2005.09.003
– volume: 45
  start-page: 99
  year: 2012
  ident: 10.1016/j.neuropharm.2013.10.018_bib24
  article-title: Gene expression levels assessed by CA1 pyramidal neuron and regional hippocampal dissections in Alzheimer's disease
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2011.07.013
– volume: 10
  start-page: 216
  year: 2012
  ident: 10.1016/j.neuropharm.2013.10.018_bib15
  article-title: Hippocampal drebrin loss in mild cognitive impairment
  publication-title: Neurodegener. Dis.
  doi: 10.1159/000333122
– volume: 42
  start-page: 118
  year: 2011
  ident: 10.1016/j.neuropharm.2013.10.018_bib6
  article-title: Microarray analyses of laser-captured hippocampus reveal distinct gray and white matter signatures associated with incipient Alzheimer's disease
  publication-title: J. Chem. Neuroanat.
  doi: 10.1016/j.jchemneu.2011.06.007
– volume: 59
  start-page: 198
  year: 2002
  ident: 10.1016/j.neuropharm.2013.10.018_bib4
  article-title: Natural history of mild cognitive impairment in older persons
  publication-title: Neurology
  doi: 10.1212/WNL.59.2.198
– volume: 68
  start-page: 1501
  year: 2007
  ident: 10.1016/j.neuropharm.2013.10.018_bib42
  article-title: Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000260698.46517.8f
– volume: 68
  start-page: 828
  year: 2007
  ident: 10.1016/j.neuropharm.2013.10.018_bib19
  article-title: Hippocampal and entorhinal atrophy in mild cognitive impairment: prediction of Alzheimer disease
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000256697.20968.d7
– volume: 41
  start-page: 479
  year: 1991
  ident: 10.1016/j.neuropharm.2013.10.018_bib36
  article-title: The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease
  publication-title: Neurology
  doi: 10.1212/WNL.41.4.479
– volume: 27
  start-page: 1372
  issue: 10
  year: 2006
  ident: 10.1016/j.neuropharm.2013.10.018_bib43
  article-title: Hippocampal synaptic loss in early Alzheimer's disease and mild cognitive impairment
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2005.09.012
– volume: 18
  start-page: 885
  year: 2009
  ident: 10.1016/j.neuropharm.2013.10.018_bib13
  article-title: Galanin fiber hyperinnervation preserves neuroprotective gene expression in cholinergic basal forebrain neurons in Alzheimer's disease
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-2009-1196
– volume: 4
  start-page: e4936
  year: 2009
  ident: 10.1016/j.neuropharm.2013.10.018_bib47
  article-title: Transcriptome analysis of synaptoneurosomes identifies neuroplasticity genes overexpressed in incipient Alzheimer's disease
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0004936
– volume: 34
  start-page: 1653
  year: 2013
  ident: 10.1016/j.neuropharm.2013.10.018_bib5
  article-title: Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and Alzheimer's disease
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2012.11.024
– volume: 41
  start-page: 200
  year: 1997
  ident: 10.1016/j.neuropharm.2013.10.018_bib26
  article-title: Sequestration of RNA in Alzheimer's disease neurofibrillary tangles and senile plaques
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.410410211
– volume: 26
  start-page: 701
  year: 2003
  ident: 10.1016/j.neuropharm.2013.10.018_bib39
  article-title: Cell biology of the presynaptic terminal
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.26.041002.131445
– volume: 92
  start-page: 597
  year: 2005
  ident: 10.1016/j.neuropharm.2013.10.018_bib32
  article-title: Synaptopodin, a molecule involved in the formation of the dendritic spine apparatus, is a dual actin/alpha-actinin binding protein
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2004.02888.x
– volume: 16
  start-page: 311
  year: 1995
  ident: 10.1016/j.neuropharm.2013.10.018_bib10
  article-title: Neurons bearing neurofibrillary tangles are responsible for selected synaptic deficits in Alzheimer's disease
  publication-title: Neurobiol. Aging
  doi: 10.1016/0197-4580(95)00035-D
– volume: 88
  start-page: 469
  year: 2010
  ident: 10.1016/j.neuropharm.2013.10.018_bib44
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.22227
– volume: 45
  start-page: 751
  year: 2012
  ident: 10.1016/j.neuropharm.2013.10.018_bib2
  article-title: Microarray analysis of CA1 pyramidal neurons in a mouse model of tauopathy reveals progressive synaptic dysfunction
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2011.10.022
– volume: 34
  start-page: 939
  year: 1984
  ident: 10.1016/j.neuropharm.2013.10.018_bib35
  article-title: Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease
  publication-title: Neurology
  doi: 10.1212/WNL.34.7.939
– volume: 70
  start-page: 462
  year: 2002
  ident: 10.1016/j.neuropharm.2013.10.018_bib12
  article-title: Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.10351
– volume: 31
  start-page: 549
  year: 2010
  ident: 10.1016/j.neuropharm.2013.10.018_bib34
  article-title: Neuronal gene expression in non-demented individuals with intermediate Alzheimer's Disease neuropathology
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2008.05.013
– volume: 84
  start-page: 131
  year: 2004
  ident: 10.1016/j.neuropharm.2013.10.018_bib11
  article-title: Amplification of RNA transcripts using terminal continuation
  publication-title: Lab. Invest.
  doi: 10.1038/labinvest.3700005
– volume: 7
  start-page: 3474
  year: 1987
  ident: 10.1016/j.neuropharm.2013.10.018_bib33
  article-title: Monoclonal antibodies distinguish several differentially phosphorylated states of the two largest rat neurofilament subunits (NF-H and NF-M) and demonstrate their existence in the normal nervous system of adult rats
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.07-11-03474.1987
– volume: 163
  start-page: 741
  year: 2007
  ident: 10.1016/j.neuropharm.2013.10.018_bib18
  article-title: Hippocampal atrophy and disconnection in incipient and mild Alzheimer's disease
  publication-title: Prog. Brain Res.
  doi: 10.1016/S0079-6123(07)63040-4
– reference: 10894219 - Ann Neurol. 2000 Jul;48(1):77-87
– reference: 17765748 - Prog Brain Res. 2007;163:741-53
– reference: 3119789 - J Neurosci. 1987 Nov;7(11):3474-88
– reference: 1759558 - Acta Neuropathol. 1991;82(4):239-59
– reference: 20889584 - Brain. 2010 Dec;133(Pt 12):3699-723
– reference: 12391607 - J Neurosci Res. 2002 Nov 1;70(3):462-73
– reference: 16289476 - Neurobiol Aging. 2006 Oct;27(10):1372-84
– reference: 16783169 - J Neuropathol Exp Neurol. 2006 Jun;65(6):592-601
– reference: 19749437 - J Alzheimers Dis. 2009;18(4):885-96
– reference: 15659229 - J Neurochem. 2005 Feb;92(3):597-606
– reference: 12462403 - Neurochem Res. 2002 Oct;27(10):1035-48
– reference: 9029069 - Ann Neurol. 1997 Feb;41(2):200-9
– reference: 6474172 - Science. 1984 Sep 14;225(4667):1168-70
– reference: 22310934 - Neurodegener Dis. 2012;10(1-4):216-9
– reference: 22265587 - Alzheimers Dement. 2012 Jan;8(1):1-13
– reference: 16308152 - Methods. 2005 Nov;37(3):229-37
– reference: 17353470 - Neurology. 2007 Mar 13;68(11):828-36
– reference: 22079237 - Neurobiol Dis. 2012 Feb;45(2):751-62
– reference: 21945902 - Am J Pathol. 2011 Nov;179(5):2533-50
– reference: 23273601 - Neurobiol Aging. 2013 Jun;34(6):1653-61
– reference: 2054634 - Brain Res. 1991 Feb 1;540(1-2):63-82
– reference: 19026688 - J Neurosci Methods. 2009 Mar 15;177(2):381-5
– reference: 8367010 - Neurobiol Aging. 1993 Jul-Aug;14(4):287-93
– reference: 18572275 - Neurobiol Aging. 2010 Apr;31(4):549-66
– reference: 21756998 - J Chem Neuroanat. 2011 Oct;42(2):118-26
– reference: 19774677 - J Neurosci Res. 2010 Feb 15;88(3):469-77
– reference: 15851848 - J Alzheimers Dis. 2005 Apr;7(2):103-17; discussion 173-80
– reference: 15928715 - Nat Rev Neurosci. 2005 Jun;6(6):423-34
– reference: 18370101 - Methods Mol Biol. 2008;439:147-58
– reference: 17470753 - Neurology. 2007 May 1;68(18):1501-8
– reference: 10415154 - Exp Neurol. 1999 Aug;158(2):469-90
– reference: 6610841 - Neurology. 1984 Jul;34(7):939-44
– reference: 14527272 - Annu Rev Neurosci. 2003;26:701-28
– reference: 12136057 - Neurology. 2002 Jul 23;59(2):198-205
– reference: 19018241 - J Neuropathol Exp Neurol. 2008 Dec;67(12):1205-12
– reference: 14647400 - Lab Invest. 2004 Jan;84(1):131-7
– reference: 21821124 - Neurobiol Dis. 2012 Jan;45(1):99-107
– reference: 11606616 - J Neurosci. 2001 Nov 1;21(21):8310-4
– reference: 7566340 - Neurobiol Aging. 1995 May-Jun;16(3):311-4
– reference: 18071042 - Arch Neurol. 2007 Dec;64(12):1771-6
– reference: 17913914 - J Neurosci. 2007 Oct 3;27(40):10810-7
– reference: 2011243 - Neurology. 1991 Apr;41(4):479-86
– reference: 20655510 - Biol Psychiatry. 2010 Nov 15;68(10):885-93
– reference: 11735772 - Arch Neurol. 2001 Dec;58(12):1985-92
– reference: 14769913 - Proc Natl Acad Sci U S A. 2004 Feb 17;101(7):2173-8
– reference: 12928494 - Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10494-9
– reference: 19295912 - PLoS One. 2009;4(3):e4936
SSID ssj0004818
Score 2.4604309
Snippet Clinical neuropathologic studies suggest that the selective vulnerability of hippocampal CA1 pyramidal projection neurons plays a key role in the onset of...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 172
SubjectTerms Aged, 80 and over
Alzheimer Disease - metabolism
Alzheimer's disease
CA1 Region, Hippocampal - metabolism
Cognitive Dysfunction - metabolism
Female
Gene Expression
Gene regulation
Hippocampus
Humans
Male
Microarray
Mild cognitive impairment
Polymerase Chain Reaction
Pyramidal Cells - metabolism
Severity of Illness Index
Synaptic
Tissue Array Analysis
Title Synaptic gene dysregulation within hippocampal CA1 pyramidal neurons in mild cognitive impairment
URI https://dx.doi.org/10.1016/j.neuropharm.2013.10.018
https://www.ncbi.nlm.nih.gov/pubmed/24445080
https://www.proquest.com/docview/1504152227
https://www.proquest.com/docview/1520378237
https://pubmed.ncbi.nlm.nih.gov/PMC3951099
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-7064
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004818
  issn: 0028-3908
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-7064
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004818
  issn: 0028-3908
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-7064
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004818
  issn: 0028-3908
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-7064
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004818
  issn: 0028-3908
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-7064
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004818
  issn: 0028-3908
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS-QwFA6iFy_ib2fXlSyIJ6tt86MNexqGlVkFEVTwVjJNqpWZWmbGQy_-7b7XpjPOKiJ4Km0TSPJe3vuafvlCyGHMrcms4Z5WTHhc-74X60h5QkK6yQz-KqtZvpeyf8vP78TdEum1e2GQVulifxPT62jtnpy60Twt8xz3-EJqVJDSWC1ygnEY1b_Ap09e5jQPHgdxq8SMpR2bp-F41ZqRJWpEI8mLnSDPC4__-DhFvYeg_zMp36Sms3Wy5jAl7TbN3iBLttgkR1eNKHV1TG_me6wmx_SIXs3lqqstoq-rQkPgSCn4kqWmghbdu0O9KC7T5gV9yMsSkh6EjiHtdQNaVmM9yg3c1X0rJhQKjfKhoTM6EsX9l_kYFx-3yfXZ35te33MHL3ipCOOpF1gZxNpmIR9IuAQyFZkxLJYy1MbXXLEUh12kkZ8pJqUFO6Q81pqnuECyQ5aLp8LuEeoLw3xlhRZ8wLmFbzuY8ZEUmR0owG28Q6J2pJPUaZLj0RjDpCWfPSZzGyVoI3wDNuqQYFazbHQ5vlDnT2vMZMHHEkgfX6j9u7V_AlMQ_6vowj49TxLA1AiDwjD6rEzoswiVgTpkt_GZWbsBYXHAyT6MxoI3zQqgBPjimyJ_qKXAGQJkpX58q2c_ySrcOT7SPlmejp_tL4Ba08FBPZcOyEr330X_8hVVLS1n
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFBYlfWhfxta1W3bpNBh9qlfbuthiTyGspJeFQlPom1AsefVIXZOkD_73O8eWk2Ubo7AnY0sCWUc657P8nU-EfEq5s7mzPDCKiYCbMAxSk6hASAg3ucVfZQ3LdyxHN_z8VtxukWGXC4O0Su_7W5_eeGv_5MSP5klVFJjjC6FRQUhjjcgJ-OFtLsAn98j24OxiNF6nR6ZR2okxYwNP6GlpXo1sZIUy0cjzYp-R6oUngPw9Sv2JQn8nU_4SnU6fk2ceVtJB2_MXZMuVe-ToqtWlro_pZJ1mtTimR_RqrVhdvyTmui4N-I6MwnRy1NbQo-_-XC-KO7VFSe-KqoK4B95jRoeDiFb13NwXFu6adysXFCrdFzNLV4wkiimYxRz3H_fJ9enXyXAU-LMXgkzE6TKInIxS4_KYTyVcIpmJ3FqWShkbGxquWIYjL7IkzBWT0oEpMp4awzPcIzkgvfKhdK8JDYVloXLCCD7l3MHnHSz6RIrcTRVAN94nSTfSOvOy5Hg6xkx3_LMfem0jjTbCErBRn0SrllUrzfGENl86Y-qNaaYhgjyh9cfO_hpWIf5aMaV7eFxogNWIhOI4-VedOGQJigP1yat2zqz6DSCLA1QOYTQ2ZtOqAqqAb5aUxV2jBs4QIyv15r_e7APZGU2-XerLs_HFW7ILJZ6e9I70lvNH9x6Q13J66FfWT238MBI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synaptic+gene+dysregulation+within+hippocampal+CA1+pyramidal+neurons+in+mild+cognitive+impairment&rft.jtitle=Neuropharmacology&rft.au=Counts%2C+Scott+E&rft.au=Alldred%2C+Melissa+J&rft.au=Che%2C+Shaoli&rft.au=Ginsberg%2C+Stephen+D&rft.date=2014-04-01&rft.issn=0028-3908&rft.volume=79&rft.spage=172&rft.epage=179&rft_id=info:doi/10.1016%2Fj.neuropharm.2013.10.018&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-3908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-3908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-3908&client=summon