Current Methods to Define Metabolic Tumor Volume in Positron Emission Tomography: Which One is Better?
Numerous methods to segment tumors using 18 F-fluorodeoxyglucose positron emission tomography (FDG PET) have been introduced. Metabolic tumor volume (MTV) refers to the metabolically active volume of the tumor segmented using FDG PET, and has been shown to be useful in predicting patient outcome and...
Saved in:
Published in | Nuclear medicine and molecular imaging Vol. 52; no. 1; pp. 5 - 15 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2018
Springer Nature B.V 대한핵의학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1869-3474 1869-3482 |
DOI | 10.1007/s13139-017-0493-6 |
Cover
Abstract | Numerous methods to segment tumors using
18
F-fluorodeoxyglucose positron emission tomography (FDG PET) have been introduced. Metabolic tumor volume (MTV) refers to the metabolically active volume of the tumor segmented using FDG PET, and has been shown to be useful in predicting patient outcome and in assessing treatment response. Also, tumor segmentation using FDG PET has useful applications in radiotherapy treatment planning. Despite extensive research on MTV showing promising results, MTV is not used in standard clinical practice yet, mainly because there is no consensus on the optimal method to segment tumors in FDG PET images. In this review, we discuss currently available methods to measure MTV using FDG PET, and assess the advantages and disadvantages of the methods. |
---|---|
AbstractList | Numerous methods to segment tumors using
18
F-fluorodeoxyglucose positron emission tomography (FDG PET) have been introduced. Metabolic tumor volume (MTV) refers to the metabolically active volume of the tumor segmented using FDG PET, and has been shown to be useful in predicting patient outcome and in assessing treatment response. Also, tumor segmentation using FDG PET has useful applications in radiotherapy treatment planning. Despite extensive research on MTV showing promising results, MTV is not used in standard clinical practice yet, mainly because there is no consensus on the optimal method to segment tumors in FDG PET images. In this review, we discuss currently available methods to measure MTV using FDG PET, and assess the advantages and disadvantages of the methods. Numerous methods to segment tumors using 18F-fluorodeoxyglucose positron emission tomography (FDG PET) have been introduced. Metabolic tumor volume (MTV) refers to the metabolically active volume of the tumor segmented using FDG PET, and has been shown to be useful in predicting patient outcome and in assessing treatment response. Also, tumor segmentation using FDG PET has useful applications in radiotherapy treatment planning. Despite extensive research on MTV showing promising results, MTV is not used in standard clinical practice yet, mainly because there is no consensus on the optimal method to segment tumors in FDG PET images. In this review, we discuss currently available methods to measure MTV using FDG PET, and assess the advantages and disadvantages of the methods. Numerous methods to segment tumors using F-fluorodeoxyglucose positron emission tomography (FDG PET) have been introduced. Metabolic tumor volume (MTV) refers to the metabolically active volume of the tumor segmented using FDG PET, and has been shown to be useful in predicting patient outcome and in assessing treatment response. Also, tumor segmentation using FDG PET has useful applications in radiotherapy treatment planning. Despite extensive research on MTV showing promising results, MTV is not used in standard clinical practice yet, mainly because there is no consensus on the optimal method to segment tumors in FDG PET images. In this review, we discuss currently available methods to measure MTV using FDG PET, and assess the advantages and disadvantages of the methods. Numerous methods to segment tumors using 18F-fluorodeoxyglucose positron emission tomography (FDG PET) have been introduced. Metabolic tumor volume (MTV) refers to the metabolically active volume of the tumor segmented using FDG PET, and has been shown to be useful in predicting patient outcome and in assessing treatment response. Also, tumor segmentation using FDG PET has useful applications in radiotherapy treatment planning. Despite extensive research on MTV showing promising results, MTV is not used in standard clinical practice yet, mainly because there is no consensus on the optimal method to segment tumors in FDG PET images. In this review, we discuss currently available methods to measure MTV using FDG PET, and assess the advantages and disadvantages of the methods.Numerous methods to segment tumors using 18F-fluorodeoxyglucose positron emission tomography (FDG PET) have been introduced. Metabolic tumor volume (MTV) refers to the metabolically active volume of the tumor segmented using FDG PET, and has been shown to be useful in predicting patient outcome and in assessing treatment response. Also, tumor segmentation using FDG PET has useful applications in radiotherapy treatment planning. Despite extensive research on MTV showing promising results, MTV is not used in standard clinical practice yet, mainly because there is no consensus on the optimal method to segment tumors in FDG PET images. In this review, we discuss currently available methods to measure MTV using FDG PET, and assess the advantages and disadvantages of the methods. Numerous methods to segment tumors using 18Ffluorodeoxyglucose positron emission tomography (FDG PET) have been introduced. Metabolic tumor volume (MTV) refers to the metabolically active volume of the tumor segmented using FDG PET, and has been shown to be useful in predicting patient outcome and in assessing treatment response. Also, tumor segmentation using FDG PET has useful applications in radiotherapy treatment planning. Despite extensive research on MTV showing promising results, MTV is not used in standard clinical practice yet, mainly because there is no consensus on the optimal method to segment tumors in FDG PET images. In this review, we discuss currently available methods to measure MTV using FDG PET, and assess the advantages and disadvantages of the methods. KCI Citation Count: 0 |
Author | Im, Hyung-Jun Bradshaw, Tyler Solaiyappan, Meiyappan Cho, Steve Y. |
Author_xml | – sequence: 1 givenname: Hyung-Jun surname: Im fullname: Im, Hyung-Jun organization: Department of Radiology, University of Wisconsin School of Medicine and Public Health, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University – sequence: 2 givenname: Tyler surname: Bradshaw fullname: Bradshaw, Tyler organization: Department of Radiology, University of Wisconsin School of Medicine and Public Health – sequence: 3 givenname: Meiyappan surname: Solaiyappan fullname: Solaiyappan, Meiyappan organization: Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine – sequence: 4 givenname: Steve Y. surname: Cho fullname: Cho, Steve Y. email: scho@uwhealth.org organization: Department of Radiology, University of Wisconsin School of Medicine and Public Health, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, University of Wisconsin Carbone Cancer Center |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29391907$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002315567$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kk9vFCEYxompsbX2A3gxJF70MMqfmQE81NS1apOaGrPqkbAM7NDOwAqMSb-9bKduahPlAoHf8_Dy8D4Gez54A8BTjF5hhNjrhCmmokKYVagWtGofgAPMW1HRmpO93ZrV--AopUtUBiUCUfYI7BNBBRaIHQC7mGI0PsPPJvehSzAH-N5Y5812R63C4DRcTmOI8HsYptFA5-GXkFyOwcPT0aXkymIZxrCOatNfv4E_eqd7eFEcXILvTM4mvn0CHlo1JHN0Ox-Cbx9Ol4tP1fnFx7PFyXmlG8JyZRXqEOFME7TqOo5py8QKGUYoNsgy0yjObI2IqrnVQumOMSuExg3XvGMa00Pwcvb10cor7WRQ7mZeB3kV5cnX5ZkkLWtKDoU9ntnNtBpNp0sKUQ1yE92o4vWN8u8T7_ri80s2jDHRomLw4tYghp-TSVmWOLQZBuVNmJLEosQsEKl5QZ_fQy_DFH2JolBciFrghhXq2d2KdqX8-a4C4BnQMaQUjd0hGMltV8i5K2TpCrntCtkWDbun0S6rXH6tPMoN_1WSWZnKLX5t4p2i_yn6DW9lyrU |
CitedBy_id | crossref_primary_10_1007_s40134_020_00369_9 crossref_primary_10_1016_j_xcrm_2024_101463 crossref_primary_10_1053_j_semnuclmed_2022_10_008 crossref_primary_10_1093_oncolo_oyad212 crossref_primary_10_3748_wjg_v25_i11_1289 crossref_primary_10_2967_jnmt_119_236109 crossref_primary_10_3390_cancers13215538 crossref_primary_10_1038_s41598_020_69577_9 crossref_primary_10_1016_j_clml_2023_07_008 crossref_primary_10_1053_j_semnuclmed_2022_04_010 crossref_primary_10_1097_MNM_0000000000001881 crossref_primary_10_1186_s40658_022_00513_8 crossref_primary_10_1097_RLU_0000000000002291 crossref_primary_10_1002_pbc_29212 crossref_primary_10_1158_1078_0432_CCR_24_1993 crossref_primary_10_1007_s10334_019_00778_8 crossref_primary_10_1186_s40644_024_00698_4 crossref_primary_10_1007_s00405_022_07401_y crossref_primary_10_1016_j_cpet_2021_06_001 crossref_primary_10_3390_cancers14246242 crossref_primary_10_24835_1607_0763_1343 crossref_primary_10_1016_j_compbiomed_2025_110052 crossref_primary_10_2967_jnumed_123_265592 crossref_primary_10_3390_metabo11120875 crossref_primary_10_1007_s00259_021_05450_9 crossref_primary_10_1055_s_0045_1805091 crossref_primary_10_1111_bjh_18764 crossref_primary_10_2967_jnumed_119_238733 crossref_primary_10_1007_s40291_024_00767_1 crossref_primary_10_1007_s00270_023_03470_6 crossref_primary_10_1016_j_mednuc_2019_09_001 crossref_primary_10_3390_cancers15153953 crossref_primary_10_1007_s00261_023_04158_8 crossref_primary_10_1007_s00259_020_05068_3 crossref_primary_10_1007_s00259_021_05584_w crossref_primary_10_3390_ijms24010353 crossref_primary_10_1053_j_semnuclmed_2023_07_005 crossref_primary_10_1186_s40644_020_00301_6 crossref_primary_10_3390_cancers14246095 crossref_primary_10_1016_j_cpet_2018_08_008 crossref_primary_10_3390_diagnostics12030715 crossref_primary_10_1007_s13246_023_01356_y crossref_primary_10_1158_1535_7163_MCT_21_0622 crossref_primary_10_1097_RLU_0000000000004417 crossref_primary_10_3390_metabo12030217 crossref_primary_10_3390_tomography9050151 crossref_primary_10_1016_j_cpet_2025_01_002 crossref_primary_10_3390_cancers14184382 crossref_primary_10_3390_cancers16142525 crossref_primary_10_1097_MNM_0000000000001737 crossref_primary_10_1038_s41598_025_88625_w crossref_primary_10_1177_17588359221138386 crossref_primary_10_1097_MNM_0000000000001334 crossref_primary_10_3389_fmed_2022_1046551 crossref_primary_10_2967_jnmt_121_262900 crossref_primary_10_3349_ymj_2022_0548 crossref_primary_10_4143_crt_2023_897 crossref_primary_10_1186_s12967_024_05181_z crossref_primary_10_3389_fonc_2021_713577 crossref_primary_10_1007_s00259_022_05780_2 crossref_primary_10_1097_LVT_0000000000000535 crossref_primary_10_1007_s40336_022_00481_0 crossref_primary_10_1109_JBHI_2022_3230060 crossref_primary_10_1155_2018_5063285 crossref_primary_10_3389_fimmu_2023_994520 crossref_primary_10_1038_s41598_021_92118_x crossref_primary_10_1002_pros_24518 crossref_primary_10_1007_s00259_022_05977_5 crossref_primary_10_1016_j_canrad_2020_04_008 crossref_primary_10_2967_jnumed_120_258673 crossref_primary_10_15406_ijrrt_2021_08_00288 crossref_primary_10_1016_j_ygyno_2020_08_001 crossref_primary_10_3390_cancers13236096 crossref_primary_10_1002_lary_30362 crossref_primary_10_2967_jnmt_122_264714 crossref_primary_10_3389_fonc_2021_758958 crossref_primary_10_1016_j_cllc_2023_01_001 crossref_primary_10_1007_s11604_021_01100_0 crossref_primary_10_1186_s12885_022_09871_z crossref_primary_10_1186_s40644_024_00811_7 crossref_primary_10_1007_s00259_024_06643_8 crossref_primary_10_2967_jnumed_122_265278 crossref_primary_10_1177_17588359241293364 crossref_primary_10_3390_diagnostics13081391 crossref_primary_10_1093_bjr_tqad015 crossref_primary_10_1016_j_clinimag_2022_06_005 crossref_primary_10_1080_14737159_2020_1854090 crossref_primary_10_1148_radiol_231407 crossref_primary_10_3390_diagnostics11020210 crossref_primary_10_1007_s11042_023_15653_x crossref_primary_10_3390_biomedicines10071575 crossref_primary_10_1111_bjh_18734 crossref_primary_10_1038_s41598_019_52740_2 crossref_primary_10_1097_MNM_0000000000000903 crossref_primary_10_2967_jnumed_121_263518 crossref_primary_10_37174_2587_7593_2021_4_4_28_39 crossref_primary_10_3389_fneur_2023_1271822 crossref_primary_10_3892_ol_2021_12468 crossref_primary_10_1186_s13550_021_00831_5 crossref_primary_10_1055_s_0040_1708825 crossref_primary_10_4103_ijnm_ijnm_20_21 crossref_primary_10_1038_s41598_021_85332_0 crossref_primary_10_3390_diagnostics13111884 crossref_primary_10_1016_j_ijrobp_2021_06_038 crossref_primary_10_3389_fimmu_2020_617985 crossref_primary_10_2967_jnmt_121_263534 crossref_primary_10_3389_fonc_2021_742728 crossref_primary_10_3390_ijms232113409 crossref_primary_10_1007_s00261_019_02065_5 crossref_primary_10_3389_fneur_2021_627247 crossref_primary_10_1186_s12938_023_01173_0 crossref_primary_10_3389_fonc_2022_1025930 crossref_primary_10_1111_jne_13170 crossref_primary_10_1097_RLU_0000000000003615 crossref_primary_10_1186_s13550_021_00808_4 crossref_primary_10_1038_s42255_025_01245_6 crossref_primary_10_2340_1651_226X_2024_39041 crossref_primary_10_1007_s00330_022_09039_0 crossref_primary_10_1186_s13550_019_0588_4 crossref_primary_10_3390_biomedicines12081834 crossref_primary_10_1007_s10585_023_10231_9 crossref_primary_10_1007_s12149_021_01593_9 crossref_primary_10_2967_jnmt_119_231118 crossref_primary_10_3390_diagnostics12030595 crossref_primary_10_3389_fonc_2022_951557 crossref_primary_10_3390_jpm13020184 crossref_primary_10_1097_MNM_0000000000001050 crossref_primary_10_1016_j_jtct_2022_12_021 crossref_primary_10_61186_sjrm_7_2_95 crossref_primary_10_2967_jnumed_123_266005 crossref_primary_10_1007_s00330_024_11186_5 crossref_primary_10_1111_vru_13361 crossref_primary_10_1007_s00259_024_06853_0 crossref_primary_10_1259_bjr_20210470 crossref_primary_10_1007_s40336_022_00536_2 crossref_primary_10_1002_cam4_2404 crossref_primary_10_1148_radiol_221180 crossref_primary_10_1007_s11307_024_01937_7 crossref_primary_10_1007_s40336_022_00517_5 crossref_primary_10_3348_kjr_2019_0891 crossref_primary_10_1007_s00259_019_04436_y crossref_primary_10_3390_cancers12082016 crossref_primary_10_3390_tomography8020087 crossref_primary_10_1038_s41408_023_00895_7 crossref_primary_10_3390_s23187952 crossref_primary_10_1097_COC_0000000000000948 crossref_primary_10_1002_pbc_29232 crossref_primary_10_1007_s00259_022_05971_x crossref_primary_10_3389_fimmu_2021_724464 crossref_primary_10_1016_j_canrad_2019_07_133 crossref_primary_10_3390_metabo11020072 crossref_primary_10_1371_journal_pone_0266601 crossref_primary_10_1016_j_bone_2023_116957 crossref_primary_10_1016_j_cpet_2019_06_002 crossref_primary_10_1016_j_spinee_2024_09_012 crossref_primary_10_4274_nts_galenos_2023_0023 crossref_primary_10_1097_RLU_0000000000003479 crossref_primary_10_3390_biomedicines12010151 crossref_primary_10_1038_s41598_024_68210_3 crossref_primary_10_1097_MD_0000000000032206 crossref_primary_10_3390_diagnostics11111976 crossref_primary_10_3390_cancers16081478 crossref_primary_10_1016_j_jacc_2024_06_037 crossref_primary_10_1186_s43055_022_00702_6 crossref_primary_10_1038_s41467_024_52923_0 crossref_primary_10_1186_s13550_022_00916_9 crossref_primary_10_1111_vco_12706 crossref_primary_10_1007_s00432_022_04138_3 crossref_primary_10_1186_s40644_018_0169_1 crossref_primary_10_1016_j_canrad_2020_03_006 crossref_primary_10_2139_ssrn_4114254 crossref_primary_10_1097_MD_0000000000026338 crossref_primary_10_1016_j_ejro_2024_100619 crossref_primary_10_1097_RLU_0000000000005412 crossref_primary_10_2214_AJR_24_30952 crossref_primary_10_1186_s41824_023_00172_7 crossref_primary_10_1186_s40658_021_00411_5 |
Cites_doi | 10.1016/S0360-3016(01)01824-7 10.1007/s12149-011-0478-y 10.2967/jnumed.113.133801 10.1097/MNM.0b013e328351d4f5 10.1155/2010/105610 10.1016/j.ijrobp.2004.05.037 10.1097/MNM.0000000000000317 10.1007/s00259-014-2746-2 10.1016/j.acra.2011.08.020 10.1016/j.radonc.2006.09.011 10.2967/jnumed.110.078501 10.1097/IGC.0b013e318260a905 10.1097/MNM.0000000000000382 10.1007/s00259-014-2903-7 10.2967/jnumed.112.108837 10.2214/AJR.14.13847 10.1016/j.crad.2013.10.010 10.1016/j.radonc.2013.08.033 10.1016/j.lungcan.2012.08.016 10.2967/jnumed.111.088914 10.1097/RLU.0b013e3181d18eb0 10.1007/s00259-011-1936-4 10.1007/s00259-013-2530-8 10.1002/(SICI)1097-0142(19971215)80:12+<2505::AID-CNCR24>3.0.CO;2-F 10.1109/83.661186 10.2967/jnumed.111.093443 10.1007/s00259-006-0363-4 10.1016/j.ijrobp.2005.04.021 10.1016/j.ijrobp.2011.03.031 10.2967/jnumed.114.142919 10.1016/j.ijrobp.2009.08.018 10.1016/j.ijrobp.2009.01.019 10.2967/jnmt.113.122952 10.2967/jnumed.115.167684 10.2967/jnumed.112.117697 10.3348/kjr.2013.14.1.1 10.2967/jnumed.114.146381 10.1097/SLA.0b013e318262a6ec 10.1245/s10434-013-3270-5 10.1016/j.ijrobp.2010.06.044 10.1016/j.ijrobp.2010.12.055 10.1118/1.4816296 10.1007/s13139-013-0232-6 10.3109/0284186X.2013.812795 10.1148/radiol.12111148 10.1016/j.ejrad.2012.07.009 10.1016/j.cllc.2015.01.007 10.1186/s40644-015-0058-9 10.1016/j.ijrobp.2003.10.045 10.1016/j.nucmedbio.2014.02.006 10.1177/153303460700600207 10.1118/1.4929561 10.1007/s13139-012-0181-5 10.2967/jnumed.108.058461 10.1109/TSMC.1979.4310076 10.1007/s00259-010-1688-6 10.2967/jnumed.113.131847 10.1245/s10434-009-0719-7 10.2214/AJR.13.11456 10.1016/S1095-0397(99)00016-3 10.1097/COC.0000000000000070 |
ContentType | Journal Article |
Copyright | Korean Society of Nuclear Medicine 2017 Copyright Springer Science & Business Media 2018 |
Copyright_xml | – notice: Korean Society of Nuclear Medicine 2017 – notice: Copyright Springer Science & Business Media 2018 |
DBID | AAYXX CITATION NPM NAPCQ 7X8 5PM ACYCR |
DOI | 10.1007/s13139-017-0493-6 |
DatabaseName | CrossRef PubMed Nursing & Allied Health Premium MEDLINE - Academic PubMed Central (Full Participant titles) Korean Citation Index |
DatabaseTitle | CrossRef PubMed Nursing & Allied Health Premium MEDLINE - Academic |
DatabaseTitleList | Nursing & Allied Health Premium PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1869-3482 |
EndPage | 15 |
ExternalDocumentID | oai_kci_go_kr_ARTI_2675903 PMC5777960 29391907 10_1007_s13139_017_0493_6 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: National Research Foundation of Korea grantid: 490-20170035 funderid: http://dx.doi.org/10.13039/501100003725 – fundername: ; grantid: 490-20170035 |
GroupedDBID | --- -EM .UV 06D 0R~ 0VY 1N0 203 29~ 2KG 2VQ 30V 4.4 406 408 40D 67Z 8JR 96X 9ZL AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABPLI ABQBU ABSXP ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACHVE ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AOIJS ASPBG AVWKF AXYYD AZFZN BAWUL BGNMA CSCUP DDRTE DIK DNIVK DPUIP EBLON EBS EF. EIOEI EJD ESBYG F5P FEDTE FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 H13 HF~ HMJXF HRMNR HVGLF HYE HZ~ I0C IKXTQ IWAJR IXD J-C J0Z JBSCW JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O9J OK1 P9S PT4 R9I RLLFE ROL RPM RSV S27 S37 S3B SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZ9 T13 TSG U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 ZMTXR ZOVNA ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ NPM NAPCQ 7X8 5PM AAFGU AAPBV AAYFA ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AKQUC |
ID | FETCH-LOGICAL-c527t-fa0d0287c20bdd813679b0e7231e0f7e5a87f402a48fc9acd77f99c158c8d7c13 |
IEDL.DBID | U2A |
ISSN | 1869-3474 |
IngestDate | Tue Nov 21 21:39:15 EST 2023 Thu Aug 21 18:41:27 EDT 2025 Fri Jul 11 05:50:32 EDT 2025 Thu Sep 25 00:24:12 EDT 2025 Mon Jul 21 05:36:45 EDT 2025 Tue Jul 01 01:05:50 EDT 2025 Thu Apr 24 22:52:34 EDT 2025 Fri Feb 21 02:35:27 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Tumor Segmentation Metabolic tumor volume Positron emission tomography F-fluorodeoxyglucose 18F-fluorodeoxyglucose |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c527t-fa0d0287c20bdd813679b0e7231e0f7e5a87f402a48fc9acd77f99c158c8d7c13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
PMID | 29391907 |
PQID | 1989949157 |
PQPubID | 2044329 |
PageCount | 11 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_2675903 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5777960 proquest_miscellaneous_1993990248 proquest_journals_1989949157 pubmed_primary_29391907 crossref_primary_10_1007_s13139_017_0493_6 crossref_citationtrail_10_1007_s13139_017_0493_6 springer_journals_10_1007_s13139_017_0493_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | Nuclear medicine and molecular imaging |
PublicationTitleAbbrev | Nucl Med Mol Imaging |
PublicationTitleAlternate | Nucl Med Mol Imaging |
PublicationYear | 2018 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V 대한핵의학회 |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: 대한핵의학회 |
References | Hatt, Cheze le Rest, Descourt (CR47) 2010; 77 Moon, Hyun, Choi (CR8) 2013; 14 Paulino, Johnstone (CR31) 2004; 59 Im, Kim, Park (CR3) 2012; 39 Terezakis, Hunt, Kowalski (CR27) 2011; 81 CR39 Hatt, Cheze-Le Rest, Aboagye (CR44) 2010; 51 CR36 Yoo Ie, Chung, Park (CR54) 2014; 24 Abelson, Murphy, Trakul (CR56) 2012; 78 JH, Choi, Han (CR9) 2013; 47 Nestle, Kremp, Grosu (CR28) 2006; 81 Huang, Solaiyappan, Cho (CR51) 2015; 56 Geets, Lee, Bol, Lonneux, Gregoire (CR38) 2007; 34 Kim, Kim, Kim, Kim, Pak, Kim (CR57) 2012; 33 Byun, Kong, Lim (CR6) 2014; 41 Hyun, Ahn, Ahn (CR14) 2015; 205 Burger, Vargas, Apte (CR62) 2014; 41 Chen, Yao, Fan (CR63) 2013; 109 CR2 Pak, Cheon, Nam (CR20) 2014; 55 Yu, Li, Xing (CR64) 2009; 75 Abdoli, Dierckx, Zaidi (CR43) 2013; 40 CR4 Biehl, Kong, Dehdashti (CR33) 2006; 47 CR5 Huang, Fan, Liu (CR22) 2014; 55 Hyun, Choi, Kim (CR34) 2013; 257 CR48 CR45 Mehta, Chander, Huang, Kelly, Fielding (CR52) 2014; 69 Nestle, Kremp, Schaefer-Schuler (CR35) 2005; 46 Mah, Caldwell, Ung (CR30) 2002; 52 Park, Yoon, Park, Lee (CR61) 2015; 15 Hyun, Ahn, Kim (CR15) 2014; 41 Han, Yang, Park, Park, Choi, Kim (CR21) 2015; 36 Im, Pak, Cheon (CR19) 2015; 42 Zaizen, Azuma, Kurata (CR17) 2012; 81 Sharif, Abbod, Amira, Zaidi (CR46) 2010; 2010 Ashamalla, Rafla, Parikh (CR29) 2005; 63 Heron, Andrade, Flickinger (CR26) 2004; 60 Lin, Lin, Kao, Yen, Chen, Yeh (CR55) 2012; 32 Carvalho, Leijenaar, Velazquez (CR59) 2013; 52 Cheebsumon, van Velden, Yaqub (CR7) 2011; 52 Werner-Wasik, Nelson, Choi (CR37) 2012; 82 CR11 CR10 CR50 Braendengen, Hansson, Radu, Siegbahn, Jacobsson, Glimelius (CR24) 2011; 81 Xu, Prince (CR42) 1998; 7 Laffon, de Clermont, Lamare, Marthan (CR65) 2013; 41 Chen, Chiu, WC, Guo, Lee (CR13) 2012; 264 Liao, Penney, Zhang, Suzuki, Prognostic (CR40) 2012; 19 Obara, Liu, Wroblewski (CR41) 2015; 36 Hatt, Groheux, Martineau (CR49) 2013; 54 Vanderhoek, Perlman, Jeraj (CR1) 2012; 53 Burger, Casanova, Steiger (CR23) 2016; 57 Spratt, Diaz, McElmurray (CR25) 2010; 35 Harris, Chang-Halpenny, Maxim (CR58) 2015; 16 Kim, Son, Kim (CR16) 2014; 21 CR60 Erdi, Mawlawi, Larson (CR32) 1997; 80 Yoo, Choi, Moon (CR12) 2012; 22 Byun, Kong, Park (CR18) 2013; 54 Arslan, Tuncel, Kuzhan (CR53) 2011; 25 493_CR36 N Arslan (493_CR53) 2011; 25 DE Heron (493_CR26) 2004; 60 493_CR39 DE Spratt (493_CR25) 2010; 35 Y Lin (493_CR55) 2012; 32 SH Moon (493_CR8) 2013; 14 Y Zaizen (493_CR17) 2012; 81 HH Chen (493_CR13) 2012; 264 IA Burger (493_CR23) 2016; 57 O JH (493_CR9) 2013; 47 M Hatt (493_CR47) 2010; 77 EJ Han (493_CR21) 2015; 36 M Abdoli (493_CR43) 2013; 40 K Mah (493_CR30) 2002; 52 M Werner-Wasik (493_CR37) 2012; 82 HJ Im (493_CR19) 2015; 42 YE Erdi (493_CR32) 1997; 80 DH Kim (493_CR16) 2014; 21 KJ Biehl (493_CR33) 2006; 47 E Huang (493_CR51) 2015; 56 HJ Im (493_CR3) 2012; 39 X Geets (493_CR38) 2007; 34 BH Byun (493_CR6) 2014; 41 M Braendengen (493_CR24) 2011; 81 JP Harris (493_CR58) 2015; 16 493_CR2 493_CR5 493_CR4 MS Sharif (493_CR46) 2010; 2010 J Yu (493_CR64) 2009; 75 SA Terezakis (493_CR27) 2011; 81 S Carvalho (493_CR59) 2013; 52 493_CR11 P Obara (493_CR41) 2015; 36 SH Hyun (493_CR15) 2014; 41 IA Burger (493_CR62) 2014; 41 M Vanderhoek (493_CR1) 2012; 53 U Nestle (493_CR35) 2005; 46 C Xu (493_CR42) 1998; 7 AC Paulino (493_CR31) 2004; 59 JA Abelson (493_CR56) 2012; 78 J Yoo (493_CR12) 2012; 22 493_CR60 K Kim (493_CR57) 2012; 33 S Liao (493_CR40) 2012; 19 M Hatt (493_CR44) 2010; 51 493_CR45 SH Hyun (493_CR34) 2013; 257 G Mehta (493_CR52) 2014; 69 SY Park (493_CR61) 2015; 15 493_CR48 SH Hyun (493_CR14) 2015; 205 BH Byun (493_CR18) 2013; 54 K Pak (493_CR20) 2014; 55 M Hatt (493_CR49) 2013; 54 GH Chen (493_CR63) 2013; 109 W Huang (493_CR22) 2014; 55 E Laffon (493_CR65) 2013; 41 R Yoo Ie (493_CR54) 2014; 24 U Nestle (493_CR28) 2006; 81 493_CR50 P Cheebsumon (493_CR7) 2011; 52 493_CR10 H Ashamalla (493_CR29) 2005; 63 |
References_xml | – volume: 52 start-page: 339 year: 2002 end-page: 350 ident: CR30 article-title: The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/S0360-3016(01)01824-7 – ident: CR45 – volume: 25 start-page: 406 year: 2011 end-page: 413 ident: CR53 article-title: Evaluation of outcome prediction and disease extension by quantitative 2-deoxy-2-[18F] fluoro-D-glucose with positron emission tomography in patients with small cell lung cancer publication-title: Ann Nucl Med doi: 10.1007/s12149-011-0478-y – volume: 55 start-page: 884 year: 2014 end-page: 890 ident: CR20 article-title: Prognostic value of metabolic tumor volume and total lesion glycolysis in head and neck cancer: a systematic review and meta-analysis publication-title: J Nucl Med doi: 10.2967/jnumed.113.133801 – volume: 33 start-page: 613 year: 2012 end-page: 620 ident: CR57 article-title: Prognostic value of volumetric parameters measured by F-18 FDG PET/CT in surgically resected non-small-cell lung cancer publication-title: Nucl Med Commun doi: 10.1097/MNM.0b013e328351d4f5 – volume: 24 start-page: 3091 year: 2014 end-page: 3103 ident: CR54 article-title: Prognostic value of SUVmax and metabolic tumor volume on 18F-FDG PET/CT in early stage non-small cell lung cancer patients without LN metastasis publication-title: Biomed Mater Eng – ident: CR4 – ident: CR39 – volume: 2010 year: 2010 ident: CR46 article-title: Artificial neural network-based system for PET volume segmentation publication-title: Int J Biomed Imaging doi: 10.1155/2010/105610 – volume: 60 start-page: 1419 year: 2004 end-page: 1424 ident: CR26 article-title: Hybrid PET-CT simulation for radiation treatment planning in head-and-neck cancers: a brief technical report publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2004.05.037 – volume: 32 start-page: 5087 year: 2012 end-page: 5091 ident: CR55 article-title: Prognostic value of preoperative metabolic tumor volumes on PET-CT in predicting disease-free survival of patients with stage I non-small cell lung cancer publication-title: Anticancer Res – volume: 36 start-page: 782 year: 2015 end-page: 789 ident: CR41 article-title: Quantification of metabolic tumor activity and burden in patients with non-small-cell lung cancer: is manual adjustment of semiautomatic gradient-based measurements necessary? publication-title: Nucl Med Commun doi: 10.1097/MNM.0000000000000317 – volume: 41 start-page: 1553 year: 2014 end-page: 1562 ident: CR6 article-title: Early response monitoring to neoadjuvant chemotherapy in osteosarcoma using sequential (1)(8)F-FDG PET/CT and MRI publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-014-2746-2 – volume: 19 start-page: 69 year: 2012 end-page: 77 ident: CR40 article-title: Value of the quantitative metabolic volumetric measurement on 18F-FDG PET/CT in stage IV nonsurgical small-cell lung cancer publication-title: Acad Radiol doi: 10.1016/j.acra.2011.08.020 – volume: 81 start-page: 209 year: 2006 end-page: 225 ident: CR28 article-title: Practical integration of [18F]-FDG-PET and PET-CT in the planning of radiotherapy for non-small cell lung cancer (NSCLC): the technical basis, ICRU-target volumes, problems, perspectives publication-title: Radiother Oncol doi: 10.1016/j.radonc.2006.09.011 – volume: 51 start-page: 1368 year: 2010 end-page: 1376 ident: CR44 article-title: Reproducibility of 18F-FDG and 3′-deoxy-3′-18F-fluorothymidine PET tumor volume measurements publication-title: J Nucl Med doi: 10.2967/jnumed.110.078501 – volume: 22 start-page: 1226 year: 2012 end-page: 1233 ident: CR12 article-title: Prognostic significance of volume-based metabolic parameters in uterine cervical cancer determined using 18F-fluorodeoxyglucose positron emission tomography publication-title: Int J Gynecol Cancer doi: 10.1097/IGC.0b013e318260a905 – volume: 36 start-page: 1187 year: 2015 end-page: 1194 ident: CR21 article-title: Prognostic value of early response assessment using 18F-FDG PET/CT in chemotherapy-treated patients with non-small-cell lung cancer publication-title: Nucl Med Commun doi: 10.1097/MNM.0000000000000382 – volume: 42 start-page: 241 year: 2015 end-page: 251 ident: CR19 article-title: Prognostic value of volumetric parameters of (18)F-FDG PET in non-small-cell lung cancer: a meta-analysis publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-014-2903-7 – volume: 54 start-page: 341 year: 2013 end-page: 349 ident: CR49 article-title: Comparison between 18F-FDG PET image-derived indices for early prediction of response to neoadjuvant chemotherapy in breast cancer publication-title: J Nucl Med doi: 10.2967/jnumed.112.108837 – volume: 205 start-page: 623 year: 2015 end-page: 628 ident: CR14 article-title: Volume-based assessment with 18F-FDG PET/CT improves outcome prediction for patients with stage IIIA-N2 non-small cell lung cancer publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.14.13847 – ident: CR50 – volume: 69 start-page: 268 year: 2014 end-page: 274 ident: CR52 article-title: Feasibility study of FDG PET/CT-derived primary tumour glycolysis as a prognostic indicator of survival in patients with non-small-cell lung cancer publication-title: Clin Radiol doi: 10.1016/j.crad.2013.10.010 – volume: 109 start-page: 71 year: 2013 end-page: 76 ident: CR63 article-title: Variation in background intensity affects PET-based gross tumor volume delineation in non-small-cell lung cancer: the need for individualized information publication-title: Radiother Oncol doi: 10.1016/j.radonc.2013.08.033 – ident: CR11 – volume: 78 start-page: 219 year: 2012 end-page: 224 ident: CR56 article-title: Metabolic imaging metrics correlate with survival in early stage lung cancer treated with stereotactic ablative radiotherapy publication-title: Lung Cancer doi: 10.1016/j.lungcan.2012.08.016 – ident: CR60 – ident: CR36 – ident: CR5 – volume: 52 start-page: 1550 year: 2011 end-page: 1558 ident: CR7 article-title: Effects of image characteristics on performance of tumor delineation methods: a test–retest assessment publication-title: J Nucl Med doi: 10.2967/jnumed.111.088914 – volume: 35 start-page: 237 year: 2010 end-page: 243 ident: CR25 article-title: Impact of FDG PET/CT on delineation of the gross tumor volume for radiation planning in non-small-cell lung cancer publication-title: Clin Nucl Med doi: 10.1097/RLU.0b013e3181d18eb0 – volume: 39 start-page: 39 year: 2012 end-page: 49 ident: CR3 article-title: Prediction of tumour necrosis fractions using metabolic and volumetric 18F-FDG PET/CT indices, after one course and at the completion of neoadjuvant chemotherapy, in children and young adults with osteosarcoma publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-011-1936-4 – volume: 41 start-page: 50 year: 2014 end-page: 58 ident: CR15 article-title: Volume-based assessment by (18)F-FDG PET/CT predicts survival in patients with stage III non-small-cell lung cancer publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-013-2530-8 – volume: 80 start-page: 2505 year: 1997 end-page: 2509 ident: CR32 article-title: Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding publication-title: Cancer doi: 10.1002/(SICI)1097-0142(19971215)80:12+<2505::AID-CNCR24>3.0.CO;2-F – volume: 7 start-page: 359 year: 1998 end-page: 369 ident: CR42 article-title: Snakes, shapes, and gradient vector flow publication-title: IEEE Trans Image Process doi: 10.1109/83.661186 – volume: 53 start-page: 4 year: 2012 end-page: 11 ident: CR1 article-title: Impact of the definition of peak standardized uptake value on quantification of treatment response publication-title: J Nucl Med doi: 10.2967/jnumed.111.093443 – volume: 34 start-page: 1427 year: 2007 end-page: 1438 ident: CR38 article-title: Gradient-based method for segmenting FDG-PET images: methodology and validation publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-006-0363-4 – volume: 63 start-page: 1016 year: 2005 end-page: 1023 ident: CR29 article-title: The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2005.04.021 – volume: 81 start-page: e439 year: 2011 end-page: e445 ident: CR24 article-title: Delineation of gross tumor volume (GTV) for radiation treatment planning of locally advanced rectal cancer using information from MRI or FDG-PET/CT: a prospective study publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2011.03.031 – volume: 55 start-page: 1584 year: 2014 end-page: 1590 ident: CR22 article-title: Value of metabolic tumor volume on repeated 18F-FDG PET/CT for early prediction of survival in locally advanced non-small cell lung cancer treated with concurrent chemoradiotherapy publication-title: J Nucl Med doi: 10.2967/jnumed.114.142919 – volume: 77 start-page: 301 year: 2010 end-page: 308 ident: CR47 article-title: Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2009.08.018 – ident: CR2 – volume: 75 start-page: 1468 year: 2009 end-page: 1474 ident: CR64 article-title: Comparison of tumor volumes as determined by pathologic examination and FDG-PET/CT images of non-small-cell lung cancer: a pilot study publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2009.01.019 – volume: 46 start-page: 1342 year: 2005 end-page: 1348 ident: CR35 article-title: Comparison of different methods for delineation of 18F-FDG PET–positive tissue for target volume definition in radiotherapy of patients with non–small cell lung cancer publication-title: J Nucl Med – volume: 41 start-page: 186 year: 2013 end-page: 191 ident: CR65 article-title: Variability of total lesion glycolysis by 18F-FDG-positive tissue thresholding in lung cancer publication-title: J Nucl Med Technol doi: 10.2967/jnmt.113.122952 – ident: CR10 – volume: 57 start-page: 849 year: 2016 end-page: 854 ident: CR23 article-title: FDG-PET/CT of non-small cell lung carcinoma under neo-adjuvant chemotherapy: background based adaptive volume metrics outperform TLG and MTV in predicting histopathological response publication-title: J Nucl Med doi: 10.2967/jnumed.115.167684 – volume: 54 start-page: 1725 year: 2013 end-page: 1732 ident: CR18 article-title: Initial metabolic tumor volume measured by 18F-FDG PET/CT can predict the outcome of Osteosarcoma of the extremities publication-title: J Nucl Med doi: 10.2967/jnumed.112.117697 – volume: 14 start-page: 1 year: 2013 end-page: 12 ident: CR8 article-title: Prognostic significance of volume-based PET parameters in cancer patients publication-title: Korean J Radiol doi: 10.3348/kjr.2013.14.1.1 – volume: 56 start-page: 452 year: 2015 ident: CR51 article-title: Improved stability and performance of 18F-FDG PET automated tumor segmentation using multi-level maximization of inter-class variance method publication-title: J Nucl Med doi: 10.2967/jnumed.114.146381 – volume: 257 start-page: 364 year: 2013 end-page: 370 ident: CR34 article-title: Volume-based parameters of (18)F-fluorodeoxyglucose positron emission tomography/computed tomography improve outcome prediction in early-stage non-small cell lung cancer after surgical resection publication-title: Ann Surg doi: 10.1097/SLA.0b013e318262a6ec – ident: CR48 – volume: 21 start-page: 589 year: 2014 end-page: 596 ident: CR16 article-title: Prediction for recurrence using F-18 FDG PET/CT in pathologic N0 lung adenocarcinoma after curative surgery publication-title: Ann Surg Oncol doi: 10.1245/s10434-013-3270-5 – volume: 81 start-page: 615 year: 2011 end-page: 622 ident: CR27 article-title: [(1)(8)F]FDG-positron emission tomography coregistration with computed tomography scans for radiation treatment planning of lymphoma and hematologic malignancies publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2010.06.044 – volume: 82 start-page: 1164 year: 2012 end-page: 1171 ident: CR37 article-title: What is the best way to contour lung tumors on PET scans? Multiobserver validation of a gradient-based method using a NSCLC digital PET phantom publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2010.12.055 – volume: 47 start-page: 1808 year: 2006 end-page: 1812 ident: CR33 article-title: 18F-FDG PET definition of gross tumor volume for radiotherapy of non-small cell lung cancer: is a single standardized uptake value threshold approach appropriate? publication-title: J Nucl Med – volume: 40 year: 2013 ident: CR43 article-title: Contourlet-based active contour model for PET image segmentation publication-title: Med Phys doi: 10.1118/1.4816296 – volume: 47 start-page: 263 year: 2013 end-page: 267 ident: CR9 article-title: The prognostic value of (18)F-FDG PET/CT for early recurrence in operable breast cancer: comparison with TNM stage publication-title: Nucl Med Mol Imaging doi: 10.1007/s13139-013-0232-6 – volume: 52 start-page: 1398 year: 2013 end-page: 1404 ident: CR59 article-title: Prognostic value of metabolic metrics extracted from baseline positron emission tomography images in non-small cell lung cancer publication-title: Acta Oncol doi: 10.3109/0284186X.2013.812795 – volume: 264 start-page: 559 year: 2012 end-page: 566 ident: CR13 article-title: Prognostic value of whole-body total lesion glycolysis at pretreatment FDG PET/CT in non-small cell lung cancer publication-title: Radiology doi: 10.1148/radiol.12111148 – volume: 81 start-page: 4179 year: 2012 end-page: 4184 ident: CR17 article-title: Prognostic significance of total lesion glycolysis in patients with advanced non-small cell lung cancer receiving chemotherapy publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2012.07.009 – volume: 16 start-page: 475 year: 2015 end-page: 485 ident: CR58 article-title: Outcomes of modestly Hypofractionated radiation for lung tumors: pre- and mid-treatment positron emission tomography-computed tomography metrics as prognostic factors publication-title: Clin Lung Cancer doi: 10.1016/j.cllc.2015.01.007 – volume: 15 start-page: 21 year: 2015 ident: CR61 article-title: Prediction of occult lymph node metastasis using volume-based PET parameters in small-sized peripheral non-small cell lung cancer publication-title: Cancer Imaging doi: 10.1186/s40644-015-0058-9 – volume: 59 start-page: 4 year: 2004 end-page: 5 ident: CR31 article-title: FDG-PET in radiotherapy treatment planning: Pandora's box? publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2003.10.045 – volume: 41 start-page: 410 year: 2014 end-page: 418 ident: CR62 article-title: PET quantification with a histogram derived total activity metric: superior quantitative consistency compared to total lesion glycolysis with absolute or relative SUV thresholds in phantoms and lung cancer patients publication-title: Nucl Med Biol doi: 10.1016/j.nucmedbio.2014.02.006 – volume: 63 start-page: 1016 year: 2005 ident: 493_CR29 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2005.04.021 – volume: 205 start-page: 623 year: 2015 ident: 493_CR14 publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.14.13847 – volume: 81 start-page: e439 year: 2011 ident: 493_CR24 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2011.03.031 – ident: 493_CR36 doi: 10.1177/153303460700600207 – volume: 55 start-page: 1584 year: 2014 ident: 493_CR22 publication-title: J Nucl Med doi: 10.2967/jnumed.114.142919 – volume: 55 start-page: 884 year: 2014 ident: 493_CR20 publication-title: J Nucl Med doi: 10.2967/jnumed.113.133801 – volume: 16 start-page: 475 year: 2015 ident: 493_CR58 publication-title: Clin Lung Cancer doi: 10.1016/j.cllc.2015.01.007 – volume: 41 start-page: 410 year: 2014 ident: 493_CR62 publication-title: Nucl Med Biol doi: 10.1016/j.nucmedbio.2014.02.006 – volume: 52 start-page: 1550 year: 2011 ident: 493_CR7 publication-title: J Nucl Med doi: 10.2967/jnumed.111.088914 – volume: 47 start-page: 1808 year: 2006 ident: 493_CR33 publication-title: J Nucl Med – volume: 47 start-page: 263 year: 2013 ident: 493_CR9 publication-title: Nucl Med Mol Imaging doi: 10.1007/s13139-013-0232-6 – volume: 40 year: 2013 ident: 493_CR43 publication-title: Med Phys doi: 10.1118/1.4816296 – volume: 54 start-page: 341 year: 2013 ident: 493_CR49 publication-title: J Nucl Med doi: 10.2967/jnumed.112.108837 – volume: 81 start-page: 4179 year: 2012 ident: 493_CR17 publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2012.07.009 – ident: 493_CR45 doi: 10.1118/1.4929561 – volume: 109 start-page: 71 year: 2013 ident: 493_CR63 publication-title: Radiother Oncol doi: 10.1016/j.radonc.2013.08.033 – ident: 493_CR4 doi: 10.1007/s13139-012-0181-5 – volume: 42 start-page: 241 year: 2015 ident: 493_CR19 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-014-2903-7 – volume: 35 start-page: 237 year: 2010 ident: 493_CR25 publication-title: Clin Nucl Med doi: 10.1097/RLU.0b013e3181d18eb0 – volume: 34 start-page: 1427 year: 2007 ident: 493_CR38 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-006-0363-4 – volume: 81 start-page: 615 year: 2011 ident: 493_CR27 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2010.06.044 – volume: 46 start-page: 1342 year: 2005 ident: 493_CR35 publication-title: J Nucl Med – volume: 75 start-page: 1468 year: 2009 ident: 493_CR64 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2009.01.019 – volume: 41 start-page: 1553 year: 2014 ident: 493_CR6 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-014-2746-2 – volume: 2010 year: 2010 ident: 493_CR46 publication-title: Int J Biomed Imaging doi: 10.1155/2010/105610 – volume: 53 start-page: 4 year: 2012 ident: 493_CR1 publication-title: J Nucl Med doi: 10.2967/jnumed.111.093443 – volume: 69 start-page: 268 year: 2014 ident: 493_CR52 publication-title: Clin Radiol doi: 10.1016/j.crad.2013.10.010 – volume: 15 start-page: 21 year: 2015 ident: 493_CR61 publication-title: Cancer Imaging doi: 10.1186/s40644-015-0058-9 – volume: 52 start-page: 1398 year: 2013 ident: 493_CR59 publication-title: Acta Oncol doi: 10.3109/0284186X.2013.812795 – volume: 41 start-page: 50 year: 2014 ident: 493_CR15 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-013-2530-8 – volume: 77 start-page: 301 year: 2010 ident: 493_CR47 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2009.08.018 – volume: 54 start-page: 1725 year: 2013 ident: 493_CR18 publication-title: J Nucl Med doi: 10.2967/jnumed.112.117697 – volume: 59 start-page: 4 year: 2004 ident: 493_CR31 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2003.10.045 – ident: 493_CR10 doi: 10.2967/jnumed.108.058461 – ident: 493_CR50 doi: 10.1109/TSMC.1979.4310076 – volume: 57 start-page: 849 year: 2016 ident: 493_CR23 publication-title: J Nucl Med doi: 10.2967/jnumed.115.167684 – volume: 25 start-page: 406 year: 2011 ident: 493_CR53 publication-title: Ann Nucl Med doi: 10.1007/s12149-011-0478-y – volume: 52 start-page: 339 year: 2002 ident: 493_CR30 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/S0360-3016(01)01824-7 – volume: 264 start-page: 559 year: 2012 ident: 493_CR13 publication-title: Radiology doi: 10.1148/radiol.12111148 – volume: 56 start-page: 452 year: 2015 ident: 493_CR51 publication-title: J Nucl Med doi: 10.2967/jnumed.114.146381 – volume: 81 start-page: 209 year: 2006 ident: 493_CR28 publication-title: Radiother Oncol doi: 10.1016/j.radonc.2006.09.011 – volume: 21 start-page: 589 year: 2014 ident: 493_CR16 publication-title: Ann Surg Oncol doi: 10.1245/s10434-013-3270-5 – volume: 24 start-page: 3091 year: 2014 ident: 493_CR54 publication-title: Biomed Mater Eng – ident: 493_CR48 doi: 10.1007/s00259-010-1688-6 – volume: 51 start-page: 1368 year: 2010 ident: 493_CR44 publication-title: J Nucl Med doi: 10.2967/jnumed.110.078501 – volume: 36 start-page: 1187 year: 2015 ident: 493_CR21 publication-title: Nucl Med Commun doi: 10.1097/MNM.0000000000000382 – volume: 22 start-page: 1226 year: 2012 ident: 493_CR12 publication-title: Int J Gynecol Cancer doi: 10.1097/IGC.0b013e318260a905 – volume: 14 start-page: 1 year: 2013 ident: 493_CR8 publication-title: Korean J Radiol doi: 10.3348/kjr.2013.14.1.1 – ident: 493_CR5 doi: 10.2967/jnumed.113.131847 – volume: 78 start-page: 219 year: 2012 ident: 493_CR56 publication-title: Lung Cancer doi: 10.1016/j.lungcan.2012.08.016 – volume: 32 start-page: 5087 year: 2012 ident: 493_CR55 publication-title: Anticancer Res – volume: 36 start-page: 782 year: 2015 ident: 493_CR41 publication-title: Nucl Med Commun doi: 10.1097/MNM.0000000000000317 – volume: 80 start-page: 2505 year: 1997 ident: 493_CR32 publication-title: Cancer doi: 10.1002/(SICI)1097-0142(19971215)80:12+<2505::AID-CNCR24>3.0.CO;2-F – ident: 493_CR11 doi: 10.1245/s10434-009-0719-7 – volume: 60 start-page: 1419 year: 2004 ident: 493_CR26 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2004.05.037 – ident: 493_CR39 doi: 10.2214/AJR.13.11456 – volume: 82 start-page: 1164 year: 2012 ident: 493_CR37 publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2010.12.055 – volume: 19 start-page: 69 year: 2012 ident: 493_CR40 publication-title: Acad Radiol doi: 10.1016/j.acra.2011.08.020 – volume: 7 start-page: 359 year: 1998 ident: 493_CR42 publication-title: IEEE Trans Image Process doi: 10.1109/83.661186 – volume: 41 start-page: 186 year: 2013 ident: 493_CR65 publication-title: J Nucl Med Technol doi: 10.2967/jnmt.113.122952 – ident: 493_CR2 doi: 10.1016/S1095-0397(99)00016-3 – volume: 257 start-page: 364 year: 2013 ident: 493_CR34 publication-title: Ann Surg doi: 10.1097/SLA.0b013e318262a6ec – volume: 39 start-page: 39 year: 2012 ident: 493_CR3 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-011-1936-4 – volume: 33 start-page: 613 year: 2012 ident: 493_CR57 publication-title: Nucl Med Commun doi: 10.1097/MNM.0b013e328351d4f5 – ident: 493_CR60 doi: 10.1097/COC.0000000000000070 |
SSID | ssj0000329037 |
Score | 2.5195851 |
SecondaryResourceType | review_article |
Snippet | Numerous methods to segment tumors using
18
F-fluorodeoxyglucose positron emission tomography (FDG PET) have been introduced. Metabolic tumor volume (MTV)... Numerous methods to segment tumors using F-fluorodeoxyglucose positron emission tomography (FDG PET) have been introduced. Metabolic tumor volume (MTV) refers... Numerous methods to segment tumors using 18F-fluorodeoxyglucose positron emission tomography (FDG PET) have been introduced. Metabolic tumor volume (MTV)... Numerous methods to segment tumors using 18Ffluorodeoxyglucose positron emission tomography (FDG PET) have been introduced. Metabolic tumor volume (MTV) refers... |
SourceID | nrf pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5 |
SubjectTerms | Cardiology Image segmentation Imaging Measurement methods Medicine Medicine & Public Health Metabolism Nuclear Medicine Oncology Orthopedics Positron emission Radiation therapy Radiology Review Tomography Tumors 방사선과학 |
Title | Current Methods to Define Metabolic Tumor Volume in Positron Emission Tomography: Which One is Better? |
URI | https://link.springer.com/article/10.1007/s13139-017-0493-6 https://www.ncbi.nlm.nih.gov/pubmed/29391907 https://www.proquest.com/docview/1989949157 https://www.proquest.com/docview/1993990248 https://pubmed.ncbi.nlm.nih.gov/PMC5777960 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002315567 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Nuclear Medicine and Molecular Imaging , 2018, 52(1), , pp.5-15 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6xTUK8IH4TGJNBPIEi5Ycdx7ygFloGqIOHFsaTlTg2jbYlKG3_f-7SJKMwkHiyFNuRk-_sfM7dfQZ4HmShi_JM-rxQlJKjlJ-nPPVdxGXkhOU2omzk2UlyvOAfTsVpl8e96qPde5dku1JfJrvFyFZ8WlWR1cZ-sgcHguwHjXgRjYYfK0EcqaDVyqTTlvyYS957M6-6y873aK9q3FVU88-Iyd_cpu3XaHoLbnY0ko22uN-Ga7a6A9dnnaP8LrhOd4nN2hOiV2xds7fWYR1dQeDPS8Pmm4u6YV_a9YmVFftMAVxNXbEJgk9_0di8vugkrV-xr8vSLNknvEO5YuM2C-j1PVhMJ_M3x353pIJvRCTXvsuCAhmFNFGQF0VKem0qD6xElmcDJ63IUulwS5nx1BmVmUJKp5QJRWrSQpowvg_7VV3Zh8C44U5SV2kTrgIEXGSFTQ1PXBFmsfAg6F-sNp3eOB17ca4vlZIJC41YaMJCJx68GLr82Ipt_KvxM0RLn5lSk0Q2ld9rfdZo3Ai81xFuhNAMPDjswdTd5FxpChNTXIVCevB0qMY3S76SrLL1htootFsSfPPgwRb7YUjIkBTyKOwtd6xiaEDj2a2pymUr3S2klLhn9OBlbz-_DOtvT_rov1o_hhtI6tJtZPkh7K-bjX2CxGmdH8HBaDoen1D57tvHyVE7cX4CXYwRWg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFH6iUwm4sC-BAgZxAqXK4sQ2F1SgZUo7hUMK5WQljs1E0yYok7nw63nOMsOUgtRTpHiR7Xx2Pvu99xngpZf6JshS5tJc2JAcIdyMU-6agLLARJrqwEYjT47i8TH9dBKd9HHc88HbfTBJtiv1KtgtRLbi2lUVWW3oxhuwSX3O6Qg2dz5-P1gdrXhhILxWLdPet-SGlNHBnnlRPWt_pI2yNheRzb99Js8ZTtv_0d5NSIaedG4os-1Fk22rX-dEHi_Z1Vtwo-enZKcD1G24oss7cHXSW-DvgukFncikvXp6TpqKfNAG0-wbRNRpoUiyOKtq8rVd-EhRki_WM6yuSrKLqLLHcySpznqt7Dfk27RQU_IZayjm5F0bXvT2Hhzv7Sbvx25_V4OrooA1rkm9HKkKU4GX5Tm3QnAi8zRD-qg9w3SUcmZwr5pSbpRIVc6YEUL5EVc8Z8oP78OorEr9EAhV1DBblOmYCg-RFKW55orGJvfTMHLAG76XVL2Qub1P41SuJJjt-EkcP2nHT8YOvFoW-dmpePwv8wsEgZypQlrtbfv8UclZLXGHsS8D3GEhuhzYGjAi-1k_l9b_TFDhR8yB58tkHFlrhElLXS1sHoETwirJOfCgg9SySUi9BBI0LM3WwLbMYNuznlIW01YTPGKM4WbUgdcDov5o1r96-uhSuZ_BtXEyOZSH-0cHj-E6Mkfeua9vwaipF_oJsrMme9rPxt-sLy38 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RIlVcUHmHFjCIEyhqHk4cc0GFdtUCW3rYhd6sxLHZqG1SZbP_n5m8ykJB4hQptiMnM7a_ycx8A_DaS30bZKlweS4pJUdKN0t44tqAi8BGhpuAspGnJ_HRnH86i876OqfLIdp9cEl2OQ3E0lQ2e1e53btOfAsRubi0wyLCDd14A25zPKrJ-poH--NPFi8MpNfyZlLlJTfkgg-ezZuesnY2bZS1vQl2_hk9-ZsLtT2ZJttwt4eUbL_TgXtwy5T3YWvaO80fgO05mNi0rRa9ZE3FDozFNrqDSnBRaDZbXVY1-9buVawo2SkFc9VVyQ5REeiPGptVlz299Tv2fVHoBfuKTyiW7EObEfT-Icwnh7OPR25fXsHVUSAa16ZejuhC6MDL8jwh7jaZeUYg4jOeFSZKE2HRvEx5YrVMdS6ElVL7UaKTXGg_fASbZVWaJ8C45lbQUGFiLj0UfpTmJtE8trmfhpED3vBhle65x6kExoW6Zk0mWSiUhSJZqNiBN-OQq45441-dX6G01LkuFNFl0_VHpc5rhUbBsQrQKEI1cGB3EKbqF-pSUciY5NKPhAMvx2b8suQ3SUtTraiPRB0m8jcHHneyH6eEaEkipsLRYk0rxg40n_WWsli0NN6REALtRwfeDvrzy7T-9qZP_6v3C9g6PZioL8cnn3fgDmK9pAs434XNpl6ZZ4inmux5u2Z-ArMxFXI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Current+Methods+to+Define+Metabolic+Tumor+Volume+in+Positron+Emission+Tomography%3A+Which+One+is+Better%3F&rft.jtitle=Nuclear+medicine+and+molecular+imaging&rft.au=Im%2C+Hyung-Jun&rft.au=Bradshaw%2C+Tyler&rft.au=Solaiyappan%2C+Meiyappan&rft.au=Cho%2C+Steve+Y.&rft.date=2018-02-01&rft.issn=1869-3474&rft.eissn=1869-3482&rft.volume=52&rft.issue=1&rft.spage=5&rft.epage=15&rft_id=info:doi/10.1007%2Fs13139-017-0493-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13139_017_0493_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1869-3474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1869-3474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1869-3474&client=summon |