SWIFT—scalable clustering for automated identification of rare cell populations in large, high‐dimensional flow cytometry datasets, Part 1: Algorithm design
We present a model‐based clustering method, SWIFT (Scalable Weighted Iterative Flow‐clustering Technique), for digesting high‐dimensional large‐sized datasets obtained via modern flow cytometry into more compact representations that are well‐suited for further automated or manual analysis. Key attri...
        Saved in:
      
    
          | Published in | Cytometry. Part A Vol. 85; no. 5; pp. 408 - 421 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          BlackWell Publishing Ltd
    
        01.05.2014
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1552-4922 1552-4930 1552-4930  | 
| DOI | 10.1002/cyto.a.22446 | 
Cover
| Abstract | We present a model‐based clustering method, SWIFT (Scalable Weighted Iterative Flow‐clustering Technique), for digesting high‐dimensional large‐sized datasets obtained via modern flow cytometry into more compact representations that are well‐suited for further automated or manual analysis. Key attributes of the method include the following: (a) the analysis is conducted in the multidimensional space retaining the semantics of the data, (b) an iterative weighted sampling procedure is utilized to maintain modest computational complexity and to retain discrimination of extremely small subpopulations (hundreds of cells from datasets containing tens of millions), and (c) a splitting and merging procedure is incorporated in the algorithm to preserve distinguishability between biologically distinct populations, while still providing a significant compaction relative to the original data. This article presents a detailed algorithmic description of SWIFT, outlining the application‐driven motivations for the different design choices, a discussion of computational complexity of the different steps, and results obtained with SWIFT for synthetic data and relatively simple experimental data that allow validation of the desirable attributes. A companion paper (Part 2) highlights the use of SWIFT, in combination with additional computational tools, for more challenging biological problems. © 2014 The Authors. Published by Wiley Periodicals Inc. | 
    
|---|---|
| AbstractList | We present a model-based clustering method, SWIFT (Scalable Weighted Iterative Flow-clustering Technique), for digesting high-dimensional large-sized datasets obtained via modern flow cytometry into more compact representations that are well-suited for further automated or manual analysis. Key attributes of the method include the following: (a) the analysis is conducted in the multidimensional space retaining the semantics of the data, (b) an iterative weighted sampling procedure is utilized to maintain modest computational complexity and to retain discrimination of extremely small subpopulations (hundreds of cells from datasets containing tens of millions), and (c) a splitting and merging procedure is incorporated in the algorithm to preserve distinguishability between biologically distinct populations, while still providing a significant compaction relative to the original data. This article presents a detailed algorithmic description of SWIFT, outlining the application-driven motivations for the different design choices, a discussion of computational complexity of the different steps, and results obtained with SWIFT for synthetic data and relatively simple experimental data that allow validation of the desirable attributes. A companion paper (Part 2) highlights the use of SWIFT, in combination with additional computational tools, for more challenging biological problems. copyright 2014 The Authors. Published by Wiley Periodicals Inc. We present a model-based clustering method, SWIFT (Scalable Weighted Iterative Flow-clustering Technique), for digesting high-dimensional large-sized datasets obtained via modern flow cytometry into more compact representations that are well-suited for further automated or manual analysis. Key attributes of the method include the following: (a) the analysis is conducted in the multidimensional space retaining the semantics of the data, (b) an iterative weighted sampling procedure is utilized to maintain modest computational complexity and to retain discrimination of extremely small subpopulations (hundreds of cells from datasets containing tens of millions), and (c) a splitting and merging procedure is incorporated in the algorithm to preserve distinguishability between biologically distinct populations, while still providing a significant compaction relative to the original data. This article presents a detailed algorithmic description of SWIFT, outlining the application-driven motivations for the different design choices, a discussion of computational complexity of the different steps, and results obtained with SWIFT for synthetic data and relatively simple experimental data that allow validation of the desirable attributes. A companion paper (Part 2) highlights the use of SWIFT, in combination with additional computational tools, for more challenging biological problems.We present a model-based clustering method, SWIFT (Scalable Weighted Iterative Flow-clustering Technique), for digesting high-dimensional large-sized datasets obtained via modern flow cytometry into more compact representations that are well-suited for further automated or manual analysis. Key attributes of the method include the following: (a) the analysis is conducted in the multidimensional space retaining the semantics of the data, (b) an iterative weighted sampling procedure is utilized to maintain modest computational complexity and to retain discrimination of extremely small subpopulations (hundreds of cells from datasets containing tens of millions), and (c) a splitting and merging procedure is incorporated in the algorithm to preserve distinguishability between biologically distinct populations, while still providing a significant compaction relative to the original data. This article presents a detailed algorithmic description of SWIFT, outlining the application-driven motivations for the different design choices, a discussion of computational complexity of the different steps, and results obtained with SWIFT for synthetic data and relatively simple experimental data that allow validation of the desirable attributes. A companion paper (Part 2) highlights the use of SWIFT, in combination with additional computational tools, for more challenging biological problems. We present a model‐based clustering method, SWIFT (Scalable Weighted Iterative Flow‐clustering Technique), for digesting high‐dimensional large‐sized datasets obtained via modern flow cytometry into more compact representations that are well‐suited for further automated or manual analysis. Key attributes of the method include the following: (a) the analysis is conducted in the multidimensional space retaining the semantics of the data, (b) an iterative weighted sampling procedure is utilized to maintain modest computational complexity and to retain discrimination of extremely small subpopulations (hundreds of cells from datasets containing tens of millions), and (c) a splitting and merging procedure is incorporated in the algorithm to preserve distinguishability between biologically distinct populations, while still providing a significant compaction relative to the original data. This article presents a detailed algorithmic description of SWIFT, outlining the application‐driven motivations for the different design choices, a discussion of computational complexity of the different steps, and results obtained with SWIFT for synthetic data and relatively simple experimental data that allow validation of the desirable attributes. A companion paper (Part 2) highlights the use of SWIFT, in combination with additional computational tools, for more challenging biological problems. © 2014 The Authors. Published by Wiley Periodicals Inc. We present a model-based clustering method, SWIFT (Scalable Weighted Iterative Flow-clustering Technique), for digesting high-dimensional large-sized datasets obtained via modern flow cytometry into more compact representations that are well-suited for further automated or manual analysis. Key attributes of the method include the following: (a) the analysis is conducted in the multidimensional space retaining the semantics of the data, (b) an iterative weighted sampling procedure is utilized to maintain modest computational complexity and to retain discrimination of extremely small subpopulations (hundreds of cells from datasets containing tens of millions), and (c) a splitting and merging procedure is incorporated in the algorithm to preserve distinguishability between biologically distinct populations, while still providing a significant compaction relative to the original data. This article presents a detailed algorithmic description of SWIFT, outlining the application-driven motivations for the different design choices, a discussion of computational complexity of the different steps, and results obtained with SWIFT for synthetic data and relatively simple experimental data that allow validation of the desirable attributes. A companion paper (Part 2) highlights the use of SWIFT, in combination with additional computational tools, for more challenging biological problems.  | 
    
| Author | Cavenaugh, James S. Datta, Suprakash Sharma, Gaurav Rebhahn, Jonathan Naim, Iftekhar Mosmann, Tim R.  | 
    
| Author_xml | – sequence: 1 givenname: Iftekhar surname: Naim fullname: Naim, Iftekhar organization: University of Rochester – sequence: 2 givenname: Suprakash surname: Datta fullname: Datta, Suprakash organization: York University – sequence: 3 givenname: Jonathan surname: Rebhahn fullname: Rebhahn, Jonathan organization: University of Rochester Medical Center – sequence: 4 givenname: James S. surname: Cavenaugh fullname: Cavenaugh, James S. organization: University of Rochester Medical Center – sequence: 5 givenname: Tim R. surname: Mosmann fullname: Mosmann, Tim R. organization: University of Rochester Medical Center – sequence: 6 givenname: Gaurav surname: Sharma fullname: Sharma, Gaurav organization: University of Rochester  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24677621$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkctuEzEUhkeoiF5gxxp5ySITbI89mbBAiiJaKlUqEkGIlXXisSdGHnuwPY2y6yOw6APwbH0SJkkpF4nLypbP9x__5z_H2YHzTmXZU4LHBGP6Qm6SH8OYUsbKB9kR4ZzmbFrgg_s7pYfZcYyfMC44Luij7JCycjIpKTnKvr77cH66uL2-iRIsLK1C0vYxqWBcg7QPCPrkW0iqRqZWLhltJCTjHfIaBQgDr6xFne96u3uPyDhkITRqhFamWd1ef6lNq1wcamCRtn6NtpZblcIG1ZAgqhRH6C2EhMhLNLONDyatWlSraBr3OHuowUb15O48yd6fvl7M3-QXl2fn89lFLjmtylxTVksOHGsOw5hyCbiqWKEVA43VhDJcyBITXdW8rAmfVEoCTAuiGeWgNSlOsnzft3cdbNZgreiCaSFsBMFim7TY2hYgdkkP_Ks93_XLVtVyyCbAD40HI36tOLMSjb8SjBZVRadDg-d3DYL_3KuYRGviNkxwyvdRED78Q8qK8P9ASVWSKWbVgD772da9n-8bHwC6B2TwMQalhTRpt7nBpbF_Gnb0m-gf2bA9vjZWbf7KivnHxeVsL_sGu_Tlsg | 
    
| CitedBy_id | crossref_primary_10_1016_j_engappai_2022_104743 crossref_primary_10_1186_s12859_015_0862_z crossref_primary_10_3390_cancers14040898 crossref_primary_10_1016_j_idm_2016_07_001 crossref_primary_10_1002_cyto_a_23068 crossref_primary_10_1002_cyto_a_22850 crossref_primary_10_1093_bioinformatics_btad585 crossref_primary_10_3390_ijms21072323 crossref_primary_10_1093_bioinformatics_btaa873 crossref_primary_10_3390_cancers16081503 crossref_primary_10_1002_eji_201970107 crossref_primary_10_1002_cyto_a_22654 crossref_primary_10_4049_jimmunol_1500633 crossref_primary_10_1002_cyto_a_22734 crossref_primary_10_1002_wics_70017 crossref_primary_10_1016_j_jaci_2023_05_026 crossref_primary_10_1109_JBHI_2016_2565561 crossref_primary_10_1016_j_aca_2021_338872 crossref_primary_10_1016_j_patcog_2016_04_004 crossref_primary_10_3389_fimmu_2017_00858 crossref_primary_10_1002_ctd2_95 crossref_primary_10_1002_cyto_a_23173 crossref_primary_10_1002_cyto_a_23371 crossref_primary_10_1214_18_AOAS1209 crossref_primary_10_1371_journal_pone_0205291 crossref_primary_10_1002_cyto_a_23577 crossref_primary_10_1002_cyto_a_23852 crossref_primary_10_1093_bioinformatics_btad750 crossref_primary_10_1002_eji_201646632 crossref_primary_10_1002_cyto_a_22445 crossref_primary_10_1002_cyto_a_24307 crossref_primary_10_3389_fimmu_2024_1347926 crossref_primary_10_1016_j_ebiom_2018_10_042 crossref_primary_10_1002_eji_201545774 crossref_primary_10_3389_fonc_2023_1131259 crossref_primary_10_1186_s12859_022_05018_w crossref_primary_10_1038_s41598_020_58326_7 crossref_primary_10_1038_s42003_020_0938_9 crossref_primary_10_1109_TBCAS_2016_2577641 crossref_primary_10_1371_journal_pone_0180307 crossref_primary_10_1007_s12254_014_0172_6 crossref_primary_10_1038_nri_2016_56 crossref_primary_10_1053_j_semdp_2023_02_004 crossref_primary_10_1186_1471_2105_15_314 crossref_primary_10_1002_eji_201444645 crossref_primary_10_1002_cyto_a_22740 crossref_primary_10_3390_ijms23063224 crossref_primary_10_1002_cyto_a_24320 crossref_primary_10_1002_cyto_a_22625 crossref_primary_10_1002_cyto_a_22626 crossref_primary_10_1002_iid3_246 crossref_primary_10_1016_j_compbiomed_2022_105314 crossref_primary_10_1371_journal_pone_0228651 crossref_primary_10_1002_cyto_a_22789 crossref_primary_10_1089_ast_2023_0016 crossref_primary_10_1002_cyto_a_22905  | 
    
| Cites_doi | 10.1002/cyto.a.20555 10.1198/jcgs.2010.08111 10.1002/cyto.a.20583 10.1198/016214502760047131 10.1186/1471-2105-11-403 10.1002/0471721182 10.1007/s11634-010-0058-3 10.1002/0471722731 10.1002/cyto.b.20554 10.1093/bfgp/elm011 10.1002/nav.3800020109 10.1073/pnas.0903028106 10.1109/34.990138 10.1198/004017001316975925 10.1186/1471-2105-10-145 10.1038/nbt.1991 10.1093/oso/9780198523963.001.0001 10.1002/cyto.a.22445 10.1002/0471725293 10.1155/2009/247646 10.4049/jimmunol.182.Supp.42.17 10.1002/cyto.990060405 10.1186/1471-2172-6-13 10.1023/A:1017986506241 10.1038/nri1416 10.1093/bioinformatics/bts300 10.1186/1471-2105-11-44 10.1371/journal.pcbi.1003130 10.1111/j.2517-6161.1977.tb01600.x 10.1002/cyto.a.20531 10.1109/ICASSP.2010.5495653 10.1002/cyto.a.21007  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2014 The Authors. Published by Wiley Periodicals Inc. on behalf of the International Society for Advancement of Cytometry. 2014 The Authors. Published by Wiley Periodicals Inc. on behalf of the International Society for Advancement of Cytometry. 2014  | 
    
| Copyright_xml | – notice: 2014 The Authors. Published by Wiley Periodicals Inc. on behalf of the International Society for Advancement of Cytometry. – notice: 2014 The Authors. Published by Wiley Periodicals Inc. on behalf of the International Society for Advancement of Cytometry. 2014  | 
    
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 5PM ADTOC UNPAY  | 
    
| DOI | 10.1002/cyto.a.22446 | 
    
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts  | 
    
| DatabaseTitleList | Engineering Research Database MEDLINE - Academic CrossRef MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1552-4930 | 
    
| EndPage | 421 | 
    
| ExternalDocumentID | 10.1002/cyto.a.22446 PMC4238829 24677621 10_1002_cyto_a_22446 CYTOA22446  | 
    
| Genre | article Research Support, U.S. Gov't, P.H.S Journal Article  | 
    
| GrantInformation_xml | – fundername: National Center for Research Resources and the National Center for Advancing Translational Sciences through the University of Rochester CTSA funderid: UL1 RR024160 – fundername: National Institute for Allergy and Infectious Diseases New York Influenza Center of Excellence funderid: HHSN266200700008C – fundername: National Institute for Allergy and Infectious Diseases through the Rochester Human Immunology Center funderid: R24AI054953 – fundername: NCRR NIH HHS grantid: UL1 RR024160 – fundername: NCATS NIH HHS grantid: UL1 TR000042  | 
    
| GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 24P 2WC 31~ 33P 3SF 4.4 4ZD 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CO8 CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N QB0 QRW R.K RNS ROL RWI SUPJJ SV3 UB1 V2E W8V W99 WBKPD WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~KM ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c5286-f24dc5a50f5a035cba08843fe4af0e72403c601f8d56d1578ecaa931f425aff13 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1552-4922 1552-4930  | 
    
| IngestDate | Tue Aug 19 23:49:42 EDT 2025 Thu Aug 21 13:52:52 EDT 2025 Tue Oct 07 09:33:53 EDT 2025 Fri Jul 11 11:40:30 EDT 2025 Thu Apr 03 07:03:30 EDT 2025 Wed Oct 01 01:25:31 EDT 2025 Thu Apr 24 23:11:06 EDT 2025 Wed Jan 22 17:08:05 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 5 | 
    
| Keywords | weighted sampling Gaussian mixture models rare subpopulation detection ground truth data automated multivariate clustering  | 
    
| Language | English | 
    
| License | Attribution-NonCommercial http://creativecommons.org/licenses/by-nc/3.0 2014 The Authors. Published by Wiley Periodicals Inc. on behalf of the International Society for Advancement of Cytometry. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. cc-by-nc  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c5286-f24dc5a50f5a035cba08843fe4af0e72403c601f8d56d1578ecaa931f425aff13 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cyto.a.22446 | 
    
| PMID | 24677621 | 
    
| PQID | 1518619048 | 
    
| PQPubID | 23479 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | unpaywall_primary_10_1002_cyto_a_22446 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4238829 proquest_miscellaneous_1524416815 proquest_miscellaneous_1518619048 pubmed_primary_24677621 crossref_citationtrail_10_1002_cyto_a_22446 crossref_primary_10_1002_cyto_a_22446 wiley_primary_10_1002_cyto_a_22446_CYTOA22446  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | May 2014 | 
    
| PublicationDateYYYYMMDD | 2014-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2014 text: May 2014  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Oxford, UK  | 
    
| PublicationTitle | Cytometry. Part A | 
    
| PublicationTitleAlternate | Cytometry A | 
    
| PublicationYear | 2014 | 
    
| Publisher | BlackWell Publishing Ltd | 
    
| Publisher_xml | – name: BlackWell Publishing Ltd | 
    
| References | 2010; 78B 2010; 11 2002; 97 2010; 19 2010 2009; 182 2011; 79A 1985; 6 2004; 4 2009 1998 1997 2003 1992 2001; 45 1998; 89 1955; 2 2013; 9 2001; 43 2008; 73A 2009; 10 2000 1977; 39 2002; 24 2007; 6 2005; 6 2012; 28 2014 2013 2011; 29 2010; 4 2009; 106 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 Dempster A (e_1_2_9_22_1) 1977; 39 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 Neal RM (e_1_2_9_23_1) 1998 Scheuermann R (e_1_2_9_34_1) 2009; 182 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 Tantrum J (e_1_2_9_26_1) 2003 e_1_2_9_3_1 e_1_2_9_2_1 Bowman A (e_1_2_9_25_1) 1997 e_1_2_9_9_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 20667133 - BMC Bioinformatics. 2010;11:403 19442304 - BMC Bioinformatics. 2009;10:145 19443687 - Proc Natl Acad Sci U S A. 2009 May 26;106(21):8519-24 17611236 - Brief Funct Genomic Proteomic. 2007 Jun;6(2):81-90 15978127 - BMC Immunol. 2005;6:13 20953302 - J Comput Graph Stat. 2010 Jun 1;9(2):332-353 4017796 - Cytometry. 1985 Jul;6(4):302-9 18383316 - Cytometry A. 2008 May;73(5):400-10 21182178 - Cytometry A. 2011 Jan;79(1):6-13 20096119 - BMC Bioinformatics. 2010;11:44 15286731 - Nat Rev Immunol. 2004 Aug;4(8):648-55 20839340 - Cytometry B Clin Cytom. 2010;78 Suppl 1:S69-82 18496851 - Cytometry A. 2008 Aug;73(8):693-701 23874174 - PLoS Comput Biol. 2013;9(7):e1003130 18307272 - Cytometry A. 2008 Apr;73(4):321-32 20049161 - Adv Bioinformatics. 2009;:247646 22595209 - Bioinformatics. 2012 Aug 1;28(15):2052-8 21964415 - Nat Biotechnol. 2011 Oct;29(10):886-91  | 
    
| References_xml | – volume: 73A start-page: 321 year: 2008 end-page: 332 article-title: Automated gating of flow cytometry data via robust model‐based clustering publication-title: Cytom Part A – volume: 6 start-page: 302 year: 1985 end-page: 309 article-title: Automated identification of subpopulations in flow cytometric list mode data using cluster analysis publication-title: Cytometry – volume: 78B start-page: 69 year: 2010 end-page: 82 article-title: Elucidation of seventeen human peripheral blood B‐cell subsets and quantification of the tetanus response using a density‐based method for the automated identification of cell populations in multidimensional flow cytometry data publication-title: Cytom Part B: Clin Cytom – volume: 11 start-page: 403 year: 2010 article-title: Data reduction for spectral clustering to analyze high throughput flow cytometry data publication-title: BMC Bioinform – volume: 97 start-page: 611 year: 2002 end-page: 631 article-title: Model‐based clustering, discriminant analysis, and density estimation publication-title: J Am Stat Assoc – volume: 39 start-page: 1 year: 1977 end-page: 38 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J R Stat Soc Ser B (Methodological) – year: 2003 – volume: 4 start-page: 3 year: 2010 end-page: 34 article-title: Methods for merging Gaussian mixture components publication-title: Adv Data Anal Classification – year: 2000 – volume: 79A start-page: 6 year: 2011 end-page: 13 article-title: Rapid cell population identification in flow cytometry data publication-title: Cytom Part A – volume: 29 start-page: 886 year: 2011 end-page: 891 article-title: Extracting a cellular hierarchy from high‐dimensional cytometry data with SPADE publication-title: Nat Biotechnol – volume: 24 start-page: 381 year: 2002 end-page: 396 article-title: Unsupervised learning of finite mixture models publication-title: IEEE Trans Pattern Anal Mach Intel – volume: 19 start-page: 332 year: 2010 end-page: 353 article-title: Combining mixture components for clustering publication-title: J Comput Graph Stat – volume: 43 start-page: 336 year: 2001 end-page: 346 article-title: Clustering massive datasets with application in software metrics and tomography publication-title: Technometrics – volume: 89 start-page: 355 year: 1998 end-page: 368 – start-page: 205 year: 2003 – year: 1992 – volume: 4 start-page: 648 year: 2004 end-page: 655 article-title: Seventeen‐colour flow cytometry: Unravelling the immune system publication-title: Nat Rev Immunol – year: 2014 – year: 1998 – volume: 73A start-page: 400 year: 2008 end-page: 410 article-title: Nine‐color flow cytometry for accurate measurement of T cell subsets and cytokine responses. Part I: Panel design by an empiric approach publication-title: Cytom Part A – volume: 6 start-page: 81 year: 2007 end-page: 90 article-title: The flow of cytometry into systems biology publication-title: Brief Funct Genomics Proteomics – volume: 182 start-page: 42 year: 2009 end-page: 17 article-title: ImmPort FLOCK: Automated cell population identification in high dimensional flow cytometry data publication-title: J Immunol – start-page: 509 year: 2010 end-page: 512 – volume: 2 start-page: 83 year: 1955 end-page: 97 article-title: The Hungarian method for the assignment problem publication-title: Nav Res Logist Q – volume: 73A start-page: 693 year: 2008 end-page: 701 article-title: Statistical mixture modeling for cell subtype identification in flow cytometry publication-title: Cytom Part A – volume: 28 start-page: 2052 year: 2012 end-page: 2058 article-title: flowPeaks: A fast unsupervised clustering for flow cytometry data via ‐means and density peak finding publication-title: Bioinformatics – year: 1997 – volume: 11 start-page: 44 year: 2010 article-title: The curvHDR method for gating flow cytometry samples publication-title: BMC Bioinformatics – year: 2009 article-title: Merging mixture components for cell population identification in flow cytometry publication-title: Adv Bioinform – volume: 9 start-page: e1003 year: 2013 article-title: Hierarchical modeling for rare event detection and cell subset alignment across flow cytometry samples publication-title: PLoS Comput Biol – volume: 10 start-page: 145 year: 2009 article-title: flowClust: A Bioconductor package for automated gating of flow cytometry data publication-title: BMC Bioinformatics – volume: 106 start-page: 8519 year: 2009 end-page: 8524 article-title: Automated high‐dimensional flow cytometric data analysis publication-title: Proc Natl Acad Sci U S A – volume: 45 start-page: 279 year: 2001 end-page: 299 article-title: Accelerating EM for large databases publication-title: Mach Learn – volume: 6 start-page: 13 year: 2005 article-title: Standardization of cytokine flow cytometry assays publication-title: BMC Immunol – year: 2013 – ident: e_1_2_9_3_1 doi: 10.1002/cyto.a.20555 – ident: e_1_2_9_27_1 doi: 10.1198/jcgs.2010.08111 – ident: e_1_2_9_31_1 – start-page: 205 volume-title: Assessment and pruning of hierarchical model based clustering. Proc. Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM: August 24–27, 2003 year: 2003 ident: e_1_2_9_26_1 – ident: e_1_2_9_10_1 doi: 10.1002/cyto.a.20583 – ident: e_1_2_9_20_1 doi: 10.1198/016214502760047131 – ident: e_1_2_9_7_1 doi: 10.1186/1471-2105-11-403 – ident: e_1_2_9_36_1 – ident: e_1_2_9_18_1 doi: 10.1002/0471721182 – ident: e_1_2_9_21_1 doi: 10.1007/s11634-010-0058-3 – ident: e_1_2_9_2_1 doi: 10.1002/0471722731 – ident: e_1_2_9_6_1 doi: 10.1002/cyto.b.20554 – ident: e_1_2_9_4_1 doi: 10.1093/bfgp/elm011 – ident: e_1_2_9_29_1 doi: 10.1002/nav.3800020109 – ident: e_1_2_9_13_1 doi: 10.1073/pnas.0903028106 – ident: e_1_2_9_19_1 doi: 10.1109/34.990138 – ident: e_1_2_9_37_1 doi: 10.1198/004017001316975925 – ident: e_1_2_9_35_1 doi: 10.1186/1471-2105-10-145 – ident: e_1_2_9_9_1 doi: 10.1038/nbt.1991 – volume-title: Applied Smoothing Techniques for Data Analysis: The kernel Approach with S‐Plus Illustrations year: 1997 ident: e_1_2_9_25_1 doi: 10.1093/oso/9780198523963.001.0001 – ident: e_1_2_9_17_1 doi: 10.1002/cyto.a.22445 – ident: e_1_2_9_28_1 doi: 10.1002/0471725293 – ident: e_1_2_9_12_1 doi: 10.1155/2009/247646 – volume: 182 start-page: 42 year: 2009 ident: e_1_2_9_34_1 article-title: ImmPort FLOCK: Automated cell population identification in high dimensional flow cytometry data publication-title: J Immunol doi: 10.4049/jimmunol.182.Supp.42.17 – ident: e_1_2_9_32_1 doi: 10.1002/cyto.990060405 – ident: e_1_2_9_30_1 doi: 10.1186/1471-2172-6-13 – ident: e_1_2_9_24_1 doi: 10.1023/A:1017986506241 – ident: e_1_2_9_5_1 doi: 10.1038/nri1416 – ident: e_1_2_9_14_1 doi: 10.1093/bioinformatics/bts300 – ident: e_1_2_9_33_1 doi: 10.1186/1471-2105-11-44 – ident: e_1_2_9_15_1 doi: 10.1371/journal.pcbi.1003130 – volume: 39 start-page: 1 year: 1977 ident: e_1_2_9_22_1 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J R Stat Soc Ser B (Methodological) doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: e_1_2_9_11_1 doi: 10.1002/cyto.a.20531 – start-page: 355 volume-title: A view of the EM algorithm that justifies incremental, sparse, and other variants. In: Jordan MI, editor. Learning in Graphical Models, NATO ASI Series year: 1998 ident: e_1_2_9_23_1 – ident: e_1_2_9_16_1 doi: 10.1109/ICASSP.2010.5495653 – ident: e_1_2_9_8_1 doi: 10.1002/cyto.a.21007 – reference: 15286731 - Nat Rev Immunol. 2004 Aug;4(8):648-55 – reference: 20049161 - Adv Bioinformatics. 2009;:247646 – reference: 18496851 - Cytometry A. 2008 Aug;73(8):693-701 – reference: 20096119 - BMC Bioinformatics. 2010;11:44 – reference: 4017796 - Cytometry. 1985 Jul;6(4):302-9 – reference: 19442304 - BMC Bioinformatics. 2009;10:145 – reference: 18307272 - Cytometry A. 2008 Apr;73(4):321-32 – reference: 20667133 - BMC Bioinformatics. 2010;11:403 – reference: 20839340 - Cytometry B Clin Cytom. 2010;78 Suppl 1:S69-82 – reference: 23874174 - PLoS Comput Biol. 2013;9(7):e1003130 – reference: 19443687 - Proc Natl Acad Sci U S A. 2009 May 26;106(21):8519-24 – reference: 18383316 - Cytometry A. 2008 May;73(5):400-10 – reference: 17611236 - Brief Funct Genomic Proteomic. 2007 Jun;6(2):81-90 – reference: 15978127 - BMC Immunol. 2005;6:13 – reference: 22595209 - Bioinformatics. 2012 Aug 1;28(15):2052-8 – reference: 21964415 - Nat Biotechnol. 2011 Oct;29(10):886-91 – reference: 21182178 - Cytometry A. 2011 Jan;79(1):6-13 – reference: 20953302 - J Comput Graph Stat. 2010 Jun 1;9(2):332-353  | 
    
| SSID | ssj0035032 | 
    
| Score | 2.348399 | 
    
| Snippet | We present a model‐based clustering method, SWIFT (Scalable Weighted Iterative Flow‐clustering Technique), for digesting high‐dimensional large‐sized datasets... We present a model-based clustering method, SWIFT (Scalable Weighted Iterative Flow-clustering Technique), for digesting high-dimensional large-sized datasets...  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 408 | 
    
| SubjectTerms | Algorithms automated multivariate clustering Cell Lineage Cluster Analysis Computational Biology Flow Cytometry - methods Gaussian mixture models ground truth data Models, Theoretical Original rare subpopulation detection weighted sampling  | 
    
| SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagCMEF8VvCn4wEXGjatWOnDrdVxaogAZXYinKKHMemK6XJapOo2lsfgQMPwLP1SZhxsoFVRRG3SBknsufvszX-hpAXDPMaj2wYg--ESHkeKuvi0CgjHU9szh1eTv7wMd4_FO-P5FF_4IZ3YTp-iOHADT3Dx2t0cJ3VO79JQ82yqbb1NqQgEV8l1xhAGbRwLg5WkTiSI9-gDFnGQpFw3he-w_idP0evp6QLOPNiueSNtpzr5akuinVI63PS5Da51YNJOu60f4dcseVdcr1rL7m8R35-_vJuMj0_-1GDIvCKFDVFi8QIkK4ogFWq26YCxGpzOsv7qiGvKFo5CisD8rYo6Hzo8VXTWUkLrB3foshzfH72PcfuAB2zB3VFdUpxyie2WSwpFp_Wtqm36AHYJ2Vv6Lj4Vi1mzfEJzX3hyH1yOHk73dsP-44MoZFcxaHjIjdSy5GTGpbXZBqClIicFdqN7C5y-xnY4TmVyzhnEAys0TqJmIPIoJ1j0QOyUValfUgoywFZKJ4rlSjhpM0y6QRgo3hkjVXOBuT1Simp6enKsWtGkXZEyzzF-aQ69SoMyMtBet7RdPxF7vlKvyn4Ea6iLm3V1ikgHwWbSQhol8nAN1ismAzIZmcTw984ZBxILCwgu2vWMgggj_f6m3J27Pm8AdHCPicJyKvBrv4xidAb3aVC6d7X6aexf3z0n_KPyU2AhaIr63xCNppFa58C9GqyZ96_fgGnfDEl priority: 102 providerName: Wiley-Blackwell  | 
    
| Title | SWIFT—scalable clustering for automated identification of rare cell populations in large, high‐dimensional flow cytometry datasets, Part 1: Algorithm design | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcyto.a.22446 https://www.ncbi.nlm.nih.gov/pubmed/24677621 https://www.proquest.com/docview/1518619048 https://www.proquest.com/docview/1524416815 https://pubmed.ncbi.nlm.nih.gov/PMC4238829 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cyto.a.22446  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 85 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1552-4930 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0035032 issn: 1552-4930 databaseCode: DIK dateStart: 20030101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1552-4930 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1552-4930 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035032 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLXoVAg2vB_hURkJ2NAMiWOnDrtRYVSQKCOYEe0qcvxoR02T0SRRNaz6CSz4AL6tX8J1komYVhQkNpGl3CR2fB_HyfW5CD33bVwjgXZDsB3XUp67XJvQlVwyQyKtiLGbkz_uhjsT-mGP7f22F6bhh-g-uFnLqP21NfCZMo2fb__uk9dyUeZ90YcwRMM1tB4ywOM9tD7ZHQ32a6JURlwa1b8S2nbgtdnv5y9fjUsXwObFnMlrVTYTixORpqu4tg5Mw5tILofU5KMc9asy6ctv59ge_2_Mt9CNFrfiQaNot9EVnd1BV5tKlou76OeXr--H47PTHwXMud2NhWVaWQ4GiIwYcDEWVZkDONYKT1WboFTrBM4Nhg6BvE5TPOvKiRV4muHUpqlvYkupfHb6XdlCBA2JCDZpfoJtH491OV9gm-da6LLYxCMwBey_wYP0IJ9Py8NjrOoclXtoMnw33t5x2-IPrmSEh64hVEkmmGeY8AImEwH-kAZGU2E8vWVpBCUsJg1XLFQ--B0thYgC34ATEsb4wX3Uy_JMP0TYVwBiOFGcR5wappOEGQowLPS01NxoB71aTn0sW2Z0W6AjjRtOZxLb8cQirt-5g1500rOGEeQPcs-WWhSDydq3KDKdV0UMIIvDuhV852UycA8_5D5z0ING87qnEQhuEMN8B22t6GQnYCnDV89k08OaOhzAMyypIge97LT3L4Nwa328VCje3h9_GtTNR_9648foOkBP2qSOPkG9cl7ppwDvymQDrRE6guPbz2SjteVfSs9X1Q | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLWgCJVNxZuUl5GADU07cezUYTeqGE2hLZWYinYVefygI6XJaJKoml0_gQUfwLf1S7g3yQRGFUXsIuU6kX1fx9b1uYS8DjCvsdD6EfiOj5TnvrQu8rXUwrHYGubwcvL-QTQ84h-PxXHb5xTvwjT8EN2BG3pGHa_RwfFAeus3a6iel_mm2oQcxKOb5BaPggh3X4wfLkJxKHp1hzKkGfN5zFhb-Q7jt_4cvZyTrgDNq_WSq1U2VfNzlabLmLZOSoO7ZK1Fk7TfqP8euWGz--R2019y_oD8_PJ1dzC6vPhRgCbwjhTVaYXMCJCvKKBVqqoyB8hqDZ2Ytmyo1hTNHYWlAXmbpnTaNfkq6CSjKRaPb1AkOr68-G6wPUBD7UFdmp9TnPKZLWdzitWnhS2LDXoIBkqD97Sffstnk_L0jJq6cuQhORp8GO0M_bYlg68Fk5HvGDdaKNFzQsHy6rGCKMVDZ7lyPbuN5H4atnhOGhGZAKKB1UrFYeAgNCjngvARWcnyzD4hNDAALSQzUsaSO2HHY-E4gKOoZ7WVznrk3UIpiW75yrFtRpo0TMsswfkkKqlV6JE3nfS04en4i9yrhX4TcCRcRZXZvCoSgD4SdpMQ0a6TgW8EkQyERx43NtH9jUHKgcwSeGR7yVo6ASTyXn6TTU5rQm-AtLDRiT3ytrOrf0zCr43uWqFk52T0uV8_rv-n_EuyOhzt7yV7uwefnpI7gBF5U-P5jKyUs8o-BxxWjl_UvvYLBBo0kQ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ZbtQwFLWgiOWFfQmrkYAXmunEsVOHt1HLqGUpFUxFeQqOFzoiTUaTRNXw1E_ggQ_g2_olXDuZwFBRhHiLlJvF8V2Oo-NzEXoU2LpGQu1HEDu-lTz3uTaRL7lkhsRaEWM3J7_eijZ26Itdttv2ObV7YRp9iO6Hm40Ml69tgOuJMis_VUPlrCp6ogc1iEan0RnKYm45fetvO_2okPVdhzIrM-bTmJCW-Q7Xr_x69WJNOgY0j_Mlz9f5RMwORJYtYlpXlIaX0Mf5cBouyudeXaU9-eU3pcf_GO9ldLEFrHjQeNgVdErnV9HZpoXl7Br6_u795nB0dPithMm227CwzGorvgAlEQMgxqKuCkDFWuGxaplJzhlwYTC8DdjrLMOTro9Yicc5ziw_fRlbLeWjw6_KdiBo1EOwyYoDbN9xX1fTGbYE11JX5TLehhjAwTM8yD4V03G1t4-VI6dcRzvD56O1Db_t-uBLRnjkG0KVZIL1DRMwgzIVkAhpaDQVpq9XrX6ghFWk4YpFKoCEo6UQcRgYyD7CmCC8gZbyIte3EA4UoBdOFOcxp4bpNGWGAv6K-lpqbrSHns7nPZGtJLrtzJEljZgzSex4EpG4b-6hx531pJEC-YPdw7kLJRCr9iuKXBd1mQC64rBghaR5kg3cI4h4wDx0s3G77mkEqhoUr8BDqwsO2RlYrfDFM_l4z2mGA2qGtVTsoSed6_5lEL5zxhONkrUPozcDd3j7H-0foHPb68Pk1ebWyzvoAqBQ2rBI76Klalrre4D0qvS-i-Yf5QlV3A | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVgKgQb3o_wkpGADc2QOHHqsBtVjAoSpRIzol1Fjh90RJqMJomqYdVPYMEH8G39Eq7tTMS0oiCxi5Sbx3Xu4zi-Pheh56HJayRSfgK-4xvKc58pnfiCCapJqiTRZnPyh91kZxq_36f7v-2FcfwQ_Q834xk2XhsHn0vt4ny3uk9ei2VTDfkQ0lCcXEYbCQU8PkAb09290YElSqXEj1O7lNAdR0FX_X728vW8dA5snq-ZvNqWc7485kWxjmttYhrfQGKlkqtH-Tpsm3wovp1he_w_nW-i6x1uxSNnaLfQJVXeRldcJ8vlHfTz0-d348npyY8avrnZjYVF0RoOBsiMGHAx5m1TAThWEs9kV6BkbQJXGsMLgbwqCjzv24nVeFbiwpSpb2JDqXx68l2aRgSORATrojrG5h2PVLNYYlPnWqum3sR74Ao4fINHxZdqMWsOj7C0NSp30XT8drK943fNH3xBCUt8TWIpKKeBpjyIqMg5xMM40irmOlBbhkZQwGRSM0kTGULcUYLzNAo1BCGudRjdQ4OyKtUDhEMJIIYRyVjKYk1VnlMdAwxLAiUU08pDr1afPhMdM7pp0FFkjtOZZEafjGd2zD30opeeO0aQP8g9W1lRBi5rRpGXqmrrDEAWg3krxM6LZOAeYcJC6qH7zvL6pxFIbpDDQg9trdlkL2Aow9fPlLNDSx0O4BmmVKmHXvbW-xclfGuPFwpl2weTjyN7-PBfb_wIXQPoGbvS0cdo0Cxa9QTgXZM_7fz3Fz5dVhU | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SWIFT-scalable+clustering+for+automated+identification+of+rare+cell+populations+in+large%2C+high-dimensional+flow+cytometry+datasets%2C+part+1%3A+algorithm+design&rft.jtitle=Cytometry.+Part+A&rft.au=Naim%2C+Iftekhar&rft.au=Datta%2C+Suprakash&rft.au=Rebhahn%2C+Jonathan&rft.au=Cavenaugh%2C+James+S&rft.date=2014-05-01&rft.eissn=1552-4930&rft.volume=85&rft.issue=5&rft.spage=408&rft_id=info:doi/10.1002%2Fcyto.a.22446&rft_id=info%3Apmid%2F24677621&rft.externalDocID=24677621 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4922&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4922&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4922&client=summon |