Machine learning algorithms enhance the specificity of cancer biomarker detection using SERS-based immunoassays in microfluidic chips

Specificity is a challenge in liquid biopsy and early diagnosis of various diseases. There are only a few biomarkers that have been approved for use in cancer diagnostics; however, these biomarkers suffer from a lack of high specificity. Moreover, determining the exact type of disorder for patients...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 9; no. 4; pp. 1859 - 1868
Main Authors Banaei, Nariman, Moshfegh, Javad, Mohseni-Kabir, Arman, Houghton, Jean Marie, Sun, Yubing, Kim, Byung
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 15.01.2019
The Royal Society of Chemistry
Subjects
Online AccessGet full text
ISSN2046-2069
2046-2069
DOI10.1039/c8ra08930b

Cover

Abstract Specificity is a challenge in liquid biopsy and early diagnosis of various diseases. There are only a few biomarkers that have been approved for use in cancer diagnostics; however, these biomarkers suffer from a lack of high specificity. Moreover, determining the exact type of disorder for patients with positive liquid biopsy tests is difficult, especially when the aberrant expression of one single biomarker can be found in various other disorders. In this study, a SERS-based protein biomarker detection platform in a microfluidic chip and two machine learning algorithms (K-nearest neighbor and classification tree) are used to improve the reproducibility and specificity of the SERS-based liquid biopsy assay. Applying machine learning algorithms to the analysis of the expression level data of 5 protein biomarkers (CA19-9, HE4, MUC4, MMP7, and mesothelin) in pancreatic cancer patients, ovarian cancer patients, pancreatitis patients, and healthy individuals improves the chance of recognition for one specific disorder among the aforementioned diseases with overlapping protein biomarker changes. Our results demonstrate a convenient but highly specific approach for cancer diagnostics using serum samples. Machine learning algorithms enhance the specificity of cancer biomarkers detection using SERS-based immunoassays.
AbstractList Specificity is a challenge in liquid biopsy and early diagnosis of various diseases. There are only a few biomarkers that have been approved for use in cancer diagnostics; however, these biomarkers suffer from a lack of high specificity. Moreover, determining the exact type of disorder for patients with positive liquid biopsy tests is difficult, especially when the aberrant expression of one single biomarker can be found in various other disorders. In this study, a SERS-based protein biomarker detection platform in a microfluidic chip and two machine learning algorithms (K-nearest neighbor and classification tree) are used to improve the reproducibility and specificity of the SERS-based liquid biopsy assay. Applying machine learning algorithms to the analysis of the expression level data of 5 protein biomarkers (CA19-9, HE4, MUC4, MMP7, and mesothelin) in pancreatic cancer patients, ovarian cancer patients, pancreatitis patients, and healthy individuals improves the chance of recognition for one specific disorder among the aforementioned diseases with overlapping protein biomarker changes. Our results demonstrate a convenient but highly specific approach for cancer diagnostics using serum samples.
Specificity is a challenge in liquid biopsy and early diagnosis of various diseases. There are only a few biomarkers that have been approved for use in cancer diagnostics; however, these biomarkers suffer from a lack of high specificity. Moreover, determining the exact type of disorder for patients with positive liquid biopsy tests is difficult, especially when the aberrant expression of one single biomarker can be found in various other disorders. In this study, a SERS-based protein biomarker detection platform in a microfluidic chip and two machine learning algorithms (K-nearest neighbor and classification tree) are used to improve the reproducibility and specificity of the SERS-based liquid biopsy assay. Applying machine learning algorithms to the analysis of the expression level data of 5 protein biomarkers (CA19-9, HE4, MUC4, MMP7, and mesothelin) in pancreatic cancer patients, ovarian cancer patients, pancreatitis patients, and healthy individuals improves the chance of recognition for one specific disorder among the aforementioned diseases with overlapping protein biomarker changes. Our results demonstrate a convenient but highly specific approach for cancer diagnostics using serum samples. Machine learning algorithms enhance the specificity of cancer biomarkers detection using SERS-based immunoassays.
Specificity is a challenge in liquid biopsy and early diagnosis of various diseases. There are only a few biomarkers that have been approved for use in cancer diagnostics; however, these biomarkers suffer from a lack of high specificity. Moreover, determining the exact type of disorder for patients with positive liquid biopsy tests is difficult, especially when the aberrant expression of one single biomarker can be found in various other disorders. In this study, a SERS-based protein biomarker detection platform in a microfluidic chip and two machine learning algorithms (K-nearest neighbor and classification tree) are used to improve the reproducibility and specificity of the SERS-based liquid biopsy assay. Applying machine learning algorithms to the analysis of the expression level data of 5 protein biomarkers (CA19-9, HE4, MUC4, MMP7, and mesothelin) in pancreatic cancer patients, ovarian cancer patients, pancreatitis patients, and healthy individuals improves the chance of recognition for one specific disorder among the aforementioned diseases with overlapping protein biomarker changes. Our results demonstrate a convenient but highly specific approach for cancer diagnostics using serum samples. Machine learning algorithms enhance the specificity of cancer biomarkers detection using SERS-based immunoassays.
Specificity is a challenge in liquid biopsy and early diagnosis of various diseases. There are only a few biomarkers that have been approved for use in cancer diagnostics; however, these biomarkers suffer from a lack of high specificity. Moreover, determining the exact type of disorder for patients with positive liquid biopsy tests is difficult, especially when the aberrant expression of one single biomarker can be found in various other disorders. In this study, a SERS-based protein biomarker detection platform in a microfluidic chip and two machine learning algorithms (K-nearest neighbor and classification tree) are used to improve the reproducibility and specificity of the SERS-based liquid biopsy assay. Applying machine learning algorithms to the analysis of the expression level data of 5 protein biomarkers (CA19-9, HE4, MUC4, MMP7, and mesothelin) in pancreatic cancer patients, ovarian cancer patients, pancreatitis patients, and healthy individuals improves the chance of recognition for one specific disorder among the aforementioned diseases with overlapping protein biomarker changes. Our results demonstrate a convenient but highly specific approach for cancer diagnostics using serum samples.Specificity is a challenge in liquid biopsy and early diagnosis of various diseases. There are only a few biomarkers that have been approved for use in cancer diagnostics; however, these biomarkers suffer from a lack of high specificity. Moreover, determining the exact type of disorder for patients with positive liquid biopsy tests is difficult, especially when the aberrant expression of one single biomarker can be found in various other disorders. In this study, a SERS-based protein biomarker detection platform in a microfluidic chip and two machine learning algorithms (K-nearest neighbor and classification tree) are used to improve the reproducibility and specificity of the SERS-based liquid biopsy assay. Applying machine learning algorithms to the analysis of the expression level data of 5 protein biomarkers (CA19-9, HE4, MUC4, MMP7, and mesothelin) in pancreatic cancer patients, ovarian cancer patients, pancreatitis patients, and healthy individuals improves the chance of recognition for one specific disorder among the aforementioned diseases with overlapping protein biomarker changes. Our results demonstrate a convenient but highly specific approach for cancer diagnostics using serum samples.
Author Mohseni-Kabir, Arman
Kim, Byung
Banaei, Nariman
Sun, Yubing
Moshfegh, Javad
Houghton, Jean Marie
AuthorAffiliation University of Massachusetts Medical School
Department of Electrical and Computer Engineering
Department of Medicine
Department of Chemical Engineering
Institute for Applied Life Sciences
University of Massachusetts
Department of Mechanical and Industrial Engineering
Department of Physics
AuthorAffiliation_xml – sequence: 0
  name: Department of Mechanical and Industrial Engineering
– sequence: 0
  name: Department of Physics
– sequence: 0
  name: Department of Medicine
– sequence: 0
  name: University of Massachusetts Medical School
– sequence: 0
  name: Institute for Applied Life Sciences
– sequence: 0
  name: Department of Electrical and Computer Engineering
– sequence: 0
  name: Department of Chemical Engineering
– sequence: 0
  name: University of Massachusetts
Author_xml – sequence: 1
  givenname: Nariman
  surname: Banaei
  fullname: Banaei, Nariman
– sequence: 2
  givenname: Javad
  surname: Moshfegh
  fullname: Moshfegh, Javad
– sequence: 3
  givenname: Arman
  surname: Mohseni-Kabir
  fullname: Mohseni-Kabir, Arman
– sequence: 4
  givenname: Jean Marie
  surname: Houghton
  fullname: Houghton, Jean Marie
– sequence: 5
  givenname: Yubing
  surname: Sun
  fullname: Sun, Yubing
– sequence: 6
  givenname: Byung
  surname: Kim
  fullname: Kim, Byung
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35516124$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v1DAQxS1UREvphTvIEhcECvhP7CQXpLIqtFIRUgtny3EmG5fETu0EtB-A742XLdvtXvDFluY3zzPvPUUHzjtA6Dkl7yjh1XtTBk3KipP6ETpiJJcZI7I62HkfopMYb0g6UlAm6RN0yIWgkrL8CP3-ok1nHeAedHDWLbHulz7YqRsiBtdpZwBPHeA4grGtNXZaYd9isy4EXFs_6PAjvRqYwEzWOzzHtcz12dV1VusIDbbDMDuvY9SriK3DgzXBt_1sG2tw-n2Mz9DjVvcRTu7uY_T909m3xXl2-fXzxeL0MjOCFVPWcmHyXEPTMM65AMaNLGtaCKCNrAuqpWkFFEw2zEhSSwlSk4pATtuyqBvKj9Hbje7sRr36pftejcGmDVaKErX2U937megPG3qc6wEaA24K-r7Da6seVpzt1NL_VBURVZGLJPD6TiD42xnipAYbDfS9duDnqJiUlJSUlcX_UcYoyblkVUJf7aE3fg4u-aYYlWWZE8FJol7uDr-d-l_0CSAbIIURY4BWpWz1OsG0i-23hizKq9O_hnxMLW_2WvbdewC_2MAhmi234-4fQgnbJg
CitedBy_id crossref_primary_10_1002_smll_202203169
crossref_primary_10_1002_jrs_5726
crossref_primary_10_1016_j_optlastec_2023_109911
crossref_primary_10_1016_j_talanta_2021_122823
crossref_primary_10_1021_acs_jpclett_2c02193
crossref_primary_10_1246_bcsj_20200359
crossref_primary_10_1002_adhm_202402038
crossref_primary_10_3390_s25051566
crossref_primary_10_1039_D1RA00285F
crossref_primary_10_1109_JSEN_2023_3330509
crossref_primary_10_3390_diagnostics11050742
crossref_primary_10_1007_s00500_023_08995_z
crossref_primary_10_1016_j_trac_2024_117613
crossref_primary_10_1002_ansa_202400013
crossref_primary_10_1002_adhm_202201442
crossref_primary_10_1039_D1AY00491C
crossref_primary_10_1016_j_talanta_2023_124818
crossref_primary_10_1016_j_taap_2021_115684
crossref_primary_10_1088_2515_7647_ab9714
crossref_primary_10_15421_012441
crossref_primary_10_1021_acsomega_3c09247
crossref_primary_10_3390_bios13110977
crossref_primary_10_1080_07388551_2020_1808582
crossref_primary_10_34133_2020_7949037
crossref_primary_10_1016_j_mtcomm_2024_109432
crossref_primary_10_1021_acs_chemrev_2c00897
crossref_primary_10_12688_f1000research_149263_1
crossref_primary_10_12688_f1000research_149263_2
crossref_primary_10_1016_j_heliyon_2024_e30499
crossref_primary_10_3390_s21165519
crossref_primary_10_1021_acs_jpca_1c09873
crossref_primary_10_1021_acsabm_3c01253
crossref_primary_10_1177_10732748211033401
crossref_primary_10_1021_acsami_3c03212
crossref_primary_10_1177_00037028211034543
crossref_primary_10_1088_1361_6528_ab72b7
crossref_primary_10_56809_icujtas_1433853
crossref_primary_10_1016_j_microc_2025_112787
crossref_primary_10_1007_s40846_024_00859_7
crossref_primary_10_1016_j_bios_2021_113666
crossref_primary_10_1177_00202940221103305
crossref_primary_10_1002_jrs_6241
crossref_primary_10_1007_s11468_024_02370_w
crossref_primary_10_3390_bios13030328
crossref_primary_10_1038_s41578_020_0213_1
crossref_primary_10_3390_mi14040826
crossref_primary_10_3390_bioengineering9090458
crossref_primary_10_1016_j_trac_2019_115796
crossref_primary_10_1016_j_saa_2024_124048
crossref_primary_10_1080_03067319_2024_2339453
crossref_primary_10_1016_j_microc_2020_105632
crossref_primary_10_1002_EXP_20220072
crossref_primary_10_1007_s12008_023_01707_9
crossref_primary_10_1016_j_talanta_2022_123327
crossref_primary_10_1016_j_ccr_2024_216289
crossref_primary_10_3390_app13105882
crossref_primary_10_1016_j_saa_2022_122218
crossref_primary_10_1088_1361_6463_ab0de5
crossref_primary_10_1080_10408363_2020_1857681
crossref_primary_10_1021_acs_est_4c06737
crossref_primary_10_3390_cells11050905
crossref_primary_10_1093_jamia_ocac218
crossref_primary_10_1007_s11831_024_10065_y
Cites_doi 10.1038/sj.bmt.1702820
10.1073/pnas.1704961114
10.1016/j.ygyno.2008.04.041
10.3390/ijms16022956
10.1016/j.bios.2015.05.005
10.1200/JCO.2001.19.4.1118
10.1021/ac901711f
10.1016/j.ygyno.2008.08.031
10.1016/j.bios.2010.03.033
10.7554/eLife.00747
10.1158/1078-0432.CCR-05-1477
10.1073/pnas.0813327106
10.3748/wjg.v22.i3.1202
10.3892/mmr.2015.4062
10.1309/F1B64CL7H8VJKEAF
10.1038/ajg.2011.22
10.1038/modpathol.3800646
10.1158/1055-9965.EPI-06-0779
10.3109/09553002.2014.892229
10.1039/c2lc40353f
10.1201/9781315139470
10.1006/gyno.2000.5811
10.1093/annonc/mdp332
10.1073/pnas.94.4.1402
10.1200/JCO.2007.13.5392
10.1073/pnas.0502178102
10.1016/j.molonc.2015.12.008
10.1371/journal.pone.0128836
10.1088/1361-6528/aa8e8c
10.1002/anie.201205748
10.1016/j.cap.2010.11.051
10.1364/OE.19.013565
10.1002/adma.201002369
10.1097/MPA.0000000000000368
10.1016/j.humpath.2012.07.017
10.5858/arpa.2011-0229-OA
10.2165/00002018-200730070-00010
10.1002/jbio.201300084
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2019
This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2019
– notice: This journal is © The Royal Society of Chemistry 2019 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
ADTOC
UNPAY
DOI 10.1039/c8ra08930b
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
AGRICOLA

PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 1868
ExternalDocumentID 10.1039/c8ra08930b
PMC9059745
35516124
10_1039_C8RA08930B
c8ra08930b
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: Unassigned
GroupedDBID -JG
0-7
0R~
53G
AAFWJ
AAHBH
AAIWI
AAJAE
AARTK
AAWGC
AAXHV
ABEMK
ABGFH
ABPDG
ABXOH
ACGFS
ADBBV
ADMRA
AEFDR
AENEX
AESAV
AFLYV
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
EBS
EE0
EF-
EJD
GROUPED_DOAJ
H13
HZ~
H~N
J3I
M~E
O9-
OK1
PGMZT
R7C
R7G
RCNCU
RPM
RPMJG
RRC
RSCEA
RVUXY
SLH
SMJ
ZCN
AAYXX
ABIQK
AFPKN
CITATION
NPM
7SR
8BQ
8FD
JG9
7S9
L.6
7X8
5PM
AAEMU
ABASK
ABJNI
ADTOC
AETIL
AFRZK
AKMSF
ANBJS
ECGLT
J3G
J3H
RAOCF
UNPAY
YAE
ID FETCH-LOGICAL-c527t-f35c44aedd23335e23c68b175e1d6b71a6cf5e726d2c60b66e6a090e41f87bd13
IEDL.DBID UNPAY
ISSN 2046-2069
IngestDate Sun Oct 26 03:09:26 EDT 2025
Tue Sep 30 16:29:35 EDT 2025
Thu Sep 04 20:20:59 EDT 2025
Thu Oct 02 11:59:37 EDT 2025
Mon Jun 30 05:27:03 EDT 2025
Mon Jul 21 06:03:49 EDT 2025
Thu Apr 24 23:11:23 EDT 2025
Wed Oct 01 05:00:59 EDT 2025
Tue Dec 17 21:00:16 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This journal is © The Royal Society of Chemistry.
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c527t-f35c44aedd23335e23c68b175e1d6b71a6cf5e726d2c60b66e6a090e41f87bd13
Notes 10.1039/c8ra08930b
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9230-7514
0000-0002-6831-3383
OpenAccessLink https://proxy.k.utb.cz/login?url=https://pubs.rsc.org/en/content/articlepdf/2019/ra/c8ra08930b
PMID 35516124
PQID 2168840530
PQPubID 2047525
PageCount 1
ParticipantIDs proquest_miscellaneous_2661081287
proquest_journals_2168840530
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9059745
pubmed_primary_35516124
crossref_citationtrail_10_1039_C8RA08930B
proquest_miscellaneous_2221043629
unpaywall_primary_10_1039_c8ra08930b
crossref_primary_10_1039_C8RA08930B
rsc_primary_c8ra08930b
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-January-15
PublicationDateYYYYMMDD 2019-01-15
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-January-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle RSC advances
PublicationTitleAlternate RSC Adv
PublicationYear 2019
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Bozic (C8RA08930B-(cit2)/*[position()=1]) 2013; 2
Tang (C8RA08930B-(cit19)/*[position()=1]) 2015; 8
Wang (C8RA08930B-(cit41)/*[position()=1]) 2009; 81
Tayeb (C8RA08930B-(cit44)/*[position()=1]) 2017
Argani (C8RA08930B-(cit25)/*[position()=1]) 2001; 7
Breiman (C8RA08930B-(cit42)/*[position()=1]) 2017
Kuhlmann (C8RA08930B-(cit20)/*[position()=1]) 2007; 16
Zavaleta (C8RA08930B-(cit35)/*[position()=1]) 2009; 106
Cohen (C8RA08930B-(cit5)/*[position()=1]) 2017; 114
Yamamoto (C8RA08930B-(cit22)/*[position()=1]) 2001; 19
Huang (C8RA08930B-(cit31)/*[position()=1]) 2016; 10
Dinish (C8RA08930B-(cit34)/*[position()=1]) 2014; 7
Simmons (C8RA08930B-(cit14)/*[position()=1]) 2013; 27
Huang (C8RA08930B-(cit16)/*[position()=1]) 2015; 16
O'Neal (C8RA08930B-(cit15)/*[position()=1]) 2013; 44
McKINNON (C8RA08930B-(cit17)/*[position()=1]) 2015; 12
Patz Jr (C8RA08930B-(cit8)/*[position()=1]) 2007; 25
Kim (C8RA08930B-(cit3)/*[position()=1]) 2015; 27
Chari (C8RA08930B-(cit1)/*[position()=1]) 2015; 44
Misek (C8RA08930B-(cit9)/*[position()=1]) 2011; 2011
Lamy (C8RA08930B-(cit18)/*[position()=1]) 2015; 10
Feng (C8RA08930B-(cit37)/*[position()=1]) 2010; 25
Gao (C8RA08930B-(cit40)/*[position()=1]) 2015; 72
Hassan (C8RA08930B-(cit26)/*[position()=1]) 2005; 124
Banaei (C8RA08930B-(cit32)/*[position()=1]) 2017; 28
Engelen (C8RA08930B-(cit11)/*[position()=1]) 2000; 78
Moore (C8RA08930B-(cit13)/*[position()=1]) 2009; 112
Guarrotxena (C8RA08930B-(cit36)/*[position()=1]) 2010; 22
Kim (C8RA08930B-(cit43)/*[position()=1]) 2011; 11
Prasath (C8RA08930B-(cit45)/*[position()=1]) 2017
Beeharry (C8RA08930B-(cit30)/*[position()=1]) 2016; 22
Wilson (C8RA08930B-(cit21)/*[position()=1]) 1997; 94
Hassan (C8RA08930B-(cit29)/*[position()=1]) 2006; 12
Mor (C8RA08930B-(cit10)/*[position()=1]) 2005; 102
Lee (C8RA08930B-(cit39)/*[position()=1]) 2012; 12
Legrand (C8RA08930B-(cit7)/*[position()=1]) 2001; 27
Cohen (C8RA08930B-(cit4)/*[position()=1]) 2018
Duffy (C8RA08930B-(cit12)/*[position()=1]) 2009; 21
Hand (C8RA08930B-(cit46)/*[position()=1]) 2007; 30
Havrilesky (C8RA08930B-(cit27)/*[position()=1]) 2008; 110
Lin (C8RA08930B-(cit38)/*[position()=1]) 2011; 19
Schlücker (C8RA08930B-(cit33)/*[position()=1]) 2014; 53
Carrara (C8RA08930B-(cit23)/*[position()=1]) 2011; 106
Horn (C8RA08930B-(cit24)/*[position()=1]) 2013; 137
Chauhan (C8RA08930B-(cit28)/*[position()=1]) 2006; 19
Mäbert (C8RA08930B-(cit6)/*[position()=1]) 2014; 90
Pedregosa (C8RA08930B-(cit47)/*[position()=1]) 2011; 12
References_xml – issn: 2017
  end-page: p 3897-3903
  publication-title: Toward predicting medical conditions using k-nearest neighbors
  doi: Tayeb Pirouz Sun
– issn: 2017
  publication-title: Classification and regression trees
  doi: Breiman
– issn: 2017
  volume-title: Distance and similarity measures effect on the performance of K-nearest neighbor classifier-a review
  doi: Prasath Alfeilat Lasassmeh Hassanat
– volume: 27
  start-page: 621
  issue: 6
  year: 2001
  ident: C8RA08930B-(cit7)/*[position()=1]
  publication-title: Bone Marrow Transplant.
  doi: 10.1038/sj.bmt.1702820
– volume-title: Toward predicting medical conditions using k-nearest neighbors
  year: 2017
  ident: C8RA08930B-(cit44)/*[position()=1]
– volume: 114
  start-page: 10202
  issue: 38
  year: 2017
  ident: C8RA08930B-(cit5)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1704961114
– volume: 110
  start-page: 374
  issue: 3
  year: 2008
  ident: C8RA08930B-(cit27)/*[position()=1]
  publication-title: Gynecol. Oncol.
  doi: 10.1016/j.ygyno.2008.04.041
– volume: 16
  start-page: 2956
  issue: 2
  year: 2015
  ident: C8RA08930B-(cit16)/*[position()=1]
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms16022956
– volume: 8
  start-page: 19014
  issue: 10
  year: 2015
  ident: C8RA08930B-(cit19)/*[position()=1]
  publication-title: Int. J. Clin. Exp. Med.
– volume: 72
  start-page: 230
  year: 2015
  ident: C8RA08930B-(cit40)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2015.05.005
– volume: 19
  start-page: 1118
  issue: 4
  year: 2001
  ident: C8RA08930B-(cit22)/*[position()=1]
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2001.19.4.1118
– volume: 81
  start-page: 9643
  issue: 23
  year: 2009
  ident: C8RA08930B-(cit41)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac901711f
– volume: 12
  start-page: 2825
  year: 2011
  ident: C8RA08930B-(cit47)/*[position()=1]
  publication-title: J. Mach. Learn. Res.
– year: 2017
  ident: C8RA08930B-(cit45)/*[position()=1]
– volume: 27
  start-page: 321
  issue: 4
  year: 2015
  ident: C8RA08930B-(cit3)/*[position()=1]
  publication-title: Chin. J. Cancer Res.
– volume: 112
  start-page: 40
  issue: 1
  year: 2009
  ident: C8RA08930B-(cit13)/*[position()=1]
  publication-title: Gynecol. Oncol.
  doi: 10.1016/j.ygyno.2008.08.031
– volume: 25
  start-page: 2414
  issue: 11
  year: 2010
  ident: C8RA08930B-(cit37)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2010.03.033
– volume: 2
  start-page: e00747
  year: 2013
  ident: C8RA08930B-(cit2)/*[position()=1]
  publication-title: eLife
  doi: 10.7554/eLife.00747
– volume: 12
  start-page: 447
  issue: 2
  year: 2006
  ident: C8RA08930B-(cit29)/*[position()=1]
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-05-1477
– volume: 106
  start-page: 13511
  issue: 32
  year: 2009
  ident: C8RA08930B-(cit35)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0813327106
– volume: 22
  start-page: 1202
  issue: 3
  year: 2016
  ident: C8RA08930B-(cit30)/*[position()=1]
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v22.i3.1202
– volume: 12
  start-page: 5179
  issue: 4
  year: 2015
  ident: C8RA08930B-(cit17)/*[position()=1]
  publication-title: Mol. Med. Rep.
  doi: 10.3892/mmr.2015.4062
– volume: 27
  start-page: 548
  issue: 6
  year: 2013
  ident: C8RA08930B-(cit14)/*[position()=1]
  publication-title: Oncology
– volume: 124
  start-page: 838
  issue: 6
  year: 2005
  ident: C8RA08930B-(cit26)/*[position()=1]
  publication-title: Am. J. Clin. Pathol.
  doi: 10.1309/F1B64CL7H8VJKEAF
– volume: 106
  start-page: 1359
  issue: 7
  year: 2011
  ident: C8RA08930B-(cit23)/*[position()=1]
  publication-title: Am. J. Gastroenterol.
  doi: 10.1038/ajg.2011.22
– volume: 19
  start-page: 1386
  issue: 10
  year: 2006
  ident: C8RA08930B-(cit28)/*[position()=1]
  publication-title: Mod. Pathol.
  doi: 10.1038/modpathol.3800646
– volume: 2011
  start-page: 343582
  year: 2011
  ident: C8RA08930B-(cit9)/*[position()=1]
  publication-title: Int. J. Proteomics
– start-page: eaar3247
  year: 2018
  ident: C8RA08930B-(cit4)/*[position()=1]
  publication-title: Science
– volume: 16
  start-page: 886
  issue: 5
  year: 2007
  ident: C8RA08930B-(cit20)/*[position()=1]
  publication-title: Cancer Epidemiol., Biomarkers Prev.
  doi: 10.1158/1055-9965.EPI-06-0779
– volume: 90
  start-page: 659
  issue: 8
  year: 2014
  ident: C8RA08930B-(cit6)/*[position()=1]
  publication-title: Int. J. Radiat. Biol.
  doi: 10.3109/09553002.2014.892229
– volume: 12
  start-page: 3720
  issue: 19
  year: 2012
  ident: C8RA08930B-(cit39)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/c2lc40353f
– volume-title: Classification and regression trees
  year: 2017
  ident: C8RA08930B-(cit42)/*[position()=1]
  doi: 10.1201/9781315139470
– volume: 78
  start-page: 16
  issue: 1
  year: 2000
  ident: C8RA08930B-(cit11)/*[position()=1]
  publication-title: Gynecol. Oncol.
  doi: 10.1006/gyno.2000.5811
– volume: 21
  start-page: 441
  issue: 3
  year: 2009
  ident: C8RA08930B-(cit12)/*[position()=1]
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdp332
– volume: 94
  start-page: 1402
  issue: 4
  year: 1997
  ident: C8RA08930B-(cit21)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.94.4.1402
– volume: 25
  start-page: 5578
  issue: 35
  year: 2007
  ident: C8RA08930B-(cit8)/*[position()=1]
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2007.13.5392
– volume: 102
  start-page: 7677
  issue: 21
  year: 2005
  ident: C8RA08930B-(cit10)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0502178102
– volume: 10
  start-page: 450
  issue: 3
  year: 2016
  ident: C8RA08930B-(cit31)/*[position()=1]
  publication-title: Mol. Oncol.
  doi: 10.1016/j.molonc.2015.12.008
– volume: 10
  start-page: e0128836
  issue: 6
  year: 2015
  ident: C8RA08930B-(cit18)/*[position()=1]
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0128836
– volume: 28
  start-page: 455101
  issue: 45
  year: 2017
  ident: C8RA08930B-(cit32)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aa8e8c
– volume: 53
  start-page: 4756
  issue: 19
  year: 2014
  ident: C8RA08930B-(cit33)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201205748
– volume: 11
  start-page: 740
  issue: 3
  year: 2011
  ident: C8RA08930B-(cit43)/*[position()=1]
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2010.11.051
– volume: 19
  start-page: 13565
  issue: 14
  year: 2011
  ident: C8RA08930B-(cit38)/*[position()=1]
  publication-title: Opt. Express
  doi: 10.1364/OE.19.013565
– volume: 22
  start-page: 4954
  issue: 44
  year: 2010
  ident: C8RA08930B-(cit36)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201002369
– volume: 44
  start-page: 693
  issue: 5
  year: 2015
  ident: C8RA08930B-(cit1)/*[position()=1]
  publication-title: Pancreas
  doi: 10.1097/MPA.0000000000000368
– volume: 44
  start-page: 734
  issue: 5
  year: 2013
  ident: C8RA08930B-(cit15)/*[position()=1]
  publication-title: Hum. Pathol.
  doi: 10.1016/j.humpath.2012.07.017
– volume: 137
  start-page: 546
  issue: 4
  year: 2013
  ident: C8RA08930B-(cit24)/*[position()=1]
  publication-title: Arch. Pathol. Lab. Med.
  doi: 10.5858/arpa.2011-0229-OA
– volume: 30
  start-page: 621
  issue: 7
  year: 2007
  ident: C8RA08930B-(cit46)/*[position()=1]
  publication-title: Drug Saf.
  doi: 10.2165/00002018-200730070-00010
– volume: 7
  start-page: 3862
  issue: 12
  year: 2001
  ident: C8RA08930B-(cit25)/*[position()=1]
  publication-title: Clin. Cancer Res.
– volume: 7
  start-page: 956
  issue: 11–12
  year: 2014
  ident: C8RA08930B-(cit34)/*[position()=1]
  publication-title: J. Biophotonics
  doi: 10.1002/jbio.201300084
SSID ssj0000651261
Score 2.493715
Snippet Specificity is a challenge in liquid biopsy and early diagnosis of various diseases. There are only a few biomarkers that have been approved for use in cancer...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1859
SubjectTerms Algorithms
Artificial intelligence
Biomarkers
Biopsy
blood serum
Cancer
Chemistry
diagnostic techniques
early diagnosis
immunoassays
liquids
Machine learning
Microfluidics
organ-on-a-chip
Patients
Proteins
Reproducibility
Title Machine learning algorithms enhance the specificity of cancer biomarker detection using SERS-based immunoassays in microfluidic chips
URI https://www.ncbi.nlm.nih.gov/pubmed/35516124
https://www.proquest.com/docview/2168840530
https://www.proquest.com/docview/2221043629
https://www.proquest.com/docview/2661081287
https://pubmed.ncbi.nlm.nih.gov/PMC9059745
https://pubs.rsc.org/en/content/articlepdf/2019/ra/c8ra08930b
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2046-2069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000651261
  issn: 2046-2069
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2046-2069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000651261
  issn: 2046-2069
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2046-2069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000651261
  issn: 2046-2069
  databaseCode: RPM
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Free Journals plus Gold OA Content 2021
  customDbUrl:
  eissn: 2046-2069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000651261
  issn: 2046-2069
  databaseCode: RVUXY
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://pubs.rsc.org/
  providerName: Royal Society of Chemistry
– providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Free Journals plus Gold OA Content 2023
  issn: 2046-2069
  databaseCode: AKBGW
  dateStart: 20170101
  customDbUrl: https://pubs.rsc.org
  isFulltext: true
  eissn: 2046-2069
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000651261
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF3R5FA4lM9SQ4kW0QsHJ2uvvc4eQ9SqQmqFUoLSU7RfTqy6TmQ7QuXO_2bWcdyGIIQ477O8tp-9b7xvZhA6Eb4kSjPuqjhUbqB95fKYhK5iUkHUHFMR2UThi0t2Pg4-T8JJ7c2xuTAwiaKbF-sSwQbCd1ujKSt79X1c6hjCdY_3ctFT_VwQWG6J3ENtFoIUb6H2-PLL4No2lIO4DxjA-KYkKeUPDthehHaU5a5Bcg-m9ATtr7KluPsu0vTBGnT2dN1otZp9ZT256a5K2VU_fivs-N-X9wwd1OoUD9a45-iRyV6g_eGmKdxL9POiMl8aXHebmGGRzhZ5Us5vC2yyueUQBk2JbQandSGByMeLGCs7kGOb7G_9QDnWpqxMYBm2zvsZvjodXbl2SdU4sSkrCxD14q7ASYZvrWcwTleJThSGsy-LV2h8dvp1eO7WnRxcFfpR6cY0VEEgjNY-pTQ0PlWsL0G5GE8zGXmCAVVM5DPgCiOSMcME4cQEXtyPpPboIWpli8wcIQyfDCUU9zgXIlCcSKMJjUgcMyIYk8RBHzePdqrqMue220Y6rbbbKZ8O-6NBdWM_OehDg12ui3v8EXW8Yci0fsGLqe-xPsTGIYUTvm-G4WHY_RaRmcUKMD7E0wEoBP4XDOgjUGUQtzro9Zp0zVSo3cQE_eWgaIuODcCWBt8eyZJ5VSKcExsohg46BLI1-HtKOeik4fLOpd_D3vwb7C16bFlr_0x54TFqlfnKvAOtVspO9Y-jg9qjb-PJdad-P38BkU9GcA
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF3R9FB64LvUUNAieuHgZO2119ljiFpVSK1QS6RyivbLiUXqRLYjVO78b2Ycx20IQojzPstr-9n7xvtmhpBjFWpmrJC-SWPjRzY0vkxZ7BuhDUTNKVcJJgqfX4izUfTpOr5uvDmYCwOTKLtFuSoR7CB8xxpNedVr7uPCphCuB7JXqJ7pF4rBcsv0DtkVMUjxDtkdXXwefMWGchD3AQOEXJck5fLeAZuL0Jay3DZI7sCU9sneMl-o2-9qNru3Bp0-XjVarWdfW0--dZeV7pofvxV2_O_Le0IeNeqUDla4p-SBy5-RveG6Kdxz8vO8Nl862nSbmFA1m8yLrJrelNTlU-QQBU1JMYMTXUgg8uk8pQYHCorJ_ugHKqh1VW0Cyyk67yf06uTyyscl1dIMU1bmIOrVbUmznN6gZzCdLTObGQpnX5QvyOj05MvwzG86OfgmDpPKT3lsokg5a0POeexCbkRfg3JxgRU6CZQAqrgkFMAVwbQQTigmmYuCtJ9oG_AD0snnuTskFD4ZRhkZSKlUZCTTzjKesDQVTAmhmUc-rB_t2DRlzrHbxmxcb7dzOR72Lwf1jf3okfctdrEq7vFH1NGaIePmBS_HYSD6EBvHHE74rh2Gh4H7LSp38yVgQoinI1AI8i8Y0EegyiBu9cjLFenaqXDcxAT95ZFkg44tAEuDb47k2bQuES4ZBoqxRw6AbC3-jlIeOW65vHXpd7BX_wZ7TR4ia_HPVBAfkU5VLN0b0GqVftu8kb8AzxxDqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+algorithms+enhance+the+specificity+of+cancer+biomarker+detection+using+SERS-based+immunoassays+in+microfluidic+chips&rft.jtitle=RSC+advances&rft.au=Banaei%2C+Nariman&rft.au=Moshfegh%2C+Javad&rft.au=Mohseni-Kabir%2C+Arman&rft.au=Houghton%2C+Jean+Marie&rft.date=2019-01-15&rft.pub=Royal+Society+of+Chemistry&rft.eissn=2046-2069&rft.volume=9&rft.issue=4&rft.spage=1859&rft.epage=1868&rft_id=info:doi/10.1039%2Fc8ra08930b&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon