A Quorum-Sensing Antagonist Targets Both Membrane-Bound and Cytoplasmic Receptors and Controls Bacterial Pathogenicity
Quorum sensing is a process of bacterial communication involving production and detection of secreted molecules called autoinducers. Gram-negative bacteria use acyl-homoserine lactone (AHL) autoinducers, which are detected by one of two receptor types. First, cytoplasmic LuxR-type receptors bind acc...
Saved in:
Published in | Molecular cell Vol. 35; no. 2; pp. 143 - 153 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
31.07.2009
|
Subjects | |
Online Access | Get full text |
ISSN | 1097-2765 1097-4164 1097-4164 |
DOI | 10.1016/j.molcel.2009.05.029 |
Cover
Abstract | Quorum sensing is a process of bacterial communication involving production and detection of secreted molecules called autoinducers. Gram-negative bacteria use acyl-homoserine lactone (AHL) autoinducers, which are detected by one of two receptor types. First, cytoplasmic LuxR-type receptors bind accumulated intracellular AHLs. AHL-LuxR complexes bind DNA and alter gene expression. Second, membrane-bound LuxN-type receptors bind accumulated extracellular AHLs. AHL-LuxN complexes relay information internally by phosphorylation cascades that direct gene expression changes. Here, we show that a small molecule, previously identified as an antagonist of LuxN-type receptors, is also a potent antagonist of the LuxR family, despite differences in receptor structure, localization, AHL specificity, and signaling mechanism. Derivatives were synthesized and optimized for potency, and in each case, we characterized the mode of action of antagonism. The most potent antagonist protects Caenorhabditis elegans from quorum-sensing-mediated killing by Chromobacterium violaceum, validating the notion that targeting quorum sensing has potential for antimicrobial drug development. |
---|---|
AbstractList | Quorum sensing is a process of bacterial communication involving production and detection of secreted molecules called autoinducers. Gram-negative bacteria use acyl-homoserine lactone (AHL) autoinducers, which are detected by one of two receptor types. First, cytoplasmic LuxR-type receptors bind accumulated intracellular AHLs. AHL-LuxR complexes bind DNA and alter gene expression. Second, membrane-bound LuxN-type receptors bind accumulated extracellular AHLs. AHL-LuxN complexes relay information internally by phosphorylation cascades that direct gene expression changes. Here, we show that a small molecule, previously identified as an antagonist of LuxN-type receptors, is also a potent antagonist of the LuxR family, despite differences in receptor structure, localization, AHL specificity, and signaling mechanism. Derivatives were synthesized and optimized for potency, and in each case, we characterized the mode of action of antagonism. The most potent antagonist protects Caenorhabditis elegans from quorum-sensing-mediated killing by Chromobacterium violaceum, validating the notion that targeting quorum sensing has potential for antimicrobial drug development. Quorum sensing is a process of bacterial communication involving production and detection of secreted molecules called autoinducers. Gram-negative bacteria use acyl-homoserine lactone (AHL) autoinducers, which are detected by one of two receptor types. First, cytoplasmic LuxR-type receptors bind accumulated intracellular AHLs. AHL-LuxR complexes bind DNA and alter gene expression. Second, membrane-bound LuxN-type receptors bind accumulated extracellular AHLs. AHL-LuxN complexes relay information internally by phosphorylation cascades that direct gene expression changes. Here, we show that a small molecule, previously identified as an antagonist of LuxN-type receptors, is also a potent antagonist of the LuxR family, despite differences in receptor structure, localization, AHL specificity, and signaling mechanism. Derivatives were synthesized and optimized for potency, and in each case, we characterized the mode of action of antagonism. The most potent antagonist protects Caenorhabditis elegans from quorum-sensing-mediated killing by Chromobacterium violaceum, validating the notion that targeting quorum sensing has potential for antimicrobial drug development. Quorum sensing is a process of bacterial communication involving production and detection of secreted molecules called autoinducers. Gram-negative bacteria use acyl-homoserine lactone (AHL) autoinducers, which are detected by one of two receptor types. First, cytoplasmic LuxR-type receptors bind accumulated intracellular AHLs. AHL-LuxR complexes bind DNA and alter gene expression. Second, membrane-bound LuxN-type receptors bind accumulated extracellular AHLs. AHL-LuxN complexes relay information internally by phosphorylation cascades that direct gene-expression changes. Here we show that a small molecule, previously identified as an antagonist of LuxN-type receptors, is also a potent antagonist of the LuxR family, despite differences in receptor structure, localization, AHL specificity, and signaling mechanism. Derivatives were synthesized and optimized for potency, and in each case, we characterized the mode of action of antagonism. The most potent antagonist protects Caenorhabditis elegans from quorum-sensing-mediated killing by Chromobacterium violaceum , validating the notion that targeting quorum sensing has potential for antimicrobial drug development. Quorum sensing is a process of bacterial communication involving production and detection of secreted molecules called autoinducers. Gram-negative bacteria use acyl-homoserine lactone (AHL) autoinducers, which are detected by one of two receptor types. First, cytoplasmic LuxR-type receptors bind accumulated intracellular AHLs. AHL-LuxR complexes bind DNA and alter gene expression. Second, membrane-bound LuxN-type receptors bind accumulated extracellular AHLs. AHL-LuxN complexes relay information internally by phosphorylation cascades that direct gene expression changes. Here, we show that a small molecule, previously identified as an antagonist of LuxN-type receptors, is also a potent antagonist of the LuxR family, despite differences in receptor structure, localization, AHL specificity, and signaling mechanism. Derivatives were synthesized and optimized for potency, and in each case, we characterized the mode of action of antagonism. The most potent antagonist protects Caenorhabditis elegans from quorum-sensing-mediated killing by Chromobacterium violaceum, validating the notion that targeting quorum sensing has potential for antimicrobial drug development.Quorum sensing is a process of bacterial communication involving production and detection of secreted molecules called autoinducers. Gram-negative bacteria use acyl-homoserine lactone (AHL) autoinducers, which are detected by one of two receptor types. First, cytoplasmic LuxR-type receptors bind accumulated intracellular AHLs. AHL-LuxR complexes bind DNA and alter gene expression. Second, membrane-bound LuxN-type receptors bind accumulated extracellular AHLs. AHL-LuxN complexes relay information internally by phosphorylation cascades that direct gene expression changes. Here, we show that a small molecule, previously identified as an antagonist of LuxN-type receptors, is also a potent antagonist of the LuxR family, despite differences in receptor structure, localization, AHL specificity, and signaling mechanism. Derivatives were synthesized and optimized for potency, and in each case, we characterized the mode of action of antagonism. The most potent antagonist protects Caenorhabditis elegans from quorum-sensing-mediated killing by Chromobacterium violaceum, validating the notion that targeting quorum sensing has potential for antimicrobial drug development. |
Author | Bassler, Bonnie L. Zhao, Bixiao Swem, Danielle L. Gatmaitan, Raleene O'Loughlin, Colleen T. Swem, Lee R. Ulrich, Scott M. |
AuthorAffiliation | 2 Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA 3 Department of Chemistry, Ithaca College, Ithaca, NY 14850, USA 1 Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA |
AuthorAffiliation_xml | – name: 1 Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA – name: 2 Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA – name: 3 Department of Chemistry, Ithaca College, Ithaca, NY 14850, USA |
Author_xml | – sequence: 1 givenname: Lee R. surname: Swem fullname: Swem, Lee R. organization: Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA – sequence: 2 givenname: Danielle L. surname: Swem fullname: Swem, Danielle L. organization: Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA – sequence: 3 givenname: Colleen T. surname: O'Loughlin fullname: O'Loughlin, Colleen T. organization: Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA – sequence: 4 givenname: Raleene surname: Gatmaitan fullname: Gatmaitan, Raleene organization: Department of Chemistry, Ithaca College, Ithaca, NY 14850, USA – sequence: 5 givenname: Bixiao surname: Zhao fullname: Zhao, Bixiao organization: Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA – sequence: 6 givenname: Scott M. surname: Ulrich fullname: Ulrich, Scott M. organization: Department of Chemistry, Ithaca College, Ithaca, NY 14850, USA – sequence: 7 givenname: Bonnie L. surname: Bassler fullname: Bassler, Bonnie L. email: bbassler@princeton.edu organization: Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19647512$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUuP0zAUhS00iHnAP0AoK3YJdmLHMQukTgUzSIN4DWvLcW5TV45dbKdS_z0uLSNgMQvLlu49515_5xKdOe8AoZcEVwST9s2mmrzVYKsaY1FhVuFaPEEXBAteUtLSs9O75i07R5cxbjAmlHXiGTonoqWckfoC7RbF19mHeSq_g4vGjcXCJTV6Z2Iq7lUYIcXi2qd18QmmPigH5bWf3VCofJb75LdWxcno4hto2CYf4rHiXQreZqnSCYJRtvii0tqP4Iw2af8cPV0pG-HF6b5CPz68v1_elnefbz4uF3elZjVPJdecMiq6th5Ad73qWtEQ0etGMS1WGoB2vOnYAKQZKBAGgxA9AO5o1wvR6OYKvTv6bud-gkFDXktZuQ1mUmEvvTLy34ozazn6naw5JQyTbPD6ZBD8zxlikpOJmbrNJPwcZcsZ5fR346u_Jz2M-IM6N7w9NujgYwywkhmESuZAShkrCZaHXOVGHnOVh1wlZjLnmsX0P_GD_-Oy0_chM94ZCDJqA07DYALoJAdvHjf4BamDwik |
CitedBy_id | crossref_primary_10_1007_s00044_017_2027_2 crossref_primary_10_12998_wjcc_v3_i7_575 crossref_primary_10_1111_j_1365_2958_2010_07248_x crossref_primary_10_1007_s00203_020_02127_z crossref_primary_10_1093_femsre_fuw014 crossref_primary_10_1016_j_bmc_2011_06_071 crossref_primary_10_1016_j_molcel_2011_04_003 crossref_primary_10_1074_jbc_RA119_012104 crossref_primary_10_3390_molecules23123075 crossref_primary_10_1038_s44222_023_00140_7 crossref_primary_10_3390_md12063245 crossref_primary_10_1111_1462_2920_14888 crossref_primary_10_3389_fmicb_2024_1303595 crossref_primary_10_1128_JB_05125_11 crossref_primary_10_1016_j_ijpharm_2016_02_044 crossref_primary_10_1080_20002297_2023_2208901 crossref_primary_10_3390_biomedicines11123161 crossref_primary_10_1007_s11515_011_1153_3 crossref_primary_10_1074_jbc_M116_770552 crossref_primary_10_1007_s10123_024_00487_w crossref_primary_10_1016_j_arcmed_2013_10_004 crossref_primary_10_1128_genomeA_00080_16 crossref_primary_10_3389_fchem_2022_948687 crossref_primary_10_1016_j_heliyon_2019_e03137 crossref_primary_10_1146_annurev_micro_012220_063740 crossref_primary_10_1371_journal_pone_0107703 crossref_primary_10_3389_fmars_2018_00198 crossref_primary_10_1002_cbic_202000773 crossref_primary_10_1038_ismej_2012_69 crossref_primary_10_1097_WON_0b013e31827e8481 crossref_primary_10_1534_genetics_120_303285 crossref_primary_10_1038_msb_2012_57 crossref_primary_10_1099_mic_0_070615_0 crossref_primary_10_1099_mic_0_001294 crossref_primary_10_1021_cb5004288 crossref_primary_10_1371_journal_pone_0055045 crossref_primary_10_7717_peerj_6568 crossref_primary_10_1128_MMBR_00046_12 crossref_primary_10_3390_molecules21030391 crossref_primary_10_1039_C8RA06413J crossref_primary_10_1038_s41522_021_00211_w crossref_primary_10_1039_C7CC04293K crossref_primary_10_1039_D3RA01975F crossref_primary_10_1155_2015_465056 crossref_primary_10_1002_slct_202102743 crossref_primary_10_1002_ijch_202200079 crossref_primary_10_1016_j_bmcl_2021_127873 crossref_primary_10_1128_mBio_00146_19 crossref_primary_10_1134_S0026261722602597 crossref_primary_10_1134_S1990747815050104 crossref_primary_10_4155_fmc_10_185 crossref_primary_10_1038_s41598_020_64953_x crossref_primary_10_1111_cbdd_12517 crossref_primary_10_1021_jm901742e crossref_primary_10_1039_C3SC52572D crossref_primary_10_1007_s42398_019_00079_9 crossref_primary_10_1021_ja3112115 crossref_primary_10_1038_nrmicro2212 crossref_primary_10_1007_s12223_010_0088_4 crossref_primary_10_1111_1462_2920_12322 crossref_primary_10_1016_j_memsci_2017_10_041 crossref_primary_10_1038_s41598_018_20283_7 crossref_primary_10_1093_femsre_fuv038 crossref_primary_10_1093_femsre_fuw009 crossref_primary_10_1038_nchembio_1295 crossref_primary_10_1186_s40659_015_0012_0 crossref_primary_10_3389_fmicb_2017_02213 crossref_primary_10_1007_s00253_013_5006_7 crossref_primary_10_3390_antibiotics11030285 crossref_primary_10_1002_advs_202306070 crossref_primary_10_1016_j_scib_2017_02_010 crossref_primary_10_1002_med_21621 crossref_primary_10_1016_j_micpath_2016_12_003 crossref_primary_10_1099_mic_0_000826 crossref_primary_10_1016_j_coph_2013_08_002 crossref_primary_10_1016_j_tim_2013_04_001 crossref_primary_10_1371_journal_pgen_1009550 crossref_primary_10_1002_jhet_3140 crossref_primary_10_1371_journal_ppat_1000989 crossref_primary_10_1021_ja111138y crossref_primary_10_3389_fmicb_2019_01330 crossref_primary_10_1007_s11427_021_1956_8 crossref_primary_10_1098_rstb_2013_0366 crossref_primary_10_1242_dmm_006684 crossref_primary_10_1016_j_chom_2016_02_020 crossref_primary_10_1128_msystems_01397_23 crossref_primary_10_1128_mBio_00638_19 crossref_primary_10_1021_acs_jmedchem_3c02379 crossref_primary_10_1007_s40475_017_0127_1 crossref_primary_10_1517_13543776_2010_511176 crossref_primary_10_1016_j_chembiol_2012_03_014 crossref_primary_10_2217_fmb_11_93 crossref_primary_10_3109_1061186X_2010_519032 crossref_primary_10_1016_j_synbio_2023_08_006 crossref_primary_10_1073_pnas_1211072109 crossref_primary_10_1186_2050_6511_13_13 crossref_primary_10_3389_fmicb_2019_02473 crossref_primary_10_1371_journal_ppat_1002767 crossref_primary_10_1128_mBio_01370_17 crossref_primary_10_1021_acsinfecdis_6b00163 crossref_primary_10_3390_ph15020110 crossref_primary_10_1016_j_bioorg_2014_04_005 crossref_primary_10_3390_molecules29153466 crossref_primary_10_1007_s00203_021_02455_8 crossref_primary_10_1038_s41598_019_52955_3 crossref_primary_10_3389_fimmu_2025_1550724 crossref_primary_10_31857_S0026365622600626 crossref_primary_10_1128_mBio_00948_20 crossref_primary_10_1080_22297928_2021_1937314 crossref_primary_10_1073_pnas_1001392107 crossref_primary_10_3390_microorganisms9122424 crossref_primary_10_1590_0001_3765201520140482 crossref_primary_10_1002_chem_201204349 crossref_primary_10_1073_pnas_1314415110 crossref_primary_10_1074_jbc_M114_573832 crossref_primary_10_1073_pnas_1316981110 crossref_primary_10_1128_spectrum_00681_24 crossref_primary_10_1007_s00253_021_11338_3 crossref_primary_10_3389_fmicb_2022_970520 crossref_primary_10_3390_md22040177 crossref_primary_10_3390_biomedicines11030668 crossref_primary_10_1080_08905436_2014_932287 crossref_primary_10_3389_fphar_2018_00203 crossref_primary_10_3390_microorganisms13040708 crossref_primary_10_3390_molecules18033266 crossref_primary_10_3390_s120303762 crossref_primary_10_3390_antibiotics11020178 crossref_primary_10_1038_nrmicro_2016_89 crossref_primary_10_4236_jbise_2020_132002 crossref_primary_10_1007_s13738_020_02093_9 crossref_primary_10_1038_s41589_022_01089_1 crossref_primary_10_1021_acsinfecdis_8b00115 crossref_primary_10_4103_2221_1691_314044 crossref_primary_10_1016_j_mimet_2013_01_005 crossref_primary_10_3389_fchem_2024_1286675 crossref_primary_10_1016_j_bmcl_2018_12_068 crossref_primary_10_1016_j_mib_2009_12_005 crossref_primary_10_1016_j_tetlet_2023_154620 crossref_primary_10_3390_ijms21249512 crossref_primary_10_1016_j_ejmech_2020_112252 crossref_primary_10_1093_femspd_ftu019 crossref_primary_10_35534_sbe_2023_10018 crossref_primary_10_1128_mBio_01291_17 crossref_primary_10_1016_j_biotechadv_2016_06_003 crossref_primary_10_1016_j_pharma_2018_02_004 crossref_primary_10_1016_j_bioelechem_2022_108050 crossref_primary_10_1021_acs_joc_6b00522 crossref_primary_10_2217_fmb_11_60 crossref_primary_10_1007_s00044_017_2110_8 crossref_primary_10_1021_acschembio_4c00641 crossref_primary_10_1038_s41598_023_42833_4 crossref_primary_10_1517_13543776_2013_779674 crossref_primary_10_1016_j_bios_2017_11_040 crossref_primary_10_1016_j_pbiomolbio_2023_08_005 crossref_primary_10_1080_10406638_2023_2165511 crossref_primary_10_3390_ijms20225696 crossref_primary_10_1016_j_tim_2010_07_002 crossref_primary_10_3389_fcimb_2018_00292 crossref_primary_10_1128_CMR_00084_16 crossref_primary_10_1007_s00018_019_03319_7 crossref_primary_10_3389_fmicb_2017_00349 |
Cites_doi | 10.1099/mic.0.27954-0 10.1073/pnas.0407661102 10.1146/annurev.micro.50.1.727 10.1128/jb.172.6.2946-2954.1990 10.1038/nature00833 10.1099/mic.0.2008/019281-0 10.1074/jbc.M604108200 10.1016/j.ijmm.2006.01.042 10.1016/j.cell.2004.06.009 10.1021/ja0530321 10.1101/gad.1502407 10.1021/ja074135h 10.1093/emboj/cdg366 10.1073/pnas.0601754103 10.1128/JB.186.20.6902-6914.2004 10.1016/S0021-9258(20)88238-6 10.1016/j.bbrc.2006.05.168 10.1146/annurev.genet.42.110807.091640 10.1111/j.1365-2958.2006.05210.x 10.1128/JB.185.23.7001-7007.2003 10.1111/j.1365-2958.1993.tb01737.x 10.1073/pnas.98.4.1507 10.1128/JB.01723-06 10.1111/j.1365-2958.2004.04529.x 10.1128/jb.176.2.269-275.1994 10.1128/jb.171.5.2406-2414.1989 10.1073/pnas.96.9.4832 10.1111/j.1365-2958.1994.tb00422.x 10.1146/annurev.bioeng.10.061807.160536 10.1016/j.bmcl.2008.07.089 10.1099/00221287-143-12-3703 10.1016/j.cell.2008.06.023 10.1128/AAC.00665-06 10.1046/j.1365-2958.2000.01684.x 10.1099/00221287-148-1-87 10.1046/j.1365-2958.2002.02987.x 10.1146/annurev.cellbio.21.012704.131001 10.1016/S1369-5274(02)00293-X |
ContentType | Journal Article |
Copyright | 2009 Elsevier Inc. |
Copyright_xml | – notice: 2009 Elsevier Inc. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.molcel.2009.05.029 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4164 |
EndPage | 153 |
ExternalDocumentID | PMC2741501 19647512 10_1016_j_molcel_2009_05_029 S1097276509004699 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: N01 CO012400 – fundername: Howard Hughes Medical Institute – fundername: NIAID NIH HHS grantid: R01 AI054442 – fundername: NCI NIH HHS grantid: N01-CO-12400 – fundername: NIGMS NIH HHS grantid: R01 GM065859 – fundername: NIGMS NIH HHS grantid: 5R01GM065859 – fundername: NIAID NIH HHS grantid: 5R01 AI 054442 – fundername: NIGMS NIH HHS grantid: T32 GM007205 – fundername: NIGMS NIH HHS grantid: GM787552 |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1~5 2WC 4.4 457 4G. 5RE 62- 6I. 7-5 AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKRW AAKUH AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFFNX AFTJW AGHFR AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HH5 HVGLF HZ~ IH2 IHE IXB J1W JIG KQ8 L7B M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SDG SES SSZ TR2 WQ6 ZA5 .55 .GJ 29M 3O- 53G 5VS AAHBH AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FGOYB OZT R2- UHS X7M ZGI ZXP CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c527t-7c74549862dec8ba869319bc3a5c9fcee487385de13d4e15ed99bee0848b993c3 |
IEDL.DBID | IXB |
ISSN | 1097-2765 1097-4164 |
IngestDate | Thu Aug 21 17:52:18 EDT 2025 Fri Sep 05 10:43:11 EDT 2025 Mon Jul 21 06:03:58 EDT 2025 Tue Jul 01 03:40:38 EDT 2025 Thu Apr 24 22:57:45 EDT 2025 Fri Feb 23 02:19:48 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | MICROBIO HUMDISEASE SIGNALING |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c527t-7c74549862dec8ba869319bc3a5c9fcee487385de13d4e15ed99bee0848b993c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1097276509004699 |
PMID | 19647512 |
PQID | 67547401 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2741501 proquest_miscellaneous_67547401 pubmed_primary_19647512 crossref_citationtrail_10_1016_j_molcel_2009_05_029 crossref_primary_10_1016_j_molcel_2009_05_029 elsevier_sciencedirect_doi_10_1016_j_molcel_2009_05_029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-07-31 |
PublicationDateYYYYMMDD | 2009-07-31 |
PublicationDate_xml | – month: 07 year: 2009 text: 2009-07-31 day: 31 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular cell |
PublicationTitleAlternate | Mol Cell |
PublicationYear | 2009 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Geske, Mattmann, Blackwell (bib12) 2008; 18 Richard (bib28) 1993; 86 Geske, Wezeman, Siegel, Blackwell (bib10) 2005; 127 Martin, Showalter, Silverman (bib21) 1989; 171 Waters, Bassler (bib37) 2005; 21 Wright, Jin, Novick (bib39) 2005; 102 Zhu, Winans (bib42) 2001; 98 Freeman, Lilley, Bassler (bib6) 2000; 35 Zhang, Pappas, Brace, Miller, Oulmassov, Molyneaux, Anderson, Bashkin, Winans, Joachimiak (bib40) 2002; 417 Minogue, Wehland-von Trebra, Bernhard, von Bodman (bib23) 2002; 44 (bib26) 2006 Fuqua, Winans, Greenberg (bib8) 1996; 50 Muh, Schuster, Heim, Singh, Olson, Greenberg (bib25) 2006; 50 Jung, Odenbach, Timmen (bib17) 2007; 189 Gale (bib9) 1981 Hentzer, Wu, Andersen, Riedel, Rasmussen, Bagge, Kumar, Schembri, Song, Kristoffersen (bib15) 2003; 22 Novick, Geisinger (bib27) 2008; 42 Fuqua, Winans, Greenberg (bib7) 1994; 176 Koch, Liljefors, Persson, Nielsen, Kjelleberg, Givskov (bib18) 2005; 151 Hentzer, Riedel, Rasmussen, Heydorn, Andersen, Parsek, Rice, Eberl, Molin, Hoiby (bib14) 2002; 148 Showalter, Martin, Silverman (bib29) 1990; 172 Swem, Swem, Wingreen, Bassler (bib31) 2008; 134 Bassler, Wright, Silverman (bib3) 1994; 13 Minogue, Carlier, Koutsoudis, von Bodman (bib24) 2005; 56 Lenz, Mok, Lilley, Kulkarni, Wingreen, Bassler (bib20) 2004; 118 Bassler, Wright, Showalter, Silverman (bib2) 1993; 9 Zhu, Winans (bib41) 1999; 96 Cao, Meighen (bib4) 1989; 264 Jayaraman, Wood (bib16) 2008; 10 Vaitkevicius, Lindmark, Ou, Song, Toma, Iwanaga, Zhu, Andersson, Hammarstrom, Tuck (bib35) 2006; 103 Geske, O'Neill, Miller, Mattmann, Blackwell (bib11) 2007; 129 Willcox, Zhu, Conibear, Hume, Givskov, Kjelleberg, Rice (bib38) 2008; 154 Sjoblom, Brader, Koch, Palva (bib30) 2006; 60 Timmen, Bassler, Jung (bib33) 2006; 281 Aballay, Ausubel (bib1) 2002; 5 Tu, Bassler (bib34) 2007; 21 Henke, Bassler (bib13) 2004; 186 McClean, Winson, Fish, Taylor, Chhabra, Camara, Daykin, Lamb, Swift, Bycroft (bib22) 1997; 143 Kong, Vuong, Otto (bib19) 2006; 296 Throup, Winson, Bainton, Bycroft, Williams, Stewart (bib32) 1995 von Bodman, Ball, Faini, Herrera, Minogue, Urbanowski, Stevens (bib36) 2003; 185 Dhakal, Lee, Kim, Choy, Ahnn, Rhee (bib5) 2006; 346 Freeman (10.1016/j.molcel.2009.05.029_bib6) 2000; 35 Waters (10.1016/j.molcel.2009.05.029_bib37) 2005; 21 McClean (10.1016/j.molcel.2009.05.029_bib22) 1997; 143 Novick (10.1016/j.molcel.2009.05.029_bib27) 2008; 42 (10.1016/j.molcel.2009.05.029_bib26) 2006 Zhang (10.1016/j.molcel.2009.05.029_bib40) 2002; 417 Sjoblom (10.1016/j.molcel.2009.05.029_bib30) 2006; 60 Zhu (10.1016/j.molcel.2009.05.029_bib41) 1999; 96 Lenz (10.1016/j.molcel.2009.05.029_bib20) 2004; 118 Jung (10.1016/j.molcel.2009.05.029_bib17) 2007; 189 Throup (10.1016/j.molcel.2009.05.029_bib32) 1995 Aballay (10.1016/j.molcel.2009.05.029_bib1) 2002; 5 Kong (10.1016/j.molcel.2009.05.029_bib19) 2006; 296 Henke (10.1016/j.molcel.2009.05.029_bib13) 2004; 186 Hentzer (10.1016/j.molcel.2009.05.029_bib14) 2002; 148 Minogue (10.1016/j.molcel.2009.05.029_bib24) 2005; 56 Jayaraman (10.1016/j.molcel.2009.05.029_bib16) 2008; 10 Martin (10.1016/j.molcel.2009.05.029_bib21) 1989; 171 Geske (10.1016/j.molcel.2009.05.029_bib12) 2008; 18 Swem (10.1016/j.molcel.2009.05.029_bib31) 2008; 134 Dhakal (10.1016/j.molcel.2009.05.029_bib5) 2006; 346 Willcox (10.1016/j.molcel.2009.05.029_bib38) 2008; 154 Gale (10.1016/j.molcel.2009.05.029_bib9) 1981 Hentzer (10.1016/j.molcel.2009.05.029_bib15) 2003; 22 Wright (10.1016/j.molcel.2009.05.029_bib39) 2005; 102 Koch (10.1016/j.molcel.2009.05.029_bib18) 2005; 151 Minogue (10.1016/j.molcel.2009.05.029_bib23) 2002; 44 Cao (10.1016/j.molcel.2009.05.029_bib4) 1989; 264 Timmen (10.1016/j.molcel.2009.05.029_bib33) 2006; 281 Vaitkevicius (10.1016/j.molcel.2009.05.029_bib35) 2006; 103 Richard (10.1016/j.molcel.2009.05.029_bib28) 1993; 86 Muh (10.1016/j.molcel.2009.05.029_bib25) 2006; 50 Fuqua (10.1016/j.molcel.2009.05.029_bib7) 1994; 176 von Bodman (10.1016/j.molcel.2009.05.029_bib36) 2003; 185 Bassler (10.1016/j.molcel.2009.05.029_bib3) 1994; 13 Zhu (10.1016/j.molcel.2009.05.029_bib42) 2001; 98 Geske (10.1016/j.molcel.2009.05.029_bib10) 2005; 127 Fuqua (10.1016/j.molcel.2009.05.029_bib8) 1996; 50 Geske (10.1016/j.molcel.2009.05.029_bib11) 2007; 129 Showalter (10.1016/j.molcel.2009.05.029_bib29) 1990; 172 Tu (10.1016/j.molcel.2009.05.029_bib34) 2007; 21 Bassler (10.1016/j.molcel.2009.05.029_bib2) 1993; 9 |
References_xml | – volume: 42 start-page: 541 year: 2008 end-page: 564 ident: bib27 article-title: Quorum sensing in staphylococci publication-title: Annu. Rev. Genet. – volume: 127 start-page: 12762 year: 2005 end-page: 12763 ident: bib10 article-title: Small molecule inhibitors of bacterial quorum sensing and biofilm formation publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 221 year: 2007 end-page: 233 ident: bib34 article-title: Multiple small RNAs act additively to integrate sensory information and control quorum sensing in publication-title: Genes Dev. – volume: 44 start-page: 1625 year: 2002 end-page: 1635 ident: bib23 article-title: The autoregulatory role of EsaR, a quorum-sensing regulator in publication-title: Mol. Microbiol. – volume: 118 start-page: 69 year: 2004 end-page: 82 ident: bib20 article-title: The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in publication-title: Cell – volume: 134 start-page: 461 year: 2008 end-page: 473 ident: bib31 article-title: Deducing receptor signaling parameters from in vivo analysis: LuxN/AI-1 quorum sensing in publication-title: Cell – start-page: 89 year: 1995 end-page: 92 ident: bib32 article-title: Signalling in bacteria beyond bioluminescence publication-title: Bioluminescence and Chemiluminescence: Fundamentals and Applied Aspects – year: 1981 ident: bib9 article-title: The Molecular Basis of Antibiotic Action – volume: 13 start-page: 273 year: 1994 end-page: 286 ident: bib3 article-title: Multiple signalling systems controlling expression of luminescence in publication-title: Mol. Microbiol. – volume: 86 start-page: 169 year: 1993 end-page: 173 ident: bib28 article-title: [Chromobacterium violaceum, opportunist pathogenic bacteria in tropical and subtropical regions] publication-title: Bul. Soc. Pathol. Exot. – volume: 151 start-page: 3589 year: 2005 end-page: 3602 ident: bib18 article-title: The LuxR receptor: the sites of interaction with quorum-sensing signals and inhibitors publication-title: Microbiology – volume: 281 start-page: 24398 year: 2006 end-page: 24404 ident: bib33 article-title: AI-1 influences the kinase activity but not the phosphatase activity of LuxN of publication-title: J. Biol. Chem. – volume: 22 start-page: 3803 year: 2003 end-page: 3815 ident: bib15 article-title: Attenuation of publication-title: EMBO J. – volume: 186 start-page: 6902 year: 2004 end-page: 6914 ident: bib13 article-title: Three parallel quorum-sensing systems regulate gene expression in publication-title: J. Bacteriol. – volume: 172 start-page: 2946 year: 1990 end-page: 2954 ident: bib29 article-title: Cloning and nucleotide sequence of publication-title: J. Bacteriol. – volume: 176 start-page: 269 year: 1994 end-page: 275 ident: bib7 article-title: Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators publication-title: J. Bacteriol. – volume: 50 start-page: 727 year: 1996 end-page: 751 ident: bib8 article-title: Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators publication-title: Annu. Rev. Microbiol. – volume: 5 start-page: 97 year: 2002 end-page: 101 ident: bib1 article-title: as a host for the study of host-pathogen interactions publication-title: Curr. Opin. Microbiol. – year: 2006 ident: bib26 article-title: Treating Infectious Diseases in a Microbial World – volume: 189 start-page: 2945 year: 2007 end-page: 2948 ident: bib17 article-title: The quorum-sensing hybrid histidine kinase LuxN of publication-title: J. Bacteriol. – volume: 10 start-page: 145 year: 2008 end-page: 167 ident: bib16 article-title: Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease publication-title: Annu. Rev. Biomed. Eng. – volume: 56 start-page: 189 year: 2005 end-page: 203 ident: bib24 article-title: The cell density-dependent expression of stewartan exopolysaccharide in publication-title: Mol. Microbiol. – volume: 346 start-page: 751 year: 2006 end-page: 757 ident: bib5 article-title: as a simple model host for publication-title: Biochem. Biophys. Res. Commun. – volume: 264 start-page: 21670 year: 1989 end-page: 21676 ident: bib4 article-title: Purification and structural identification of an autoinducer for the luminescence system of publication-title: J. Biol. Chem. – volume: 154 start-page: 2184 year: 2008 end-page: 2194 ident: bib38 article-title: Role of quorum sensing by publication-title: Microbiology – volume: 60 start-page: 1474 year: 2006 end-page: 1489 ident: bib30 article-title: Cooperation of two distinct ExpR regulators controls quorum sensing specificity and virulence in the plant pathogen publication-title: Mol. Microbiol. – volume: 96 start-page: 4832 year: 1999 end-page: 4837 ident: bib41 article-title: Autoinducer binding by the quorum-sensing regulator TraR increases affinity for target promoters in vitro and decreases TraR turnover rates in whole cells publication-title: Proc. Natl. Acad. Sci. USA – volume: 171 start-page: 2406 year: 1989 end-page: 2414 ident: bib21 article-title: Identification of a locus controlling expression of luminescence genes in publication-title: J. Bacteriol. – volume: 21 start-page: 319 year: 2005 end-page: 346 ident: bib37 article-title: QUORUM SENSING: Cell-to-Cell Communication in Bacteria publication-title: Annu. Rev. Cell Dev. Biol. – volume: 98 start-page: 1507 year: 2001 end-page: 1512 ident: bib42 article-title: The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization publication-title: Proc. Natl. Acad. Sci. USA – volume: 143 start-page: 3703 year: 1997 end-page: 3711 ident: bib22 article-title: Quorum sensing and publication-title: Microbiology – volume: 417 start-page: 971 year: 2002 end-page: 974 ident: bib40 article-title: Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA publication-title: Nature – volume: 296 start-page: 133 year: 2006 end-page: 139 ident: bib19 article-title: quorum sensing in biofilm formation and infection publication-title: Int. J. Med. Microbiol. – volume: 50 start-page: 3674 year: 2006 end-page: 3679 ident: bib25 article-title: Novel Pseudomonas aeruginosa quorum-sensing inhibitors identified in an ultra-high-throughput screen publication-title: Antimicrob. Agents Chemother. – volume: 129 start-page: 13613 year: 2007 end-page: 13625 ident: bib11 article-title: Modulation of bacterial quorum sensing with synthetic ligands: systematic evaluation of N-acylated homoserine lactones in multiple species and new insights into their mechanisms of action publication-title: J. Am. Chem. Soc. – volume: 102 start-page: 1691 year: 2005 end-page: 1696 ident: bib39 article-title: Transient interference with staphylococcal quorum sensing blocks abscess formation publication-title: Proc. Natl. Acad. Sci. USA – volume: 185 start-page: 7001 year: 2003 end-page: 7007 ident: bib36 article-title: The quorum sensing negative regulators EsaR and ExpR(Ecc), homologues within the LuxR family, retain the ability to function as activators of transcription publication-title: J. Bacteriol. – volume: 9 start-page: 773 year: 1993 end-page: 786 ident: bib2 article-title: Intercellular signalling in publication-title: Mol. Microbiol. – volume: 148 start-page: 87 year: 2002 end-page: 102 ident: bib14 article-title: Inhibition of quorum sensing in publication-title: Microbiology – volume: 103 start-page: 9280 year: 2006 end-page: 9285 ident: bib35 article-title: A publication-title: Proc. Natl. Acad. Sci. USA – volume: 35 start-page: 139 year: 2000 end-page: 149 ident: bib6 article-title: A genetic analysis of the functions of LuxN: a two-component hybrid sensor kinase that regulates quorum sensing in publication-title: Mol. Microbiol. – volume: 18 start-page: 5978 year: 2008 end-page: 5981 ident: bib12 article-title: Evaluation of a focused library of N-aryl L-homoserine lactones reveals a new set of potent quorum sensing modulators publication-title: Bioorg. Med. Chem. Lett. – volume: 151 start-page: 3589 year: 2005 ident: 10.1016/j.molcel.2009.05.029_bib18 article-title: The LuxR receptor: the sites of interaction with quorum-sensing signals and inhibitors publication-title: Microbiology doi: 10.1099/mic.0.27954-0 – volume: 102 start-page: 1691 year: 2005 ident: 10.1016/j.molcel.2009.05.029_bib39 article-title: Transient interference with staphylococcal quorum sensing blocks abscess formation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0407661102 – volume: 50 start-page: 727 year: 1996 ident: 10.1016/j.molcel.2009.05.029_bib8 article-title: Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.50.1.727 – volume: 172 start-page: 2946 year: 1990 ident: 10.1016/j.molcel.2009.05.029_bib29 article-title: Cloning and nucleotide sequence of luxR, a regulatory gene controlling bioluminescence in Vibrio harveyi publication-title: J. Bacteriol. doi: 10.1128/jb.172.6.2946-2954.1990 – volume: 417 start-page: 971 year: 2002 ident: 10.1016/j.molcel.2009.05.029_bib40 article-title: Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA publication-title: Nature doi: 10.1038/nature00833 – volume: 154 start-page: 2184 year: 2008 ident: 10.1016/j.molcel.2009.05.029_bib38 article-title: Role of quorum sensing by Pseudomonas aeruginosa in microbial keratitis and cystic fibrosis publication-title: Microbiology doi: 10.1099/mic.0.2008/019281-0 – year: 2006 ident: 10.1016/j.molcel.2009.05.029_bib26 – volume: 281 start-page: 24398 year: 2006 ident: 10.1016/j.molcel.2009.05.029_bib33 article-title: AI-1 influences the kinase activity but not the phosphatase activity of LuxN of Vibrio harveyi publication-title: J. Biol. Chem. doi: 10.1074/jbc.M604108200 – volume: 296 start-page: 133 year: 2006 ident: 10.1016/j.molcel.2009.05.029_bib19 article-title: Staphylococcus quorum sensing in biofilm formation and infection publication-title: Int. J. Med. Microbiol. doi: 10.1016/j.ijmm.2006.01.042 – volume: 118 start-page: 69 year: 2004 ident: 10.1016/j.molcel.2009.05.029_bib20 article-title: The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae publication-title: Cell doi: 10.1016/j.cell.2004.06.009 – volume: 127 start-page: 12762 year: 2005 ident: 10.1016/j.molcel.2009.05.029_bib10 article-title: Small molecule inhibitors of bacterial quorum sensing and biofilm formation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0530321 – volume: 21 start-page: 221 year: 2007 ident: 10.1016/j.molcel.2009.05.029_bib34 article-title: Multiple small RNAs act additively to integrate sensory information and control quorum sensing in Vibrio harveyi publication-title: Genes Dev. doi: 10.1101/gad.1502407 – volume: 129 start-page: 13613 year: 2007 ident: 10.1016/j.molcel.2009.05.029_bib11 article-title: Modulation of bacterial quorum sensing with synthetic ligands: systematic evaluation of N-acylated homoserine lactones in multiple species and new insights into their mechanisms of action publication-title: J. Am. Chem. Soc. doi: 10.1021/ja074135h – volume: 22 start-page: 3803 year: 2003 ident: 10.1016/j.molcel.2009.05.029_bib15 article-title: Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors publication-title: EMBO J. doi: 10.1093/emboj/cdg366 – volume: 103 start-page: 9280 year: 2006 ident: 10.1016/j.molcel.2009.05.029_bib35 article-title: A Vibrio cholerae protease needed for killing of Caenorhabditis elegans has a role in protection from natural predator grazing publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0601754103 – volume: 186 start-page: 6902 year: 2004 ident: 10.1016/j.molcel.2009.05.029_bib13 article-title: Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi publication-title: J. Bacteriol. doi: 10.1128/JB.186.20.6902-6914.2004 – volume: 86 start-page: 169 year: 1993 ident: 10.1016/j.molcel.2009.05.029_bib28 article-title: [Chromobacterium violaceum, opportunist pathogenic bacteria in tropical and subtropical regions] publication-title: Bul. Soc. Pathol. Exot. – volume: 264 start-page: 21670 year: 1989 ident: 10.1016/j.molcel.2009.05.029_bib4 article-title: Purification and structural identification of an autoinducer for the luminescence system of Vibrio harveyi publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(20)88238-6 – volume: 346 start-page: 751 year: 2006 ident: 10.1016/j.molcel.2009.05.029_bib5 article-title: Caenorhabditis elegans as a simple model host for Vibrio vulnificus infection publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2006.05.168 – volume: 42 start-page: 541 year: 2008 ident: 10.1016/j.molcel.2009.05.029_bib27 article-title: Quorum sensing in staphylococci publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.genet.42.110807.091640 – volume: 60 start-page: 1474 year: 2006 ident: 10.1016/j.molcel.2009.05.029_bib30 article-title: Cooperation of two distinct ExpR regulators controls quorum sensing specificity and virulence in the plant pathogen Erwinia carotovora publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2006.05210.x – volume: 185 start-page: 7001 year: 2003 ident: 10.1016/j.molcel.2009.05.029_bib36 article-title: The quorum sensing negative regulators EsaR and ExpR(Ecc), homologues within the LuxR family, retain the ability to function as activators of transcription publication-title: J. Bacteriol. doi: 10.1128/JB.185.23.7001-7007.2003 – volume: 9 start-page: 773 year: 1993 ident: 10.1016/j.molcel.2009.05.029_bib2 article-title: Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.1993.tb01737.x – volume: 98 start-page: 1507 year: 2001 ident: 10.1016/j.molcel.2009.05.029_bib42 article-title: The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.98.4.1507 – volume: 189 start-page: 2945 year: 2007 ident: 10.1016/j.molcel.2009.05.029_bib17 article-title: The quorum-sensing hybrid histidine kinase LuxN of Vibrio harveyi contains a periplasmically located N terminus publication-title: J. Bacteriol. doi: 10.1128/JB.01723-06 – volume: 56 start-page: 189 year: 2005 ident: 10.1016/j.molcel.2009.05.029_bib24 article-title: The cell density-dependent expression of stewartan exopolysaccharide in Pantoea stewartii ssp. stewartii is a function of EsaR-mediated repression of the rcsA gene publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2004.04529.x – volume: 176 start-page: 269 year: 1994 ident: 10.1016/j.molcel.2009.05.029_bib7 article-title: Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators publication-title: J. Bacteriol. doi: 10.1128/jb.176.2.269-275.1994 – volume: 171 start-page: 2406 year: 1989 ident: 10.1016/j.molcel.2009.05.029_bib21 article-title: Identification of a locus controlling expression of luminescence genes in Vibrio harveyi publication-title: J. Bacteriol. doi: 10.1128/jb.171.5.2406-2414.1989 – volume: 96 start-page: 4832 year: 1999 ident: 10.1016/j.molcel.2009.05.029_bib41 article-title: Autoinducer binding by the quorum-sensing regulator TraR increases affinity for target promoters in vitro and decreases TraR turnover rates in whole cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.96.9.4832 – volume: 13 start-page: 273 year: 1994 ident: 10.1016/j.molcel.2009.05.029_bib3 article-title: Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.1994.tb00422.x – volume: 10 start-page: 145 year: 2008 ident: 10.1016/j.molcel.2009.05.029_bib16 article-title: Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev.bioeng.10.061807.160536 – volume: 18 start-page: 5978 year: 2008 ident: 10.1016/j.molcel.2009.05.029_bib12 article-title: Evaluation of a focused library of N-aryl L-homoserine lactones reveals a new set of potent quorum sensing modulators publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2008.07.089 – volume: 143 start-page: 3703 year: 1997 ident: 10.1016/j.molcel.2009.05.029_bib22 article-title: Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones publication-title: Microbiology doi: 10.1099/00221287-143-12-3703 – volume: 134 start-page: 461 year: 2008 ident: 10.1016/j.molcel.2009.05.029_bib31 article-title: Deducing receptor signaling parameters from in vivo analysis: LuxN/AI-1 quorum sensing in Vibrio harveyi publication-title: Cell doi: 10.1016/j.cell.2008.06.023 – volume: 50 start-page: 3674 year: 2006 ident: 10.1016/j.molcel.2009.05.029_bib25 article-title: Novel Pseudomonas aeruginosa quorum-sensing inhibitors identified in an ultra-high-throughput screen publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00665-06 – start-page: 89 year: 1995 ident: 10.1016/j.molcel.2009.05.029_bib32 article-title: Signalling in bacteria beyond bioluminescence – year: 1981 ident: 10.1016/j.molcel.2009.05.029_bib9 – volume: 35 start-page: 139 year: 2000 ident: 10.1016/j.molcel.2009.05.029_bib6 article-title: A genetic analysis of the functions of LuxN: a two-component hybrid sensor kinase that regulates quorum sensing in Vibrio harveyi publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2000.01684.x – volume: 148 start-page: 87 year: 2002 ident: 10.1016/j.molcel.2009.05.029_bib14 article-title: Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound publication-title: Microbiology doi: 10.1099/00221287-148-1-87 – volume: 44 start-page: 1625 year: 2002 ident: 10.1016/j.molcel.2009.05.029_bib23 article-title: The autoregulatory role of EsaR, a quorum-sensing regulator in Pantoea stewartii ssp. stewartii: evidence for a repressor function publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2002.02987.x – volume: 21 start-page: 319 year: 2005 ident: 10.1016/j.molcel.2009.05.029_bib37 article-title: QUORUM SENSING: Cell-to-Cell Communication in Bacteria publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.21.012704.131001 – volume: 5 start-page: 97 year: 2002 ident: 10.1016/j.molcel.2009.05.029_bib1 article-title: Caenorhabditis elegans as a host for the study of host-pathogen interactions publication-title: Curr. Opin. Microbiol. doi: 10.1016/S1369-5274(02)00293-X |
SSID | ssj0014589 |
Score | 2.4069963 |
Snippet | Quorum sensing is a process of bacterial communication involving production and detection of secreted molecules called autoinducers. Gram-negative bacteria use... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 143 |
SubjectTerms | Animals Anti-Bacterial Agents - chemical synthesis Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - pharmacology Bacterial Proteins - antagonists & inhibitors Bacterial Proteins - metabolism Caenorhabditis elegans - microbiology Chromobacterium - drug effects Chromobacterium - pathogenicity Chromobacterium - physiology Escherichia coli - genetics HUMDISEASE Inhibitory Concentration 50 Microbial Sensitivity Tests MICROBIO Quorum Sensing - drug effects Receptors, Cell Surface - metabolism Receptors, Cytoplasmic and Nuclear - metabolism Repressor Proteins - antagonists & inhibitors SIGNALING Trans-Activators - antagonists & inhibitors |
Title | A Quorum-Sensing Antagonist Targets Both Membrane-Bound and Cytoplasmic Receptors and Controls Bacterial Pathogenicity |
URI | https://dx.doi.org/10.1016/j.molcel.2009.05.029 https://www.ncbi.nlm.nih.gov/pubmed/19647512 https://www.proquest.com/docview/67547401 https://pubmed.ncbi.nlm.nih.gov/PMC2741501 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yEHwRv52fefA1bmuTdnnchjKEieIGewttkmlla4fbBP9775p2OhUGPvSlTdqQS3K_6939jpCrUNhmyGXAjJCGcR1qFns8Zp41khtQaCON-c69-6A74HdDMdwgnTIXBsMqi7Pfnen5aV3cqRWzWZsmSe0JfadeiAxwuZGHSXyYVYpJfMP20pPARV4GDxszbF2mz-UxXpNsrO24YK0U1_UcaP6pnn7Dz59RlN_U0u0O2S7wJG25Ie-SDZvukU1XYfJjn7y36OMC-RbYE0aqp8-0laIfCvlyaT-PAp_RNkiL9uwEDOfUsjYWWqIRXJ2PeTYFdD1JNAV4aadYmcc9cQHu0NWRPcMIHgBKZrAaEw24_oAMbm_6nS4rSi0wLbxwzkIdcrAUwbwxVjfjqBlI2Jux9iOh5QgUKdg1flMY2_ANtw0BkpSxtUjGHwPC0f4hqaRZao8JlTAhxmA5jchyLwILWDcCwDEW3yTkqEr8coaVLnjIsRzGWJUBZ6_KyQVLZEpVFwrkUiVs2WvqeDjWtA9L4amV9aRAVazpeVnKWsFWQ_8JTH62mCmwrTgWMKySIyf5r5FgPi9AJ_jqyppYNkAS79UnafKSk3kjfZCoN07-Pd5TsuU8XPi_-YxU5m8Lew5AaR5f5DvhE50pFV8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED4BE2IvE-PXOsbww15N28Ru6se2GiobRUwUqW9WYrsQ1CYVtEj899zFSUdhEtIe-tLYreWzfd_lzt8H8COSrh0J1eJWKsuFiQxPApHwwFklLDq0saH7zoOLVv9a_BrJ0Rr0qrswVFZZnv3-TC9O6_Kbejmb9Vma1q8odxpExABXBHlqHT4gGmjQ0j4bdZepBCELHTxqzal5dX-uKPKa5hPjJiVtpTxpFEjzn_7pLf58XUb5wi-dbsOnElCyjh_zZ1hz2Q5seonJp1147LA_CyJc4FdUqp7dsE5GiSgizGXDogz8gXXRXGzgphg5Z453SWmJxfjpPc3zGcLraWoY4ks3I2ke_8RXuGNXz_aMI7hELJnjckwNAvs9uD79Oez1eam1wI0MojmPTCQwVMT4xjrTTuJ2S-HmTEwYS6PG6EkxsAnb0rpmaIVrSjSlSpwjNv4EIY4J92EjyzP3BZjCCbGW9DRiJ4IYQ2DTbCGQcfRLUo1rEFYzrE1JRE56GBNdVZzdaW8X0shUuiE12qUGfNlr5ok43mkfVcbTKwtKo694p-dxZWuNe40SKDj5-eJBY3AlSMGwBgfe8n9HQhd6ETvhv66siWUDYvFefZKltwWbN_EHyUbz63-P9xi2-sPBuT4_u_h9CB99uotePn-Djfn9wh0hapon34td8QyTvhiC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Quorum-Sensing+Antagonist+Targets+Both+Membrane-Bound+and+Cytoplasmic+Receptors+and+Controls+Bacterial+Pathogenicity&rft.jtitle=Molecular+cell&rft.au=Swem%2C+Lee+R.&rft.au=Swem%2C+Danielle+L.&rft.au=O%27Loughlin%2C+Colleen+T.&rft.au=Gatmaitan%2C+Raleene&rft.date=2009-07-31&rft.issn=1097-2765&rft.volume=35&rft.issue=2&rft.spage=143&rft.epage=153&rft_id=info:doi/10.1016%2Fj.molcel.2009.05.029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_molcel_2009_05_029 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon |