Membrane transporters for the special amino acid glutamine: structure/function relationships and relevance to human health
Glutamine together with glucose is essential for body's homeostasis. It is the most abundant amino acid and is involved in many biosynthetic, regulatory and energy production processes. Several membrane transporters which differ in transport modes, ensure glutamine homeostasis by coordinating i...
Saved in:
Published in | Frontiers in chemistry Vol. 2; p. 61 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
11.08.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 2296-2646 2296-2646 |
DOI | 10.3389/fchem.2014.00061 |
Cover
Abstract | Glutamine together with glucose is essential for body's homeostasis. It is the most abundant amino acid and is involved in many biosynthetic, regulatory and energy production processes. Several membrane transporters which differ in transport modes, ensure glutamine homeostasis by coordinating its absorption, reabsorption and delivery to tissues. These transporters belong to different protein families, are redundant and ubiquitous. Their classification, originally based on functional properties, has recently been associated with the SLC nomenclature. Function of glutamine transporters is studied in cells over-expressing the transporters or, more recently in proteoliposomes harboring the proteins extracted from animal tissues or over-expressed in microorganisms. The role of the glutamine transporters is linked to their transport modes and coupling with Na(+) and H(+). Most transporters share specificity for other neutral or cationic amino acids. Na(+)-dependent co-transporters efficiently accumulate glutamine while antiporters regulate the pools of glutamine and other amino acids. The most acknowledged glutamine transporters belong to the SLC1, 6, 7, and 38 families. The members involved in the homeostasis are the co-transporters B0AT1 and the SNAT members 1, 2, 3, 5, and 7; the antiporters ASCT2, LAT1 and 2. The last two are associated to the ancillary CD98 protein. Some information on regulation of the glutamine transporters exist, which, however, need to be deepened. No information at all is available on structures, besides some homology models obtained using similar bacterial transporters as templates. Some models of rat and human glutamine transporters highlight very similar structures between the orthologs. Moreover the presence of glycosylation and/or phosphorylation sites located at the extracellular or intracellular faces has been predicted. ASCT2 and LAT1 are over-expressed in several cancers, thus representing potential targets for pharmacological intervention. |
---|---|
AbstractList | Glutamine together with glucose is essential for body's homeostasis. It is the most abundant amino acid and is involved in many biosynthetic, regulatory and energy production processes. Several membrane transporters which differ in transport modes, ensure glutamine homeostasis by coordinating its absorption, reabsorption and delivery to tissues. These transporters belong to different protein families, are redundant and ubiquitous. Their classification, originally based on functional properties, has recently been associated with the SLC nomenclature. Function of glutamine transporters is studied in cells over-expressing the transporters or, more recently in proteoliposomes harboring the proteins extracted from animal tissues or over-expressed in microorganisms. The role of the glutamine transporters is linked to their transport modes and coupling with Na(+) and H(+). Most transporters share specificity for other neutral or cationic amino acids. Na(+)-dependent co-transporters efficiently accumulate glutamine while antiporters regulate the pools of glutamine and other amino acids. The most acknowledged glutamine transporters belong to the SLC1, 6, 7, and 38 families. The members involved in the homeostasis are the co-transporters B0AT1 and the SNAT members 1, 2, 3, 5, and 7; the antiporters ASCT2, LAT1 and 2. The last two are associated to the ancillary CD98 protein. Some information on regulation of the glutamine transporters exist, which, however, need to be deepened. No information at all is available on structures, besides some homology models obtained using similar bacterial transporters as templates. Some models of rat and human glutamine transporters highlight very similar structures between the orthologs. Moreover the presence of glycosylation and/or phosphorylation sites located at the extracellular or intracellular faces has been predicted. ASCT2 and LAT1 are over-expressed in several cancers, thus representing potential targets for pharmacological intervention. Glutamine together with glucose is essential for body’s homeostasis. It is the most abundant amino acid and is involved in many biosynthetic, regulatory and energy production processes. Several membrane transporters which differ in transport modes, ensure glutamine homeostasis by coordinating its absorption, reabsorption and delivery to tissues. These transporters belong to different protein families, are redundant and ubiquitous. Their classification, originally based on functional properties, has recently been associated with the SLC nomenclature. Function of glutamine transporters is studied in cells over-expressing the transporters or, more recently in proteoliposomes harboring the proteins extracted from animal tissues or over-expressed in microorganisms. The role of the glutamine transporters is linked to their transport modes and coupling with Na+ and H+. Most transporters share specificity for other neutral or cationic amino acids. Na+-dependent co-transporters efficiently accumulate glutamine while antiporters regulate the pools of glutamine and other amino acids. The most acknowledged glutamine transporters belong to the SLC1, 6, 7 and 38 families. The members involved in the homeostasis are the co-transporters B0AT1 and the SNAT members 1, 2, 3, 5 and 7; the antiporters ASCT2, LAT1 and 2. The last two are associated to the ancillary CD98 protein. Some information on regulation of the glutamine transporters exist, which, however, need to be deepened. No information at all is available on structures, besides some homology models obtained using similar bacterial transporters as templates. Some models of rat and human glutamine transporters highlight very similar structures between the orthologues. Moreover the presence of glycosylation and/or phosphorylation sites located at the extracellular or intracellular faces has been predicted. ASCT2 and LAT1 are over-expressed in several cancers, thus representing potential targets for pharmacological intervention. Glutamine together with glucose is essential for body's homeostasis. It is the most abundant amino acid and is involved in many biosynthetic, regulatory and energy production processes. Several membrane transporters which differ in transport modes, ensure glutamine homeostasis by coordinating its absorption, reabsorption and delivery to tissues. These transporters belong to different protein families, are redundant and ubiquitous. Their classification, originally based on functional properties, has recently been associated with the SLC nomenclature. Function of glutamine transporters is studied in cells over-expressing the transporters or, more recently in proteoliposomes harboring the proteins extracted from animal tissues or over-expressed in microorganisms. The role of the glutamine transporters is linked to their transport modes and coupling with Na + and H + . Most transporters share specificity for other neutral or cationic amino acids. Na + -dependent co-transporters efficiently accumulate glutamine while antiporters regulate the pools of glutamine and other amino acids. The most acknowledged glutamine transporters belong to the SLC1, 6, 7, and 38 families. The members involved in the homeostasis are the co-transporters B0AT1 and the SNAT members 1, 2, 3, 5, and 7; the antiporters ASCT2, LAT1 and 2. The last two are associated to the ancillary CD98 protein. Some information on regulation of the glutamine transporters exist, which, however, need to be deepened. No information at all is available on structures, besides some homology models obtained using similar bacterial transporters as templates. Some models of rat and human glutamine transporters highlight very similar structures between the orthologs. Moreover the presence of glycosylation and/or phosphorylation sites located at the extracellular or intracellular faces has been predicted. ASCT2 and LAT1 are over-expressed in several cancers, thus representing potential targets for pharmacological intervention. Glutamine together with glucose is essential for body's homeostasis. It is the most abundant amino acid and is involved in many biosynthetic, regulatory and energy production processes. Several membrane transporters which differ in transport modes, ensure glutamine homeostasis by coordinating its absorption, reabsorption and delivery to tissues. These transporters belong to different protein families, are redundant and ubiquitous. Their classification, originally based on functional properties, has recently been associated with the SLC nomenclature. Function of glutamine transporters is studied in cells over-expressing the transporters or, more recently in proteoliposomes harboring the proteins extracted from animal tissues or over-expressed in microorganisms. The role of the glutamine transporters is linked to their transport modes and coupling with Na(+) and H(+). Most transporters share specificity for other neutral or cationic amino acids. Na(+)-dependent co-transporters efficiently accumulate glutamine while antiporters regulate the pools of glutamine and other amino acids. The most acknowledged glutamine transporters belong to the SLC1, 6, 7, and 38 families. The members involved in the homeostasis are the co-transporters B0AT1 and the SNAT members 1, 2, 3, 5, and 7; the antiporters ASCT2, LAT1 and 2. The last two are associated to the ancillary CD98 protein. Some information on regulation of the glutamine transporters exist, which, however, need to be deepened. No information at all is available on structures, besides some homology models obtained using similar bacterial transporters as templates. Some models of rat and human glutamine transporters highlight very similar structures between the orthologs. Moreover the presence of glycosylation and/or phosphorylation sites located at the extracellular or intracellular faces has been predicted. ASCT2 and LAT1 are over-expressed in several cancers, thus representing potential targets for pharmacological intervention.Glutamine together with glucose is essential for body's homeostasis. It is the most abundant amino acid and is involved in many biosynthetic, regulatory and energy production processes. Several membrane transporters which differ in transport modes, ensure glutamine homeostasis by coordinating its absorption, reabsorption and delivery to tissues. These transporters belong to different protein families, are redundant and ubiquitous. Their classification, originally based on functional properties, has recently been associated with the SLC nomenclature. Function of glutamine transporters is studied in cells over-expressing the transporters or, more recently in proteoliposomes harboring the proteins extracted from animal tissues or over-expressed in microorganisms. The role of the glutamine transporters is linked to their transport modes and coupling with Na(+) and H(+). Most transporters share specificity for other neutral or cationic amino acids. Na(+)-dependent co-transporters efficiently accumulate glutamine while antiporters regulate the pools of glutamine and other amino acids. The most acknowledged glutamine transporters belong to the SLC1, 6, 7, and 38 families. The members involved in the homeostasis are the co-transporters B0AT1 and the SNAT members 1, 2, 3, 5, and 7; the antiporters ASCT2, LAT1 and 2. The last two are associated to the ancillary CD98 protein. Some information on regulation of the glutamine transporters exist, which, however, need to be deepened. No information at all is available on structures, besides some homology models obtained using similar bacterial transporters as templates. Some models of rat and human glutamine transporters highlight very similar structures between the orthologs. Moreover the presence of glycosylation and/or phosphorylation sites located at the extracellular or intracellular faces has been predicted. ASCT2 and LAT1 are over-expressed in several cancers, thus representing potential targets for pharmacological intervention. |
Author | Indiveri, Cesare Scalise, Mariafrancesca Pochini, Lorena Galluccio, Michele |
AuthorAffiliation | Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria Arcavacata di Rende, Italy |
AuthorAffiliation_xml | – name: Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria Arcavacata di Rende, Italy |
Author_xml | – sequence: 1 givenname: Lorena surname: Pochini fullname: Pochini, Lorena – sequence: 2 givenname: Mariafrancesca surname: Scalise fullname: Scalise, Mariafrancesca – sequence: 3 givenname: Michele surname: Galluccio fullname: Galluccio, Michele – sequence: 4 givenname: Cesare surname: Indiveri fullname: Indiveri, Cesare |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25157349$$D View this record in MEDLINE/PubMed |
BookMark | eNp1Uktv1DAQjlARLaV3TshHLru1HcdJOCChikelIi5wtib2ZOPKsRfbqQS_Hme3RS0SF3s8_h7SzPeyOvHBY1W9ZnRb111_OeoJ5y2nTGwppZI9q8447-WGSyFPHtWn1UVKtwXCOKsFpy-qU96wpq1Ff1b9_orzEMEjyeVM-xAzxkTGEEmekKQ9aguOwGx9IKCtITu35PWJ70jKcdF5iXg5Ll5nGzyJ6GAt0mT3iYA3awfvwOviEMi0zODJhODy9Kp6PoJLeHF_n1c_Pn38fvVlc_Pt8_XVh5uNbniXN8xwMfJBAuuZ0APvUUpthpYb4NToUbSUaTrWXKPoUNJaMBiNHgA0NAa7-ry6PuqaALdqH-0M8ZcKYNWhEeJOQcxWO1T9CLTjNWtFx0QtZNfJ3vQGoG0lBV4XrfdHrf0yzGg0-jI290T06Y-3k9qFOyUYbzvWFoG39wIx_FwwZTXbpNG5soKwJMWapqVd2dIKffPY66_Jw_IKQB4BOoaUIo5K23yYfrG2TjGq1qCoQ1DUGhR1CEoh0n-ID9r_pfwBbkDEtA |
CitedBy_id | crossref_primary_10_3390_ijms23031127 crossref_primary_10_1021_acs_jafc_8b05480 crossref_primary_10_1113_JP278226 crossref_primary_10_1289_EHP6263 crossref_primary_10_3390_antiox13101156 crossref_primary_10_1016_j_bbrc_2016_11_089 crossref_primary_10_1016_j_bcp_2017_07_006 crossref_primary_10_1021_acs_molpharmaceut_2c00948 crossref_primary_10_1038_srep36699 crossref_primary_10_4049_jimmunol_1700497 crossref_primary_10_1007_s00726_015_1987_0 crossref_primary_10_1186_s12885_018_4755_1 crossref_primary_10_1208_s12248_017_0164_7 crossref_primary_10_1038_s41598_020_72930_7 crossref_primary_10_2147_OTT_S280797 crossref_primary_10_1007_s10571_023_01376_y crossref_primary_10_1007_s11033_020_05717_8 crossref_primary_10_1073_pnas_2211142119 crossref_primary_10_1039_D2RA01830F crossref_primary_10_3390_cancers16162871 crossref_primary_10_7717_peerj_12918 crossref_primary_10_1103_PhysRevE_107_024415 crossref_primary_10_3390_metabo14020103 crossref_primary_10_1002_mc_23100 crossref_primary_10_18632_oncotarget_20545 crossref_primary_10_3390_biomedicines10051113 crossref_primary_10_1002_jimd_12107 crossref_primary_10_3390_ma15124329 crossref_primary_10_1039_C6MD00005C crossref_primary_10_1016_j_cmet_2019_11_020 crossref_primary_10_1007_s11095_024_03783_2 crossref_primary_10_1016_j_gene_2016_08_028 crossref_primary_10_1038_s41594_018_0076_y crossref_primary_10_1186_s13293_016_0089_3 crossref_primary_10_3390_biom12010113 crossref_primary_10_1016_j_ejphar_2022_175323 crossref_primary_10_1182_blood_2016_01_690743 crossref_primary_10_3390_ani12121554 crossref_primary_10_1016_j_bbamcr_2015_12_017 crossref_primary_10_1186_s12864_019_5557_9 crossref_primary_10_1186_s12884_023_06102_6 crossref_primary_10_1007_s10549_020_05586_6 crossref_primary_10_3390_cells5020024 crossref_primary_10_1111_febs_16245 crossref_primary_10_3390_ijms21176156 crossref_primary_10_18632_aging_203495 crossref_primary_10_1371_journal_pone_0157453 crossref_primary_10_3389_fonc_2017_00306 crossref_primary_10_1146_annurev_biochem_060815_014422 crossref_primary_10_1002_jmd2_12151 crossref_primary_10_3390_molecules24244524 crossref_primary_10_3390_biom12091189 crossref_primary_10_1016_j_isci_2023_107620 crossref_primary_10_3389_fimmu_2017_00549 crossref_primary_10_3389_fphys_2017_00468 crossref_primary_10_1016_j_cmet_2018_07_021 crossref_primary_10_1038_s41598_023_49866_9 crossref_primary_10_3390_ijms19041177 crossref_primary_10_1021_acsabm_1c00771 crossref_primary_10_1042_BCJ20190859 crossref_primary_10_1016_j_exer_2020_107958 crossref_primary_10_3389_fphys_2021_715469 crossref_primary_10_1016_j_cmet_2017_05_011 crossref_primary_10_3389_fendo_2023_1072461 crossref_primary_10_1152_ajpgi_00186_2019 crossref_primary_10_3389_fcell_2022_854397 crossref_primary_10_3390_cells9081904 crossref_primary_10_3390_ijms23031155 crossref_primary_10_3390_biom12020235 crossref_primary_10_1002_bit_26794 crossref_primary_10_1016_j_xphs_2019_02_016 crossref_primary_10_1053_j_seminhematol_2024_02_001 crossref_primary_10_1186_s12864_023_09361_x crossref_primary_10_1016_j_vetmic_2024_110013 crossref_primary_10_3389_fspor_2023_1158167 crossref_primary_10_1152_ajpcell_00169_2023 crossref_primary_10_1111_jfbc_13441 crossref_primary_10_3390_cancers13010125 crossref_primary_10_3390_ijms24032337 crossref_primary_10_1038_s41467_018_04719_2 crossref_primary_10_7554_eLife_27713 crossref_primary_10_1080_15376516_2016_1220654 crossref_primary_10_3389_fchem_2018_00243 crossref_primary_10_3390_ijms19041200 crossref_primary_10_3892_etm_2018_6443 crossref_primary_10_1016_j_bcp_2024_116435 crossref_primary_10_1259_bjr_20200067 crossref_primary_10_3390_cancers16020405 crossref_primary_10_1016_j_ejogrb_2023_03_032 crossref_primary_10_1016_j_bbamcr_2015_03_017 crossref_primary_10_1016_j_scitotenv_2024_177929 crossref_primary_10_1038_nrc_2016_71 crossref_primary_10_3390_nu11102516 crossref_primary_10_1002_prp2_1071 crossref_primary_10_1093_biolre_ioz197 crossref_primary_10_1007_s00374_023_01712_w crossref_primary_10_1038_s41598_021_95255_5 crossref_primary_10_1038_s42003_019_0582_4 crossref_primary_10_2174_1389200223666220919121354 crossref_primary_10_1016_j_bbamcr_2018_06_006 crossref_primary_10_1165_rcmb_2022_0339OC crossref_primary_10_3390_nu14214440 crossref_primary_10_1016_j_bbagen_2017_01_013 crossref_primary_10_3390_ijms18050934 crossref_primary_10_1111_are_14755 crossref_primary_10_1016_j_heliyon_2023_e17598 crossref_primary_10_3389_fnins_2022_874750 crossref_primary_10_1016_j_biocel_2015_08_004 crossref_primary_10_1089_ars_2017_7356 crossref_primary_10_1016_j_bbabio_2016_03_006 crossref_primary_10_1016_j_semcancer_2020_12_002 crossref_primary_10_1242_jcs_251645 crossref_primary_10_3233_KCA_180043 crossref_primary_10_1186_s12951_023_01979_z crossref_primary_10_1186_s13046_015_0221_y crossref_primary_10_1016_j_canlet_2020_03_015 crossref_primary_10_1016_j_neuint_2016_03_014 crossref_primary_10_1111_jwas_12339 crossref_primary_10_1016_j_jhazmat_2024_136197 crossref_primary_10_1186_s12964_019_0412_9 crossref_primary_10_1042_BCJ20160822 crossref_primary_10_1038_s41398_020_0710_4 crossref_primary_10_1016_j_febslet_2015_10_011 crossref_primary_10_3389_fcell_2018_00096 crossref_primary_10_1007_s12032_022_01896_5 crossref_primary_10_1016_j_jpsychires_2016_06_017 crossref_primary_10_3389_fonc_2020_00792 crossref_primary_10_1042_BCJ20210585 crossref_primary_10_1007_s00726_016_2254_8 crossref_primary_10_1038_nm_4464 crossref_primary_10_1038_s41540_022_00257_2 crossref_primary_10_3390_ijms19030648 crossref_primary_10_1101_gad_327056_119 crossref_primary_10_1517_14728222_2015_1044975 crossref_primary_10_1016_j_jksus_2023_103035 crossref_primary_10_1002_btpr_3464 crossref_primary_10_1039_D2NR02063G crossref_primary_10_1042_BJ20150751 crossref_primary_10_1016_j_neuint_2018_07_001 crossref_primary_10_3389_fphar_2024_1345522 crossref_primary_10_1016_j_ejmech_2021_113806 crossref_primary_10_3389_fnins_2018_00399 crossref_primary_10_3389_fchem_2018_00279 crossref_primary_10_1016_j_smim_2016_09_003 crossref_primary_10_1200_EDBK_238499 crossref_primary_10_1111_cas_14182 crossref_primary_10_1016_j_bcp_2022_114943 crossref_primary_10_1021_acscentsci_7b00299 crossref_primary_10_1371_journal_ppat_1005052 crossref_primary_10_3390_metabo11020112 crossref_primary_10_1177_2472555218755629 crossref_primary_10_1089_rej_2017_1948 crossref_primary_10_1111_bjh_19516 crossref_primary_10_3390_ijms19051278 crossref_primary_10_3390_nu7031426 crossref_primary_10_3390_cells12010080 crossref_primary_10_1016_j_jnutbio_2019_108264 crossref_primary_10_3390_ijms25147558 crossref_primary_10_1186_s13148_019_0637_x crossref_primary_10_1016_j_mce_2016_09_028 crossref_primary_10_1021_jacs_3c11780 crossref_primary_10_3390_pathogens13100867 crossref_primary_10_1097_CAD_0000000000001400 crossref_primary_10_1016_j_ajps_2020_02_005 crossref_primary_10_3389_fonc_2023_1141851 crossref_primary_10_1089_aid_2017_0165 crossref_primary_10_3390_cells9092028 crossref_primary_10_3390_ijms21082872 crossref_primary_10_1016_j_jconrel_2016_10_031 crossref_primary_10_1038_s41598_018_21282_4 crossref_primary_10_1074_jbc_RA117_000735 crossref_primary_10_3382_ps_pez106 |
Cites_doi | 10.1074/jbc.M111.241323 10.1152/ajpgi.00048.2010 10.1042/BJ20040487 10.1152/ajprenal.90318.2008 10.1042/bj3330285 10.1124/mol.111.075648 10.1002/iub.210 10.1016/j.bbcan.2012.06.004 10.1016/j.bbadis.2005.04.002 10.1007/s004240100663 10.1042/bj3490787 10.1038/nature13306 10.1186/1471-2407-13-509 10.2174/156800805774912953 10.1038/nature07823 10.1002/jcp.20339 10.1111/j.1349-7006.2011.02151.x 10.1074/jbc.M110.162404 10.1073/pnas.0709747104 10.1007/s12033-012-9586-8 10.1007/s10620-007-0120-y 10.1016/S0197-0186(03)00040-8 10.1016/j.neuint.2005.11.016 10.1111/j.1600-6143.2009.02720.x 10.1159/000343341 10.1016/j.abb.2005.08.016 10.1016/S0899-9007(02)00780-3 10.1016/j.pep.2012.10.003 10.1042/BJ20050021 10.1093/emboj/20.24.7041 10.1128/MCB.01661-09 10.1016/j.pharmthera.2008.09.005 10.3892/or.2012.1878 10.1016/j.cmet.2007.10.002 10.1152/ajpgi.00031.2002 10.1016/j.bbadis.2010.07.016 10.1007/s10930-013-9503-4G7A 10.1016/j.mam.2012.05.003 10.1111/j.1471-4159.2006.03913.x 10.1016/j.mam.2012.12.006 10.1111/j.1471-4159.2008.05767.x 10.1074/jbc.M400904200 10.1074/jbc.M704524200 10.1016/j.semcdb.2012.02.002 10.1046/j.1471-4159.1999.02184.x 10.1016/j.neuint.2005.11.021 10.1073/pnas.1218165110 10.1016/j.bbamem.2005.07.007 10.1152/physiol.00045.2007 10.1016/j.mam.2012.12.007 10.1042/bj3550725 10.1038/nrd3028 10.1016/S0092-8674(00)81674-8 10.1007/s00775-006-0096-7 10.1042/BJ20120307 10.1113/jphysiol.2004.062521 10.1113/jphysiol.2011.207175 10.1177/0148607112460682 10.1242/jcs.096040 10.1016/j.bbrc.2011.09.074 10.1007/s00424-013-1393-y 10.1074/jbc.M412516200 10.1152/ajpgi.00344.2003 10.1007/s00726-005-0221-x 10.1016/j.semcancer.2005.04.005 10.1016/S0021-9258(18)97187-5 10.1038/nature05475 10.1007/s11010-008-9735-3 10.1038/nature05455 10.1007/s00424-005-1455-x 10.1016/j.bbabio.2010.10.014 10.1159/000315092 10.1016/j.ejps.2008.06.015 10.1046/j.1471-4159.2003.01981.x 10.1158/1078-0432.CCR-12-2334 10.1146/annurev.nutr.13.1.137 10.1016/j.ygyno.2005.08.016 10.1016/j.bbrc.2006.04.003 10.1046/j.1471-4159.2001.00322.x 10.1042/BJ20050083 10.1016/0005-2728(94)90048-5 10.1126/science.1218530 10.1016/j.mam.2012.10.007 10.1523/JNEUROSCI.22-01-00062.2002 10.1152/ajpendo.00690.2009 10.1074/jbc.M110.179739 10.1152/physrev.1990.70.1.43 10.1152/ajpcell.00330.2006 |
ContentType | Journal Article |
Copyright | Copyright © 2014 Pochini, Scalise, Galluccio and Indiveri. 2014 |
Copyright_xml | – notice: Copyright © 2014 Pochini, Scalise, Galluccio and Indiveri. 2014 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fchem.2014.00061 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2296-2646 |
ExternalDocumentID | oai_doaj_org_article_9fa08231748143468869d9daa7760a23 PMC4127817 25157349 10_3389_fchem_2014_00061 |
Genre | Journal Article Review |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION GROUPED_DOAJ HYE IPNFZ KQ8 M48 M~E OK1 PGMZT RIG RPM ABDBF ADMLS NPM 7X8 5PM |
ID | FETCH-LOGICAL-c528t-1d24f2b6a1914cb29e66cdb72da20dcf4701c0f32ce48e60341afdcbaaca5de83 |
IEDL.DBID | M48 |
ISSN | 2296-2646 |
IngestDate | Wed Aug 27 01:12:19 EDT 2025 Thu Aug 21 13:17:02 EDT 2025 Fri Sep 05 14:08:11 EDT 2025 Thu Apr 03 07:08:35 EDT 2025 Tue Jul 01 03:17:51 EDT 2025 Thu Apr 24 23:06:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | membrane transporters amino acids homology models cancer glutamine nutrients |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c528t-1d24f2b6a1914cb29e66cdb72da20dcf4701c0f32ce48e60341afdcbaaca5de83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Edited by: Cecila Giulivi, University of California, Davis, USA Reviewed by: Imogen R. Coe, Ryerson University, Canada; Laurent Counillon, University of Nice-Sophia Antipolis, France This article was submitted to Cellular Biochemistry, a section of the journal Frontiers in Chemistry. These authors have contributed equally to this work. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fchem.2014.00061 |
PMID | 25157349 |
PQID | 1557084207 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9fa08231748143468869d9daa7760a23 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4127817 proquest_miscellaneous_1557084207 pubmed_primary_25157349 crossref_citationtrail_10_3389_fchem_2014_00061 crossref_primary_10_3389_fchem_2014_00061 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-11 |
PublicationDateYYYYMMDD | 2014-08-11 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in chemistry |
PublicationTitleAlternate | Front Chem |
PublicationYear | 2014 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Bode (B12) 2002; 283 Dolinska (B53) 2003; 43 Broer (B22) 2004; 279 Costa (B42) 2013; 87 Bungard (B29) 2004; 382 Antony (B5) 2011; 1812 Indiveri (B89) 2013; 54 Broer (B21) 2011; 286 Gao (B72) 2009; 458 Herzig (B85) 2012; 337 Albers (B2) 2001; 443 Franca (B64) 2005; 388 Broer (B26) 2009; 61 Forrest (B60) 2011; 1807 Ducroc (B55) 2010; 299 Hassanein (B83) 2013; 19 Danilczyk (B46) 2006; 444 Bohmer (B15) 2005; 389 Christensen (B40) 1965; 240 El-Gebali (B57) 2013; 34 Amaral (B4) 2008; 313 Chaudhry (B35) 2001; 20 Fairweather (B58) 2012; 446 Hagglund (B79) 2011; 286 Ebara (B56) 2010; 30 Fraga (B63) 2005; 29 Broer (B20) 2001; 355 Hansen (B82) 2011; 286 Indiveri (B88) 1998; 333(Pt 2) Galluccio (B69) 2013; 32 Broer (B27) 2014; 466 Camargo (B33) 2005; 451 Christensen (B39) 1990; 70 Avissar (B6) 2008; 53 Bungard (B30) 2005; 443 Dang (B45) 2010; 30 Boado (B10) 2005; 1715 Fotiadis (B62) 2013; 34 Bak (B7) 2006; 98 Ganapathy (B70) 2005; 5 Deberardinis (B49) 2007; 104 Bode (B11) 2001; 131 Geier (B73) 2013; 110 Chaudhry (B37) 2002; 22 Chen (B38) 2012; 1826 Deitmer (B50) 2003; 87 Drummond (B54) 2010; 298 Gupta (B78) 2006; 100 Broer (B24) 2006; 48 Broer (B25) 2008; 23 Fernandez (B59) 2005; 280 Bodoy (B13) 2013; 34 Bohmer (B16) 2010; 25 Holecek (B86) 2013; 37 Conti (B41) 2006; 48 Giacomini (B74) 2010; 9 Boudker (B17) 2007; 445 Grewer (B76) 2004; 557 Fuchs (B67) 2004; 286 Chaudhry (B36) 1999; 99 Cynober (B44) 2002; 18 Abajian (B1) 2006; 11 Busque (B31) 2009; 9 Daye (B47) 2012; 23 Furuya (B68) 2012; 103 Bhavsar (B9) 2011; 414 Brizio (B18) 2006; 344 Cantor (B34) 2012; 125 Deng (B52) 2014; 510 Broer (B28) 2001; 77 Fuchs (B65) 2005; 15 Bogatikov (B14) 2012; 30 Fort (B61) 2007; 282 Gupta (B77) 2005; 1741 Deberardinis (B48) 2008; 7 Halestrap (B80) 2013; 34 Del Amo (B51) 2008; 35 Albers (B3) 2012; 81 Busque (B32) 2009; 297 Hamdi (B81) 2011; 589 Indiveri (B90) 1994; 1188 Imai (B87) 2010; 30 Gliddon (B75) 2009; 108 Betsunoh (B8) 2013; 13 Ganapathy (B71) 2009; 121 Curi (B43) 2005; 204 Fuchs (B66) 2007; 293 Broer (B19) 1999; 73 Broer (B23) 2000; 349(Pt 3) Hayashi (B84) 2012; 28 24603303 - Br J Cancer. 2014 Apr 15;110(8):2030-9 23509259 - Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5480-5 12584318 - J Virol. 2003 Mar;77(5):2936-45 10049700 - Biochem Biophys Res Commun. 1999 Feb 16;255(2):283-8 19660021 - Am J Transplant. 2009 Aug;9(8):1936-45 23506875 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):337-49 1445319 - Biochem Biophys Res Commun. 1992 Oct 30;188(2):746-53 21386061 - Am J Physiol Endocrinol Metab. 2011 Jun;300(6):E1092-102 9751058 - Nature. 1998 Sep 17;395(6699):288-91 18032601 - Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19345-50 21771784 - J Biol Chem. 2011 Sep 9;286(36):31830-8 23848995 - BMC Cancer. 2013 Jul 12;13:343 20304764 - Am J Physiol Endocrinol Metab. 2010 May;298(5):E1011-8 22736142 - Oncol Rep. 2012 Sep;28(3):862-6 20375792 - Int J Gynecol Cancer. 2010 Apr;20(3):329-36 21964291 - Biochem Biophys Res Commun. 2011 Oct 28;414(3):456-61 11997238 - Am J Physiol Cell Physiol. 2002 Jun;282(6):C1246-53 23506903 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):702-10 24140288 - Drug Discov Today. 2014 Apr;19(4):450-7 11011012 - Brain Res. 2000 Oct 6;879(1-2):115-21 17417702 - J Membr Biol. 2006;213(2):111-8 23607685 - Hepatol Res. 2013 Nov;43(11):1211-23 12297216 - Nutrition. 2002 Sep;18(9):761-6 22993604 - Exp Ther Med. 2010 Sep;1(5):799-808 13940861 - Nature. 1963 Feb 23;197:765-7 15709970 - Annu Rev Physiol. 2005;67:557-72 17323379 - J Cell Physiol. 2007 Aug;212(2):375-85 12969260 - J Neurochem. 2003 Oct;87(1):127-35 22230955 - Nature. 2012 Jan 09;481(7382):469-74 19012749 - J Neurochem. 2009 Jan;108(2):372-83 9657967 - Biochem J. 1998 Jul 15;333 ( Pt 2):285-90 20511718 - Cell Physiol Biochem. 2010;25(6):723-32 11151079 - Curr Opin Clin Nutr Metab Care. 2000 Sep;3(5):355-62 15107471 - J Physiol. 2004 Jun 15;557(Pt 3):747-59 21769608 - Biometals. 2011 Dec;24(6):1205-15 18992769 - Pharmacol Ther. 2009 Jan;121(1):29-40 9878049 - EMBO J. 1999 Jan 4;18(1):49-57 10391916 - J Biol Chem. 1999 Jul 9;274(28):19745-51 23234856 - Cell Physiol Biochem. 2012;30(6):1538-46 20190787 - Nat Rev Drug Discov. 2010 Mar;9(3):215-36 22499670 - J Cell Sci. 2012 Mar 15;125(Pt 6):1373-82 18656534 - Eur J Pharm Sci. 2008 Oct 2;35(3):161-74 18418736 - J Mol Neurosci. 2008 Jun;35(2):179-93 17329400 - Am J Physiol Cell Physiol. 2007 Jul;293(1):C55-63 22677001 - Biochem J. 2012 Aug 15;446(1):135-48 23151806 - Cancer Prev Res (Phila). 2012 Dec;5(12):1337-40 11331400 - J Neurochem. 2001 May;77(3):705-19 24106489 - Front Endocrinol (Lausanne). 2013 Oct 02;4:138 2404290 - Physiol Rev. 1990 Jan;70(1):43-77 23506863 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):139-58 24168110 - BMC Cancer. 2013 Oct 30;13:509 14770310 - Pflugers Arch. 2004 Feb;447(5):532-42 22990615 - JPEN J Parenter Enteral Nutr. 2013 Sep;37(5):607-16 15679469 - Biochem J. 2005 Jun 1;388(Pt 2):435-43 11311135 - Biochem J. 2001 May 1;355(Pt 3):725-31 10903140 - Biochem J. 2000 Aug 1;349 Pt 3:787-95 24300519 - Pharmaceutics. 2013 Sep 18;5(3):472-97 24760501 - Physiol Rep. 2014 Mar 20;2(3):e00238 7803446 - Biochim Biophys Acta. 1994 Dec 30;1188(3):293-301 18406340 - Biochim Biophys Acta. 2008 Jul-Aug;1777(7-8):564-78 20696240 - Biochim Biophys Acta. 2011 Feb;1812(2):162-76 17127344 - Front Biosci. 2007 Jan 01;12 :874-82 15581847 - Biochim Biophys Acta. 2004 Dec 15;1667(2):122-31 18347756 - Mol Cell Biochem. 2008 Jun;313(1-2):1-10 16787421 - J Neurochem. 2006 Aug;98(3):641-53 22113081 - Mol Pharmacol. 2012 Mar;81(3):356-65 15286787 - Nat Genet. 2004 Sep;36(9):999-1002 12381519 - Am J Physiol Gastrointest Liver Physiol. 2002 Nov;283(5):G1062-73 21536930 - J Nucl Med. 2011 May;52(5):822-9 8757792 - J Mol Biol. 1996 Jul 19;260(3):289-98 17408840 - Toxicology. 2007 May 20;234(3):145-56 5891075 - J Biol Chem. 1965 Sep;240(9):3609-16 23506866 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):197-219 12579515 - Cell Biochem Funct. 2003 Mar;21(1):1-9 19472175 - IUBMB Life. 2009 Jun;61(6):591-9 19589777 - J Biol Chem. 2009 Sep 11;284(37):25314-23 8702519 - J Biol Chem. 1996 Aug 2;271(31):18657-61 20599776 - Biochem Pharmacol. 2010 Oct 15;80(8):1266-73 24704252 - Biochem Pharmacol. 2014 Jun 1;89(3):422-30 21606113 - J Physiol. 2011 Jul 15;589(Pt 14):3623-40 15094455 - Neuroreport. 2004 Mar 22;15(4):575-8 23270998 - Int J Pharm. 2013 Feb 25;443(1-2):245-53 16197915 - Arch Biochem Biophys. 2005 Nov 15;443(1-2):53-9 16570183 - J Biol Inorg Chem. 2006 Jun;11(4):459-66 23213057 - Clin Cancer Res. 2013 Feb 1;19(3):560-70 18400692 - Physiology (Bethesda). 2008 Apr;23:95-103 16041361 - Nature. 2005 Sep 8;437(7056):215-23 21511949 - J Biol Chem. 2011 Jun 10;286(23):20500-11 22077314 - Cancer Sci. 2012 Feb;103(2):382-9 24649160 - Mol Clin Oncol. 2013 Mar;1(2):274-280 12388375 - Am J Physiol Lung Cell Mol Physiol. 2003 Jan;284(1):L39-49 19203585 - Cell. 2009 Feb 6;136(3):521-34 19460998 - Science. 2009 May 22;324(5930):1029-33 23912240 - Protein J. 2013 Aug;32(6):442-8 14770309 - Pflugers Arch. 2004 Feb;447(5):490-4 15905073 - Biochim Biophys Acta. 2005 Jun 30;1741(1-2):215-23 16540203 - Neurochem Int. 2006 May-Jun;48(6-7):559-67 15483603 - Nature. 2004 Oct 14;431(7010):811-8 16125134 - Biochim Biophys Acta. 2005 Sep 15;1715(2):104-10 11535130 - Biochem J. 2001 Sep 15;358(Pt 3):693-704 23696029 - Tumour Biol. 2013 Oct;34(5):2977-81 17549407 - Int J Oncol. 2007 Jul;31(1):81-7 9588199 - Biochem Biophys Res Commun. 1998 Apr 28;245(3):824-9 18157695 - Dig Dis Sci. 2008 Aug;53(8):2113-25 21036745 - Anticancer Res. 2010 Oct;30(10):4223-7 15901826 - Mol Cell Proteomics. 2005 Aug;4(8):1061-71 15863273 - Cancer Lett. 2005 May 26;222(2):237-45 23353822 - Oncogene. 2014 Jan 30;33(5):556-66 22628554 - Science. 2012 Jul 6;337(6090):93-6 11546643 - Am J Physiol Cell Physiol. 2001 Oct;281(4):C1077-93 23085088 - Protein Expr Purif. 2013 Jan;87(1):35-40 15044460 - J Biol Chem. 2004 Jun 4;279(23):24467-76 18177721 - Cell Metab. 2008 Jan;7(1):11-20 19219026 - Nature. 2009 Apr 9;458(7239):762-5 19184091 - Pflugers Arch. 2009 May;458(1):53-60 21270293 - Am J Physiol Cell Physiol. 2011 May;300(5):C1047-54 21917917 - J Biol Chem. 2011 Nov 4;286(44):38086-94 23771822 - J Biomol Screen. 2013 Sep;18(8):851-67 10619430 - Cell. 1999 Dec 23;99(7):769-80 15175006 - Biochem J. 2004 Aug 15;382(Pt 1):27-32 20161990 - Front Neuroanat. 2010 Feb 08;4:1 17046712 - Biochim Biophys Acta. 2007 Feb;1768(2):291-8 23506861 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):108-20 23535601 - Nature. 2013 Apr 4;496(7443):101-5 19924125 - Nature. 2009 Dec 17;462(7275):880-5 2690640 - Am J Physiol. 1989 Dec;257(6 Pt 2):F1050-8 12684517 - J Biol Chem. 2003 Jun 27;278(26):23720-30 22407317 - Nature. 2012 Mar 11;483(7391):632-6 21835054 - Thyroid Res. 2011 Aug 03;4 Suppl 1:S7 12845534 - Pflugers Arch. 2004 Feb;447(5):784-95 16643857 - Biochem Biophys Res Commun. 2006 Jun 9;344(3):1008-16 24193407 - Pflugers Arch. 2014 Jan;466(1):155-72 10537079 - J Neurochem. 1999 Nov;73(5):2184-94 15804236 - Biochem J. 2005 Aug 1;389(Pt 3):745-51 19458124 - Am J Physiol Renal Physiol. 2009 Aug;297(2):F440-50 24847886 - Nature. 2014 Jun 5;510(7503):121-5 23756778 - Biochim Biophys Acta. 2013 Sep;1828(9):2238-46 24586861 - PLoS One. 2014 Feb 26;9(2):e89547 22813728 - J Clin Pathol. 2012 Nov;65(11):1019-23 22634383 - Int J Biochem Cell Biol. 2012 Sep;44(9):1448-56 15286788 - Nat Genet. 2004 Sep;36(9):1003-7 24427154 - Front Endocrinol (Lausanne). 2013 Dec 31;4:199 23010140 - Toxicol Appl Pharmacol. 2012 Nov 15;265(1):93-102 24037379 - Nature. 2013 Nov 7;503(7474):85-90 7432185 - Membr Biochem. 1980;3(1-2):155-68 18572012 - Biochim Biophys Acta. 2008 Oct;1778(10):2258-65 21878982 - Nat Rev Drug Discov. 2011 Aug 31;10(9):671-84 16133263 - Pflugers Arch. 2005 Nov;451(2):338-48 22451531 - J Chromatogr Sci. 2012 May;50(5):396-400 21403644 - Lab Invest. 2011 Jul;91(7):992-1006 11533296 - J Nutr. 2001 Sep;131(9 Suppl):2475S-85S; discussion 2486S-7S 17724034 - J Biol Chem. 2007 Oct 26;282(43):31444-52 15795900 - J Cell Physiol. 2005 Aug;204(2):392-401 22349059 - Semin Cell Dev Biol. 2012 Jun;23(4):362-9 10391915 - J Biol Chem. 1999 Jul 9;274(28):19738-44 15916903 - Semin Cancer Biol. 2005 Aug;15(4):254-66 8254673 - J Mol Biol. 1993 Dec 5;234(3):779-815 22750268 - Biochim Biophys Acta. 2012 Dec;1826(2):370-84 24516142 - Proc Natl Acad Sci U S A. 2014 Feb 25;111(8):2966-71 22185814 - Drug Metab Pharmacokinet. 2012;27(3):317-24 21187458 - Anticancer Res. 2010 Dec;30(12):4819-28 12529963 - Anticancer Res. 2002 Sep-Oct;22(5):2555-7 23268354 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):638-45 10446133 - J Biol Chem. 1999 Aug 20;274(34):23740-5 11756489 - J Neurosci. 2002 Jan 1;22(1):62-72 16168467 - Gynecol Oncol. 2006 Jan;100(1):8-13 12742097 - Neurochem Int. 2003 Sep-Oct;43(4-5):501-7 14563674 - Am J Physiol Gastrointest Liver Physiol. 2004 Mar;286(3):G467-78 21636576 - J Biol Chem. 2011 Jul 29;286(30):26638-51 15660107 - Nature. 2005 Feb 10;433(7026):633-8 15918515 - Arch Pharm Res. 2005 Apr;28(4):421-32 23506905 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):719-34 23669717 - J Gen Physiol. 2013 Jun;141(6):659-72 24131658 - BMC Cancer. 2013 Oct 16;13:482 21621508 - Biochim Biophys Acta. 2011 Oct;1808(10):2551-8 8662767 - J Biol Chem. 1996 Jun 21;271(25):14883-90 11742981 - EMBO J. 2001 Dec 17;20(24):7041-51 11306651 - J Physiol. 2001 Apr 15;532(Pt 2):297-304 10027916 - Kidney Int. 1999 Mar;55(3):778-92 22199264 - Anticancer Res. 2011 Dec;31(12 ):4075-82 17167413 - Nature. 2006 Dec 21;444(7122):1088-91 21951714 - FEBS J. 2011 Nov;278(22):4434-49 9726963 - J Biol Chem. 1998 Sep 11;273(37):23629-32 16375689 - Curr Drug Targets Immune Endocr Metabol Disord. 2005 Dec;5(4):357-64 16517023 - Neurochem Int. 2006 May-Jun;48(6-7):459-64 17148440 - J Biol Chem. 2007 Feb 9;282(6):3788-98 15845389 - Biochem Biophys Res Commun. 2005 May 27;331(1):272-7 20100868 - Mol Cell Biol. 2010 Mar;30(6):1300-2 11692272 - Pflugers Arch. 2001 Oct;443(1):92-101 22100603 - Biochim Biophys Acta. 2012 Mar;1818(3):434-42 23946786 - Oncol Lett. 2013 Jul;6(1):106-112 9227483 - Am J Physiol. 1997 Jun;272(6 Pt 1):G1463-72 23451088 - PLoS One. 2013;8(2):e56792 9849898 - FEBS Lett. 1998 Nov 13;439(1-2):157-62 12659953 - Biochim Biophys Acta. 2003 Apr 1;1611(1-2):123-30 19608859 - Science. 2009 Aug 21;325(5943):1010 |
References_xml | – volume: 286 start-page: 26638 year: 2011 ident: B21 article-title: Impaired nutrient signaling and body weight control in a Na+ neutral amino acid cotransporter (Slc6a19)-deficient mouse publication-title: J. Biol. Chem doi: 10.1074/jbc.M111.241323 – volume: 299 start-page: G179 year: 2010 ident: B55 article-title: Luminal leptin inhibits L-glutamine transport in rat small intestine: involvement of ASCT2 and B0AT1 publication-title: Am. J. Physiol. Gastrointest. Liver Physiol doi: 10.1152/ajpgi.00048.2010 – volume: 382 start-page: 27 year: 2004 ident: B29 article-title: Glutamine availability up-regulates expression of the amino acid transporter protein ASCT2 in HepG2 cells and stimulates the ASCT2 promoter publication-title: Biochem. J doi: 10.1042/BJ20040487 – volume: 297 start-page: F440 year: 2009 ident: B32 article-title: Potassium restriction, high protein intake, and metabolic acidosis increase expression of the glutamine transporter SNAT3 (Slc38a3) in mouse kidney publication-title: Am. J. Physiol. Renal Physiol doi: 10.1152/ajprenal.90318.2008 – volume: 333(Pt 2) start-page: 285 year: 1998 ident: B88 article-title: Identification and purification of the reconstitutively active glutamine carrier from rat kidney mitochondria publication-title: Biochem. J doi: 10.1042/bj3330285 – volume: 81 start-page: 356 year: 2012 ident: B3 article-title: Defining substrate and blocker activity of alanine-serine-cysteine transporter 2 (ASCT2) ligands with novel serine analogs publication-title: Mol. Pharmacol doi: 10.1124/mol.111.075648 – volume: 61 start-page: 591 year: 2009 ident: B26 article-title: The role of the neutral amino acid transporter B0AT1 (SLC6A19) in Hartnup disorder and protein nutrition publication-title: IUBMB Life doi: 10.1002/iub.210 – volume: 1826 start-page: 370 year: 2012 ident: B38 article-title: Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbcan.2012.06.004 – volume: 1741 start-page: 215 year: 2005 ident: B77 article-title: Upregulation of the amino acid transporter ATB0,+ (SLC6A14) in colorectal cancer and metastasis in humans publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbadis.2005.04.002 – volume: 443 start-page: 92 year: 2001 ident: B2 article-title: Na+ transport by the neural glutamine transporter ATA1 publication-title: Pflugers Arch doi: 10.1007/s004240100663 – volume: 349(Pt 3) start-page: 787 year: 2000 ident: B23 article-title: The heterodimeric amino acid transporter 4F2hc/y+LAT2 mediates arginine efflux in exchange with glutamine publication-title: Biochem. J doi: 10.1042/bj3490787 – volume: 510 start-page: 121 year: 2014 ident: B52 article-title: Crystal structure of the human glucose transporter GLUT1 publication-title: Nature doi: 10.1038/nature13306 – volume: 13 start-page: 509 year: 2013 ident: B8 article-title: Increased expression of system large amino acid transporter (LAT)-1 mRNA is associated with invasive potential and unfavorable prognosis of human clear cell renal cell carcinoma publication-title: BMC Cancer doi: 10.1186/1471-2407-13-509 – volume: 5 start-page: 357 year: 2005 ident: B70 article-title: Amino Acid Transporter ATB0,+ as a delivery system for drugs and prodrugs publication-title: Curr. Drug Targets Immune Endocr. Metabol. Disord doi: 10.2174/156800805774912953 – volume: 458 start-page: 762 year: 2009 ident: B72 article-title: c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism publication-title: Nature doi: 10.1038/nature07823 – volume: 204 start-page: 392 year: 2005 ident: B43 article-title: Molecular mechanisms of glutamine action publication-title: J. Cell. Physiol doi: 10.1002/jcp.20339 – volume: 103 start-page: 382 year: 2012 ident: B68 article-title: Correlation of L-type amino acid transporter 1 and CD98 expression with triple negative breast cancer prognosis publication-title: Cancer Sci doi: 10.1111/j.1349-7006.2011.02151.x – volume: 286 start-page: 20500 year: 2011 ident: B79 article-title: Identification of SLC38A7 (SNAT7) protein as a glutamine transporter expressed in neurons publication-title: J. Biol. Chem doi: 10.1074/jbc.M110.162404 – volume: 104 start-page: 19345 year: 2007 ident: B49 article-title: Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.0709747104 – volume: 54 start-page: 724 year: 2013 ident: B89 article-title: Strategies of bacterial over expression of membrane transporters relevant in human health: the successful case of the three members of OCTN subfamily publication-title: Mol. Biotechnol doi: 10.1007/s12033-012-9586-8 – volume: 53 start-page: 2113 year: 2008 ident: B6 article-title: In human entrocytes, GLN transport and ASCT2 surface expression induced by short-term EGF are MAPK, PI3K, and Rho-dependent publication-title: Dig. Dis. Sci doi: 10.1007/s10620-007-0120-y – volume: 43 start-page: 501 year: 2003 ident: B53 article-title: Glutamine transport in C6 glioma cells shows ASCT2 system characteristics publication-title: Neurochem. Int doi: 10.1016/S0197-0186(03)00040-8 – volume: 48 start-page: 459 year: 2006 ident: B41 article-title: The glutamine commute: lost in the tube? publication-title: Neurochem. Int doi: 10.1016/j.neuint.2005.11.016 – volume: 9 start-page: 1936 year: 2009 ident: B31 article-title: Calcineurin-inhibitor-free immunosuppression based on the JAK inhibitor CP-690,550: a pilot study in de novo kidney allograft recipients publication-title: Am. J. Transplant doi: 10.1111/j.1600-6143.2009.02720.x – volume: 30 start-page: 1538 year: 2012 ident: B14 article-title: Up-regulation of amino acid transporter SLC6A19 activity and surface protein abundance by PKB/Akt and PIKfyve publication-title: Cell. Physiol. Biochem doi: 10.1159/000343341 – volume: 443 start-page: 53 year: 2005 ident: B30 article-title: Identification of the promoter elements involved in the stimulation of ASCT2 expression by glutamine availability in HepG2 cells and the probable involvement of FXR/RXR dimers publication-title: Arch. Biochem. Biophys doi: 10.1016/j.abb.2005.08.016 – volume: 18 start-page: 761 year: 2002 ident: B44 article-title: Plasma amino acid levels with a note on membrane transport: characteristics, regulation, and metabolic significance publication-title: Nutrition doi: 10.1016/S0899-9007(02)00780-3 – volume: 87 start-page: 35 year: 2013 ident: B42 article-title: Expression of human heteromeric amino acid transporters in the yeast Pichia pastoris publication-title: Protein Expr. Purif doi: 10.1016/j.pep.2012.10.003 – volume: 388 start-page: 435 year: 2005 ident: B64 article-title: Heterodimeric amino acid transporter glycoprotein domains determining functional subunit association publication-title: Biochem. J doi: 10.1042/BJ20050021 – volume: 20 start-page: 7041 year: 2001 ident: B35 article-title: Coupled and uncoupled proton movement by amino acid transport system N publication-title: EMBO J doi: 10.1093/emboj/20.24.7041 – volume: 30 start-page: 1300 year: 2010 ident: B45 article-title: p32 (C1QBP) and cancer cell metabolism: is the Warburg effect a lot of hot air? publication-title: Mol. Cell. Biol doi: 10.1128/MCB.01661-09 – volume: 121 start-page: 29 year: 2009 ident: B71 article-title: Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond publication-title: Pharmacol. Ther doi: 10.1016/j.pharmthera.2008.09.005 – volume: 28 start-page: 862 year: 2012 ident: B84 article-title: c-Myc is crucial for the expression of LAT1 in MIA Paca-2 human pancreatic cancer cells publication-title: Oncol. Rep doi: 10.3892/or.2012.1878 – volume: 7 start-page: 11 year: 2008 ident: B48 article-title: The biology of cancer: metabolic reprogramming fuels cell growth and proliferation publication-title: Cell Metab doi: 10.1016/j.cmet.2007.10.002 – volume: 30 start-page: 4819 year: 2010 ident: B87 article-title: Inhibition of L-type amino acid transporter 1 has antitumor activity in non-small cell lung cancer publication-title: Anticancer Res – volume: 30 start-page: 4223 year: 2010 ident: B56 article-title: L-type amino-acid transporter 1 expression predicts the response to preoperative hyperthermo-chemoradiotherapy for advanced rectal cancer publication-title: Anticancer Res – volume: 283 start-page: G1062 year: 2002 ident: B12 article-title: Molecular and functional analysis of glutamine uptake in human hepatoma and liver-derived cells publication-title: Am. J. Physiol. Gastrointest. Liver Physiol doi: 10.1152/ajpgi.00031.2002 – volume: 1812 start-page: 162 year: 2011 ident: B5 article-title: Human endogenous retroviruses and multiple sclerosis: innocent bystanders or disease determinants? publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbadis.2010.07.016 – volume: 32 start-page: 442 year: 2013 ident: B69 article-title: Cloning, large scale over-expression in E. coli and purification of the components of the human LAT 1 (SLC7A5) amino acid transporter publication-title: Protein J doi: 10.1007/s10930-013-9503-4G7A – volume: 34 start-page: 337 year: 2013 ident: B80 article-title: The SLC16 gene family—structure, role and regulation in health and disease publication-title: Mol. Aspects Med doi: 10.1016/j.mam.2012.05.003 – volume: 98 start-page: 641 year: 2006 ident: B7 article-title: The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer publication-title: J. Neurochem doi: 10.1111/j.1471-4159.2006.03913.x – volume: 34 start-page: 638 year: 2013 ident: B13 article-title: The small SLC43 family: facilitator system l amino acid transporters and the orphan EEG1 publication-title: Mol. Aspects Med doi: 10.1016/j.mam.2012.12.006 – volume: 108 start-page: 372 year: 2009 ident: B75 article-title: Cellular distribution of the neutral amino acid transporter subtype ASCT2 in mouse brain publication-title: J. Neurochem doi: 10.1111/j.1471-4159.2008.05767.x – volume: 279 start-page: 24467 year: 2004 ident: B22 article-title: Molecular cloning of mouse amino acid transport system B0, a neutral amino acid transporter related to Hartnup disorder publication-title: J. Biol. Chem doi: 10.1074/jbc.M400904200 – volume: 282 start-page: 31444 year: 2007 ident: B61 article-title: The structure of human 4F2hc ectodomain provides a model for homodimerization and electrostatic interaction with plasma membrane publication-title: J. Biol. Chem doi: 10.1074/jbc.M704524200 – volume: 23 start-page: 362 year: 2012 ident: B47 article-title: Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis publication-title: Semin. Cell Dev. Biol doi: 10.1016/j.semcdb.2012.02.002 – volume: 73 start-page: 2184 year: 1999 ident: B19 article-title: The astroglial ASCT2 amino acid transporter as a mediator of glutamine efflux publication-title: J. Neurochem doi: 10.1046/j.1471-4159.1999.02184.x – volume: 48 start-page: 559 year: 2006 ident: B24 article-title: The SLC6 orphans are forming a family of amino acid transporters publication-title: Neurochem. Int doi: 10.1016/j.neuint.2005.11.021 – volume: 110 start-page: 5480 year: 2013 ident: B73 article-title: Structure-based ligand discovery for the large-neutral amino acid transporter 1, LAT-1 publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.1218165110 – volume: 1715 start-page: 104 year: 2005 ident: B10 article-title: Site-directed mutagenesis of cysteine residues of large neutral amino acid transporter LAT1 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2005.07.007 – volume: 23 start-page: 95 year: 2008 ident: B25 article-title: Apical transporters for neutral amino acids: physiology and pathophysiology publication-title: Physiology (Bethesda) doi: 10.1152/physiol.00045.2007 – volume: 34 start-page: 719 year: 2013 ident: B57 article-title: Solute carriers (SLCs) in cancer publication-title: Mol. Aspects Med doi: 10.1016/j.mam.2012.12.007 – volume: 355 start-page: 725 year: 2001 ident: B20 article-title: Association of 4F2hc with light chains LAT1, LAT2 or y+LAT2 requires different domains publication-title: Biochem. J doi: 10.1042/bj3550725 – volume: 9 start-page: 215 year: 2010 ident: B74 article-title: Membrane transporters in drug development publication-title: Nat. Rev. Drug Discov doi: 10.1038/nrd3028 – volume: 99 start-page: 769 year: 1999 ident: B36 article-title: Molecular analysis of system N suggests novel physiological roles in nitrogen metabolism and synaptic transmission publication-title: Cell doi: 10.1016/S0092-8674(00)81674-8 – volume: 11 start-page: 459 year: 2006 ident: B1 article-title: Crystal structure of yeast Sco1 publication-title: J. Biol. Inorg. Chem doi: 10.1007/s00775-006-0096-7 – volume: 446 start-page: 135 year: 2012 ident: B58 article-title: Intestinal peptidases form functional complexes with the neutral amino acid transporter B(0)AT1 publication-title: Biochem. J doi: 10.1042/BJ20120307 – volume: 557 start-page: 747 year: 2004 ident: B76 article-title: New inhibitors for the neutral amino acid transporter ASCT2 reveal its Na+-dependent anion leak publication-title: J. Physiol doi: 10.1113/jphysiol.2004.062521 – volume: 589 start-page: 3623 year: 2011 ident: B81 article-title: Dihydrotestosterone stimulates amino acid uptake and the expression of LAT2 in mouse skeletal muscle fibres through an ERK1/2-dependent mechanism publication-title: J. Physiol doi: 10.1113/jphysiol.2011.207175 – volume: 37 start-page: 607 year: 2013 ident: B86 article-title: Side effects of long-term glutamine supplementation publication-title: JPEN J. Parenter. Enteral Nutr doi: 10.1177/0148607112460682 – volume: 125 start-page: 1373 year: 2012 ident: B34 article-title: CD98 at the crossroads of adaptive immunity and cancer publication-title: J. Cell Sci doi: 10.1242/jcs.096040 – volume: 414 start-page: 456 year: 2011 ident: B9 article-title: Stimulation of the amino acid transporter SLC6A19 by JAK2 publication-title: Biochem. Biophys. Res. Commun doi: 10.1016/j.bbrc.2011.09.074 – volume: 466 start-page: 155 year: 2014 ident: B27 article-title: The SLC38 family of sodium-amino acid co-transporters publication-title: Pflugers Arch doi: 10.1007/s00424-013-1393-y – volume: 280 start-page: 19364 year: 2005 ident: B59 article-title: Identification and functional characterization of a novel low affinity aromatic-preferring amino acid transporter (arpAT). One of the few proteins silenced during primate evolution publication-title: J. Biol. Chem doi: 10.1074/jbc.M412516200 – volume: 286 start-page: G467 year: 2004 ident: B67 article-title: Inducible antisense RNA targeting amino acid transporter ATB0/ASCT2 elicits apoptosis in human hepatoma cells publication-title: Am. J. Physiol. Gastrointest. Liver Physiol doi: 10.1152/ajpgi.00344.2003 – volume: 29 start-page: 229 year: 2005 ident: B63 article-title: Expression of LAT1 and LAT2 amino acid transporters in human and rat intestinal epithelial cells publication-title: Amino Acids doi: 10.1007/s00726-005-0221-x – volume: 15 start-page: 254 year: 2005 ident: B65 article-title: Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime? publication-title: Semin. Cancer Biol doi: 10.1016/j.semcancer.2005.04.005 – volume: 240 start-page: 3609 year: 1965 ident: B40 article-title: The use of N-methylation to direct route of mediated transport of amino acids publication-title: J. Biol. Chem doi: 10.1016/S0021-9258(18)97187-5 – volume: 444 start-page: 1088 year: 2006 ident: B46 article-title: Essential role for collectrin in renal amino acid transport publication-title: Nature doi: 10.1038/nature05475 – volume: 313 start-page: 1 year: 2008 ident: B4 article-title: Genomic regulation of intestinal amino acid transporters by aldosterone publication-title: Mol. Cell. Biochem doi: 10.1007/s11010-008-9735-3 – volume: 445 start-page: 387 year: 2007 ident: B17 article-title: Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter publication-title: Nature doi: 10.1038/nature05455 – volume: 451 start-page: 338 year: 2005 ident: B33 article-title: Steady-state kinetic characterization of the mouse B(0)AT1 sodium-dependent neutral amino acid transporter publication-title: Pflugers Arch doi: 10.1007/s00424-005-1455-x – volume: 1807 start-page: 167 year: 2011 ident: B60 article-title: The structural basis of secondary active transport mechanisms publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2010.10.014 – volume: 25 start-page: 723 year: 2010 ident: B16 article-title: The serum and glucocorticoid inducible kinases SGK1-3 stimulate the neutral amino acid transporter SLC6A19 publication-title: Cell. Physiol. Biochem doi: 10.1159/000315092 – volume: 35 start-page: 161 year: 2008 ident: B51 article-title: Pharmacokinetic role of L-type amino acid transporters LAT1 and LAT2 publication-title: Eur. J. Pharm. Sci doi: 10.1016/j.ejps.2008.06.015 – volume: 87 start-page: 127 year: 2003 ident: B50 article-title: Glutamine efflux from astrocytes is mediated by multiple pathways publication-title: J. Neurochem doi: 10.1046/j.1471-4159.2003.01981.x – volume: 19 start-page: 560 year: 2013 ident: B83 article-title: SLC1A5 mediates glutamine transport required for lung cancer cell growth and survival publication-title: Clin. Cancer Res doi: 10.1158/1078-0432.CCR-12-2334 – volume: 131 start-page: 2475S year: 2001 ident: B11 article-title: Recent molecular advances in mammalian glutamine transport publication-title: J. Nutr doi: 10.1146/annurev.nutr.13.1.137 – volume: 100 start-page: 8 year: 2006 ident: B78 article-title: Up-regulation of the amino acid transporter ATB(0,+) (SLC6A14) in carcinoma of the cervix publication-title: Gynecol. Oncol doi: 10.1016/j.ygyno.2005.08.016 – volume: 344 start-page: 1008 year: 2006 ident: B18 article-title: Over-expression in Escherichia coli and characterization of two recombinant isoforms of human FAD synthetase publication-title: Biochem. Biophys. Res. Commun doi: 10.1016/j.bbrc.2006.04.003 – volume: 77 start-page: 705 year: 2001 ident: B28 article-title: Transfer of glutamine between astrocytes and neurons publication-title: J. Neurochem doi: 10.1046/j.1471-4159.2001.00322.x – volume: 389 start-page: 745 year: 2005 ident: B15 article-title: Characterization of mouse amino acid transporter B0AT1 (slc6a19) publication-title: Biochem. J doi: 10.1042/BJ20050083 – volume: 1188 start-page: 293 year: 1994 ident: B90 article-title: Kinetic characterization of the reconstituted ornithine carrier from rat liver mitochondria publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2728(94)90048-5 – volume: 337 start-page: 93 year: 2012 ident: B85 article-title: Identification and functional expression of the mitochondrial pyruvate carrier publication-title: Science doi: 10.1126/science.1218530 – volume: 34 start-page: 139 year: 2013 ident: B62 article-title: The SLC3 and SLC7 families of amino acid transporters publication-title: Mol. Aspects Med doi: 10.1016/j.mam.2012.10.007 – volume: 22 start-page: 62 year: 2002 ident: B37 article-title: Glutamine uptake by neurons: interaction of protons with system a transporters publication-title: J. Neurosci doi: 10.1523/JNEUROSCI.22-01-00062.2002 – volume: 298 start-page: E1011 year: 2010 ident: B54 article-title: An increase in essential amino acid availability upregulates amino acid transporter expression in human skeletal muscle publication-title: Am. J. Physiol. Endocrinol. Metab doi: 10.1152/ajpendo.00690.2009 – volume: 286 start-page: 10803 year: 2011 ident: B82 article-title: AaCAT1 of the yellow fever mosquito, Aedes aegypti: a novel histidine-specific amino acid transporter from the SLC7 family publication-title: J. Biol. Chem doi: 10.1074/jbc.M110.179739 – volume: 70 start-page: 43 year: 1990 ident: B39 article-title: Role of amino acid transport and countertransport in nutrition and metabolism publication-title: Physiol. Rev doi: 10.1152/physrev.1990.70.1.43 – volume: 293 start-page: C55 year: 2007 ident: B66 article-title: ASCT2 silencing regulates mammalian target-of-rapamycin growth and survival signaling in human hepatoma cells publication-title: Am. J. Physiol. Cell Physiol doi: 10.1152/ajpcell.00330.2006 – reference: 16027961 - Amino Acids. 2005 Nov;29(3):229-33 – reference: 22199264 - Anticancer Res. 2011 Dec;31(12 ):4075-82 – reference: 15709970 - Annu Rev Physiol. 2005;67:557-72 – reference: 24586861 - PLoS One. 2014 Feb 26;9(2):e89547 – reference: 23506861 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):108-20 – reference: 12381519 - Am J Physiol Gastrointest Liver Physiol. 2002 Nov;283(5):G1062-73 – reference: 15757906 - J Biol Chem. 2005 May 13;280(19):19364-72 – reference: 19924125 - Nature. 2009 Dec 17;462(7275):880-5 – reference: 14770310 - Pflugers Arch. 2004 Feb;447(5):532-42 – reference: 18406340 - Biochim Biophys Acta. 2008 Jul-Aug;1777(7-8):564-78 – reference: 21771784 - J Biol Chem. 2011 Sep 9;286(36):31830-8 – reference: 21301794 - J Mol Med (Berl). 2011 Mar;89(3):229-36 – reference: 17148440 - J Biol Chem. 2007 Feb 9;282(6):3788-98 – reference: 7803446 - Biochim Biophys Acta. 1994 Dec 30;1188(3):293-301 – reference: 20190787 - Nat Rev Drug Discov. 2010 Mar;9(3):215-36 – reference: 22634383 - Int J Biochem Cell Biol. 2012 Sep;44(9):1448-56 – reference: 10049700 - Biochem Biophys Res Commun. 1999 Feb 16;255(2):283-8 – reference: 12297216 - Nutrition. 2002 Sep;18(9):761-6 – reference: 20511718 - Cell Physiol Biochem. 2010;25(6):723-32 – reference: 21262963 - J Biol Chem. 2011 Mar 25;286(12):10803-13 – reference: 22100603 - Biochim Biophys Acta. 2012 Mar;1818(3):434-42 – reference: 16787421 - J Neurochem. 2006 Aug;98(3):641-53 – reference: 12529963 - Anticancer Res. 2002 Sep-Oct;22(5):2555-7 – reference: 23669717 - J Gen Physiol. 2013 Jun;141(6):659-72 – reference: 19460998 - Science. 2009 May 22;324(5930):1029-33 – reference: 2690640 - Am J Physiol. 1989 Dec;257(6 Pt 2):F1050-8 – reference: 20161990 - Front Neuroanat. 2010 Feb 08;4:1 – reference: 19660021 - Am J Transplant. 2009 Aug;9(8):1936-45 – reference: 23506905 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):719-34 – reference: 21951714 - FEBS J. 2011 Nov;278(22):4434-49 – reference: 21187458 - Anticancer Res. 2010 Dec;30(12):4819-28 – reference: 14563674 - Am J Physiol Gastrointest Liver Physiol. 2004 Mar;286(3):G467-78 – reference: 8757792 - J Mol Biol. 1996 Jul 19;260(3):289-98 – reference: 12969260 - J Neurochem. 2003 Oct;87(1):127-35 – reference: 15804236 - Biochem J. 2005 Aug 1;389(Pt 3):745-51 – reference: 21029721 - Biochim Biophys Acta. 2011 Feb;1807(2):167-88 – reference: 16595073 - Hum Genomics. 2006 Mar;2(5):287-96 – reference: 23451088 - PLoS One. 2013;8(2):e56792 – reference: 17549407 - Int J Oncol. 2007 Jul;31(1):81-7 – reference: 16133263 - Pflugers Arch. 2005 Nov;451(2):338-48 – reference: 23270998 - Int J Pharm. 2013 Feb 25;443(1-2):245-53 – reference: 22993604 - Exp Ther Med. 2010 Sep;1(5):799-808 – reference: 10391915 - J Biol Chem. 1999 Jul 9;274(28):19738-44 – reference: 20375792 - Int J Gynecol Cancer. 2010 Apr;20(3):329-36 – reference: 17724034 - J Biol Chem. 2007 Oct 26;282(43):31444-52 – reference: 24427154 - Front Endocrinol (Lausanne). 2013 Dec 31;4:199 – reference: 13940861 - Nature. 1963 Feb 23;197:765-7 – reference: 17329400 - Am J Physiol Cell Physiol. 2007 Jul;293(1):C55-63 – reference: 23506903 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):702-10 – reference: 15581847 - Biochim Biophys Acta. 2004 Dec 15;1667(2):122-31 – reference: 18177721 - Cell Metab. 2008 Jan;7(1):11-20 – reference: 20696240 - Biochim Biophys Acta. 2011 Feb;1812(2):162-76 – reference: 10903140 - Biochem J. 2000 Aug 1;349 Pt 3:787-95 – reference: 21386061 - Am J Physiol Endocrinol Metab. 2011 Jun;300(6):E1092-102 – reference: 16168467 - Gynecol Oncol. 2006 Jan;100(1):8-13 – reference: 17323379 - J Cell Physiol. 2007 Aug;212(2):375-85 – reference: 23506866 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):197-219 – reference: 11306651 - J Physiol. 2001 Apr 15;532(Pt 2):297-304 – reference: 18656534 - Eur J Pharm Sci. 2008 Oct 2;35(3):161-74 – reference: 24131658 - BMC Cancer. 2013 Oct 16;13:482 – reference: 22499670 - J Cell Sci. 2012 Mar 15;125(Pt 6):1373-82 – reference: 12388375 - Am J Physiol Lung Cell Mol Physiol. 2003 Jan;284(1):L39-49 – reference: 24300519 - Pharmaceutics. 2013 Sep 18;5(3):472-97 – reference: 22813728 - J Clin Pathol. 2012 Nov;65(11):1019-23 – reference: 15286788 - Nat Genet. 2004 Sep;36(9):1003-7 – reference: 24704252 - Biochem Pharmacol. 2014 Jun 1;89(3):422-30 – reference: 17167413 - Nature. 2006 Dec 21;444(7122):1088-91 – reference: 11011012 - Brain Res. 2000 Oct 6;879(1-2):115-21 – reference: 15845389 - Biochem Biophys Res Commun. 2005 May 27;331(1):272-7 – reference: 9227483 - Am J Physiol. 1997 Jun;272(6 Pt 1):G1463-72 – reference: 23268354 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):638-45 – reference: 15044460 - J Biol Chem. 2004 Jun 4;279(23):24467-76 – reference: 15905073 - Biochim Biophys Acta. 2005 Jun 30;1741(1-2):215-23 – reference: 24168110 - BMC Cancer. 2013 Oct 30;13:509 – reference: 16041361 - Nature. 2005 Sep 8;437(7056):215-23 – reference: 22349059 - Semin Cell Dev Biol. 2012 Jun;23(4):362-9 – reference: 10619430 - Cell. 1999 Dec 23;99(7):769-80 – reference: 16643857 - Biochem Biophys Res Commun. 2006 Jun 9;344(3):1008-16 – reference: 21511949 - J Biol Chem. 2011 Jun 10;286(23):20500-11 – reference: 8702519 - J Biol Chem. 1996 Aug 2;271(31):18657-61 – reference: 15094455 - Neuroreport. 2004 Mar 22;15(4):575-8 – reference: 21769608 - Biometals. 2011 Dec;24(6):1205-15 – reference: 23912240 - Protein J. 2013 Aug;32(6):442-8 – reference: 8662767 - J Biol Chem. 1996 Jun 21;271(25):14883-90 – reference: 20599776 - Biochem Pharmacol. 2010 Oct 15;80(8):1266-73 – reference: 15286787 - Nat Genet. 2004 Sep;36(9):999-1002 – reference: 21270293 - Am J Physiol Cell Physiol. 2011 May;300(5):C1047-54 – reference: 21536930 - J Nucl Med. 2011 May;52(5):822-9 – reference: 23506890 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):571-85 – reference: 24603303 - Br J Cancer. 2014 Apr 15;110(8):2030-9 – reference: 18032601 - Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19345-50 – reference: 15107471 - J Physiol. 2004 Jun 15;557(Pt 3):747-59 – reference: 19589777 - J Biol Chem. 2009 Sep 11;284(37):25314-23 – reference: 12845534 - Pflugers Arch. 2004 Feb;447(5):784-95 – reference: 17230192 - Nature. 2007 Jan 25;445(7126):387-93 – reference: 15863273 - Cancer Lett. 2005 May 26;222(2):237-45 – reference: 16517023 - Neurochem Int. 2006 May-Jun;48(6-7):459-64 – reference: 22451531 - J Chromatogr Sci. 2012 May;50(5):396-400 – reference: 11692272 - Pflugers Arch. 2001 Oct;443(1):92-101 – reference: 21403644 - Lab Invest. 2011 Jul;91(7):992-1006 – reference: 10446133 - J Biol Chem. 1999 Aug 20;274(34):23740-5 – reference: 11311135 - Biochem J. 2001 May 1;355(Pt 3):725-31 – reference: 15679469 - Biochem J. 2005 Jun 1;388(Pt 2):435-43 – reference: 22990615 - JPEN J Parenter Enteral Nutr. 2013 Sep;37(5):607-16 – reference: 2404290 - Physiol Rev. 1990 Jan;70(1):43-77 – reference: 16375689 - Curr Drug Targets Immune Endocr Metabol Disord. 2005 Dec;5(4):357-64 – reference: 24760501 - Physiol Rep. 2014 Mar 20;2(3):e00238 – reference: 23509259 - Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5480-5 – reference: 8254673 - J Mol Biol. 1993 Dec 5;234(3):779-815 – reference: 12634921 - Pflugers Arch. 2003 Feb;445(5):529-33 – reference: 11331400 - J Neurochem. 2001 May;77(3):705-19 – reference: 1445319 - Biochem Biophys Res Commun. 1992 Oct 30;188(2):746-53 – reference: 19012749 - J Neurochem. 2009 Jan;108(2):372-83 – reference: 18157695 - Dig Dis Sci. 2008 Aug;53(8):2113-25 – reference: 16197915 - Arch Biochem Biophys. 2005 Nov 15;443(1-2):53-9 – reference: 21621508 - Biochim Biophys Acta. 2011 Oct;1808(10):2551-8 – reference: 23771822 - J Biomol Screen. 2013 Sep;18(8):851-67 – reference: 21036745 - Anticancer Res. 2010 Oct;30(10):4223-7 – reference: 20100868 - Mol Cell Biol. 2010 Mar;30(6):1300-2 – reference: 9657967 - Biochem J. 1998 Jul 15;333 ( Pt 2):285-90 – reference: 12659953 - Biochim Biophys Acta. 2003 Apr 1;1611(1-2):123-30 – reference: 19472175 - IUBMB Life. 2009 Jun;61(6):591-9 – reference: 12742097 - Neurochem Int. 2003 Sep-Oct;43(4-5):501-7 – reference: 23151806 - Cancer Prev Res (Phila). 2012 Dec;5(12):1337-40 – reference: 18572012 - Biochim Biophys Acta. 2008 Oct;1778(10):2258-65 – reference: 24106489 - Front Endocrinol (Lausanne). 2013 Oct 02;4:138 – reference: 10391916 - J Biol Chem. 1999 Jul 9;274(28):19745-51 – reference: 23535601 - Nature. 2013 Apr 4;496(7443):101-5 – reference: 11151079 - Curr Opin Clin Nutr Metab Care. 2000 Sep;3(5):355-62 – reference: 15175006 - Biochem J. 2004 Aug 15;382(Pt 1):27-32 – reference: 18400692 - Physiology (Bethesda). 2008 Apr;23:95-103 – reference: 9588199 - Biochem Biophys Res Commun. 1998 Apr 28;245(3):824-9 – reference: 11997238 - Am J Physiol Cell Physiol. 2002 Jun;282(6):C1246-53 – reference: 19219026 - Nature. 2009 Apr 9;458(7239):762-5 – reference: 17417702 - J Membr Biol. 2006;213(2):111-8 – reference: 14623874 - J Biol Chem. 2004 Jan 30;279(5):3463-71 – reference: 20448142 - Am J Physiol Gastrointest Liver Physiol. 2010 Jul;299(1):G179-85 – reference: 11533296 - J Nutr. 2001 Sep;131(9 Suppl):2475S-85S; discussion 2486S-7S – reference: 22230955 - Nature. 2012 Jan 09;481(7382):469-74 – reference: 22750268 - Biochim Biophys Acta. 2012 Dec;1826(2):370-84 – reference: 22407317 - Nature. 2012 Mar 11;483(7391):632-6 – reference: 15901826 - Mol Cell Proteomics. 2005 Aug;4(8):1061-71 – reference: 21917917 - J Biol Chem. 2011 Nov 4;286(44):38086-94 – reference: 23010140 - Toxicol Appl Pharmacol. 2012 Nov 15;265(1):93-102 – reference: 24193407 - Pflugers Arch. 2014 Jan;466(1):155-72 – reference: 15916903 - Semin Cancer Biol. 2005 Aug;15(4):254-66 – reference: 21606113 - J Physiol. 2011 Jul 15;589(Pt 14):3623-40 – reference: 24694899 - Int J Gynecol Cancer. 2014 May;24(4):659-63 – reference: 18992769 - Pharmacol Ther. 2009 Jan;121(1):29-40 – reference: 22113081 - Mol Pharmacol. 2012 Mar;81(3):356-65 – reference: 9751058 - Nature. 1998 Sep 17;395(6699):288-91 – reference: 10027916 - Kidney Int. 1999 Mar;55(3):778-92 – reference: 22077314 - Cancer Sci. 2012 Feb;103(2):382-9 – reference: 23234856 - Cell Physiol Biochem. 2012;30(6):1538-46 – reference: 24140288 - Drug Discov Today. 2014 Apr;19(4):450-7 – reference: 9878049 - EMBO J. 1999 Jan 4;18(1):49-57 – reference: 24037379 - Nature. 2013 Nov 7;503(7474):85-90 – reference: 17408840 - Toxicology. 2007 May 20;234(3):145-56 – reference: 18347756 - Mol Cell Biochem. 2008 Jun;313(1-2):1-10 – reference: 24649160 - Mol Clin Oncol. 2013 Mar;1(2):274-280 – reference: 22843325 - Mol Biotechnol. 2013 Jun;54(2):724-36 – reference: 9726963 - J Biol Chem. 1998 Sep 11;273(37):23629-32 – reference: 22227664 - Nat Med. 2012 Jan 06;18(1):30-1 – reference: 17046712 - Biochim Biophys Acta. 2007 Feb;1768(2):291-8 – reference: 22185814 - Drug Metab Pharmacokinet. 2012;27(3):317-24 – reference: 15483603 - Nature. 2004 Oct 14;431(7010):811-8 – reference: 23696029 - Tumour Biol. 2013 Oct;34(5):2977-81 – reference: 18418736 - J Mol Neurosci. 2008 Jun;35(2):179-93 – reference: 16570183 - J Biol Inorg Chem. 2006 Jun;11(4):459-66 – reference: 12579515 - Cell Biochem Funct. 2003 Mar;21(1):1-9 – reference: 20304764 - Am J Physiol Endocrinol Metab. 2010 May;298(5):E1011-8 – reference: 5891075 - J Biol Chem. 1965 Sep;240(9):3609-16 – reference: 11546643 - Am J Physiol Cell Physiol. 2001 Oct;281(4):C1077-93 – reference: 23085088 - Protein Expr Purif. 2013 Jan;87(1):35-40 – reference: 22628554 - Science. 2012 Jul 6;337(6090):93-6 – reference: 19203585 - Cell. 2009 Feb 6;136(3):521-34 – reference: 11742981 - EMBO J. 2001 Dec 17;20(24):7041-51 – reference: 21964291 - Biochem Biophys Res Commun. 2011 Oct 28;414(3):456-61 – reference: 7432185 - Membr Biochem. 1980;3(1-2):155-68 – reference: 19458124 - Am J Physiol Renal Physiol. 2009 Aug;297(2):F440-50 – reference: 15795900 - J Cell Physiol. 2005 Aug;204(2):392-401 – reference: 16125134 - Biochim Biophys Acta. 2005 Sep 15;1715(2):104-10 – reference: 11756489 - J Neurosci. 2002 Jan 1;22(1):62-72 – reference: 23756778 - Biochim Biophys Acta. 2013 Sep;1828(9):2238-46 – reference: 19184091 - Pflugers Arch. 2009 May;458(1):53-60 – reference: 12584318 - J Virol. 2003 Mar;77(5):2936-45 – reference: 23506875 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):337-49 – reference: 21878982 - Nat Rev Drug Discov. 2011 Aug 31;10(9):671-84 – reference: 23848995 - BMC Cancer. 2013 Jul 12;13:343 – reference: 21835054 - Thyroid Res. 2011 Aug 03;4 Suppl 1:S7 – reference: 12684517 - J Biol Chem. 2003 Jun 27;278(26):23720-30 – reference: 22677001 - Biochem J. 2012 Aug 15;446(1):135-48 – reference: 24847886 - Nature. 2014 Jun 5;510(7503):121-5 – reference: 17127344 - Front Biosci. 2007 Jan 01;12 :874-82 – reference: 9849898 - FEBS Lett. 1998 Nov 13;439(1-2):157-62 – reference: 23607685 - Hepatol Res. 2013 Nov;43(11):1211-23 – reference: 22736142 - Oncol Rep. 2012 Sep;28(3):862-6 – reference: 14770309 - Pflugers Arch. 2004 Feb;447(5):490-4 – reference: 19608859 - Science. 2009 Aug 21;325(5943):1010-4 – reference: 23506863 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):139-58 – reference: 16540203 - Neurochem Int. 2006 May-Jun;48(6-7):559-67 – reference: 23353822 - Oncogene. 2014 Jan 30;33(5):556-66 – reference: 10537079 - J Neurochem. 1999 Nov;73(5):2184-94 – reference: 23946786 - Oncol Lett. 2013 Jul;6(1):106-112 – reference: 15660107 - Nature. 2005 Feb 10;433(7026):633-8 – reference: 24516142 - Proc Natl Acad Sci U S A. 2014 Feb 25;111(8):2966-71 – reference: 23213057 - Clin Cancer Res. 2013 Feb 1;19(3):560-70 – reference: 15918515 - Arch Pharm Res. 2005 Apr;28(4):421-32 – reference: 21636576 - J Biol Chem. 2011 Jul 29;286(30):26638-51 – reference: 11535130 - Biochem J. 2001 Sep 15;358(Pt 3):693-704 |
SSID | ssj0001213420 |
Score | 2.4007611 |
SecondaryResourceType | review_article |
Snippet | Glutamine together with glucose is essential for body's homeostasis. It is the most abundant amino acid and is involved in many biosynthetic, regulatory and... Glutamine together with glucose is essential for body’s homeostasis. It is the most abundant amino acid and is involved in many biosynthetic, regulatory and... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 61 |
SubjectTerms | Amino Acids Cancer Chemistry Glutamine membrane Nutrients transporters |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQL3BBvFlokZG4cFjFdrx-9EYrqqpSuUCl3lazftBIdFMl6YVfz4ydRAlCcOG4b8vft5pv1rPfMPYhhQFcB9AC5gotMsS0MNihVRjbEirSIGOptvhizq_0xXV3vdPqi2rCqj1wnbiJz0CLQSicHYZ2bfBuPvoIYK0RoIrPp_BiJ5mqX1fkVCtR1yUxC_OTjHNAf55LcssWRu7FoWLX_yeN-Xup5E7sOXvCHq9FI_9UB_uUPUjjM_bwdNOr7Tn7eZluMe0dE19tzcoXS46ClKPA48vaZJ7D7WyccwizyL8j42gzHfOvxUL2fpEmFOQIKL7YlMjdzO6WHMZIe1KpFuCrOS-N_Xj9hfIFuzr7_O30vF13VWhDp9yqlVHprAYD5OwWBuWTMSEOVkVQIoasrZBB5KkKSbtkBIY5yBEhhQBdTG76kh2M8zG9Zjy5HMF5VFAayKXH-ySsz0Jkh8IyQMMmmznuw9pynDpf_Ogx9SBU-oJKT6j0BZWGfdxecVftNv5y7gnBtj2PjLLLDqRPv6ZP_y_6NOz9BvQeMaPVEgRrfr_sJZmTOSSRbdirSoLto1AUdnaqfcPsHj32xrJ_ZJzdFPNuLZV10r75H4N_yx7RdNAnbikP2QHSJR2hRloN78rr8Av8HRFc priority: 102 providerName: Directory of Open Access Journals |
Title | Membrane transporters for the special amino acid glutamine: structure/function relationships and relevance to human health |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25157349 https://www.proquest.com/docview/1557084207 https://pubmed.ncbi.nlm.nih.gov/PMC4127817 https://doaj.org/article/9fa08231748143468869d9daa7760a23 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQe4AL4k0oVEbiwiGs7TxsI1UVVFQVElxgpd6iie20K7VJSbYS5dd3xskuLFpx4piHFcffWPONPf6GsTfB1WAKgBQwVkjRQsoUal2nCn1bQEbqpI_ZFl_Lk3n--bQ4_X08ehrAYWtoR_Wk5v3Fu58_bg5xwh9QxIn-dtbg79GhcklC2IJiod24W0SJfBPZH1dcZJYrMe5Vbm244ZuihP823vl3-uQf_uj4Abs_EUn-YUT-IbsT2kfs7tGqfttj9utLuMRQuA18uRYw7weOJJUj6ePDWHiew-Wi7Ti4hednaIV0Gd7zb1FW9roPM3J8BB7vV2lz54urgUPr6U6IGQR82fFY7I-PxyqfsPnxp-9HJ-lUaSF1hTLLVHqVN6ougdTeXK1sKEvna608KOFdk2shnWgy5UJuQinQ9UHjEWZwUPhgsqdsp-3a8JzxYBoPxiKryoGUe6wNQttGiMYg2XSQsNlqjCs3yZBTNYyLCsMRQqWKqFSEShVRSdjbdYurUYLjH-9-JNjW75F4drzR9WfVNBcr2wDtL2IsZpAt5iUaqPXWA2hdClBZwl6vQK8QM9pBQbC666GSJFhm0Ih0wp6NRrD-FBLFQme5TZjeMI-Nvmw-aRfnUdA7l0obqV_8j87vsXs0HLTsLeVLtoPmEl4hb1rW-3G9YT9Oilu_dRsr |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Membrane+transporters+for+the+special+amino+acid+glutamine%3A+Structure%2Ffunction+relationships+and+relevance+to+human+health&rft.jtitle=Frontiers+in+chemistry&rft.au=Lorena+ePochini&rft.au=Mariafrancesca+eScalise&rft.au=Michele+eGalluccio&rft.au=Cesare+eIndiveri&rft.date=2014-08-11&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-2646&rft.volume=2&rft_id=info:doi/10.3389%2Ffchem.2014.00061&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9fa08231748143468869d9daa7760a23 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-2646&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-2646&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-2646&client=summon |