Role for casein kinase 2 in the regulation of HIF‐1 activity

Hypoxia‐inducible factor‐1 (HIF‐1) is a heterodimeric transcription factor that plays a major role in cellular adaptation to hypoxia. The mechanisms regulating HIF‐1 activity occurs at multiple levels in vivo. The HIF‐1α subunit is highly sensible to oxygen and is rapidly degraded by the proteasome...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of cancer Vol. 117; no. 5; pp. 764 - 774
Main Authors Mottet, Denis, Ruys, Sébastien Pyr Dit, Demazy, Catherine, Raes, Martine, Michiels, Carine
Format Journal Article Web Resource
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 10.12.2005
Wiley-Liss
Wiley Liss, Inc
Subjects
Online AccessGet full text
ISSN0020-7136
1097-0215
1097-0215
DOI10.1002/ijc.21268

Cover

Abstract Hypoxia‐inducible factor‐1 (HIF‐1) is a heterodimeric transcription factor that plays a major role in cellular adaptation to hypoxia. The mechanisms regulating HIF‐1 activity occurs at multiple levels in vivo. The HIF‐1α subunit is highly sensible to oxygen and is rapidly degraded by the proteasome 26S in normoxia. Activation in hypoxia occurs through a multistep process including inhibition of HIF‐1α degradation, but also increase in the transactivation activity of HIF‐1. Several data indicate that phosphorylation could play a role in this regulation. In this report, we investigated the role of casein kinase 2 (CK2), an ubiquitous serine/threonine kinase, in the regulation of HIF‐1 activity. Hypoxia was capable of increasing the expression of the β subunit of CK2, of inducing a relocalization of this subunit at the plasma membrane, of inducing nuclear translocation of the α subunit and of increasing CK2 activity. Three inhibitors of this kinase, DRB (5,6‐dichloro‐1‐β‐D‐ribofuranosyl‐benzimidazole), TBB (4,5,6,7‐tetrabromotriazole) and apigenin, as well as overexpression of a partial dominant negative mutant of CK2α, were shown to inhibit HIF‐1 activity as measured by a reporter assay and through hypoxia‐induced VEGF and aldolase expression. This does not occur at the stabilization process since they did not affect HIF‐1α protein level. DNA‐binding activity was also not inhibited. We conclude that CK2 is an important regulator of HIF‐1 transcriptional activity but the mechanism of this regulation remains to be determined. Since HIF‐1 plays a major role in tumor angiogenesis and since CK2 has been described to be overexpressed in tumor cells, this new pathway of regulation can be one more way for tumor cells to survive. © 2005 Wiley‐Liss, Inc.
AbstractList Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription factor that plays a major role in cellular adaptation to hypoxia. The mechanisms regulating HIF-1 activity occurs at multiple levels in vivo. The HIF-1 alpha subunit is highly sensible to oxygen and is rapidly degraded by the proteasome 26S in normoxia. Activation in hypoxia occurs through a multistep process including inhibition of HIF-1 alpha degradation, but also increase in the transactivation activity of HIF-1. Several data indicate that phosphorylation could play a role in this regulation. In this report, we investigated the role of casein kinase 2 (CK2), an ubiquitous serine/threonine kinase, in the regulation of HIF-1 activity. Hypoxia was capable of increasing the expression of the beta subunit of CK2, of inducing a relocalization of this subunit at the plasma membrane, of inducing nuclear translocation of the alpha subunit and of increasing CK2 activity. Three inhibitors of this kinase, DRB (5,6- dichloro-1- beta -D-ribofuranosyl-benzimidazole), TBB (4,5,6,7- tetrabromotriazole) and apigenin, as well as overexpression of a partial dominant negative mutant of CK2 alpha , were shown to inhibit HIF-1 activity as measured by a reporter assay and through hypoxia-induced VEGF and aldolase expression. This does not occur at the stabilization process since they did not affect HIF-1 alpha protein level. DNA-binding activity was also not inhibited. We conclude that CK2 is an important regulator of HIF-1 transcriptional activity but the mechanism of this regulation remains to be determined. Since HIF-1 plays a major role in tumor angiogenesis and since CK2 has been described to be overexpressed in tumor cells, this new pathway of regulation can be one more way for tumor cells to survive.
Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription factor that plays a major role in cellular adaptation to hypoxia. The mechanisms regulating HIF-1 activity occurs at multiple levels in vivo. The HIF-1alpha subunit is highly sensible to oxygen and is rapidly degraded by the proteasome 26S in normoxia. Activation in hypoxia occurs through a multistep process including inhibition of HIF-1alpha degradation, but also increase in the transactivation activity of HIF-1. Several data indicate that phosphorylation could play a role in this regulation. In this report, we investigated the role of casein kinase 2 (CK2), an ubiquitous serine/threonine kinase, in the regulation of HIF-1 activity. Hypoxia was capable of increasing the expression of the beta subunit of CK2, of inducing a relocalization of this subunit at the plasma membrane, of inducing nuclear translocation of the alpha subunit and of increasing CK2 activity. Three inhibitors of this kinase, DRB (5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole), TBB (4,5,6,7-tetrabromotriazole) and apigenin, as well as overexpression of a partial dominant negative mutant of CK2alpha, were shown to inhibit HIF-1 activity as measured by a reporter assay and through hypoxia-induced VEGF and aldolase expression. This does not occur at the stabilization process since they did not affect HIF-1alpha protein level. DNA-binding activity was also not inhibited. We conclude that CK2 is an important regulator of HIF-1 transcriptional activity but the mechanism of this regulation remains to be determined. Since HIF-1 plays a major role in tumor angiogenesis and since CK2 has been described to be overexpressed in tumor cells, this new pathway of regulation can be one more way for tumor cells to survive.
Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription factor that plays a major role in cellular adaptation to hypoxia. The mechanisms regulating HIF-1 activity occurs at multiple levels in vivo. The HIF-1alpha subunit is highly sensible to oxygen and is rapidly degraded by the proteasome 26S in normoxia. Activation in hypoxia occurs through a multistep process including inhibition of HIF-1alpha degradation, but also increase in the transactivation activity of HIF-1. Several data indicate that phosphorylation could play a role in this regulation. In this report, we investigated the role of casein kinase 2 (CK2), an ubiquitous serine/threonine kinase, in the regulation of HIF-1 activity. Hypoxia was capable of increasing the expression of the beta subunit of CK2, of inducing a relocalization of this subunit at the plasma membrane, of inducing nuclear translocation of the alpha subunit and of increasing CK2 activity. Three inhibitors of this kinase, DRB (5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole), TBB (4,5,6,7-tetrabromotriazole) and apigenin, as well as overexpression of a partial dominant negative mutant of CK2alpha, were shown to inhibit HIF-1 activity as measured by a reporter assay and through hypoxia-induced VEGF and aldolase expression. This does not occur at the stabilization process since they did not affect HIF-1alpha protein level. DNA-binding activity was also not inhibited. We conclude that CK2 is an important regulator of HIF-1 transcriptional activity but the mechanism of this regulation remains to be determined. Since HIF-1 plays a major role in tumor angiogenesis and since CK2 has been described to be overexpressed in tumor cells, this new pathway of regulation can be one more way for tumor cells to survive.Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription factor that plays a major role in cellular adaptation to hypoxia. The mechanisms regulating HIF-1 activity occurs at multiple levels in vivo. The HIF-1alpha subunit is highly sensible to oxygen and is rapidly degraded by the proteasome 26S in normoxia. Activation in hypoxia occurs through a multistep process including inhibition of HIF-1alpha degradation, but also increase in the transactivation activity of HIF-1. Several data indicate that phosphorylation could play a role in this regulation. In this report, we investigated the role of casein kinase 2 (CK2), an ubiquitous serine/threonine kinase, in the regulation of HIF-1 activity. Hypoxia was capable of increasing the expression of the beta subunit of CK2, of inducing a relocalization of this subunit at the plasma membrane, of inducing nuclear translocation of the alpha subunit and of increasing CK2 activity. Three inhibitors of this kinase, DRB (5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole), TBB (4,5,6,7-tetrabromotriazole) and apigenin, as well as overexpression of a partial dominant negative mutant of CK2alpha, were shown to inhibit HIF-1 activity as measured by a reporter assay and through hypoxia-induced VEGF and aldolase expression. This does not occur at the stabilization process since they did not affect HIF-1alpha protein level. DNA-binding activity was also not inhibited. We conclude that CK2 is an important regulator of HIF-1 transcriptional activity but the mechanism of this regulation remains to be determined. Since HIF-1 plays a major role in tumor angiogenesis and since CK2 has been described to be overexpressed in tumor cells, this new pathway of regulation can be one more way for tumor cells to survive.
Hypoxia‐inducible factor‐1 (HIF‐1) is a heterodimeric transcription factor that plays a major role in cellular adaptation to hypoxia. The mechanisms regulating HIF‐1 activity occurs at multiple levels in vivo . The HIF‐1α subunit is highly sensible to oxygen and is rapidly degraded by the proteasome 26S in normoxia. Activation in hypoxia occurs through a multistep process including inhibition of HIF‐1α degradation, but also increase in the transactivation activity of HIF‐1. Several data indicate that phosphorylation could play a role in this regulation. In this report, we investigated the role of casein kinase 2 (CK2), an ubiquitous serine/threonine kinase, in the regulation of HIF‐1 activity. Hypoxia was capable of increasing the expression of the β subunit of CK2, of inducing a relocalization of this subunit at the plasma membrane, of inducing nuclear translocation of the α subunit and of increasing CK2 activity. Three inhibitors of this kinase, DRB (5,6‐dichloro‐1‐β‐D‐ribofuranosyl‐benzimidazole), TBB (4,5,6,7‐tetrabromotriazole) and apigenin, as well as overexpression of a partial dominant negative mutant of CK2α, were shown to inhibit HIF‐1 activity as measured by a reporter assay and through hypoxia‐induced VEGF and aldolase expression. This does not occur at the stabilization process since they did not affect HIF‐1α protein level. DNA‐binding activity was also not inhibited. We conclude that CK2 is an important regulator of HIF‐1 transcriptional activity but the mechanism of this regulation remains to be determined. Since HIF‐1 plays a major role in tumor angiogenesis and since CK2 has been described to be overexpressed in tumor cells, this new pathway of regulation can be one more way for tumor cells to survive. © 2005 Wiley‐Liss, Inc.
Hypoxia‐inducible factor‐1 (HIF‐1) is a heterodimeric transcription factor that plays a major role in cellular adaptation to hypoxia. The mechanisms regulating HIF‐1 activity occurs at multiple levels in vivo. The HIF‐1α subunit is highly sensible to oxygen and is rapidly degraded by the proteasome 26S in normoxia. Activation in hypoxia occurs through a multistep process including inhibition of HIF‐1α degradation, but also increase in the transactivation activity of HIF‐1. Several data indicate that phosphorylation could play a role in this regulation. In this report, we investigated the role of casein kinase 2 (CK2), an ubiquitous serine/threonine kinase, in the regulation of HIF‐1 activity. Hypoxia was capable of increasing the expression of the β subunit of CK2, of inducing a relocalization of this subunit at the plasma membrane, of inducing nuclear translocation of the α subunit and of increasing CK2 activity. Three inhibitors of this kinase, DRB (5,6‐dichloro‐1‐β‐D‐ribofuranosyl‐benzimidazole), TBB (4,5,6,7‐tetrabromotriazole) and apigenin, as well as overexpression of a partial dominant negative mutant of CK2α, were shown to inhibit HIF‐1 activity as measured by a reporter assay and through hypoxia‐induced VEGF and aldolase expression. This does not occur at the stabilization process since they did not affect HIF‐1α protein level. DNA‐binding activity was also not inhibited. We conclude that CK2 is an important regulator of HIF‐1 transcriptional activity but the mechanism of this regulation remains to be determined. Since HIF‐1 plays a major role in tumor angiogenesis and since CK2 has been described to be overexpressed in tumor cells, this new pathway of regulation can be one more way for tumor cells to survive. © 2005 Wiley‐Liss, Inc.
Author Mottet, Denis
Demazy, Catherine
Raes, Martine
Ruys, Sébastien Pyr Dit
Michiels, Carine
Author_xml – sequence: 1
  givenname: Denis
  surname: Mottet
  fullname: Mottet, Denis
– sequence: 2
  givenname: Sébastien Pyr Dit
  surname: Ruys
  fullname: Ruys, Sébastien Pyr Dit
– sequence: 3
  givenname: Catherine
  surname: Demazy
  fullname: Demazy, Catherine
– sequence: 4
  givenname: Martine
  surname: Raes
  fullname: Raes, Martine
– sequence: 5
  givenname: Carine
  surname: Michiels
  fullname: Michiels, Carine
  email: carine.michiels@fundp.ac.be
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17231390$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/15957168$$D View this record in MEDLINE/PubMed
BookMark eNqF0UFrFDEUB_AgFbutHvwCkotCD9O-ZDaZ5CKUxdqVgiB6Dm8ymTU1O6nJTGVvfoR-Rj-JsbNSENRTHuT3f4f3PyIHQxwcIc8ZnDIAfuav7SlnXKpHZMFANxVwJg7IovxB1bBaHpKjnK8BGBOwfEIOmdCiYVItyOsPMTjax0QtZucH-sUPZaCclnn87Ghymyng6ONAY08v1xc_vt8xinb0t37cPSWPewzZPdu_x-TTxZuPq8vq6v3b9er8qrKCK1U1qmfYgMYWlV1yFFDLTvSoocXOWic7ULWErra662oOgLJDJ1TLe9YxKepjwue9wbuNMzG13txyE9HP8xQ2Bq1pneHlDIZrWKoSejWHblL8Ork8mq3P1oWAg4tTNlJJrZQQ_4WsqRvNQRf4Yg-ndus6c5P8FtPO_L5nAS_3ALPF0CccrM8PruE1qzUUdzI7m2LOyfUPBMyvTk3p1Nx3WuzZH9b68b6RMaEP_0p888Ht_r7arN-t5sRPAd6v5Q
CODEN IJCNAW
CitedBy_id crossref_primary_10_18632_oncotarget_23422
crossref_primary_10_3390_pharmaceutics15071991
crossref_primary_10_1371_journal_pone_0055529
crossref_primary_10_7717_peerj_871
crossref_primary_10_1159_000446367
crossref_primary_10_1155_2019_4654206
crossref_primary_10_1016_j_bmcl_2007_05_041
crossref_primary_10_1016_j_ejca_2010_11_028
crossref_primary_10_1016_j_bbrc_2011_10_046
crossref_primary_10_1021_jm3009234
crossref_primary_10_1016_j_fct_2023_113774
crossref_primary_10_3389_fcell_2018_00104
crossref_primary_10_1007_s12272_012_0800_9
crossref_primary_10_1172_JCI165831
crossref_primary_10_3390_molecules26092601
crossref_primary_10_4155_fmc_13_17
crossref_primary_10_3390_ijms22010268
crossref_primary_10_1109_TNB_2015_2509475
crossref_primary_10_3390_molecules25214937
crossref_primary_10_1007_s12272_013_0103_9
crossref_primary_10_3390_biomedicines10081987
crossref_primary_10_1134_S0026893312020203
crossref_primary_10_1038_srep34046
crossref_primary_10_1002_ijc_23094
crossref_primary_10_1016_j_mce_2017_04_005
crossref_primary_10_18632_oncotarget_17935
crossref_primary_10_3389_fphar_2015_00003
crossref_primary_10_1038_s41392_021_00567_7
crossref_primary_10_1021_pr700835y
crossref_primary_10_1210_me_2006_0547
crossref_primary_10_1007_s11033_015_3881_y
crossref_primary_10_1038_s41598_017_16590_0
crossref_primary_10_1038_onc_2012_165
crossref_primary_10_1038_s41598_024_51905_y
crossref_primary_10_1210_en_2013_1759
crossref_primary_10_1080_10409238_2021_1908951
crossref_primary_10_2353_ajpath_2006_050533
crossref_primary_10_1002_ardp_202400259
crossref_primary_10_1016_j_febslet_2007_03_015
crossref_primary_10_1016_j_taap_2023_116647
crossref_primary_10_1007_s13277_013_1076_5
crossref_primary_10_1016_j_yexcr_2006_05_018
crossref_primary_10_1096_fj_09_143743
crossref_primary_10_4236_jbm_2017_51001
crossref_primary_10_3389_fcell_2016_00011
crossref_primary_10_1016_j_ajpath_2017_09_009
crossref_primary_10_1016_j_canlet_2016_10_026
crossref_primary_10_1016_j_metabol_2012_07_011
crossref_primary_10_1002_med_20164
crossref_primary_10_1002_jcb_27078
crossref_primary_10_1016_j_bbamcr_2022_119389
crossref_primary_10_1016_j_cellsig_2014_08_028
crossref_primary_10_3390_cancers13030576
crossref_primary_10_1038_onc_2016_86
crossref_primary_10_1016_j_bcp_2017_03_004
crossref_primary_10_1016_j_bmcl_2013_08_043
crossref_primary_10_1038_onc_2016_40
crossref_primary_10_1074_jbc_M113_507194
crossref_primary_10_1158_1535_7163_MCT_11_0613
crossref_primary_10_3390_pharmaceutics14020331
crossref_primary_10_1371_journal_pone_0017193
crossref_primary_10_1021_pr900987n
crossref_primary_10_1080_25785826_2020_1843267
crossref_primary_10_3390_ph10010026
crossref_primary_10_1158_0008_5472_CAN_10_1893
crossref_primary_10_1007_s00018_015_1929_8
crossref_primary_10_1039_D1RA09339H
crossref_primary_10_1016_j_mehy_2020_109723
crossref_primary_10_1038_s41388_023_02659_w
crossref_primary_10_1242_jcs_03069
crossref_primary_10_3389_fonc_2020_00893
crossref_primary_10_1158_1078_0432_CCR_13_2478
crossref_primary_10_1124_mol_114_097345
crossref_primary_10_3390_cells10010181
Cites_doi 10.1002/(SICI)1096-9071(199608)49:4<264::AID-JMV2>3.0.CO;2-1
10.1074/jbc.272.21.13489
10.1128/MCB.22.9.2984-2992.2002
10.4049/jimmunol.164.8.4292
10.1074/jbc.274.46.32631
10.1038/35017054
10.1096/fj.01-0944rev
10.1042/bj20030674
10.1074/jbc.M002697200
10.1074/jbc.M201307200
10.1006/bbrc.1995.2674
10.1038/349132a0
10.1074/jbc.271.23.13868
10.1042/bj3640041
10.1023/A:1006854109926
10.1096/fj.02-1062fje
10.1080/15216540252774766
10.1074/jbc.M209702200
10.1021/bi00488a034
10.1016/0014-5793(95)01497-7
10.1016/0092-8674(92)90311-Y
10.1126/science.1059817
10.1038/ki.1997.79
10.1038/sj.onc.1206434
10.1023/A:1006850009017
10.1006/jmbi.2000.3630
10.1093/emboj/cdg127
10.1073/pnas.94.12.6110
10.1038/nm0603-677
10.1016/S0962-8924(02)02279-1
10.1038/32925
10.1074/jbc.M009134200
10.1161/01.RES.77.3.638
10.1128/MCB.22.8.2515-2523.2002
10.1073/pnas.92.12.5510
10.1007/978-1-4615-5371-7_7
10.1073/pnas.190332597
10.1096/fj.02-0473rev
10.1074/jbc.M002446200
10.1074/jbc.M204221200
10.1002/1097-0142(20000601)88:11<2606::AID-CNCR25>3.0.CO;2-W
10.1016/S0301-0082(99)00026-X
10.1128/MCB.16.4.1604
10.1074/jbc.275.10.6850
10.1128/MCB.22.1.12-22.2002
10.1002/jcp.10176
10.1128/MCB.21.10.3436-3444.2001
10.1074/jbc.C200694200
10.1093/emboj/19.16.4298
10.1146/annurev.cellbio.15.1.551
10.1074/jbc.274.10.6519
10.1074/jbc.272.17.11205
10.1074/jbc.270.22.13333
10.1126/science.1068592
10.1006/excr.2001.5180
10.1016/S0167-4781(02)00484-0
10.1128/MCB.16.3.899
10.1074/jbc.M009275200
10.1093/nar/29.4.e21
10.1074/jbc.273.20.11995
10.1093/emboj/20.7.1630
10.1042/bj3270419
10.1126/science.1059796
10.1016/j.febslet.2004.08.036
10.1128/MCB.16.4.1401
10.1093/emboj/17.11.3005
10.1016/S0014-5793(00)01181-9
10.1128/MCB.16.7.3554
10.4049/jimmunol.167.9.4919
10.1042/bj3550347
ContentType Journal Article
Web Resource
Copyright Copyright © 2005 Wiley‐Liss, Inc.
2006 INIST-CNRS
Copyright 2005 Wiley-Liss, Inc
Copyright_xml – notice: Copyright © 2005 Wiley‐Liss, Inc.
– notice: 2006 INIST-CNRS
– notice: Copyright 2005 Wiley-Liss, Inc
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TO
H94
7X8
Q33
DOI 10.1002/ijc.21268
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Oncogenes and Growth Factors Abstracts
AIDS and Cancer Research Abstracts
MEDLINE - Academic
Université de Liège - Open Repository and Bibliography (ORBI)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Oncogenes and Growth Factors Abstracts
AIDS and Cancer Research Abstracts
MEDLINE - Academic
DatabaseTitleList Oncogenes and Growth Factors Abstracts
MEDLINE
MEDLINE - Academic
CrossRef


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1097-0215
EndPage 774
ExternalDocumentID oai_orbi_ulg_ac_be_2268_29048
15957168
17231390
10_1002_ijc_21268
IJC21268
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Fonds pour la Recherche dans l'Industrie et l'Agriculture, Belgium
– fundername: Fonds National de la Recherche Scientifique, Belgium
GroupedDBID ---
-~X
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
EX3
F00
F01
F04
F5P
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IH2
IX1
J0M
JPC
KBYEO
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SUPJJ
TEORI
UB1
UDS
V2E
V8K
V9Y
W2D
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WWO
WXI
WXSBR
X7M
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGYGG
CITATION
.GJ
8WZ
A6W
AAMMB
AANHP
ABEFU
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
AEFGJ
AGHNM
AGQPQ
AGXDD
AHEFC
AI.
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
BDRZF
EMOBN
FEDTE
GLUZI
HF~
HVGLF
IQODW
M6P
PALCI
RYL
SAMSI
VH1
Y6R
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7TO
H94
7X8
Q33
ID FETCH-LOGICAL-c5288-78f1a709aba8c42a5036d5fa90badcce6d08360d3c9dd3200a6dae58b2f1d1653
IEDL.DBID DR2
ISSN 0020-7136
1097-0215
IngestDate Fri Jul 18 15:28:47 EDT 2025
Fri Jul 11 02:56:30 EDT 2025
Fri Jul 11 10:01:57 EDT 2025
Wed Feb 19 01:41:46 EST 2025
Mon Jul 21 09:13:04 EDT 2025
Thu Apr 24 22:52:42 EDT 2025
Tue Jul 01 04:26:33 EDT 2025
Wed Jan 22 16:28:45 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Human
Enzyme
Transferases
neoangiogenesis
Malignant tumor
casein kinase 2
Biological activity
Angiogenesis
HIF-1
Cancerology
Casein
Protein kinase
Transcription factor HIF1
Neovascularization
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Copyright 2005 Wiley-Liss, Inc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5288-78f1a709aba8c42a5036d5fa90badcce6d08360d3c9dd3200a6dae58b2f1d1653
Notes Fax: +32‐81‐724135.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
scopus-id:2-s2.0-27744470520
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ijc.21268
PMID 15957168
PQID 17379209
PQPubID 23462
PageCount 11
ParticipantIDs liege_orbi_v2_oai_orbi_ulg_ac_be_2268_29048
proquest_miscellaneous_68698855
proquest_miscellaneous_17379209
pubmed_primary_15957168
pascalfrancis_primary_17231390
crossref_primary_10_1002_ijc_21268
crossref_citationtrail_10_1002_ijc_21268
wiley_primary_10_1002_ijc_21268_IJC21268
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 10 December 2005
PublicationDateYYYYMMDD 2005-12-10
PublicationDate_xml – month: 12
  year: 2005
  text: 10 December 2005
  day: 10
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: New York, NY
– name: United States
PublicationTitle International journal of cancer
PublicationTitleAlternate Int J Cancer
PublicationYear 2005
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley-Liss
Wiley Liss, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley-Liss
– name: Wiley Liss, Inc
References 2002; 16
2001; 265
1997; 272
2002; 12
2000; 88
1995; 77
2002; 277
1995; 216
2003; 194
2000; 2
2003; 17
2000; 297
2003; 278
1997; 3
1998; 392
1998; 273
1998; 17
1997; 51
2000; 19
1997; 94
2004; 575
2001; 292
1999; 15
1999; 59
2003; 8
2003; 9
2000; 97
2000; 60
2000; 164
1991; 349
1996; 379
2001; 52
2001; 167
1995; 92
2002; 295
1999; 191
2000; 275
2001; 29
1996; 16
2003; 374
1995; 270
2001; 20
2001; 21
2001; 276
2001; 355
1992; 70
1997; 327
2000; 468
1990; 29
2002; 364
2002; 1578
2002; 22
1999; 274
1996; 271
1996; 49
2003; 22
e_1_2_6_51_2
e_1_2_6_72_2
e_1_2_6_53_2
e_1_2_6_30_2
e_1_2_6_70_2
Zien P (e_1_2_6_40_2) 2003; 8
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_59_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_55_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_57_2
e_1_2_6_62_2
e_1_2_6_64_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_60_2
e_1_2_6_7_2
Zhong H (e_1_2_6_6_2) 1999; 59
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_66_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_68_2
e_1_2_6_50_2
e_1_2_6_73_2
e_1_2_6_52_2
e_1_2_6_31_2
e_1_2_6_71_2
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_56_2
e_1_2_6_61_2
e_1_2_6_63_2
e_1_2_6_42_2
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_69_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_65_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_67_2
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – volume: 22
  start-page: 1302
  year: 2003
  end-page: 12
  article-title: Protein kinase CK2 and protein kinase D are associated with the COP9 signalosome
  publication-title: EMBO J
– volume: 271
  start-page: 13868
  year: 1996
  end-page: 74
  article-title: Characterization of IkappaB kinases: IkappaB‐alpha is not phosphorylated by Raf‐1 or protein kinase C isozymes, but is a casein kinase II substrate
  publication-title: J Biol Chem
– volume: 275
  start-page: 22245
  year: 2000
  end-page: 54
  article-title: Cell cycle‐regulated phosphorylation of the human SIX1 homeodomain protein
  publication-title: J Biol Chem
– volume: 12
  start-page: 226
  year: 2002
  end-page: 30
  article-title: Joining the cell survival squad: an emerging role for protein kinase CK2
  publication-title: Trends Cell Biol
– volume: 575
  start-page: 59
  year: 2004
  end-page: 63
  article-title: Apigenin suppresses the expression of VEGF, an important factor for angiogenesis, in endothelial cells via degradation of HIF‐1alpha protein
  publication-title: FEBS Lett
– volume: 16
  start-page: 899
  year: 1996
  end-page: 906
  article-title: Casein kinase II phosphorylates I kappa B alpha at S‐283, S‐289, S‐293, and T‐291 and is required for its degradation
  publication-title: Mol Cell Biol
– volume: 277
  start-page: 28228
  year: 2002
  end-page: 37
  article-title: Dimerization and phosphorylation of thyrotropin‐releasing hormone receptors are modulated by agonist stimulation
  publication-title: J Biol Chem
– volume: 77
  start-page: 638
  year: 1995
  end-page: 43
  article-title: Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells: identification of a 5′ enhancer
  publication-title: Circ Res
– volume: 278
  start-page: 14013
  year: 2003
  end-page: 9
  article-title: MAPK signaling up‐regulates the activity of hypoxia‐inducible factors by its effects on p300
  publication-title: J Biol Chem
– volume: 265
  start-page: 114
  year: 2001
  end-page: 24
  article-title: c‐JUN gene induction and AP‐1 activity is regulated by a JNK‐dependent pathway in hypoxic HepG2 cells
  publication-title: Exp Cell Res
– volume: 88
  start-page: 2606
  year: 2000
  end-page: 18
  article-title: Expression of hypoxia‐inducible factor 1alpha in brain tumors: association with angiogenesis, invasion, and progression
  publication-title: Cancer
– volume: 295
  start-page: 858
  year: 2002
  end-page: 61
  article-title: Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch
  publication-title: Science
– volume: 272
  start-page: 13489
  year: 1997
  end-page: 95
  article-title: Casein kinase II‐mediated phosphorylation of the C terminus of Sp1 decreases its DNA binding activity
  publication-title: J Biol Chem
– volume: 194
  start-page: 30
  year: 2003
  end-page: 44
  article-title: Role of ERK and calcium in the hypoxia‐induced activation of HIF‐1
  publication-title: J Cell Physiol
– volume: 20
  start-page: 1630
  year: 2001
  end-page: 9
  article-title: COP9 signalosome‐specific phosphorylation targets p53 to degradation by the ubiquitin system
  publication-title: EMBO J
– volume: 167
  start-page: 4919
  year: 2001
  end-page: 25
  article-title: Phosphorylation by the protein kinase CK2 promotes calpain‐mediated degradation of IkappaBalpha
  publication-title: J Immunol
– volume: 273
  start-page: 11995
  year: 1998
  end-page: 8
  article-title: p53 inhibits hypoxia‐inducible factor‐stimulated transcription
  publication-title: J Biol Chem
– volume: 22
  start-page: 3431
  year: 2003
  end-page: 40
  article-title: Hypoxia attenuates the p53 response to cellular damage
  publication-title: Oncogene
– volume: 292
  start-page: 464
  year: 2001
  end-page: 8
  article-title: HIFalpha targeted for VHL‐mediated destruction by proline hydroxylation: implications for O2 sensing
  publication-title: Science
– volume: 15
  start-page: 551
  year: 1999
  end-page: 78
  article-title: Regulation of mammalian O2 homeostasis by hypoxia‐inducible factor 1
  publication-title: Annu Rev Cell Dev Biol
– volume: 51
  start-page: 560
  year: 1997
  end-page: 3
  article-title: Hypoxia‐inducible factor‐1 alpha is regulated at the post‐mRNA level
  publication-title: Kidney Int
– volume: 355
  start-page: 347
  year: 2001
  end-page: 56
  article-title: Phosphorylation of murine double minute clone 2 (MDM2) protein at serine‐267 by protein kinase CK2 and in cultured cells
  publication-title: Biochem J
– volume: 2
  start-page: 423
  year: 2000
  end-page: 7
  article-title: Ubiquitination of hypoxia‐inducible factor requires direct binding to the beta‐domain of the von Hippel‐Lindau protein
  publication-title: Nat Cell Biol
– volume: 19
  start-page: 4298
  year: 2000
  end-page: 309
  article-title: Mechanism of regulation of the hypoxia‐inducible factor‐1 alpha by the von Hippel‐Lindau tumor suppressor protein
  publication-title: EMBO J
– volume: 17
  start-page: 1186
  year: 2003
  end-page: 8
  article-title: Activation of the hypoxia‐inducible factor‐pathway and stimulation of angiogenesis by application of prolyl hydroxylase inhibitors
  publication-title: FASEB J
– volume: 468
  start-page: 53
  year: 2000
  end-page: 8
  article-title: ERK activation upon hypoxia: involvement in HIF‐1 activation
  publication-title: FEBS Lett
– volume: 277
  start-page: 23508
  year: 2002
  end-page: 14
  article-title: The transcriptional activation function of the HIF‐like factor requires phosphorylation at a conserved threonine
  publication-title: J Biol Chem
– volume: 216
  start-page: 669
  year: 1995
  end-page: 75
  article-title: Effect of protein kinase and phosphatase inhibitors on expression of hypoxia‐inducible factor 1
  publication-title: Biochem Biophys Res Commun
– volume: 8
  start-page: 613
  year: 2003
  end-page: 4
  article-title: Selectivity of 4,5,6,7‐bromobenzimidazole (TBBZ) as an ATP‐competitive potent inhibitor of protein kinase CK2 from various sources
  publication-title: Cell Mol Biol Lett
– volume: 275
  start-page: 6850
  year: 2000
  end-page: 6
  article-title: Casein kinase II phosphorylates lens connexin 45.6 and is involved in its degradation
  publication-title: J Biol Chem
– volume: 16
  start-page: 1151
  year: 2002
  end-page: 62
  article-title: Cellular adaptation to hypoxia: O2‐sensing protein hydroxylases, hypoxia‐inducible transcription factors, and O2‐regulated gene expression
  publication-title: FASEB J
– volume: 292
  start-page: 468
  year: 2001
  end-page: 72
  article-title: Targeting of HIF‐alpha to the von Hippel‐Lindau ubiquitylation complex by O2‐regulated prolyl hydroxylation
  publication-title: Science
– volume: 392
  start-page: 405
  year: 1998
  end-page: 8
  article-title: Stabilization of wild‐type p53 by hypoxia‐inducible factor 1alpha
  publication-title: Nature
– volume: 276
  start-page: 993
  year: 2001
  end-page: 8
  article-title: The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus: implications for PTEN stability to proteasome‐mediated degradation
  publication-title: J Biol Chem
– volume: 21
  start-page: 3436
  year: 2001
  end-page: 44
  article-title: Transcription factor HIF‐1 is a necessary mediator of the pasteur effect in mammalian cells
  publication-title: Mol Cell Biol
– volume: 272
  start-page: 11205
  year: 1997
  end-page: 14
  article-title: Activation of hypoxia‐inducible factor‐1: definition of regulatory domains within the alpha subunit
  publication-title: J Biol Chem
– volume: 97
  start-page: 10430
  year: 2000
  end-page: 5
  article-title: Activation of HIF1alpha ubiquitination by a reconstituted von Hippel‐Lindau (VHL) tumor suppressor complex
  publication-title: Proc Natl Acad Sci USA
– volume: 16
  start-page: 3554
  year: 1996
  end-page: 9
  article-title: Constitutive phosphorylation of IkappaBalpha by casein kinase II occurs preferentially at serine 293: requirement for degradation of free IkappaBalpha
  publication-title: Mol Cell Biol
– volume: 17
  start-page: 3005
  year: 1998
  end-page: 15
  article-title: HIF‐1 alpha is required for solid tumor formation and embryonic vascularization
  publication-title: EMBO J
– volume: 94
  start-page: 6110
  year: 1997
  end-page: 5
  article-title: Casein kinase II is a selective target of HIV‐1 transcriptional inhibitors
  publication-title: Proc Natl Acad Sci USA
– volume: 16
  start-page: 1401
  year: 1996
  end-page: 9
  article-title: Phosphorylation of IkappaBalpha in the C‐terminal PEST domain by casein kinase II affects intrinsic protein stability
  publication-title: Mol Cell Biol
– volume: 16
  start-page: 1604
  year: 1996
  end-page: 13
  article-title: Casein kinase II increases the transcriptional activities of MRF4 and MyoD independently of their direct phosphorylation
  publication-title: Mol Cell Biol
– volume: 17
  start-page: 349
  year: 2003
  end-page: 68
  article-title: One‐thousand‐and‐one substrates of protein kinase CK2?
  publication-title: FASEB J
– volume: 9
  start-page: 677
  year: 2003
  end-page: 84
  article-title: Regulation fo angiogenesis by hypoxia: role of the HIF system
  publication-title: Nat Med
– volume: 278
  start-page: 13595
  year: 2003
  end-page: 8
  article-title: Direct interactions between HIF‐1 alpha and Mdm2 modulate p53 function
  publication-title: J Biol Chem
– volume: 22
  start-page: 2515
  year: 2002
  end-page: 23
  article-title: The response of c‐jun/AP‐1 to chronic hypoxia is hypoxia‐inducible factor 1 alpha dependent
  publication-title: Mol Cell Biol
– volume: 297
  start-page: 1245
  year: 2000
  end-page: 58
  article-title: PKC‐zeta‐associated CK2 participates in the turnover of free IkappaBalpha
  publication-title: J Mol Biol
– volume: 191
  start-page: 169
  year: 1999
  end-page: 80
  article-title: A role for casein kinase II phosphorylation in the regulation of IRF‐1 transcriptional activity
  publication-title: Mol Cell Biochem
– volume: 92
  start-page: 5510
  year: 1995
  end-page: 4
  article-title: Hypoxia‐inducible factor 1 is a basic‐helix‐loop‐helix‐PAS heterodimer regulated by cellular O2 tension
  publication-title: Proc Natl Acad Sci USA
– volume: 374
  start-page: 639
  year: 2003
  end-page: 46
  article-title: Biochemical and three‐dimensional‐structural study of the specific inhibition of protein kinase CK2 by [5‐oxo‐5,6‐dihydroindolo‐(1,2‐a)quinazolin‐7‐yl]acetic acid (IQA)
  publication-title: Biochem J
– volume: 276
  start-page: 18066
  year: 2001
  end-page: 74
  article-title: Casein kinase II sites in the intracellular C‐terminal domain of the thyrotropin‐releasing hormone receptor and chimeric gonadotropin‐releasing hormone receptors contribute to beta‐arrestin‐dependent internalization
  publication-title: J Biol Chem
– volume: 191
  start-page: 187
  year: 1999
  end-page: 99
  article-title: Protein kinase CK2‐dependent regulation of p53 function: evidence that the phosphorylation status of the serine 386 (CK2) site of p53 is constitutive and stable
  publication-title: Mol Cell Biochem
– volume: 52
  start-page: 49
  year: 2001
  end-page: 53
  article-title: HIF‐1 and AP‐1 cooperate to increase gene expression in hypoxia: role of MAP kinases
  publication-title: IUBMB Life
– volume: 49
  start-page: 264
  year: 1996
  end-page: 73
  article-title: Enhancement of varicella‐zoster virus infection in cell lines expressing ORF4‐ or ORF62‐encoded proteins
  publication-title: J Med Virol
– volume: 364
  start-page: 41
  year: 2002
  end-page: 7
  article-title: Protein kinase CK2 inhibitor 4,5,6,7‐tetrabromobenzotriazole (TBB) induces apoptosis and caspase‐dependent degradation of haematopoietic lineage cell‐specific protein 1 (HS1) in Jurkat cells
  publication-title: Biochem J
– volume: 70
  start-page: 777
  year: 1992
  end-page: 89
  article-title: Casein kinase II is a negative regulator of c‐Jun DNA binding and AP‐1 activity
  publication-title: Cell
– volume: 379
  start-page: 153
  year: 1996
  end-page: 6
  article-title: Structure of protein kinase CK2: dimerization of the human beta‐subunit
  publication-title: FEBS Lett
– volume: 59
  start-page: 5830
  year: 1999
  end-page: 5
  article-title: Overexpression of hypoxia‐inducible factor 1alpha in common human cancers and their metastases
  publication-title: Cancer Res
– volume: 1578
  start-page: 73
  year: 2002
  end-page: 83
  article-title: Site‐directed mutagenesis studies of the hypoxia‐inducible factor‐1alpha DNA‐binding domain
  publication-title: Biochim Biophys Acta
– volume: 3
  start-page: 77
  year: 1997
  end-page: 97
  article-title: Protein kinase CK2 (“casein kinase‐2”) and its implication in cell division and proliferation
  publication-title: Prog Cell Cycle Res
– volume: 29
  start-page: E21
  year: 2001
  article-title: Development of a sensitive multi‐well colorimetric assay for active NFkappaB
  publication-title: Nucl Acids Res
– volume: 274
  start-page: 6519
  year: 1999
  end-page: 25
  article-title: Regulation of the hypoxia‐inducible transcription factor 1alpha by the ubiquitin‐proteasome pathway
  publication-title: J Biol Chem
– volume: 274
  start-page: 32631
  year: 1999
  end-page: 7
  article-title: p42/p44 mitogen‐activated protein kinases phosphorylate hypoxia‐inducible factor 1alpha (HIF‐1alpha) and enhance the transcriptional activity of HIF‐1
  publication-title: J Biol Chem
– volume: 22
  start-page: 12
  year: 2002
  end-page: 22
  article-title: c‐Jun and hypoxia‐inducible factor 1 functionally cooperate in hypoxia‐induced gene transcription
  publication-title: Mol Cell Biol
– volume: 327
  start-page: 419
  year: 1997
  end-page: 23
  article-title: Activator‐protein‐1 binding potentiates the hypoxia‐induciblefactor‐1‐mediated hypoxia‐induced transcriptional activation of vascular‐endothelial growth factor expression in C6 glioma cells
  publication-title: Biochem J
– volume: 164
  start-page: 4292
  year: 2000
  end-page: 300
  article-title: Crucial role of the amino‐terminal tyrosine residue 42 and the carboxyl‐terminal PEST domain of I kappa B alpha in NF‐kappa B activation by an oxidative stress
  publication-title: J Immunol
– volume: 275
  start-page: 23919
  year: 2000
  end-page: 26
  article-title: Heat‐induced relocalization of protein kinase CK2: implication of CK2 in the context of cellular stress
  publication-title: J Biol Chem
– volume: 22
  start-page: 2984
  year: 2002
  end-page: 92
  article-title: Carboxyl‐terminal transactivation activity of hypoxia‐inducible factor 1 alpha is governed by a von Hippel‐Lindau protein‐independent, hydroxylation‐regulated association with p300/CBP
  publication-title: Mol Cell Biol
– volume: 60
  start-page: 211
  year: 2000
  end-page: 46
  article-title: Casein kinase 2 as a potentially important enzyme in the nervous system
  publication-title: Prog Neurobiol
– volume: 349
  start-page: 132
  year: 1991
  end-page: 8
  article-title: Cyclin is degraded by the ubiquitin pathway
  publication-title: Nature
– volume: 270
  start-page: 13333
  year: 1995
  end-page: 40
  article-title: Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia
  publication-title: J Biol Chem
– volume: 29
  start-page: 8436
  year: 1990
  end-page: 47
  article-title: Isolation and characterization of human cDNA clones encoding the alpha and the alpha′ subunits of casein kinase II
  publication-title: Biochemistry
– ident: e_1_2_6_38_2
  doi: 10.1002/(SICI)1096-9071(199608)49:4<264::AID-JMV2>3.0.CO;2-1
– ident: e_1_2_6_27_2
  doi: 10.1074/jbc.272.21.13489
– ident: e_1_2_6_17_2
  doi: 10.1128/MCB.22.9.2984-2992.2002
– ident: e_1_2_6_49_2
  doi: 10.4049/jimmunol.164.8.4292
– ident: e_1_2_6_19_2
  doi: 10.1074/jbc.274.46.32631
– ident: e_1_2_6_11_2
  doi: 10.1038/35017054
– ident: e_1_2_6_9_2
  doi: 10.1096/fj.01-0944rev
– ident: e_1_2_6_42_2
  doi: 10.1042/bj20030674
– ident: e_1_2_6_45_2
  doi: 10.1074/jbc.M002697200
– ident: e_1_2_6_21_2
  doi: 10.1074/jbc.M201307200
– ident: e_1_2_6_46_2
  doi: 10.1006/bbrc.1995.2674
– ident: e_1_2_6_57_2
  doi: 10.1038/349132a0
– ident: e_1_2_6_71_2
  doi: 10.1074/jbc.271.23.13868
– ident: e_1_2_6_41_2
  doi: 10.1042/bj3640041
– ident: e_1_2_6_61_2
  doi: 10.1023/A:1006854109926
– ident: e_1_2_6_48_2
  doi: 10.1096/fj.02-1062fje
– volume: 8
  start-page: 613
  year: 2003
  ident: e_1_2_6_40_2
  article-title: Selectivity of 4,5,6,7‐bromobenzimidazole (TBBZ) as an ATP‐competitive potent inhibitor of protein kinase CK2 from various sources
  publication-title: Cell Mol Biol Lett
– ident: e_1_2_6_68_2
  doi: 10.1080/15216540252774766
– ident: e_1_2_6_20_2
  doi: 10.1074/jbc.M209702200
– volume: 59
  start-page: 5830
  year: 1999
  ident: e_1_2_6_6_2
  article-title: Overexpression of hypoxia‐inducible factor 1alpha in common human cancers and their metastases
  publication-title: Cancer Res
– ident: e_1_2_6_25_2
  doi: 10.1021/bi00488a034
– ident: e_1_2_6_59_2
  doi: 10.1016/0014-5793(95)01497-7
– ident: e_1_2_6_26_2
  doi: 10.1016/0092-8674(92)90311-Y
– ident: e_1_2_6_14_2
  doi: 10.1126/science.1059817
– ident: e_1_2_6_53_2
  doi: 10.1038/ki.1997.79
– ident: e_1_2_6_65_2
  doi: 10.1038/sj.onc.1206434
– ident: e_1_2_6_29_2
  doi: 10.1023/A:1006850009017
– ident: e_1_2_6_72_2
  doi: 10.1006/jmbi.2000.3630
– ident: e_1_2_6_67_2
  doi: 10.1093/emboj/cdg127
– ident: e_1_2_6_23_2
  doi: 10.1073/pnas.94.12.6110
– ident: e_1_2_6_3_2
  doi: 10.1038/nm0603-677
– ident: e_1_2_6_24_2
  doi: 10.1016/S0962-8924(02)02279-1
– ident: e_1_2_6_62_2
  doi: 10.1038/32925
– ident: e_1_2_6_32_2
  doi: 10.1074/jbc.M009134200
– ident: e_1_2_6_52_2
  doi: 10.1161/01.RES.77.3.638
– ident: e_1_2_6_70_2
  doi: 10.1128/MCB.22.8.2515-2523.2002
– ident: e_1_2_6_8_2
  doi: 10.1073/pnas.92.12.5510
– ident: e_1_2_6_60_2
  doi: 10.1007/978-1-4615-5371-7_7
– ident: e_1_2_6_12_2
  doi: 10.1073/pnas.190332597
– ident: e_1_2_6_22_2
  doi: 10.1096/fj.02-0473rev
– ident: e_1_2_6_34_2
  doi: 10.1074/jbc.M002446200
– ident: e_1_2_6_37_2
  doi: 10.1074/jbc.M204221200
– ident: e_1_2_6_5_2
  doi: 10.1002/1097-0142(20000601)88:11<2606::AID-CNCR25>3.0.CO;2-W
– ident: e_1_2_6_56_2
  doi: 10.1016/S0301-0082(99)00026-X
– ident: e_1_2_6_28_2
  doi: 10.1128/MCB.16.4.1604
– ident: e_1_2_6_33_2
  doi: 10.1074/jbc.275.10.6850
– ident: e_1_2_6_69_2
  doi: 10.1128/MCB.22.1.12-22.2002
– ident: e_1_2_6_73_2
  doi: 10.1002/jcp.10176
– ident: e_1_2_6_7_2
  doi: 10.1128/MCB.21.10.3436-3444.2001
– ident: e_1_2_6_63_2
  doi: 10.1074/jbc.C200694200
– ident: e_1_2_6_13_2
  doi: 10.1093/emboj/19.16.4298
– ident: e_1_2_6_2_2
  doi: 10.1146/annurev.cellbio.15.1.551
– ident: e_1_2_6_10_2
  doi: 10.1074/jbc.274.10.6519
– ident: e_1_2_6_43_2
  doi: 10.1074/jbc.272.17.11205
– ident: e_1_2_6_51_2
  doi: 10.1074/jbc.270.22.13333
– ident: e_1_2_6_16_2
  doi: 10.1126/science.1068592
– ident: e_1_2_6_55_2
  doi: 10.1006/excr.2001.5180
– ident: e_1_2_6_50_2
  doi: 10.1016/S0167-4781(02)00484-0
– ident: e_1_2_6_31_2
  doi: 10.1128/MCB.16.3.899
– ident: e_1_2_6_35_2
  doi: 10.1074/jbc.M009275200
– ident: e_1_2_6_44_2
  doi: 10.1093/nar/29.4.e21
– ident: e_1_2_6_64_2
  doi: 10.1074/jbc.273.20.11995
– ident: e_1_2_6_66_2
  doi: 10.1093/emboj/20.7.1630
– ident: e_1_2_6_54_2
  doi: 10.1042/bj3270419
– ident: e_1_2_6_15_2
  doi: 10.1126/science.1059796
– ident: e_1_2_6_58_2
  doi: 10.1016/j.febslet.2004.08.036
– ident: e_1_2_6_47_2
  doi: 10.1128/MCB.16.4.1401
– ident: e_1_2_6_4_2
  doi: 10.1093/emboj/17.11.3005
– ident: e_1_2_6_18_2
  doi: 10.1016/S0014-5793(00)01181-9
– ident: e_1_2_6_30_2
  doi: 10.1128/MCB.16.7.3554
– ident: e_1_2_6_36_2
  doi: 10.4049/jimmunol.167.9.4919
– ident: e_1_2_6_39_2
  doi: 10.1042/bj3550347
RestrictionsOnAccess restricted access
SSID ssj0011504
Score 2.1554022
Snippet Hypoxia‐inducible factor‐1 (HIF‐1) is a heterodimeric transcription factor that plays a major role in cellular adaptation to hypoxia. The mechanisms regulating...
Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription factor that plays a major role in cellular adaptation to hypoxia. The mechanisms regulating...
SourceID liege
proquest
pubmed
pascalfrancis
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 764
SubjectTerms Biochemistry, biophysics & molecular biology
Biochimie, biophysique & biologie moléculaire
Biological and medical sciences
casein kinase 2
Casein Kinase II - antagonists & inhibitors
Casein Kinase II - metabolism
Casein Kinase II/antagonists & inhibitors/metabolism
Cell Hypoxia
Cell Line, Tumor
Colorimetry
Enzyme Inhibitors - pharmacology
Fluorescent Antibody Technique
HIF‐1
Human health sciences
Humans
Life sciences
Medical sciences
Multiple tumors. Solid tumors. Tumors in childhood (general aspects)
neoangiogenesis
Oncologie
Oncology
Sciences de la santé humaine
Sciences du vivant
Transcription, Genetic - physiology
Tumors
Vascular Endothelial Growth Factor A - metabolism
Title Role for casein kinase 2 in the regulation of HIF‐1 activity
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fijc.21268
https://www.ncbi.nlm.nih.gov/pubmed/15957168
https://www.proquest.com/docview/17379209
https://www.proquest.com/docview/68698855
http://orbi.ulg.ac.be/handle/2268/29048
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhhdJL3w_3kYrSQ6B4I0uWLVEolLTLJpAeQgM5FISeYZvFLvvooaf-hP7G_pKOLHuXLQmU3uYwtpFmRvPJI32D0GsaXFmU1uWGW56X0rhcs5LnWrJIisuYtbGie_KpmpyVx-f8fAe9He7CJH6I9Q-3GBndeh0DXJvFwYY0dPrVjmDdreJF34JVkTf_w-maOioCnZ6BmeSwEasGViFCD9ZPbuWiG7NYpY5nI_UCpiekvhZXAc9tHNslovEd9GUYQjp_cjlaLc3I_viL3fE_x3gX3e4BKn6fPOoe2vHNfXTzpC_BP0DvTtuZxwB1sYUEOG3w5bQBAVMMMqBJPE_d7cHeuA14cjT-_fNXgeP9idim4iE6G3_8fDjJ-yYMueUUoqgWodA1kdpoYUuqOaQ8x4OWxGhnra9c5LcmjlnpHIOY05XTngtDQ-GKirNHaLdpG_8EYU89cUETUQfYlYpSBxIAUDlbamuC1RnaH8yhbM9QHhtlzFTiVqYK5kN185GhV2vVb4mW4yqlN51NVTs3U_Wdqkil3cmr2YXSVhmvAH0KRSWsYxna27L85r01YGAmSYZeDq6gIAZjYUU3vl0tQIPVkhJ5vUYlKikE5xl6nHxo83YuOexZ4fP7nSdcPxx1dHzYCU__XfUZupW4Zink2-dodzlf-ReAopZmrwuXP8GVFzI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB7SBNpc-k66fSSi9BAo66y1q10JSqGEGjuNcwgJ5FKEnsWN2S2O3UNP_Qn9jf0lHe3DxiWB0psOs1qkmdF80kjfALyh3mb9zNhYM8PiTGgbqzRjsRJpIMVNU2NCRnd8mg8vsuNLdrkB77q3MA0_xPLALXhGvV4HBw8H0ocr1tDJV9PDhTfnd2Crzs8FSHS2JI8KUKflYE5i3IrlHa9QQg-Xn65Fo61pyFOH25HqGifIN5UtboKe60i2DkWDB_C5G0RzA-Wqt5jrnvnxF7_j_47yIdxvMSr50BjVI9hw5WO4O26z8E_g_Vk1dQTRLjEYAycluZqU2CCUYBsBJZk1Be5R5aTyZDga_P75q0_CE4pQqeIpXAw-nh8N47YOQ2wYRUcquO-rIhFKK24yqhhGPcu8EolW1hiX20BxndjUCGtTdDuVW-UY19T3bT9n6Q5sllXpngFx1CXWq4QXHjemPFM-8YiprMmU0d6oCA46fUjTkpSHWhlT2dArU4nzIev5iOD1UvRbw8xxk9DbWqmymumJ_E5lYNOu24vpF6mM1E4iAOWSClzKIthbU_2q3wJhcCqSCPY7W5DohiG3okpXLa5RIi0ETcTtEjnPBeeMRbDbGNGqdyYYblvx9we1Kdw-HDk6Pqobz_9ddB_uDc_HJ_JkdPrpBWw31LMUw-9L2JzPFu4Vgqq53qt95w8ofRtQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SBEIvfT_cRyJKD4HijSxbtkShUNIuu2kTSmggh4KQ9SjbLHbY7PbQU39Cf2N_SUd-7LIlgdLbHMY20sxoPnmkbwBeMm-zJDM2LrnhcSZLG-s047GWaSDFTVNjQkX36DgfnWaHZ_xsA173d2FafojlD7cQGc16HQL8wvr9FWno5JsZ4LqbixuwleWYJgMiOllyRwWk01Ew0xh3YnlPK0TZ_vLRtWS0NQ1l6nA4Ul_i_Pi2scVVyHMdyDaZaHgbvvRjaA-gnA8W83JgfvxF7_ifg7wDtzqESt62LnUXNlx1D7aPuhr8fXhzUk8dQaxLDGbASUXOJxUKhBGUEU6SWdveHg1Oak9G4-Hvn78SEi5QhD4VD-B0-P7zwSjuujDEhjMMo0L4RBdU6lILkzHNMedZ7rWkpbbGuNwGgmtqUyOtTTHodG6146JkPrFJztOHsFnVlXsMxDFHrddUFB63pSLTnnpEVNZk2pTe6Aj2enMo01GUh04ZU9WSKzOF86Ga-YjgxVL1ouXluErpVWNTVc_KifrOVODSbuTF9KvSRpVOIfwUiklcyCLYWbP86r0FguBU0gh2e1dQGIShsqIrVy8uUSMtJKPyeo1c5FIIziN41PrQ6u1ccty04uf3Gk-4fjhqfHjQCE_-XXUXtj-9G6qP4-MPT-FmyzvLMPc-g835bOGeI6KalztN5PwBxdEZ_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+for+casein+kinase+2+in+the+regulation+of+HIF-1+activity&rft.jtitle=International+journal+of+cancer&rft.au=MOTTET%2C+Denis&rft.au=PYR+DIT+RUYS%2C+S%C3%A9bastien&rft.au=DEMAZY%2C+Catherine&rft.au=RAES%2C+Martine&rft.date=2005-12-10&rft.pub=Wiley-Liss&rft.issn=0020-7136&rft.volume=117&rft.issue=5&rft.spage=764&rft.epage=774&rft_id=info:doi/10.1002%2Fijc.21268&rft.externalDBID=n%2Fa&rft.externalDocID=17231390
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7136&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7136&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7136&client=summon