Role for casein kinase 2 in the regulation of HIF‐1 activity
Hypoxia‐inducible factor‐1 (HIF‐1) is a heterodimeric transcription factor that plays a major role in cellular adaptation to hypoxia. The mechanisms regulating HIF‐1 activity occurs at multiple levels in vivo. The HIF‐1α subunit is highly sensible to oxygen and is rapidly degraded by the proteasome...
Saved in:
Published in | International journal of cancer Vol. 117; no. 5; pp. 764 - 774 |
---|---|
Main Authors | , , , , |
Format | Journal Article Web Resource |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
10.12.2005
Wiley-Liss Wiley Liss, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0020-7136 1097-0215 1097-0215 |
DOI | 10.1002/ijc.21268 |
Cover
Abstract | Hypoxia‐inducible factor‐1 (HIF‐1) is a heterodimeric transcription factor that plays a major role in cellular adaptation to hypoxia. The mechanisms regulating HIF‐1 activity occurs at multiple levels in vivo. The HIF‐1α subunit is highly sensible to oxygen and is rapidly degraded by the proteasome 26S in normoxia. Activation in hypoxia occurs through a multistep process including inhibition of HIF‐1α degradation, but also increase in the transactivation activity of HIF‐1. Several data indicate that phosphorylation could play a role in this regulation. In this report, we investigated the role of casein kinase 2 (CK2), an ubiquitous serine/threonine kinase, in the regulation of HIF‐1 activity. Hypoxia was capable of increasing the expression of the β subunit of CK2, of inducing a relocalization of this subunit at the plasma membrane, of inducing nuclear translocation of the α subunit and of increasing CK2 activity. Three inhibitors of this kinase, DRB (5,6‐dichloro‐1‐β‐D‐ribofuranosyl‐benzimidazole), TBB (4,5,6,7‐tetrabromotriazole) and apigenin, as well as overexpression of a partial dominant negative mutant of CK2α, were shown to inhibit HIF‐1 activity as measured by a reporter assay and through hypoxia‐induced VEGF and aldolase expression. This does not occur at the stabilization process since they did not affect HIF‐1α protein level. DNA‐binding activity was also not inhibited. We conclude that CK2 is an important regulator of HIF‐1 transcriptional activity but the mechanism of this regulation remains to be determined. Since HIF‐1 plays a major role in tumor angiogenesis and since CK2 has been described to be overexpressed in tumor cells, this new pathway of regulation can be one more way for tumor cells to survive. © 2005 Wiley‐Liss, Inc. |
---|---|
AbstractList | Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription factor that plays a major role in cellular adaptation to hypoxia. The mechanisms regulating HIF-1 activity occurs at multiple levels in vivo. The HIF-1 alpha subunit is highly sensible to oxygen and is rapidly degraded by the proteasome 26S in normoxia. Activation in hypoxia occurs through a multistep process including inhibition of HIF-1 alpha degradation, but also increase in the transactivation activity of HIF-1. Several data indicate that phosphorylation could play a role in this regulation. In this report, we investigated the role of casein kinase 2 (CK2), an ubiquitous serine/threonine kinase, in the regulation of HIF-1 activity. Hypoxia was capable of increasing the expression of the beta subunit of CK2, of inducing a relocalization of this subunit at the plasma membrane, of inducing nuclear translocation of the alpha subunit and of increasing CK2 activity. Three inhibitors of this kinase, DRB (5,6- dichloro-1- beta -D-ribofuranosyl-benzimidazole), TBB (4,5,6,7- tetrabromotriazole) and apigenin, as well as overexpression of a partial dominant negative mutant of CK2 alpha , were shown to inhibit HIF-1 activity as measured by a reporter assay and through hypoxia-induced VEGF and aldolase expression. This does not occur at the stabilization process since they did not affect HIF-1 alpha protein level. DNA-binding activity was also not inhibited. We conclude that CK2 is an important regulator of HIF-1 transcriptional activity but the mechanism of this regulation remains to be determined. Since HIF-1 plays a major role in tumor angiogenesis and since CK2 has been described to be overexpressed in tumor cells, this new pathway of regulation can be one more way for tumor cells to survive. Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription factor that plays a major role in cellular adaptation to hypoxia. The mechanisms regulating HIF-1 activity occurs at multiple levels in vivo. The HIF-1alpha subunit is highly sensible to oxygen and is rapidly degraded by the proteasome 26S in normoxia. Activation in hypoxia occurs through a multistep process including inhibition of HIF-1alpha degradation, but also increase in the transactivation activity of HIF-1. Several data indicate that phosphorylation could play a role in this regulation. In this report, we investigated the role of casein kinase 2 (CK2), an ubiquitous serine/threonine kinase, in the regulation of HIF-1 activity. Hypoxia was capable of increasing the expression of the beta subunit of CK2, of inducing a relocalization of this subunit at the plasma membrane, of inducing nuclear translocation of the alpha subunit and of increasing CK2 activity. Three inhibitors of this kinase, DRB (5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole), TBB (4,5,6,7-tetrabromotriazole) and apigenin, as well as overexpression of a partial dominant negative mutant of CK2alpha, were shown to inhibit HIF-1 activity as measured by a reporter assay and through hypoxia-induced VEGF and aldolase expression. This does not occur at the stabilization process since they did not affect HIF-1alpha protein level. DNA-binding activity was also not inhibited. We conclude that CK2 is an important regulator of HIF-1 transcriptional activity but the mechanism of this regulation remains to be determined. Since HIF-1 plays a major role in tumor angiogenesis and since CK2 has been described to be overexpressed in tumor cells, this new pathway of regulation can be one more way for tumor cells to survive. Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription factor that plays a major role in cellular adaptation to hypoxia. The mechanisms regulating HIF-1 activity occurs at multiple levels in vivo. The HIF-1alpha subunit is highly sensible to oxygen and is rapidly degraded by the proteasome 26S in normoxia. Activation in hypoxia occurs through a multistep process including inhibition of HIF-1alpha degradation, but also increase in the transactivation activity of HIF-1. Several data indicate that phosphorylation could play a role in this regulation. In this report, we investigated the role of casein kinase 2 (CK2), an ubiquitous serine/threonine kinase, in the regulation of HIF-1 activity. Hypoxia was capable of increasing the expression of the beta subunit of CK2, of inducing a relocalization of this subunit at the plasma membrane, of inducing nuclear translocation of the alpha subunit and of increasing CK2 activity. Three inhibitors of this kinase, DRB (5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole), TBB (4,5,6,7-tetrabromotriazole) and apigenin, as well as overexpression of a partial dominant negative mutant of CK2alpha, were shown to inhibit HIF-1 activity as measured by a reporter assay and through hypoxia-induced VEGF and aldolase expression. This does not occur at the stabilization process since they did not affect HIF-1alpha protein level. DNA-binding activity was also not inhibited. We conclude that CK2 is an important regulator of HIF-1 transcriptional activity but the mechanism of this regulation remains to be determined. Since HIF-1 plays a major role in tumor angiogenesis and since CK2 has been described to be overexpressed in tumor cells, this new pathway of regulation can be one more way for tumor cells to survive.Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription factor that plays a major role in cellular adaptation to hypoxia. The mechanisms regulating HIF-1 activity occurs at multiple levels in vivo. The HIF-1alpha subunit is highly sensible to oxygen and is rapidly degraded by the proteasome 26S in normoxia. Activation in hypoxia occurs through a multistep process including inhibition of HIF-1alpha degradation, but also increase in the transactivation activity of HIF-1. Several data indicate that phosphorylation could play a role in this regulation. In this report, we investigated the role of casein kinase 2 (CK2), an ubiquitous serine/threonine kinase, in the regulation of HIF-1 activity. Hypoxia was capable of increasing the expression of the beta subunit of CK2, of inducing a relocalization of this subunit at the plasma membrane, of inducing nuclear translocation of the alpha subunit and of increasing CK2 activity. Three inhibitors of this kinase, DRB (5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole), TBB (4,5,6,7-tetrabromotriazole) and apigenin, as well as overexpression of a partial dominant negative mutant of CK2alpha, were shown to inhibit HIF-1 activity as measured by a reporter assay and through hypoxia-induced VEGF and aldolase expression. This does not occur at the stabilization process since they did not affect HIF-1alpha protein level. DNA-binding activity was also not inhibited. We conclude that CK2 is an important regulator of HIF-1 transcriptional activity but the mechanism of this regulation remains to be determined. Since HIF-1 plays a major role in tumor angiogenesis and since CK2 has been described to be overexpressed in tumor cells, this new pathway of regulation can be one more way for tumor cells to survive. Hypoxia‐inducible factor‐1 (HIF‐1) is a heterodimeric transcription factor that plays a major role in cellular adaptation to hypoxia. The mechanisms regulating HIF‐1 activity occurs at multiple levels in vivo . The HIF‐1α subunit is highly sensible to oxygen and is rapidly degraded by the proteasome 26S in normoxia. Activation in hypoxia occurs through a multistep process including inhibition of HIF‐1α degradation, but also increase in the transactivation activity of HIF‐1. Several data indicate that phosphorylation could play a role in this regulation. In this report, we investigated the role of casein kinase 2 (CK2), an ubiquitous serine/threonine kinase, in the regulation of HIF‐1 activity. Hypoxia was capable of increasing the expression of the β subunit of CK2, of inducing a relocalization of this subunit at the plasma membrane, of inducing nuclear translocation of the α subunit and of increasing CK2 activity. Three inhibitors of this kinase, DRB (5,6‐dichloro‐1‐β‐D‐ribofuranosyl‐benzimidazole), TBB (4,5,6,7‐tetrabromotriazole) and apigenin, as well as overexpression of a partial dominant negative mutant of CK2α, were shown to inhibit HIF‐1 activity as measured by a reporter assay and through hypoxia‐induced VEGF and aldolase expression. This does not occur at the stabilization process since they did not affect HIF‐1α protein level. DNA‐binding activity was also not inhibited. We conclude that CK2 is an important regulator of HIF‐1 transcriptional activity but the mechanism of this regulation remains to be determined. Since HIF‐1 plays a major role in tumor angiogenesis and since CK2 has been described to be overexpressed in tumor cells, this new pathway of regulation can be one more way for tumor cells to survive. © 2005 Wiley‐Liss, Inc. Hypoxia‐inducible factor‐1 (HIF‐1) is a heterodimeric transcription factor that plays a major role in cellular adaptation to hypoxia. The mechanisms regulating HIF‐1 activity occurs at multiple levels in vivo. The HIF‐1α subunit is highly sensible to oxygen and is rapidly degraded by the proteasome 26S in normoxia. Activation in hypoxia occurs through a multistep process including inhibition of HIF‐1α degradation, but also increase in the transactivation activity of HIF‐1. Several data indicate that phosphorylation could play a role in this regulation. In this report, we investigated the role of casein kinase 2 (CK2), an ubiquitous serine/threonine kinase, in the regulation of HIF‐1 activity. Hypoxia was capable of increasing the expression of the β subunit of CK2, of inducing a relocalization of this subunit at the plasma membrane, of inducing nuclear translocation of the α subunit and of increasing CK2 activity. Three inhibitors of this kinase, DRB (5,6‐dichloro‐1‐β‐D‐ribofuranosyl‐benzimidazole), TBB (4,5,6,7‐tetrabromotriazole) and apigenin, as well as overexpression of a partial dominant negative mutant of CK2α, were shown to inhibit HIF‐1 activity as measured by a reporter assay and through hypoxia‐induced VEGF and aldolase expression. This does not occur at the stabilization process since they did not affect HIF‐1α protein level. DNA‐binding activity was also not inhibited. We conclude that CK2 is an important regulator of HIF‐1 transcriptional activity but the mechanism of this regulation remains to be determined. Since HIF‐1 plays a major role in tumor angiogenesis and since CK2 has been described to be overexpressed in tumor cells, this new pathway of regulation can be one more way for tumor cells to survive. © 2005 Wiley‐Liss, Inc. |
Author | Mottet, Denis Demazy, Catherine Raes, Martine Ruys, Sébastien Pyr Dit Michiels, Carine |
Author_xml | – sequence: 1 givenname: Denis surname: Mottet fullname: Mottet, Denis – sequence: 2 givenname: Sébastien Pyr Dit surname: Ruys fullname: Ruys, Sébastien Pyr Dit – sequence: 3 givenname: Catherine surname: Demazy fullname: Demazy, Catherine – sequence: 4 givenname: Martine surname: Raes fullname: Raes, Martine – sequence: 5 givenname: Carine surname: Michiels fullname: Michiels, Carine email: carine.michiels@fundp.ac.be |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17231390$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15957168$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0UFrFDEUB_AgFbutHvwCkotCD9O-ZDaZ5CKUxdqVgiB6Dm8ymTU1O6nJTGVvfoR-Rj-JsbNSENRTHuT3f4f3PyIHQxwcIc8ZnDIAfuav7SlnXKpHZMFANxVwJg7IovxB1bBaHpKjnK8BGBOwfEIOmdCiYVItyOsPMTjax0QtZucH-sUPZaCclnn87Ghymyng6ONAY08v1xc_vt8xinb0t37cPSWPewzZPdu_x-TTxZuPq8vq6v3b9er8qrKCK1U1qmfYgMYWlV1yFFDLTvSoocXOWic7ULWErra662oOgLJDJ1TLe9YxKepjwue9wbuNMzG13txyE9HP8xQ2Bq1pneHlDIZrWKoSejWHblL8Ork8mq3P1oWAg4tTNlJJrZQQ_4WsqRvNQRf4Yg-ndus6c5P8FtPO_L5nAS_3ALPF0CccrM8PruE1qzUUdzI7m2LOyfUPBMyvTk3p1Nx3WuzZH9b68b6RMaEP_0p888Ht_r7arN-t5sRPAd6v5Q |
CODEN | IJCNAW |
CitedBy_id | crossref_primary_10_18632_oncotarget_23422 crossref_primary_10_3390_pharmaceutics15071991 crossref_primary_10_1371_journal_pone_0055529 crossref_primary_10_7717_peerj_871 crossref_primary_10_1159_000446367 crossref_primary_10_1155_2019_4654206 crossref_primary_10_1016_j_bmcl_2007_05_041 crossref_primary_10_1016_j_ejca_2010_11_028 crossref_primary_10_1016_j_bbrc_2011_10_046 crossref_primary_10_1021_jm3009234 crossref_primary_10_1016_j_fct_2023_113774 crossref_primary_10_3389_fcell_2018_00104 crossref_primary_10_1007_s12272_012_0800_9 crossref_primary_10_1172_JCI165831 crossref_primary_10_3390_molecules26092601 crossref_primary_10_4155_fmc_13_17 crossref_primary_10_3390_ijms22010268 crossref_primary_10_1109_TNB_2015_2509475 crossref_primary_10_3390_molecules25214937 crossref_primary_10_1007_s12272_013_0103_9 crossref_primary_10_3390_biomedicines10081987 crossref_primary_10_1134_S0026893312020203 crossref_primary_10_1038_srep34046 crossref_primary_10_1002_ijc_23094 crossref_primary_10_1016_j_mce_2017_04_005 crossref_primary_10_18632_oncotarget_17935 crossref_primary_10_3389_fphar_2015_00003 crossref_primary_10_1038_s41392_021_00567_7 crossref_primary_10_1021_pr700835y crossref_primary_10_1210_me_2006_0547 crossref_primary_10_1007_s11033_015_3881_y crossref_primary_10_1038_s41598_017_16590_0 crossref_primary_10_1038_onc_2012_165 crossref_primary_10_1038_s41598_024_51905_y crossref_primary_10_1210_en_2013_1759 crossref_primary_10_1080_10409238_2021_1908951 crossref_primary_10_2353_ajpath_2006_050533 crossref_primary_10_1002_ardp_202400259 crossref_primary_10_1016_j_febslet_2007_03_015 crossref_primary_10_1016_j_taap_2023_116647 crossref_primary_10_1007_s13277_013_1076_5 crossref_primary_10_1016_j_yexcr_2006_05_018 crossref_primary_10_1096_fj_09_143743 crossref_primary_10_4236_jbm_2017_51001 crossref_primary_10_3389_fcell_2016_00011 crossref_primary_10_1016_j_ajpath_2017_09_009 crossref_primary_10_1016_j_canlet_2016_10_026 crossref_primary_10_1016_j_metabol_2012_07_011 crossref_primary_10_1002_med_20164 crossref_primary_10_1002_jcb_27078 crossref_primary_10_1016_j_bbamcr_2022_119389 crossref_primary_10_1016_j_cellsig_2014_08_028 crossref_primary_10_3390_cancers13030576 crossref_primary_10_1038_onc_2016_86 crossref_primary_10_1016_j_bcp_2017_03_004 crossref_primary_10_1016_j_bmcl_2013_08_043 crossref_primary_10_1038_onc_2016_40 crossref_primary_10_1074_jbc_M113_507194 crossref_primary_10_1158_1535_7163_MCT_11_0613 crossref_primary_10_3390_pharmaceutics14020331 crossref_primary_10_1371_journal_pone_0017193 crossref_primary_10_1021_pr900987n crossref_primary_10_1080_25785826_2020_1843267 crossref_primary_10_3390_ph10010026 crossref_primary_10_1158_0008_5472_CAN_10_1893 crossref_primary_10_1007_s00018_015_1929_8 crossref_primary_10_1039_D1RA09339H crossref_primary_10_1016_j_mehy_2020_109723 crossref_primary_10_1038_s41388_023_02659_w crossref_primary_10_1242_jcs_03069 crossref_primary_10_3389_fonc_2020_00893 crossref_primary_10_1158_1078_0432_CCR_13_2478 crossref_primary_10_1124_mol_114_097345 crossref_primary_10_3390_cells10010181 |
Cites_doi | 10.1002/(SICI)1096-9071(199608)49:4<264::AID-JMV2>3.0.CO;2-1 10.1074/jbc.272.21.13489 10.1128/MCB.22.9.2984-2992.2002 10.4049/jimmunol.164.8.4292 10.1074/jbc.274.46.32631 10.1038/35017054 10.1096/fj.01-0944rev 10.1042/bj20030674 10.1074/jbc.M002697200 10.1074/jbc.M201307200 10.1006/bbrc.1995.2674 10.1038/349132a0 10.1074/jbc.271.23.13868 10.1042/bj3640041 10.1023/A:1006854109926 10.1096/fj.02-1062fje 10.1080/15216540252774766 10.1074/jbc.M209702200 10.1021/bi00488a034 10.1016/0014-5793(95)01497-7 10.1016/0092-8674(92)90311-Y 10.1126/science.1059817 10.1038/ki.1997.79 10.1038/sj.onc.1206434 10.1023/A:1006850009017 10.1006/jmbi.2000.3630 10.1093/emboj/cdg127 10.1073/pnas.94.12.6110 10.1038/nm0603-677 10.1016/S0962-8924(02)02279-1 10.1038/32925 10.1074/jbc.M009134200 10.1161/01.RES.77.3.638 10.1128/MCB.22.8.2515-2523.2002 10.1073/pnas.92.12.5510 10.1007/978-1-4615-5371-7_7 10.1073/pnas.190332597 10.1096/fj.02-0473rev 10.1074/jbc.M002446200 10.1074/jbc.M204221200 10.1002/1097-0142(20000601)88:11<2606::AID-CNCR25>3.0.CO;2-W 10.1016/S0301-0082(99)00026-X 10.1128/MCB.16.4.1604 10.1074/jbc.275.10.6850 10.1128/MCB.22.1.12-22.2002 10.1002/jcp.10176 10.1128/MCB.21.10.3436-3444.2001 10.1074/jbc.C200694200 10.1093/emboj/19.16.4298 10.1146/annurev.cellbio.15.1.551 10.1074/jbc.274.10.6519 10.1074/jbc.272.17.11205 10.1074/jbc.270.22.13333 10.1126/science.1068592 10.1006/excr.2001.5180 10.1016/S0167-4781(02)00484-0 10.1128/MCB.16.3.899 10.1074/jbc.M009275200 10.1093/nar/29.4.e21 10.1074/jbc.273.20.11995 10.1093/emboj/20.7.1630 10.1042/bj3270419 10.1126/science.1059796 10.1016/j.febslet.2004.08.036 10.1128/MCB.16.4.1401 10.1093/emboj/17.11.3005 10.1016/S0014-5793(00)01181-9 10.1128/MCB.16.7.3554 10.4049/jimmunol.167.9.4919 10.1042/bj3550347 |
ContentType | Journal Article Web Resource |
Copyright | Copyright © 2005 Wiley‐Liss, Inc. 2006 INIST-CNRS Copyright 2005 Wiley-Liss, Inc |
Copyright_xml | – notice: Copyright © 2005 Wiley‐Liss, Inc. – notice: 2006 INIST-CNRS – notice: Copyright 2005 Wiley-Liss, Inc |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TO H94 7X8 Q33 |
DOI | 10.1002/ijc.21268 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Oncogenes and Growth Factors Abstracts AIDS and Cancer Research Abstracts MEDLINE - Academic Université de Liège - Open Repository and Bibliography (ORBI) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Oncogenes and Growth Factors Abstracts AIDS and Cancer Research Abstracts MEDLINE - Academic |
DatabaseTitleList | Oncogenes and Growth Factors Abstracts MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1097-0215 |
EndPage | 774 |
ExternalDocumentID | oai_orbi_ulg_ac_be_2268_29048 15957168 17231390 10_1002_ijc_21268 IJC21268 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Fonds pour la Recherche dans l'Industrie et l'Agriculture, Belgium – fundername: Fonds National de la Recherche Scientifique, Belgium |
GroupedDBID | --- -~X .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZBYB AZVAB BAFTC BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD EX3 F00 F01 F04 F5P FUBAC G-S G.N GNP GODZA H.X HBH HGLYW HHY HHZ HZ~ IH2 IX1 J0M JPC KBYEO KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SUPJJ TEORI UB1 UDS V2E V8K V9Y W2D W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WOW WQJ WRC WUP WVDHM WWO WXI WXSBR X7M XG1 XPP XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGYGG CITATION .GJ 8WZ A6W AAMMB AANHP ABEFU ABEML ACBWZ ACRPL ACSCC ACYXJ ADNMO AEFGJ AGHNM AGQPQ AGXDD AHEFC AI. AIDQK AIDYY ASPBG AVWKF AZFZN BDRZF EMOBN FEDTE GLUZI HF~ HVGLF IQODW M6P PALCI RYL SAMSI VH1 Y6R ZGI ZXP CGR CUY CVF ECM EIF NPM 7TO H94 7X8 Q33 |
ID | FETCH-LOGICAL-c5288-78f1a709aba8c42a5036d5fa90badcce6d08360d3c9dd3200a6dae58b2f1d1653 |
IEDL.DBID | DR2 |
ISSN | 0020-7136 1097-0215 |
IngestDate | Fri Jul 18 15:28:47 EDT 2025 Fri Jul 11 02:56:30 EDT 2025 Fri Jul 11 10:01:57 EDT 2025 Wed Feb 19 01:41:46 EST 2025 Mon Jul 21 09:13:04 EDT 2025 Thu Apr 24 22:52:42 EDT 2025 Tue Jul 01 04:26:33 EDT 2025 Wed Jan 22 16:28:45 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Human Enzyme Transferases neoangiogenesis Malignant tumor casein kinase 2 Biological activity Angiogenesis HIF-1 Cancerology Casein Protein kinase Transcription factor HIF1 Neovascularization |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Copyright 2005 Wiley-Liss, Inc |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5288-78f1a709aba8c42a5036d5fa90badcce6d08360d3c9dd3200a6dae58b2f1d1653 |
Notes | Fax: +32‐81‐724135. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 scopus-id:2-s2.0-27744470520 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ijc.21268 |
PMID | 15957168 |
PQID | 17379209 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | liege_orbi_v2_oai_orbi_ulg_ac_be_2268_29048 proquest_miscellaneous_68698855 proquest_miscellaneous_17379209 pubmed_primary_15957168 pascalfrancis_primary_17231390 crossref_primary_10_1002_ijc_21268 crossref_citationtrail_10_1002_ijc_21268 wiley_primary_10_1002_ijc_21268_IJC21268 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 10 December 2005 |
PublicationDateYYYYMMDD | 2005-12-10 |
PublicationDate_xml | – month: 12 year: 2005 text: 10 December 2005 day: 10 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: New York, NY – name: United States |
PublicationTitle | International journal of cancer |
PublicationTitleAlternate | Int J Cancer |
PublicationYear | 2005 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley-Liss Wiley Liss, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley-Liss – name: Wiley Liss, Inc |
References | 2002; 16 2001; 265 1997; 272 2002; 12 2000; 88 1995; 77 2002; 277 1995; 216 2003; 194 2000; 2 2003; 17 2000; 297 2003; 278 1997; 3 1998; 392 1998; 273 1998; 17 1997; 51 2000; 19 1997; 94 2004; 575 2001; 292 1999; 15 1999; 59 2003; 8 2003; 9 2000; 97 2000; 60 2000; 164 1991; 349 1996; 379 2001; 52 2001; 167 1995; 92 2002; 295 1999; 191 2000; 275 2001; 29 1996; 16 2003; 374 1995; 270 2001; 20 2001; 21 2001; 276 2001; 355 1992; 70 1997; 327 2000; 468 1990; 29 2002; 364 2002; 1578 2002; 22 1999; 274 1996; 271 1996; 49 2003; 22 e_1_2_6_51_2 e_1_2_6_72_2 e_1_2_6_53_2 e_1_2_6_30_2 e_1_2_6_70_2 Zien P (e_1_2_6_40_2) 2003; 8 e_1_2_6_19_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_59_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_55_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_57_2 e_1_2_6_62_2 e_1_2_6_64_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_60_2 e_1_2_6_7_2 Zhong H (e_1_2_6_6_2) 1999; 59 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_66_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_68_2 e_1_2_6_50_2 e_1_2_6_73_2 e_1_2_6_52_2 e_1_2_6_31_2 e_1_2_6_71_2 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_56_2 e_1_2_6_61_2 e_1_2_6_63_2 e_1_2_6_42_2 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_69_2 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_65_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_67_2 e_1_2_6_25_2 e_1_2_6_46_2 |
References_xml | – volume: 22 start-page: 1302 year: 2003 end-page: 12 article-title: Protein kinase CK2 and protein kinase D are associated with the COP9 signalosome publication-title: EMBO J – volume: 271 start-page: 13868 year: 1996 end-page: 74 article-title: Characterization of IkappaB kinases: IkappaB‐alpha is not phosphorylated by Raf‐1 or protein kinase C isozymes, but is a casein kinase II substrate publication-title: J Biol Chem – volume: 275 start-page: 22245 year: 2000 end-page: 54 article-title: Cell cycle‐regulated phosphorylation of the human SIX1 homeodomain protein publication-title: J Biol Chem – volume: 12 start-page: 226 year: 2002 end-page: 30 article-title: Joining the cell survival squad: an emerging role for protein kinase CK2 publication-title: Trends Cell Biol – volume: 575 start-page: 59 year: 2004 end-page: 63 article-title: Apigenin suppresses the expression of VEGF, an important factor for angiogenesis, in endothelial cells via degradation of HIF‐1alpha protein publication-title: FEBS Lett – volume: 16 start-page: 899 year: 1996 end-page: 906 article-title: Casein kinase II phosphorylates I kappa B alpha at S‐283, S‐289, S‐293, and T‐291 and is required for its degradation publication-title: Mol Cell Biol – volume: 277 start-page: 28228 year: 2002 end-page: 37 article-title: Dimerization and phosphorylation of thyrotropin‐releasing hormone receptors are modulated by agonist stimulation publication-title: J Biol Chem – volume: 77 start-page: 638 year: 1995 end-page: 43 article-title: Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells: identification of a 5′ enhancer publication-title: Circ Res – volume: 278 start-page: 14013 year: 2003 end-page: 9 article-title: MAPK signaling up‐regulates the activity of hypoxia‐inducible factors by its effects on p300 publication-title: J Biol Chem – volume: 265 start-page: 114 year: 2001 end-page: 24 article-title: c‐JUN gene induction and AP‐1 activity is regulated by a JNK‐dependent pathway in hypoxic HepG2 cells publication-title: Exp Cell Res – volume: 88 start-page: 2606 year: 2000 end-page: 18 article-title: Expression of hypoxia‐inducible factor 1alpha in brain tumors: association with angiogenesis, invasion, and progression publication-title: Cancer – volume: 295 start-page: 858 year: 2002 end-page: 61 article-title: Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch publication-title: Science – volume: 272 start-page: 13489 year: 1997 end-page: 95 article-title: Casein kinase II‐mediated phosphorylation of the C terminus of Sp1 decreases its DNA binding activity publication-title: J Biol Chem – volume: 194 start-page: 30 year: 2003 end-page: 44 article-title: Role of ERK and calcium in the hypoxia‐induced activation of HIF‐1 publication-title: J Cell Physiol – volume: 20 start-page: 1630 year: 2001 end-page: 9 article-title: COP9 signalosome‐specific phosphorylation targets p53 to degradation by the ubiquitin system publication-title: EMBO J – volume: 167 start-page: 4919 year: 2001 end-page: 25 article-title: Phosphorylation by the protein kinase CK2 promotes calpain‐mediated degradation of IkappaBalpha publication-title: J Immunol – volume: 273 start-page: 11995 year: 1998 end-page: 8 article-title: p53 inhibits hypoxia‐inducible factor‐stimulated transcription publication-title: J Biol Chem – volume: 22 start-page: 3431 year: 2003 end-page: 40 article-title: Hypoxia attenuates the p53 response to cellular damage publication-title: Oncogene – volume: 292 start-page: 464 year: 2001 end-page: 8 article-title: HIFalpha targeted for VHL‐mediated destruction by proline hydroxylation: implications for O2 sensing publication-title: Science – volume: 15 start-page: 551 year: 1999 end-page: 78 article-title: Regulation of mammalian O2 homeostasis by hypoxia‐inducible factor 1 publication-title: Annu Rev Cell Dev Biol – volume: 51 start-page: 560 year: 1997 end-page: 3 article-title: Hypoxia‐inducible factor‐1 alpha is regulated at the post‐mRNA level publication-title: Kidney Int – volume: 355 start-page: 347 year: 2001 end-page: 56 article-title: Phosphorylation of murine double minute clone 2 (MDM2) protein at serine‐267 by protein kinase CK2 and in cultured cells publication-title: Biochem J – volume: 2 start-page: 423 year: 2000 end-page: 7 article-title: Ubiquitination of hypoxia‐inducible factor requires direct binding to the beta‐domain of the von Hippel‐Lindau protein publication-title: Nat Cell Biol – volume: 19 start-page: 4298 year: 2000 end-page: 309 article-title: Mechanism of regulation of the hypoxia‐inducible factor‐1 alpha by the von Hippel‐Lindau tumor suppressor protein publication-title: EMBO J – volume: 17 start-page: 1186 year: 2003 end-page: 8 article-title: Activation of the hypoxia‐inducible factor‐pathway and stimulation of angiogenesis by application of prolyl hydroxylase inhibitors publication-title: FASEB J – volume: 468 start-page: 53 year: 2000 end-page: 8 article-title: ERK activation upon hypoxia: involvement in HIF‐1 activation publication-title: FEBS Lett – volume: 277 start-page: 23508 year: 2002 end-page: 14 article-title: The transcriptional activation function of the HIF‐like factor requires phosphorylation at a conserved threonine publication-title: J Biol Chem – volume: 216 start-page: 669 year: 1995 end-page: 75 article-title: Effect of protein kinase and phosphatase inhibitors on expression of hypoxia‐inducible factor 1 publication-title: Biochem Biophys Res Commun – volume: 8 start-page: 613 year: 2003 end-page: 4 article-title: Selectivity of 4,5,6,7‐bromobenzimidazole (TBBZ) as an ATP‐competitive potent inhibitor of protein kinase CK2 from various sources publication-title: Cell Mol Biol Lett – volume: 275 start-page: 6850 year: 2000 end-page: 6 article-title: Casein kinase II phosphorylates lens connexin 45.6 and is involved in its degradation publication-title: J Biol Chem – volume: 16 start-page: 1151 year: 2002 end-page: 62 article-title: Cellular adaptation to hypoxia: O2‐sensing protein hydroxylases, hypoxia‐inducible transcription factors, and O2‐regulated gene expression publication-title: FASEB J – volume: 292 start-page: 468 year: 2001 end-page: 72 article-title: Targeting of HIF‐alpha to the von Hippel‐Lindau ubiquitylation complex by O2‐regulated prolyl hydroxylation publication-title: Science – volume: 392 start-page: 405 year: 1998 end-page: 8 article-title: Stabilization of wild‐type p53 by hypoxia‐inducible factor 1alpha publication-title: Nature – volume: 276 start-page: 993 year: 2001 end-page: 8 article-title: The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus: implications for PTEN stability to proteasome‐mediated degradation publication-title: J Biol Chem – volume: 21 start-page: 3436 year: 2001 end-page: 44 article-title: Transcription factor HIF‐1 is a necessary mediator of the pasteur effect in mammalian cells publication-title: Mol Cell Biol – volume: 272 start-page: 11205 year: 1997 end-page: 14 article-title: Activation of hypoxia‐inducible factor‐1: definition of regulatory domains within the alpha subunit publication-title: J Biol Chem – volume: 97 start-page: 10430 year: 2000 end-page: 5 article-title: Activation of HIF1alpha ubiquitination by a reconstituted von Hippel‐Lindau (VHL) tumor suppressor complex publication-title: Proc Natl Acad Sci USA – volume: 16 start-page: 3554 year: 1996 end-page: 9 article-title: Constitutive phosphorylation of IkappaBalpha by casein kinase II occurs preferentially at serine 293: requirement for degradation of free IkappaBalpha publication-title: Mol Cell Biol – volume: 17 start-page: 3005 year: 1998 end-page: 15 article-title: HIF‐1 alpha is required for solid tumor formation and embryonic vascularization publication-title: EMBO J – volume: 94 start-page: 6110 year: 1997 end-page: 5 article-title: Casein kinase II is a selective target of HIV‐1 transcriptional inhibitors publication-title: Proc Natl Acad Sci USA – volume: 16 start-page: 1401 year: 1996 end-page: 9 article-title: Phosphorylation of IkappaBalpha in the C‐terminal PEST domain by casein kinase II affects intrinsic protein stability publication-title: Mol Cell Biol – volume: 16 start-page: 1604 year: 1996 end-page: 13 article-title: Casein kinase II increases the transcriptional activities of MRF4 and MyoD independently of their direct phosphorylation publication-title: Mol Cell Biol – volume: 17 start-page: 349 year: 2003 end-page: 68 article-title: One‐thousand‐and‐one substrates of protein kinase CK2? publication-title: FASEB J – volume: 9 start-page: 677 year: 2003 end-page: 84 article-title: Regulation fo angiogenesis by hypoxia: role of the HIF system publication-title: Nat Med – volume: 278 start-page: 13595 year: 2003 end-page: 8 article-title: Direct interactions between HIF‐1 alpha and Mdm2 modulate p53 function publication-title: J Biol Chem – volume: 22 start-page: 2515 year: 2002 end-page: 23 article-title: The response of c‐jun/AP‐1 to chronic hypoxia is hypoxia‐inducible factor 1 alpha dependent publication-title: Mol Cell Biol – volume: 297 start-page: 1245 year: 2000 end-page: 58 article-title: PKC‐zeta‐associated CK2 participates in the turnover of free IkappaBalpha publication-title: J Mol Biol – volume: 191 start-page: 169 year: 1999 end-page: 80 article-title: A role for casein kinase II phosphorylation in the regulation of IRF‐1 transcriptional activity publication-title: Mol Cell Biochem – volume: 92 start-page: 5510 year: 1995 end-page: 4 article-title: Hypoxia‐inducible factor 1 is a basic‐helix‐loop‐helix‐PAS heterodimer regulated by cellular O2 tension publication-title: Proc Natl Acad Sci USA – volume: 374 start-page: 639 year: 2003 end-page: 46 article-title: Biochemical and three‐dimensional‐structural study of the specific inhibition of protein kinase CK2 by [5‐oxo‐5,6‐dihydroindolo‐(1,2‐a)quinazolin‐7‐yl]acetic acid (IQA) publication-title: Biochem J – volume: 276 start-page: 18066 year: 2001 end-page: 74 article-title: Casein kinase II sites in the intracellular C‐terminal domain of the thyrotropin‐releasing hormone receptor and chimeric gonadotropin‐releasing hormone receptors contribute to beta‐arrestin‐dependent internalization publication-title: J Biol Chem – volume: 191 start-page: 187 year: 1999 end-page: 99 article-title: Protein kinase CK2‐dependent regulation of p53 function: evidence that the phosphorylation status of the serine 386 (CK2) site of p53 is constitutive and stable publication-title: Mol Cell Biochem – volume: 52 start-page: 49 year: 2001 end-page: 53 article-title: HIF‐1 and AP‐1 cooperate to increase gene expression in hypoxia: role of MAP kinases publication-title: IUBMB Life – volume: 49 start-page: 264 year: 1996 end-page: 73 article-title: Enhancement of varicella‐zoster virus infection in cell lines expressing ORF4‐ or ORF62‐encoded proteins publication-title: J Med Virol – volume: 364 start-page: 41 year: 2002 end-page: 7 article-title: Protein kinase CK2 inhibitor 4,5,6,7‐tetrabromobenzotriazole (TBB) induces apoptosis and caspase‐dependent degradation of haematopoietic lineage cell‐specific protein 1 (HS1) in Jurkat cells publication-title: Biochem J – volume: 70 start-page: 777 year: 1992 end-page: 89 article-title: Casein kinase II is a negative regulator of c‐Jun DNA binding and AP‐1 activity publication-title: Cell – volume: 379 start-page: 153 year: 1996 end-page: 6 article-title: Structure of protein kinase CK2: dimerization of the human beta‐subunit publication-title: FEBS Lett – volume: 59 start-page: 5830 year: 1999 end-page: 5 article-title: Overexpression of hypoxia‐inducible factor 1alpha in common human cancers and their metastases publication-title: Cancer Res – volume: 1578 start-page: 73 year: 2002 end-page: 83 article-title: Site‐directed mutagenesis studies of the hypoxia‐inducible factor‐1alpha DNA‐binding domain publication-title: Biochim Biophys Acta – volume: 3 start-page: 77 year: 1997 end-page: 97 article-title: Protein kinase CK2 (“casein kinase‐2”) and its implication in cell division and proliferation publication-title: Prog Cell Cycle Res – volume: 29 start-page: E21 year: 2001 article-title: Development of a sensitive multi‐well colorimetric assay for active NFkappaB publication-title: Nucl Acids Res – volume: 274 start-page: 6519 year: 1999 end-page: 25 article-title: Regulation of the hypoxia‐inducible transcription factor 1alpha by the ubiquitin‐proteasome pathway publication-title: J Biol Chem – volume: 274 start-page: 32631 year: 1999 end-page: 7 article-title: p42/p44 mitogen‐activated protein kinases phosphorylate hypoxia‐inducible factor 1alpha (HIF‐1alpha) and enhance the transcriptional activity of HIF‐1 publication-title: J Biol Chem – volume: 22 start-page: 12 year: 2002 end-page: 22 article-title: c‐Jun and hypoxia‐inducible factor 1 functionally cooperate in hypoxia‐induced gene transcription publication-title: Mol Cell Biol – volume: 327 start-page: 419 year: 1997 end-page: 23 article-title: Activator‐protein‐1 binding potentiates the hypoxia‐induciblefactor‐1‐mediated hypoxia‐induced transcriptional activation of vascular‐endothelial growth factor expression in C6 glioma cells publication-title: Biochem J – volume: 164 start-page: 4292 year: 2000 end-page: 300 article-title: Crucial role of the amino‐terminal tyrosine residue 42 and the carboxyl‐terminal PEST domain of I kappa B alpha in NF‐kappa B activation by an oxidative stress publication-title: J Immunol – volume: 275 start-page: 23919 year: 2000 end-page: 26 article-title: Heat‐induced relocalization of protein kinase CK2: implication of CK2 in the context of cellular stress publication-title: J Biol Chem – volume: 22 start-page: 2984 year: 2002 end-page: 92 article-title: Carboxyl‐terminal transactivation activity of hypoxia‐inducible factor 1 alpha is governed by a von Hippel‐Lindau protein‐independent, hydroxylation‐regulated association with p300/CBP publication-title: Mol Cell Biol – volume: 60 start-page: 211 year: 2000 end-page: 46 article-title: Casein kinase 2 as a potentially important enzyme in the nervous system publication-title: Prog Neurobiol – volume: 349 start-page: 132 year: 1991 end-page: 8 article-title: Cyclin is degraded by the ubiquitin pathway publication-title: Nature – volume: 270 start-page: 13333 year: 1995 end-page: 40 article-title: Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia publication-title: J Biol Chem – volume: 29 start-page: 8436 year: 1990 end-page: 47 article-title: Isolation and characterization of human cDNA clones encoding the alpha and the alpha′ subunits of casein kinase II publication-title: Biochemistry – ident: e_1_2_6_38_2 doi: 10.1002/(SICI)1096-9071(199608)49:4<264::AID-JMV2>3.0.CO;2-1 – ident: e_1_2_6_27_2 doi: 10.1074/jbc.272.21.13489 – ident: e_1_2_6_17_2 doi: 10.1128/MCB.22.9.2984-2992.2002 – ident: e_1_2_6_49_2 doi: 10.4049/jimmunol.164.8.4292 – ident: e_1_2_6_19_2 doi: 10.1074/jbc.274.46.32631 – ident: e_1_2_6_11_2 doi: 10.1038/35017054 – ident: e_1_2_6_9_2 doi: 10.1096/fj.01-0944rev – ident: e_1_2_6_42_2 doi: 10.1042/bj20030674 – ident: e_1_2_6_45_2 doi: 10.1074/jbc.M002697200 – ident: e_1_2_6_21_2 doi: 10.1074/jbc.M201307200 – ident: e_1_2_6_46_2 doi: 10.1006/bbrc.1995.2674 – ident: e_1_2_6_57_2 doi: 10.1038/349132a0 – ident: e_1_2_6_71_2 doi: 10.1074/jbc.271.23.13868 – ident: e_1_2_6_41_2 doi: 10.1042/bj3640041 – ident: e_1_2_6_61_2 doi: 10.1023/A:1006854109926 – ident: e_1_2_6_48_2 doi: 10.1096/fj.02-1062fje – volume: 8 start-page: 613 year: 2003 ident: e_1_2_6_40_2 article-title: Selectivity of 4,5,6,7‐bromobenzimidazole (TBBZ) as an ATP‐competitive potent inhibitor of protein kinase CK2 from various sources publication-title: Cell Mol Biol Lett – ident: e_1_2_6_68_2 doi: 10.1080/15216540252774766 – ident: e_1_2_6_20_2 doi: 10.1074/jbc.M209702200 – volume: 59 start-page: 5830 year: 1999 ident: e_1_2_6_6_2 article-title: Overexpression of hypoxia‐inducible factor 1alpha in common human cancers and their metastases publication-title: Cancer Res – ident: e_1_2_6_25_2 doi: 10.1021/bi00488a034 – ident: e_1_2_6_59_2 doi: 10.1016/0014-5793(95)01497-7 – ident: e_1_2_6_26_2 doi: 10.1016/0092-8674(92)90311-Y – ident: e_1_2_6_14_2 doi: 10.1126/science.1059817 – ident: e_1_2_6_53_2 doi: 10.1038/ki.1997.79 – ident: e_1_2_6_65_2 doi: 10.1038/sj.onc.1206434 – ident: e_1_2_6_29_2 doi: 10.1023/A:1006850009017 – ident: e_1_2_6_72_2 doi: 10.1006/jmbi.2000.3630 – ident: e_1_2_6_67_2 doi: 10.1093/emboj/cdg127 – ident: e_1_2_6_23_2 doi: 10.1073/pnas.94.12.6110 – ident: e_1_2_6_3_2 doi: 10.1038/nm0603-677 – ident: e_1_2_6_24_2 doi: 10.1016/S0962-8924(02)02279-1 – ident: e_1_2_6_62_2 doi: 10.1038/32925 – ident: e_1_2_6_32_2 doi: 10.1074/jbc.M009134200 – ident: e_1_2_6_52_2 doi: 10.1161/01.RES.77.3.638 – ident: e_1_2_6_70_2 doi: 10.1128/MCB.22.8.2515-2523.2002 – ident: e_1_2_6_8_2 doi: 10.1073/pnas.92.12.5510 – ident: e_1_2_6_60_2 doi: 10.1007/978-1-4615-5371-7_7 – ident: e_1_2_6_12_2 doi: 10.1073/pnas.190332597 – ident: e_1_2_6_22_2 doi: 10.1096/fj.02-0473rev – ident: e_1_2_6_34_2 doi: 10.1074/jbc.M002446200 – ident: e_1_2_6_37_2 doi: 10.1074/jbc.M204221200 – ident: e_1_2_6_5_2 doi: 10.1002/1097-0142(20000601)88:11<2606::AID-CNCR25>3.0.CO;2-W – ident: e_1_2_6_56_2 doi: 10.1016/S0301-0082(99)00026-X – ident: e_1_2_6_28_2 doi: 10.1128/MCB.16.4.1604 – ident: e_1_2_6_33_2 doi: 10.1074/jbc.275.10.6850 – ident: e_1_2_6_69_2 doi: 10.1128/MCB.22.1.12-22.2002 – ident: e_1_2_6_73_2 doi: 10.1002/jcp.10176 – ident: e_1_2_6_7_2 doi: 10.1128/MCB.21.10.3436-3444.2001 – ident: e_1_2_6_63_2 doi: 10.1074/jbc.C200694200 – ident: e_1_2_6_13_2 doi: 10.1093/emboj/19.16.4298 – ident: e_1_2_6_2_2 doi: 10.1146/annurev.cellbio.15.1.551 – ident: e_1_2_6_10_2 doi: 10.1074/jbc.274.10.6519 – ident: e_1_2_6_43_2 doi: 10.1074/jbc.272.17.11205 – ident: e_1_2_6_51_2 doi: 10.1074/jbc.270.22.13333 – ident: e_1_2_6_16_2 doi: 10.1126/science.1068592 – ident: e_1_2_6_55_2 doi: 10.1006/excr.2001.5180 – ident: e_1_2_6_50_2 doi: 10.1016/S0167-4781(02)00484-0 – ident: e_1_2_6_31_2 doi: 10.1128/MCB.16.3.899 – ident: e_1_2_6_35_2 doi: 10.1074/jbc.M009275200 – ident: e_1_2_6_44_2 doi: 10.1093/nar/29.4.e21 – ident: e_1_2_6_64_2 doi: 10.1074/jbc.273.20.11995 – ident: e_1_2_6_66_2 doi: 10.1093/emboj/20.7.1630 – ident: e_1_2_6_54_2 doi: 10.1042/bj3270419 – ident: e_1_2_6_15_2 doi: 10.1126/science.1059796 – ident: e_1_2_6_58_2 doi: 10.1016/j.febslet.2004.08.036 – ident: e_1_2_6_47_2 doi: 10.1128/MCB.16.4.1401 – ident: e_1_2_6_4_2 doi: 10.1093/emboj/17.11.3005 – ident: e_1_2_6_18_2 doi: 10.1016/S0014-5793(00)01181-9 – ident: e_1_2_6_30_2 doi: 10.1128/MCB.16.7.3554 – ident: e_1_2_6_36_2 doi: 10.4049/jimmunol.167.9.4919 – ident: e_1_2_6_39_2 doi: 10.1042/bj3550347 |
RestrictionsOnAccess | restricted access |
SSID | ssj0011504 |
Score | 2.1554022 |
Snippet | Hypoxia‐inducible factor‐1 (HIF‐1) is a heterodimeric transcription factor that plays a major role in cellular adaptation to hypoxia. The mechanisms regulating... Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription factor that plays a major role in cellular adaptation to hypoxia. The mechanisms regulating... |
SourceID | liege proquest pubmed pascalfrancis crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 764 |
SubjectTerms | Biochemistry, biophysics & molecular biology Biochimie, biophysique & biologie moléculaire Biological and medical sciences casein kinase 2 Casein Kinase II - antagonists & inhibitors Casein Kinase II - metabolism Casein Kinase II/antagonists & inhibitors/metabolism Cell Hypoxia Cell Line, Tumor Colorimetry Enzyme Inhibitors - pharmacology Fluorescent Antibody Technique HIF‐1 Human health sciences Humans Life sciences Medical sciences Multiple tumors. Solid tumors. Tumors in childhood (general aspects) neoangiogenesis Oncologie Oncology Sciences de la santé humaine Sciences du vivant Transcription, Genetic - physiology Tumors Vascular Endothelial Growth Factor A - metabolism |
Title | Role for casein kinase 2 in the regulation of HIF‐1 activity |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fijc.21268 https://www.ncbi.nlm.nih.gov/pubmed/15957168 https://www.proquest.com/docview/17379209 https://www.proquest.com/docview/68698855 http://orbi.ulg.ac.be/handle/2268/29048 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhhdJL3w_3kYrSQ6B4I0uWLVEolLTLJpAeQgM5FISeYZvFLvvooaf-hP7G_pKOLHuXLQmU3uYwtpFmRvPJI32D0GsaXFmU1uWGW56X0rhcs5LnWrJIisuYtbGie_KpmpyVx-f8fAe9He7CJH6I9Q-3GBndeh0DXJvFwYY0dPrVjmDdreJF34JVkTf_w-maOioCnZ6BmeSwEasGViFCD9ZPbuWiG7NYpY5nI_UCpiekvhZXAc9tHNslovEd9GUYQjp_cjlaLc3I_viL3fE_x3gX3e4BKn6fPOoe2vHNfXTzpC_BP0DvTtuZxwB1sYUEOG3w5bQBAVMMMqBJPE_d7cHeuA14cjT-_fNXgeP9idim4iE6G3_8fDjJ-yYMueUUoqgWodA1kdpoYUuqOaQ8x4OWxGhnra9c5LcmjlnpHIOY05XTngtDQ-GKirNHaLdpG_8EYU89cUETUQfYlYpSBxIAUDlbamuC1RnaH8yhbM9QHhtlzFTiVqYK5kN185GhV2vVb4mW4yqlN51NVTs3U_Wdqkil3cmr2YXSVhmvAH0KRSWsYxna27L85r01YGAmSYZeDq6gIAZjYUU3vl0tQIPVkhJ5vUYlKikE5xl6nHxo83YuOexZ4fP7nSdcPxx1dHzYCU__XfUZupW4Zink2-dodzlf-ReAopZmrwuXP8GVFzI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB7SBNpc-k66fSSi9BAo66y1q10JSqGEGjuNcwgJ5FKEnsWN2S2O3UNP_Qn9jf0lHe3DxiWB0psOs1qkmdF80kjfALyh3mb9zNhYM8PiTGgbqzRjsRJpIMVNU2NCRnd8mg8vsuNLdrkB77q3MA0_xPLALXhGvV4HBw8H0ocr1tDJV9PDhTfnd2Crzs8FSHS2JI8KUKflYE5i3IrlHa9QQg-Xn65Fo61pyFOH25HqGifIN5UtboKe60i2DkWDB_C5G0RzA-Wqt5jrnvnxF7_j_47yIdxvMSr50BjVI9hw5WO4O26z8E_g_Vk1dQTRLjEYAycluZqU2CCUYBsBJZk1Be5R5aTyZDga_P75q0_CE4pQqeIpXAw-nh8N47YOQ2wYRUcquO-rIhFKK24yqhhGPcu8EolW1hiX20BxndjUCGtTdDuVW-UY19T3bT9n6Q5sllXpngFx1CXWq4QXHjemPFM-8YiprMmU0d6oCA46fUjTkpSHWhlT2dArU4nzIev5iOD1UvRbw8xxk9DbWqmymumJ_E5lYNOu24vpF6mM1E4iAOWSClzKIthbU_2q3wJhcCqSCPY7W5DohiG3okpXLa5RIi0ETcTtEjnPBeeMRbDbGNGqdyYYblvx9we1Kdw-HDk6Pqobz_9ddB_uDc_HJ_JkdPrpBWw31LMUw-9L2JzPFu4Vgqq53qt95w8ofRtQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SBEIvfT_cRyJKD4HijSxbtkShUNIuu2kTSmggh4KQ9SjbLHbY7PbQU39Cf2N_SUd-7LIlgdLbHMY20sxoPnmkbwBeMm-zJDM2LrnhcSZLG-s047GWaSDFTVNjQkX36DgfnWaHZ_xsA173d2FafojlD7cQGc16HQL8wvr9FWno5JsZ4LqbixuwleWYJgMiOllyRwWk01Ew0xh3YnlPK0TZ_vLRtWS0NQ1l6nA4Ul_i_Pi2scVVyHMdyDaZaHgbvvRjaA-gnA8W83JgfvxF7_ifg7wDtzqESt62LnUXNlx1D7aPuhr8fXhzUk8dQaxLDGbASUXOJxUKhBGUEU6SWdveHg1Oak9G4-Hvn78SEi5QhD4VD-B0-P7zwSjuujDEhjMMo0L4RBdU6lILkzHNMedZ7rWkpbbGuNwGgmtqUyOtTTHodG6146JkPrFJztOHsFnVlXsMxDFHrddUFB63pSLTnnpEVNZk2pTe6Aj2enMo01GUh04ZU9WSKzOF86Ga-YjgxVL1ouXluErpVWNTVc_KifrOVODSbuTF9KvSRpVOIfwUiklcyCLYWbP86r0FguBU0gh2e1dQGIShsqIrVy8uUSMtJKPyeo1c5FIIziN41PrQ6u1ccty04uf3Gk-4fjhqfHjQCE_-XXUXtj-9G6qP4-MPT-FmyzvLMPc-g835bOGeI6KalztN5PwBxdEZ_w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+for+casein+kinase+2+in+the+regulation+of+HIF-1+activity&rft.jtitle=International+journal+of+cancer&rft.au=MOTTET%2C+Denis&rft.au=PYR+DIT+RUYS%2C+S%C3%A9bastien&rft.au=DEMAZY%2C+Catherine&rft.au=RAES%2C+Martine&rft.date=2005-12-10&rft.pub=Wiley-Liss&rft.issn=0020-7136&rft.volume=117&rft.issue=5&rft.spage=764&rft.epage=774&rft_id=info:doi/10.1002%2Fijc.21268&rft.externalDBID=n%2Fa&rft.externalDocID=17231390 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7136&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7136&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7136&client=summon |