SWIFT—scalable clustering for automated identification of rare cell populations in large, high‐dimensional flow cytometry datasets, Part 1: Algorithm design

We present a model‐based clustering method, SWIFT (Scalable Weighted Iterative Flow‐clustering Technique), for digesting high‐dimensional large‐sized datasets obtained via modern flow cytometry into more compact representations that are well‐suited for further automated or manual analysis. Key attri...

Full description

Saved in:
Bibliographic Details
Published inCytometry. Part A Vol. 85; no. 5; pp. 408 - 421
Main Authors Naim, Iftekhar, Datta, Suprakash, Rebhahn, Jonathan, Cavenaugh, James S., Mosmann, Tim R., Sharma, Gaurav
Format Journal Article
LanguageEnglish
Published United States BlackWell Publishing Ltd 01.05.2014
Subjects
Online AccessGet full text
ISSN1552-4922
1552-4930
1552-4930
DOI10.1002/cyto.a.22446

Cover

Abstract We present a model‐based clustering method, SWIFT (Scalable Weighted Iterative Flow‐clustering Technique), for digesting high‐dimensional large‐sized datasets obtained via modern flow cytometry into more compact representations that are well‐suited for further automated or manual analysis. Key attributes of the method include the following: (a) the analysis is conducted in the multidimensional space retaining the semantics of the data, (b) an iterative weighted sampling procedure is utilized to maintain modest computational complexity and to retain discrimination of extremely small subpopulations (hundreds of cells from datasets containing tens of millions), and (c) a splitting and merging procedure is incorporated in the algorithm to preserve distinguishability between biologically distinct populations, while still providing a significant compaction relative to the original data. This article presents a detailed algorithmic description of SWIFT, outlining the application‐driven motivations for the different design choices, a discussion of computational complexity of the different steps, and results obtained with SWIFT for synthetic data and relatively simple experimental data that allow validation of the desirable attributes. A companion paper (Part 2) highlights the use of SWIFT, in combination with additional computational tools, for more challenging biological problems. © 2014 The Authors. Published by Wiley Periodicals Inc.
AbstractList We present a model-based clustering method, SWIFT (Scalable Weighted Iterative Flow-clustering Technique), for digesting high-dimensional large-sized datasets obtained via modern flow cytometry into more compact representations that are well-suited for further automated or manual analysis. Key attributes of the method include the following: (a) the analysis is conducted in the multidimensional space retaining the semantics of the data, (b) an iterative weighted sampling procedure is utilized to maintain modest computational complexity and to retain discrimination of extremely small subpopulations (hundreds of cells from datasets containing tens of millions), and (c) a splitting and merging procedure is incorporated in the algorithm to preserve distinguishability between biologically distinct populations, while still providing a significant compaction relative to the original data. This article presents a detailed algorithmic description of SWIFT, outlining the application-driven motivations for the different design choices, a discussion of computational complexity of the different steps, and results obtained with SWIFT for synthetic data and relatively simple experimental data that allow validation of the desirable attributes. A companion paper (Part 2) highlights the use of SWIFT, in combination with additional computational tools, for more challenging biological problems. copyright 2014 The Authors. Published by Wiley Periodicals Inc.
We present a model-based clustering method, SWIFT (Scalable Weighted Iterative Flow-clustering Technique), for digesting high-dimensional large-sized datasets obtained via modern flow cytometry into more compact representations that are well-suited for further automated or manual analysis. Key attributes of the method include the following: (a) the analysis is conducted in the multidimensional space retaining the semantics of the data, (b) an iterative weighted sampling procedure is utilized to maintain modest computational complexity and to retain discrimination of extremely small subpopulations (hundreds of cells from datasets containing tens of millions), and (c) a splitting and merging procedure is incorporated in the algorithm to preserve distinguishability between biologically distinct populations, while still providing a significant compaction relative to the original data. This article presents a detailed algorithmic description of SWIFT, outlining the application-driven motivations for the different design choices, a discussion of computational complexity of the different steps, and results obtained with SWIFT for synthetic data and relatively simple experimental data that allow validation of the desirable attributes. A companion paper (Part 2) highlights the use of SWIFT, in combination with additional computational tools, for more challenging biological problems.We present a model-based clustering method, SWIFT (Scalable Weighted Iterative Flow-clustering Technique), for digesting high-dimensional large-sized datasets obtained via modern flow cytometry into more compact representations that are well-suited for further automated or manual analysis. Key attributes of the method include the following: (a) the analysis is conducted in the multidimensional space retaining the semantics of the data, (b) an iterative weighted sampling procedure is utilized to maintain modest computational complexity and to retain discrimination of extremely small subpopulations (hundreds of cells from datasets containing tens of millions), and (c) a splitting and merging procedure is incorporated in the algorithm to preserve distinguishability between biologically distinct populations, while still providing a significant compaction relative to the original data. This article presents a detailed algorithmic description of SWIFT, outlining the application-driven motivations for the different design choices, a discussion of computational complexity of the different steps, and results obtained with SWIFT for synthetic data and relatively simple experimental data that allow validation of the desirable attributes. A companion paper (Part 2) highlights the use of SWIFT, in combination with additional computational tools, for more challenging biological problems.
We present a model‐based clustering method, SWIFT (Scalable Weighted Iterative Flow‐clustering Technique), for digesting high‐dimensional large‐sized datasets obtained via modern flow cytometry into more compact representations that are well‐suited for further automated or manual analysis. Key attributes of the method include the following: (a) the analysis is conducted in the multidimensional space retaining the semantics of the data, (b) an iterative weighted sampling procedure is utilized to maintain modest computational complexity and to retain discrimination of extremely small subpopulations (hundreds of cells from datasets containing tens of millions), and (c) a splitting and merging procedure is incorporated in the algorithm to preserve distinguishability between biologically distinct populations, while still providing a significant compaction relative to the original data. This article presents a detailed algorithmic description of SWIFT, outlining the application‐driven motivations for the different design choices, a discussion of computational complexity of the different steps, and results obtained with SWIFT for synthetic data and relatively simple experimental data that allow validation of the desirable attributes. A companion paper (Part 2) highlights the use of SWIFT, in combination with additional computational tools, for more challenging biological problems. © 2014 The Authors. Published by Wiley Periodicals Inc.
We present a model-based clustering method, SWIFT (Scalable Weighted Iterative Flow-clustering Technique), for digesting high-dimensional large-sized datasets obtained via modern flow cytometry into more compact representations that are well-suited for further automated or manual analysis. Key attributes of the method include the following: (a) the analysis is conducted in the multidimensional space retaining the semantics of the data, (b) an iterative weighted sampling procedure is utilized to maintain modest computational complexity and to retain discrimination of extremely small subpopulations (hundreds of cells from datasets containing tens of millions), and (c) a splitting and merging procedure is incorporated in the algorithm to preserve distinguishability between biologically distinct populations, while still providing a significant compaction relative to the original data. This article presents a detailed algorithmic description of SWIFT, outlining the application-driven motivations for the different design choices, a discussion of computational complexity of the different steps, and results obtained with SWIFT for synthetic data and relatively simple experimental data that allow validation of the desirable attributes. A companion paper (Part 2) highlights the use of SWIFT, in combination with additional computational tools, for more challenging biological problems.
Author Cavenaugh, James S.
Datta, Suprakash
Sharma, Gaurav
Rebhahn, Jonathan
Naim, Iftekhar
Mosmann, Tim R.
Author_xml – sequence: 1
  givenname: Iftekhar
  surname: Naim
  fullname: Naim, Iftekhar
  organization: University of Rochester
– sequence: 2
  givenname: Suprakash
  surname: Datta
  fullname: Datta, Suprakash
  organization: York University
– sequence: 3
  givenname: Jonathan
  surname: Rebhahn
  fullname: Rebhahn, Jonathan
  organization: University of Rochester Medical Center
– sequence: 4
  givenname: James S.
  surname: Cavenaugh
  fullname: Cavenaugh, James S.
  organization: University of Rochester Medical Center
– sequence: 5
  givenname: Tim R.
  surname: Mosmann
  fullname: Mosmann, Tim R.
  organization: University of Rochester Medical Center
– sequence: 6
  givenname: Gaurav
  surname: Sharma
  fullname: Sharma, Gaurav
  organization: University of Rochester
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24677621$$D View this record in MEDLINE/PubMed
BookMark eNqNkctuEzEUhkeoiF5gxxp5ySITbI89mbBAiiJaKlUqEkGIlXXisSdGHnuwPY2y6yOw6APwbH0SJkkpF4nLypbP9x__5z_H2YHzTmXZU4LHBGP6Qm6SH8OYUsbKB9kR4ZzmbFrgg_s7pYfZcYyfMC44Luij7JCycjIpKTnKvr77cH66uL2-iRIsLK1C0vYxqWBcg7QPCPrkW0iqRqZWLhltJCTjHfIaBQgDr6xFne96u3uPyDhkITRqhFamWd1ef6lNq1wcamCRtn6NtpZblcIG1ZAgqhRH6C2EhMhLNLONDyatWlSraBr3OHuowUb15O48yd6fvl7M3-QXl2fn89lFLjmtylxTVksOHGsOw5hyCbiqWKEVA43VhDJcyBITXdW8rAmfVEoCTAuiGeWgNSlOsnzft3cdbNZgreiCaSFsBMFim7TY2hYgdkkP_Ks93_XLVtVyyCbAD40HI36tOLMSjb8SjBZVRadDg-d3DYL_3KuYRGviNkxwyvdRED78Q8qK8P9ASVWSKWbVgD772da9n-8bHwC6B2TwMQalhTRpt7nBpbF_Gnb0m-gf2bA9vjZWbf7KivnHxeVsL_sGu_Tlsg
CitedBy_id crossref_primary_10_1016_j_engappai_2022_104743
crossref_primary_10_1186_s12859_015_0862_z
crossref_primary_10_3390_cancers14040898
crossref_primary_10_1016_j_idm_2016_07_001
crossref_primary_10_1002_cyto_a_23068
crossref_primary_10_1002_cyto_a_22850
crossref_primary_10_1093_bioinformatics_btad585
crossref_primary_10_3390_ijms21072323
crossref_primary_10_1093_bioinformatics_btaa873
crossref_primary_10_3390_cancers16081503
crossref_primary_10_1002_eji_201970107
crossref_primary_10_1002_cyto_a_22654
crossref_primary_10_4049_jimmunol_1500633
crossref_primary_10_1002_cyto_a_22734
crossref_primary_10_1002_wics_70017
crossref_primary_10_1016_j_jaci_2023_05_026
crossref_primary_10_1109_JBHI_2016_2565561
crossref_primary_10_1016_j_aca_2021_338872
crossref_primary_10_1016_j_patcog_2016_04_004
crossref_primary_10_3389_fimmu_2017_00858
crossref_primary_10_1002_ctd2_95
crossref_primary_10_1002_cyto_a_23173
crossref_primary_10_1002_cyto_a_23371
crossref_primary_10_1214_18_AOAS1209
crossref_primary_10_1371_journal_pone_0205291
crossref_primary_10_1002_cyto_a_23577
crossref_primary_10_1002_cyto_a_23852
crossref_primary_10_1093_bioinformatics_btad750
crossref_primary_10_1002_eji_201646632
crossref_primary_10_1002_cyto_a_22445
crossref_primary_10_1002_cyto_a_24307
crossref_primary_10_3389_fimmu_2024_1347926
crossref_primary_10_1016_j_ebiom_2018_10_042
crossref_primary_10_1002_eji_201545774
crossref_primary_10_3389_fonc_2023_1131259
crossref_primary_10_1186_s12859_022_05018_w
crossref_primary_10_1038_s41598_020_58326_7
crossref_primary_10_1038_s42003_020_0938_9
crossref_primary_10_1109_TBCAS_2016_2577641
crossref_primary_10_1371_journal_pone_0180307
crossref_primary_10_1007_s12254_014_0172_6
crossref_primary_10_1038_nri_2016_56
crossref_primary_10_1053_j_semdp_2023_02_004
crossref_primary_10_1186_1471_2105_15_314
crossref_primary_10_1002_eji_201444645
crossref_primary_10_1002_cyto_a_22740
crossref_primary_10_3390_ijms23063224
crossref_primary_10_1002_cyto_a_24320
crossref_primary_10_1002_cyto_a_22625
crossref_primary_10_1002_cyto_a_22626
crossref_primary_10_1002_iid3_246
crossref_primary_10_1016_j_compbiomed_2022_105314
crossref_primary_10_1371_journal_pone_0228651
crossref_primary_10_1002_cyto_a_22789
crossref_primary_10_1089_ast_2023_0016
crossref_primary_10_1002_cyto_a_22905
Cites_doi 10.1002/cyto.a.20555
10.1198/jcgs.2010.08111
10.1002/cyto.a.20583
10.1198/016214502760047131
10.1186/1471-2105-11-403
10.1002/0471721182
10.1007/s11634-010-0058-3
10.1002/0471722731
10.1002/cyto.b.20554
10.1093/bfgp/elm011
10.1002/nav.3800020109
10.1073/pnas.0903028106
10.1109/34.990138
10.1198/004017001316975925
10.1186/1471-2105-10-145
10.1038/nbt.1991
10.1093/oso/9780198523963.001.0001
10.1002/cyto.a.22445
10.1002/0471725293
10.1155/2009/247646
10.4049/jimmunol.182.Supp.42.17
10.1002/cyto.990060405
10.1186/1471-2172-6-13
10.1023/A:1017986506241
10.1038/nri1416
10.1093/bioinformatics/bts300
10.1186/1471-2105-11-44
10.1371/journal.pcbi.1003130
10.1111/j.2517-6161.1977.tb01600.x
10.1002/cyto.a.20531
10.1109/ICASSP.2010.5495653
10.1002/cyto.a.21007
ContentType Journal Article
Copyright 2014 The Authors. Published by Wiley Periodicals Inc. on behalf of the International Society for Advancement of Cytometry.
2014 The Authors. Published by Wiley Periodicals Inc. on behalf of the International Society for Advancement of Cytometry. 2014
Copyright_xml – notice: 2014 The Authors. Published by Wiley Periodicals Inc. on behalf of the International Society for Advancement of Cytometry.
– notice: 2014 The Authors. Published by Wiley Periodicals Inc. on behalf of the International Society for Advancement of Cytometry. 2014
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
5PM
ADTOC
UNPAY
DOI 10.1002/cyto.a.22446
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Engineering Research Database
MEDLINE - Academic
CrossRef


MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1552-4930
EndPage 421
ExternalDocumentID 10.1002/cyto.a.22446
PMC4238829
24677621
10_1002_cyto_a_22446
CYTOA22446
Genre article
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: National Center for Research Resources and the National Center for Advancing Translational Sciences through the University of Rochester CTSA
  funderid: UL1 RR024160
– fundername: National Institute for Allergy and Infectious Diseases New York Influenza Center of Excellence
  funderid: HHSN266200700008C
– fundername: National Institute for Allergy and Infectious Diseases through the Rochester Human Immunology Center
  funderid: R24AI054953
– fundername: NCRR NIH HHS
  grantid: UL1 RR024160
– fundername: NCATS NIH HHS
  grantid: UL1 TR000042
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
2WC
31~
33P
3SF
4.4
4ZD
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
QB0
QRW
R.K
RNS
ROL
RWI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c5286-f24dc5a50f5a035cba08843fe4af0e72403c601f8d56d1578ecaa931f425aff13
IEDL.DBID UNPAY
ISSN 1552-4922
1552-4930
IngestDate Tue Aug 19 23:49:42 EDT 2025
Thu Aug 21 13:52:52 EDT 2025
Tue Oct 07 09:33:53 EDT 2025
Fri Jul 11 11:40:30 EDT 2025
Thu Apr 03 07:03:30 EDT 2025
Wed Oct 01 01:25:31 EDT 2025
Thu Apr 24 23:11:06 EDT 2025
Wed Jan 22 17:08:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords weighted sampling
Gaussian mixture models
rare subpopulation detection
ground truth data
automated multivariate clustering
Language English
License Attribution-NonCommercial
http://creativecommons.org/licenses/by-nc/3.0
2014 The Authors. Published by Wiley Periodicals Inc. on behalf of the International Society for Advancement of Cytometry.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5286-f24dc5a50f5a035cba08843fe4af0e72403c601f8d56d1578ecaa931f425aff13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cyto.a.22446
PMID 24677621
PQID 1518619048
PQPubID 23479
PageCount 14
ParticipantIDs unpaywall_primary_10_1002_cyto_a_22446
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4238829
proquest_miscellaneous_1524416815
proquest_miscellaneous_1518619048
pubmed_primary_24677621
crossref_citationtrail_10_1002_cyto_a_22446
crossref_primary_10_1002_cyto_a_22446
wiley_primary_10_1002_cyto_a_22446_CYTOA22446
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2014
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: May 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford, UK
PublicationTitle Cytometry. Part A
PublicationTitleAlternate Cytometry A
PublicationYear 2014
Publisher BlackWell Publishing Ltd
Publisher_xml – name: BlackWell Publishing Ltd
References 2010; 78B
2010; 11
2002; 97
2010; 19
2010
2009; 182
2011; 79A
1985; 6
2004; 4
2009
1998
1997
2003
1992
2001; 45
1998; 89
1955; 2
2013; 9
2001; 43
2008; 73A
2009; 10
2000
1977; 39
2002; 24
2007; 6
2005; 6
2012; 28
2014
2013
2011; 29
2010; 4
2009; 106
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
Dempster A (e_1_2_9_22_1) 1977; 39
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Neal RM (e_1_2_9_23_1) 1998
Scheuermann R (e_1_2_9_34_1) 2009; 182
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
Tantrum J (e_1_2_9_26_1) 2003
e_1_2_9_3_1
e_1_2_9_2_1
Bowman A (e_1_2_9_25_1) 1997
e_1_2_9_9_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
20667133 - BMC Bioinformatics. 2010;11:403
19442304 - BMC Bioinformatics. 2009;10:145
19443687 - Proc Natl Acad Sci U S A. 2009 May 26;106(21):8519-24
17611236 - Brief Funct Genomic Proteomic. 2007 Jun;6(2):81-90
15978127 - BMC Immunol. 2005;6:13
20953302 - J Comput Graph Stat. 2010 Jun 1;9(2):332-353
4017796 - Cytometry. 1985 Jul;6(4):302-9
18383316 - Cytometry A. 2008 May;73(5):400-10
21182178 - Cytometry A. 2011 Jan;79(1):6-13
20096119 - BMC Bioinformatics. 2010;11:44
15286731 - Nat Rev Immunol. 2004 Aug;4(8):648-55
20839340 - Cytometry B Clin Cytom. 2010;78 Suppl 1:S69-82
18496851 - Cytometry A. 2008 Aug;73(8):693-701
23874174 - PLoS Comput Biol. 2013;9(7):e1003130
18307272 - Cytometry A. 2008 Apr;73(4):321-32
20049161 - Adv Bioinformatics. 2009;:247646
22595209 - Bioinformatics. 2012 Aug 1;28(15):2052-8
21964415 - Nat Biotechnol. 2011 Oct;29(10):886-91
References_xml – volume: 73A
  start-page: 321
  year: 2008
  end-page: 332
  article-title: Automated gating of flow cytometry data via robust model‐based clustering
  publication-title: Cytom Part A
– volume: 6
  start-page: 302
  year: 1985
  end-page: 309
  article-title: Automated identification of subpopulations in flow cytometric list mode data using cluster analysis
  publication-title: Cytometry
– volume: 78B
  start-page: 69
  year: 2010
  end-page: 82
  article-title: Elucidation of seventeen human peripheral blood B‐cell subsets and quantification of the tetanus response using a density‐based method for the automated identification of cell populations in multidimensional flow cytometry data
  publication-title: Cytom Part B: Clin Cytom
– volume: 11
  start-page: 403
  year: 2010
  article-title: Data reduction for spectral clustering to analyze high throughput flow cytometry data
  publication-title: BMC Bioinform
– volume: 97
  start-page: 611
  year: 2002
  end-page: 631
  article-title: Model‐based clustering, discriminant analysis, and density estimation
  publication-title: J Am Stat Assoc
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J R Stat Soc Ser B (Methodological)
– year: 2003
– volume: 4
  start-page: 3
  year: 2010
  end-page: 34
  article-title: Methods for merging Gaussian mixture components
  publication-title: Adv Data Anal Classification
– year: 2000
– volume: 79A
  start-page: 6
  year: 2011
  end-page: 13
  article-title: Rapid cell population identification in flow cytometry data
  publication-title: Cytom Part A
– volume: 29
  start-page: 886
  year: 2011
  end-page: 891
  article-title: Extracting a cellular hierarchy from high‐dimensional cytometry data with SPADE
  publication-title: Nat Biotechnol
– volume: 24
  start-page: 381
  year: 2002
  end-page: 396
  article-title: Unsupervised learning of finite mixture models
  publication-title: IEEE Trans Pattern Anal Mach Intel
– volume: 19
  start-page: 332
  year: 2010
  end-page: 353
  article-title: Combining mixture components for clustering
  publication-title: J Comput Graph Stat
– volume: 43
  start-page: 336
  year: 2001
  end-page: 346
  article-title: Clustering massive datasets with application in software metrics and tomography
  publication-title: Technometrics
– volume: 89
  start-page: 355
  year: 1998
  end-page: 368
– start-page: 205
  year: 2003
– year: 1992
– volume: 4
  start-page: 648
  year: 2004
  end-page: 655
  article-title: Seventeen‐colour flow cytometry: Unravelling the immune system
  publication-title: Nat Rev Immunol
– year: 2014
– year: 1998
– volume: 73A
  start-page: 400
  year: 2008
  end-page: 410
  article-title: Nine‐color flow cytometry for accurate measurement of T cell subsets and cytokine responses. Part I: Panel design by an empiric approach
  publication-title: Cytom Part A
– volume: 6
  start-page: 81
  year: 2007
  end-page: 90
  article-title: The flow of cytometry into systems biology
  publication-title: Brief Funct Genomics Proteomics
– volume: 182
  start-page: 42
  year: 2009
  end-page: 17
  article-title: ImmPort FLOCK: Automated cell population identification in high dimensional flow cytometry data
  publication-title: J Immunol
– start-page: 509
  year: 2010
  end-page: 512
– volume: 2
  start-page: 83
  year: 1955
  end-page: 97
  article-title: The Hungarian method for the assignment problem
  publication-title: Nav Res Logist Q
– volume: 73A
  start-page: 693
  year: 2008
  end-page: 701
  article-title: Statistical mixture modeling for cell subtype identification in flow cytometry
  publication-title: Cytom Part A
– volume: 28
  start-page: 2052
  year: 2012
  end-page: 2058
  article-title: flowPeaks: A fast unsupervised clustering for flow cytometry data via ‐means and density peak finding
  publication-title: Bioinformatics
– year: 1997
– volume: 11
  start-page: 44
  year: 2010
  article-title: The curvHDR method for gating flow cytometry samples
  publication-title: BMC Bioinformatics
– year: 2009
  article-title: Merging mixture components for cell population identification in flow cytometry
  publication-title: Adv Bioinform
– volume: 9
  start-page: e1003
  year: 2013
  article-title: Hierarchical modeling for rare event detection and cell subset alignment across flow cytometry samples
  publication-title: PLoS Comput Biol
– volume: 10
  start-page: 145
  year: 2009
  article-title: flowClust: A Bioconductor package for automated gating of flow cytometry data
  publication-title: BMC Bioinformatics
– volume: 106
  start-page: 8519
  year: 2009
  end-page: 8524
  article-title: Automated high‐dimensional flow cytometric data analysis
  publication-title: Proc Natl Acad Sci U S A
– volume: 45
  start-page: 279
  year: 2001
  end-page: 299
  article-title: Accelerating EM for large databases
  publication-title: Mach Learn
– volume: 6
  start-page: 13
  year: 2005
  article-title: Standardization of cytokine flow cytometry assays
  publication-title: BMC Immunol
– year: 2013
– ident: e_1_2_9_3_1
  doi: 10.1002/cyto.a.20555
– ident: e_1_2_9_27_1
  doi: 10.1198/jcgs.2010.08111
– ident: e_1_2_9_31_1
– start-page: 205
  volume-title: Assessment and pruning of hierarchical model based clustering. Proc. Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM: August 24–27, 2003
  year: 2003
  ident: e_1_2_9_26_1
– ident: e_1_2_9_10_1
  doi: 10.1002/cyto.a.20583
– ident: e_1_2_9_20_1
  doi: 10.1198/016214502760047131
– ident: e_1_2_9_7_1
  doi: 10.1186/1471-2105-11-403
– ident: e_1_2_9_36_1
– ident: e_1_2_9_18_1
  doi: 10.1002/0471721182
– ident: e_1_2_9_21_1
  doi: 10.1007/s11634-010-0058-3
– ident: e_1_2_9_2_1
  doi: 10.1002/0471722731
– ident: e_1_2_9_6_1
  doi: 10.1002/cyto.b.20554
– ident: e_1_2_9_4_1
  doi: 10.1093/bfgp/elm011
– ident: e_1_2_9_29_1
  doi: 10.1002/nav.3800020109
– ident: e_1_2_9_13_1
  doi: 10.1073/pnas.0903028106
– ident: e_1_2_9_19_1
  doi: 10.1109/34.990138
– ident: e_1_2_9_37_1
  doi: 10.1198/004017001316975925
– ident: e_1_2_9_35_1
  doi: 10.1186/1471-2105-10-145
– ident: e_1_2_9_9_1
  doi: 10.1038/nbt.1991
– volume-title: Applied Smoothing Techniques for Data Analysis: The kernel Approach with S‐Plus Illustrations
  year: 1997
  ident: e_1_2_9_25_1
  doi: 10.1093/oso/9780198523963.001.0001
– ident: e_1_2_9_17_1
  doi: 10.1002/cyto.a.22445
– ident: e_1_2_9_28_1
  doi: 10.1002/0471725293
– ident: e_1_2_9_12_1
  doi: 10.1155/2009/247646
– volume: 182
  start-page: 42
  year: 2009
  ident: e_1_2_9_34_1
  article-title: ImmPort FLOCK: Automated cell population identification in high dimensional flow cytometry data
  publication-title: J Immunol
  doi: 10.4049/jimmunol.182.Supp.42.17
– ident: e_1_2_9_32_1
  doi: 10.1002/cyto.990060405
– ident: e_1_2_9_30_1
  doi: 10.1186/1471-2172-6-13
– ident: e_1_2_9_24_1
  doi: 10.1023/A:1017986506241
– ident: e_1_2_9_5_1
  doi: 10.1038/nri1416
– ident: e_1_2_9_14_1
  doi: 10.1093/bioinformatics/bts300
– ident: e_1_2_9_33_1
  doi: 10.1186/1471-2105-11-44
– ident: e_1_2_9_15_1
  doi: 10.1371/journal.pcbi.1003130
– volume: 39
  start-page: 1
  year: 1977
  ident: e_1_2_9_22_1
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J R Stat Soc Ser B (Methodological)
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: e_1_2_9_11_1
  doi: 10.1002/cyto.a.20531
– start-page: 355
  volume-title: A view of the EM algorithm that justifies incremental, sparse, and other variants. In: Jordan MI, editor. Learning in Graphical Models, NATO ASI Series
  year: 1998
  ident: e_1_2_9_23_1
– ident: e_1_2_9_16_1
  doi: 10.1109/ICASSP.2010.5495653
– ident: e_1_2_9_8_1
  doi: 10.1002/cyto.a.21007
– reference: 15286731 - Nat Rev Immunol. 2004 Aug;4(8):648-55
– reference: 20049161 - Adv Bioinformatics. 2009;:247646
– reference: 18496851 - Cytometry A. 2008 Aug;73(8):693-701
– reference: 20096119 - BMC Bioinformatics. 2010;11:44
– reference: 4017796 - Cytometry. 1985 Jul;6(4):302-9
– reference: 19442304 - BMC Bioinformatics. 2009;10:145
– reference: 18307272 - Cytometry A. 2008 Apr;73(4):321-32
– reference: 20667133 - BMC Bioinformatics. 2010;11:403
– reference: 20839340 - Cytometry B Clin Cytom. 2010;78 Suppl 1:S69-82
– reference: 23874174 - PLoS Comput Biol. 2013;9(7):e1003130
– reference: 19443687 - Proc Natl Acad Sci U S A. 2009 May 26;106(21):8519-24
– reference: 18383316 - Cytometry A. 2008 May;73(5):400-10
– reference: 17611236 - Brief Funct Genomic Proteomic. 2007 Jun;6(2):81-90
– reference: 15978127 - BMC Immunol. 2005;6:13
– reference: 22595209 - Bioinformatics. 2012 Aug 1;28(15):2052-8
– reference: 21964415 - Nat Biotechnol. 2011 Oct;29(10):886-91
– reference: 21182178 - Cytometry A. 2011 Jan;79(1):6-13
– reference: 20953302 - J Comput Graph Stat. 2010 Jun 1;9(2):332-353
SSID ssj0035032
Score 2.348399
Snippet We present a model‐based clustering method, SWIFT (Scalable Weighted Iterative Flow‐clustering Technique), for digesting high‐dimensional large‐sized datasets...
We present a model-based clustering method, SWIFT (Scalable Weighted Iterative Flow-clustering Technique), for digesting high-dimensional large-sized datasets...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 408
SubjectTerms Algorithms
automated multivariate clustering
Cell Lineage
Cluster Analysis
Computational Biology
Flow Cytometry - methods
Gaussian mixture models
ground truth data
Models, Theoretical
Original
rare subpopulation detection
weighted sampling
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagCMEF8VvCn4wEXGjatWOnDrdVxaogAZXYinKKHMemK6XJapOo2lsfgQMPwLP1SZhxsoFVRRG3SBknsufvszX-hpAXDPMaj2wYg--ESHkeKuvi0CgjHU9szh1eTv7wMd4_FO-P5FF_4IZ3YTp-iOHADT3Dx2t0cJ3VO79JQ82yqbb1NqQgEV8l1xhAGbRwLg5WkTiSI9-gDFnGQpFw3he-w_idP0evp6QLOPNiueSNtpzr5akuinVI63PS5Da51YNJOu60f4dcseVdcr1rL7m8R35-_vJuMj0_-1GDIvCKFDVFi8QIkK4ogFWq26YCxGpzOsv7qiGvKFo5CisD8rYo6Hzo8VXTWUkLrB3foshzfH72PcfuAB2zB3VFdUpxyie2WSwpFp_Wtqm36AHYJ2Vv6Lj4Vi1mzfEJzX3hyH1yOHk73dsP-44MoZFcxaHjIjdSy5GTGpbXZBqClIicFdqN7C5y-xnY4TmVyzhnEAys0TqJmIPIoJ1j0QOyUValfUgoywFZKJ4rlSjhpM0y6QRgo3hkjVXOBuT1Simp6enKsWtGkXZEyzzF-aQ69SoMyMtBet7RdPxF7vlKvyn4Ea6iLm3V1ikgHwWbSQhol8nAN1ismAzIZmcTw984ZBxILCwgu2vWMgggj_f6m3J27Pm8AdHCPicJyKvBrv4xidAb3aVC6d7X6aexf3z0n_KPyU2AhaIr63xCNppFa58C9GqyZ96_fgGnfDEl
  priority: 102
  providerName: Wiley-Blackwell
Title SWIFT—scalable clustering for automated identification of rare cell populations in large, high‐dimensional flow cytometry datasets, Part 1: Algorithm design
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcyto.a.22446
https://www.ncbi.nlm.nih.gov/pubmed/24677621
https://www.proquest.com/docview/1518619048
https://www.proquest.com/docview/1524416815
https://pubmed.ncbi.nlm.nih.gov/PMC4238829
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cyto.a.22446
UnpaywallVersion publishedVersion
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1552-4930
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0035032
  issn: 1552-4930
  databaseCode: DIK
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1552-4930
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1552-4930
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035032
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLXoVAg2vB_hURkJ2NAMiWOnDrtRYVSQKCOYEe0qcvxoR02T0SRRNaz6CSz4AL6tX8J1komYVhQkNpGl3CR2fB_HyfW5CD33bVwjgXZDsB3XUp67XJvQlVwyQyKtiLGbkz_uhjsT-mGP7f22F6bhh-g-uFnLqP21NfCZMo2fb__uk9dyUeZ90YcwRMM1tB4ywOM9tD7ZHQ32a6JURlwa1b8S2nbgtdnv5y9fjUsXwObFnMlrVTYTixORpqu4tg5Mw5tILofU5KMc9asy6ctv59ge_2_Mt9CNFrfiQaNot9EVnd1BV5tKlou76OeXr--H47PTHwXMud2NhWVaWQ4GiIwYcDEWVZkDONYKT1WboFTrBM4Nhg6BvE5TPOvKiRV4muHUpqlvYkupfHb6XdlCBA2JCDZpfoJtH491OV9gm-da6LLYxCMwBey_wYP0IJ9Py8NjrOoclXtoMnw33t5x2-IPrmSEh64hVEkmmGeY8AImEwH-kAZGU2E8vWVpBCUsJg1XLFQ--B0thYgC34ATEsb4wX3Uy_JMP0TYVwBiOFGcR5wappOEGQowLPS01NxoB71aTn0sW2Z0W6AjjRtOZxLb8cQirt-5g1500rOGEeQPcs-WWhSDydq3KDKdV0UMIIvDuhV852UycA8_5D5z0ING87qnEQhuEMN8B22t6GQnYCnDV89k08OaOhzAMyypIge97LT3L4Nwa328VCje3h9_GtTNR_9648foOkBP2qSOPkG9cl7ppwDvymQDrRE6guPbz2SjteVfSs9X1Q
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLWgCJVNxZuUl5GADU07cezUYTeqGE2hLZWYinYVefygI6XJaJKoml0_gQUfwLf1S7g3yQRGFUXsIuU6kX1fx9b1uYS8DjCvsdD6EfiOj5TnvrQu8rXUwrHYGubwcvL-QTQ84h-PxXHb5xTvwjT8EN2BG3pGHa_RwfFAeus3a6iel_mm2oQcxKOb5BaPggh3X4wfLkJxKHp1hzKkGfN5zFhb-Q7jt_4cvZyTrgDNq_WSq1U2VfNzlabLmLZOSoO7ZK1Fk7TfqP8euWGz--R2019y_oD8_PJ1dzC6vPhRgCbwjhTVaYXMCJCvKKBVqqoyB8hqDZ2Ytmyo1hTNHYWlAXmbpnTaNfkq6CSjKRaPb1AkOr68-G6wPUBD7UFdmp9TnPKZLWdzitWnhS2LDXoIBkqD97Sffstnk_L0jJq6cuQhORp8GO0M_bYlg68Fk5HvGDdaKNFzQsHy6rGCKMVDZ7lyPbuN5H4atnhOGhGZAKKB1UrFYeAgNCjngvARWcnyzD4hNDAALSQzUsaSO2HHY-E4gKOoZ7WVznrk3UIpiW75yrFtRpo0TMsswfkkKqlV6JE3nfS04en4i9yrhX4TcCRcRZXZvCoSgD4SdpMQ0a6TgW8EkQyERx43NtH9jUHKgcwSeGR7yVo6ASTyXn6TTU5rQm-AtLDRiT3ytrOrf0zCr43uWqFk52T0uV8_rv-n_EuyOhzt7yV7uwefnpI7gBF5U-P5jKyUs8o-BxxWjl_UvvYLBBo0kQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ZbtQwFLWgiOWFfQmrkYAXmunEsVOHt1HLqGUpFUxFeQqOFzoiTUaTRNXw1E_ggQ_g2_olXDuZwFBRhHiLlJvF8V2Oo-NzEXoU2LpGQu1HEDu-lTz3uTaRL7lkhsRaEWM3J7_eijZ26Itdttv2ObV7YRp9iO6Hm40Ml69tgOuJMis_VUPlrCp6ogc1iEan0RnKYm45fetvO_2okPVdhzIrM-bTmJCW-Q7Xr_x69WJNOgY0j_Mlz9f5RMwORJYtYlpXlIaX0Mf5cBouyudeXaU9-eU3pcf_GO9ldLEFrHjQeNgVdErnV9HZpoXl7Br6_u795nB0dPithMm227CwzGorvgAlEQMgxqKuCkDFWuGxaplJzhlwYTC8DdjrLMOTro9Yicc5ziw_fRlbLeWjw6_KdiBo1EOwyYoDbN9xX1fTGbYE11JX5TLehhjAwTM8yD4V03G1t4-VI6dcRzvD56O1Db_t-uBLRnjkG0KVZIL1DRMwgzIVkAhpaDQVpq9XrX6ghFWk4YpFKoCEo6UQcRgYyD7CmCC8gZbyIte3EA4UoBdOFOcxp4bpNGWGAv6K-lpqbrSHns7nPZGtJLrtzJEljZgzSex4EpG4b-6hx531pJEC-YPdw7kLJRCr9iuKXBd1mQC64rBghaR5kg3cI4h4wDx0s3G77mkEqhoUr8BDqwsO2RlYrfDFM_l4z2mGA2qGtVTsoSed6_5lEL5zxhONkrUPozcDd3j7H-0foHPb68Pk1ebWyzvoAqBQ2rBI76Klalrre4D0qvS-i-Yf5QlV3A
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVgKgQb3o_wkpGADc2QOHHqsBtVjAoSpRIzol1Fjh90RJqMJomqYdVPYMEH8G39Eq7tTMS0oiCxi5Sbx3Xu4zi-Pheh56HJayRSfgK-4xvKc58pnfiCCapJqiTRZnPyh91kZxq_36f7v-2FcfwQ_Q834xk2XhsHn0vt4ny3uk9ei2VTDfkQ0lCcXEYbCQU8PkAb09290YElSqXEj1O7lNAdR0FX_X728vW8dA5snq-ZvNqWc7485kWxjmttYhrfQGKlkqtH-Tpsm3wovp1he_w_nW-i6x1uxSNnaLfQJVXeRldcJ8vlHfTz0-d348npyY8avrnZjYVF0RoOBsiMGHAx5m1TAThWEs9kV6BkbQJXGsMLgbwqCjzv24nVeFbiwpSpb2JDqXx68l2aRgSORATrojrG5h2PVLNYYlPnWqum3sR74Ao4fINHxZdqMWsOj7C0NSp30XT8drK943fNH3xBCUt8TWIpKKeBpjyIqMg5xMM40irmOlBbhkZQwGRSM0kTGULcUYLzNAo1BCGudRjdQ4OyKtUDhEMJIIYRyVjKYk1VnlMdAwxLAiUU08pDr1afPhMdM7pp0FFkjtOZZEafjGd2zD30opeeO0aQP8g9W1lRBi5rRpGXqmrrDEAWg3krxM6LZOAeYcJC6qH7zvL6pxFIbpDDQg9trdlkL2Aow9fPlLNDSx0O4BmmVKmHXvbW-xclfGuPFwpl2weTjyN7-PBfb_wIXQPoGbvS0cdo0Cxa9QTgXZM_7fz3Fz5dVhU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SWIFT-scalable+clustering+for+automated+identification+of+rare+cell+populations+in+large%2C+high-dimensional+flow+cytometry+datasets%2C+part+1%3A+algorithm+design&rft.jtitle=Cytometry.+Part+A&rft.au=Naim%2C+Iftekhar&rft.au=Datta%2C+Suprakash&rft.au=Rebhahn%2C+Jonathan&rft.au=Cavenaugh%2C+James+S&rft.date=2014-05-01&rft.eissn=1552-4930&rft.volume=85&rft.issue=5&rft.spage=408&rft_id=info:doi/10.1002%2Fcyto.a.22446&rft_id=info%3Apmid%2F24677621&rft.externalDocID=24677621
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4922&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4922&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4922&client=summon