A Quorum-Sensing Antagonist Targets Both Membrane-Bound and Cytoplasmic Receptors and Controls Bacterial Pathogenicity

Quorum sensing is a process of bacterial communication involving production and detection of secreted molecules called autoinducers. Gram-negative bacteria use acyl-homoserine lactone (AHL) autoinducers, which are detected by one of two receptor types. First, cytoplasmic LuxR-type receptors bind acc...

Full description

Saved in:
Bibliographic Details
Published inMolecular cell Vol. 35; no. 2; pp. 143 - 153
Main Authors Swem, Lee R., Swem, Danielle L., O'Loughlin, Colleen T., Gatmaitan, Raleene, Zhao, Bixiao, Ulrich, Scott M., Bassler, Bonnie L.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 31.07.2009
Subjects
Online AccessGet full text
ISSN1097-2765
1097-4164
1097-4164
DOI10.1016/j.molcel.2009.05.029

Cover

Abstract Quorum sensing is a process of bacterial communication involving production and detection of secreted molecules called autoinducers. Gram-negative bacteria use acyl-homoserine lactone (AHL) autoinducers, which are detected by one of two receptor types. First, cytoplasmic LuxR-type receptors bind accumulated intracellular AHLs. AHL-LuxR complexes bind DNA and alter gene expression. Second, membrane-bound LuxN-type receptors bind accumulated extracellular AHLs. AHL-LuxN complexes relay information internally by phosphorylation cascades that direct gene expression changes. Here, we show that a small molecule, previously identified as an antagonist of LuxN-type receptors, is also a potent antagonist of the LuxR family, despite differences in receptor structure, localization, AHL specificity, and signaling mechanism. Derivatives were synthesized and optimized for potency, and in each case, we characterized the mode of action of antagonism. The most potent antagonist protects Caenorhabditis elegans from quorum-sensing-mediated killing by Chromobacterium violaceum, validating the notion that targeting quorum sensing has potential for antimicrobial drug development.
AbstractList Quorum sensing is a process of bacterial communication involving production and detection of secreted molecules called autoinducers. Gram-negative bacteria use acyl-homoserine lactone (AHL) autoinducers, which are detected by one of two receptor types. First, cytoplasmic LuxR-type receptors bind accumulated intracellular AHLs. AHL-LuxR complexes bind DNA and alter gene expression. Second, membrane-bound LuxN-type receptors bind accumulated extracellular AHLs. AHL-LuxN complexes relay information internally by phosphorylation cascades that direct gene expression changes. Here, we show that a small molecule, previously identified as an antagonist of LuxN-type receptors, is also a potent antagonist of the LuxR family, despite differences in receptor structure, localization, AHL specificity, and signaling mechanism. Derivatives were synthesized and optimized for potency, and in each case, we characterized the mode of action of antagonism. The most potent antagonist protects Caenorhabditis elegans from quorum-sensing-mediated killing by Chromobacterium violaceum, validating the notion that targeting quorum sensing has potential for antimicrobial drug development.
Quorum sensing is a process of bacterial communication involving production and detection of secreted molecules called autoinducers. Gram-negative bacteria use acyl-homoserine lactone (AHL) autoinducers, which are detected by one of two receptor types. First, cytoplasmic LuxR-type receptors bind accumulated intracellular AHLs. AHL-LuxR complexes bind DNA and alter gene expression. Second, membrane-bound LuxN-type receptors bind accumulated extracellular AHLs. AHL-LuxN complexes relay information internally by phosphorylation cascades that direct gene expression changes. Here, we show that a small molecule, previously identified as an antagonist of LuxN-type receptors, is also a potent antagonist of the LuxR family, despite differences in receptor structure, localization, AHL specificity, and signaling mechanism. Derivatives were synthesized and optimized for potency, and in each case, we characterized the mode of action of antagonism. The most potent antagonist protects Caenorhabditis elegans from quorum-sensing-mediated killing by Chromobacterium violaceum, validating the notion that targeting quorum sensing has potential for antimicrobial drug development.
Quorum sensing is a process of bacterial communication involving production and detection of secreted molecules called autoinducers. Gram-negative bacteria use acyl-homoserine lactone (AHL) autoinducers, which are detected by one of two receptor types. First, cytoplasmic LuxR-type receptors bind accumulated intracellular AHLs. AHL-LuxR complexes bind DNA and alter gene expression. Second, membrane-bound LuxN-type receptors bind accumulated extracellular AHLs. AHL-LuxN complexes relay information internally by phosphorylation cascades that direct gene-expression changes. Here we show that a small molecule, previously identified as an antagonist of LuxN-type receptors, is also a potent antagonist of the LuxR family, despite differences in receptor structure, localization, AHL specificity, and signaling mechanism. Derivatives were synthesized and optimized for potency, and in each case, we characterized the mode of action of antagonism. The most potent antagonist protects Caenorhabditis elegans from quorum-sensing-mediated killing by Chromobacterium violaceum , validating the notion that targeting quorum sensing has potential for antimicrobial drug development.
Quorum sensing is a process of bacterial communication involving production and detection of secreted molecules called autoinducers. Gram-negative bacteria use acyl-homoserine lactone (AHL) autoinducers, which are detected by one of two receptor types. First, cytoplasmic LuxR-type receptors bind accumulated intracellular AHLs. AHL-LuxR complexes bind DNA and alter gene expression. Second, membrane-bound LuxN-type receptors bind accumulated extracellular AHLs. AHL-LuxN complexes relay information internally by phosphorylation cascades that direct gene expression changes. Here, we show that a small molecule, previously identified as an antagonist of LuxN-type receptors, is also a potent antagonist of the LuxR family, despite differences in receptor structure, localization, AHL specificity, and signaling mechanism. Derivatives were synthesized and optimized for potency, and in each case, we characterized the mode of action of antagonism. The most potent antagonist protects Caenorhabditis elegans from quorum-sensing-mediated killing by Chromobacterium violaceum, validating the notion that targeting quorum sensing has potential for antimicrobial drug development.Quorum sensing is a process of bacterial communication involving production and detection of secreted molecules called autoinducers. Gram-negative bacteria use acyl-homoserine lactone (AHL) autoinducers, which are detected by one of two receptor types. First, cytoplasmic LuxR-type receptors bind accumulated intracellular AHLs. AHL-LuxR complexes bind DNA and alter gene expression. Second, membrane-bound LuxN-type receptors bind accumulated extracellular AHLs. AHL-LuxN complexes relay information internally by phosphorylation cascades that direct gene expression changes. Here, we show that a small molecule, previously identified as an antagonist of LuxN-type receptors, is also a potent antagonist of the LuxR family, despite differences in receptor structure, localization, AHL specificity, and signaling mechanism. Derivatives were synthesized and optimized for potency, and in each case, we characterized the mode of action of antagonism. The most potent antagonist protects Caenorhabditis elegans from quorum-sensing-mediated killing by Chromobacterium violaceum, validating the notion that targeting quorum sensing has potential for antimicrobial drug development.
Author Bassler, Bonnie L.
Zhao, Bixiao
Swem, Danielle L.
Gatmaitan, Raleene
O'Loughlin, Colleen T.
Swem, Lee R.
Ulrich, Scott M.
AuthorAffiliation 2 Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
3 Department of Chemistry, Ithaca College, Ithaca, NY 14850, USA
1 Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
AuthorAffiliation_xml – name: 1 Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
– name: 2 Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
– name: 3 Department of Chemistry, Ithaca College, Ithaca, NY 14850, USA
Author_xml – sequence: 1
  givenname: Lee R.
  surname: Swem
  fullname: Swem, Lee R.
  organization: Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
– sequence: 2
  givenname: Danielle L.
  surname: Swem
  fullname: Swem, Danielle L.
  organization: Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
– sequence: 3
  givenname: Colleen T.
  surname: O'Loughlin
  fullname: O'Loughlin, Colleen T.
  organization: Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
– sequence: 4
  givenname: Raleene
  surname: Gatmaitan
  fullname: Gatmaitan, Raleene
  organization: Department of Chemistry, Ithaca College, Ithaca, NY 14850, USA
– sequence: 5
  givenname: Bixiao
  surname: Zhao
  fullname: Zhao, Bixiao
  organization: Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
– sequence: 6
  givenname: Scott M.
  surname: Ulrich
  fullname: Ulrich, Scott M.
  organization: Department of Chemistry, Ithaca College, Ithaca, NY 14850, USA
– sequence: 7
  givenname: Bonnie L.
  surname: Bassler
  fullname: Bassler, Bonnie L.
  email: bbassler@princeton.edu
  organization: Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19647512$$D View this record in MEDLINE/PubMed
BookMark eNp9kUuP0zAUhS00iHnAP0AoK3YJdmLHMQukTgUzSIN4DWvLcW5TV45dbKdS_z0uLSNgMQvLlu49515_5xKdOe8AoZcEVwST9s2mmrzVYKsaY1FhVuFaPEEXBAteUtLSs9O75i07R5cxbjAmlHXiGTonoqWckfoC7RbF19mHeSq_g4vGjcXCJTV6Z2Iq7lUYIcXi2qd18QmmPigH5bWf3VCofJb75LdWxcno4hto2CYf4rHiXQreZqnSCYJRtvii0tqP4Iw2af8cPV0pG-HF6b5CPz68v1_elnefbz4uF3elZjVPJdecMiq6th5Ad73qWtEQ0etGMS1WGoB2vOnYAKQZKBAGgxA9AO5o1wvR6OYKvTv6bud-gkFDXktZuQ1mUmEvvTLy34ozazn6naw5JQyTbPD6ZBD8zxlikpOJmbrNJPwcZcsZ5fR346u_Jz2M-IM6N7w9NujgYwywkhmESuZAShkrCZaHXOVGHnOVh1wlZjLnmsX0P_GD_-Oy0_chM94ZCDJqA07DYALoJAdvHjf4BamDwik
CitedBy_id crossref_primary_10_1007_s00044_017_2027_2
crossref_primary_10_12998_wjcc_v3_i7_575
crossref_primary_10_1111_j_1365_2958_2010_07248_x
crossref_primary_10_1007_s00203_020_02127_z
crossref_primary_10_1093_femsre_fuw014
crossref_primary_10_1016_j_bmc_2011_06_071
crossref_primary_10_1016_j_molcel_2011_04_003
crossref_primary_10_1074_jbc_RA119_012104
crossref_primary_10_3390_molecules23123075
crossref_primary_10_1038_s44222_023_00140_7
crossref_primary_10_3390_md12063245
crossref_primary_10_1111_1462_2920_14888
crossref_primary_10_3389_fmicb_2024_1303595
crossref_primary_10_1128_JB_05125_11
crossref_primary_10_1016_j_ijpharm_2016_02_044
crossref_primary_10_1080_20002297_2023_2208901
crossref_primary_10_3390_biomedicines11123161
crossref_primary_10_1007_s11515_011_1153_3
crossref_primary_10_1074_jbc_M116_770552
crossref_primary_10_1007_s10123_024_00487_w
crossref_primary_10_1016_j_arcmed_2013_10_004
crossref_primary_10_1128_genomeA_00080_16
crossref_primary_10_3389_fchem_2022_948687
crossref_primary_10_1016_j_heliyon_2019_e03137
crossref_primary_10_1146_annurev_micro_012220_063740
crossref_primary_10_1371_journal_pone_0107703
crossref_primary_10_3389_fmars_2018_00198
crossref_primary_10_1002_cbic_202000773
crossref_primary_10_1038_ismej_2012_69
crossref_primary_10_1097_WON_0b013e31827e8481
crossref_primary_10_1534_genetics_120_303285
crossref_primary_10_1038_msb_2012_57
crossref_primary_10_1099_mic_0_070615_0
crossref_primary_10_1099_mic_0_001294
crossref_primary_10_1021_cb5004288
crossref_primary_10_1371_journal_pone_0055045
crossref_primary_10_7717_peerj_6568
crossref_primary_10_1128_MMBR_00046_12
crossref_primary_10_3390_molecules21030391
crossref_primary_10_1039_C8RA06413J
crossref_primary_10_1038_s41522_021_00211_w
crossref_primary_10_1039_C7CC04293K
crossref_primary_10_1039_D3RA01975F
crossref_primary_10_1155_2015_465056
crossref_primary_10_1002_slct_202102743
crossref_primary_10_1002_ijch_202200079
crossref_primary_10_1016_j_bmcl_2021_127873
crossref_primary_10_1128_mBio_00146_19
crossref_primary_10_1134_S0026261722602597
crossref_primary_10_1134_S1990747815050104
crossref_primary_10_4155_fmc_10_185
crossref_primary_10_1038_s41598_020_64953_x
crossref_primary_10_1111_cbdd_12517
crossref_primary_10_1021_jm901742e
crossref_primary_10_1039_C3SC52572D
crossref_primary_10_1007_s42398_019_00079_9
crossref_primary_10_1021_ja3112115
crossref_primary_10_1038_nrmicro2212
crossref_primary_10_1007_s12223_010_0088_4
crossref_primary_10_1111_1462_2920_12322
crossref_primary_10_1016_j_memsci_2017_10_041
crossref_primary_10_1038_s41598_018_20283_7
crossref_primary_10_1093_femsre_fuv038
crossref_primary_10_1093_femsre_fuw009
crossref_primary_10_1038_nchembio_1295
crossref_primary_10_1186_s40659_015_0012_0
crossref_primary_10_3389_fmicb_2017_02213
crossref_primary_10_1007_s00253_013_5006_7
crossref_primary_10_3390_antibiotics11030285
crossref_primary_10_1002_advs_202306070
crossref_primary_10_1016_j_scib_2017_02_010
crossref_primary_10_1002_med_21621
crossref_primary_10_1016_j_micpath_2016_12_003
crossref_primary_10_1099_mic_0_000826
crossref_primary_10_1016_j_coph_2013_08_002
crossref_primary_10_1016_j_tim_2013_04_001
crossref_primary_10_1371_journal_pgen_1009550
crossref_primary_10_1002_jhet_3140
crossref_primary_10_1371_journal_ppat_1000989
crossref_primary_10_1021_ja111138y
crossref_primary_10_3389_fmicb_2019_01330
crossref_primary_10_1007_s11427_021_1956_8
crossref_primary_10_1098_rstb_2013_0366
crossref_primary_10_1242_dmm_006684
crossref_primary_10_1016_j_chom_2016_02_020
crossref_primary_10_1128_msystems_01397_23
crossref_primary_10_1128_mBio_00638_19
crossref_primary_10_1021_acs_jmedchem_3c02379
crossref_primary_10_1007_s40475_017_0127_1
crossref_primary_10_1517_13543776_2010_511176
crossref_primary_10_1016_j_chembiol_2012_03_014
crossref_primary_10_2217_fmb_11_93
crossref_primary_10_3109_1061186X_2010_519032
crossref_primary_10_1016_j_synbio_2023_08_006
crossref_primary_10_1073_pnas_1211072109
crossref_primary_10_1186_2050_6511_13_13
crossref_primary_10_3389_fmicb_2019_02473
crossref_primary_10_1371_journal_ppat_1002767
crossref_primary_10_1128_mBio_01370_17
crossref_primary_10_1021_acsinfecdis_6b00163
crossref_primary_10_3390_ph15020110
crossref_primary_10_1016_j_bioorg_2014_04_005
crossref_primary_10_3390_molecules29153466
crossref_primary_10_1007_s00203_021_02455_8
crossref_primary_10_1038_s41598_019_52955_3
crossref_primary_10_3389_fimmu_2025_1550724
crossref_primary_10_31857_S0026365622600626
crossref_primary_10_1128_mBio_00948_20
crossref_primary_10_1080_22297928_2021_1937314
crossref_primary_10_1073_pnas_1001392107
crossref_primary_10_3390_microorganisms9122424
crossref_primary_10_1590_0001_3765201520140482
crossref_primary_10_1002_chem_201204349
crossref_primary_10_1073_pnas_1314415110
crossref_primary_10_1074_jbc_M114_573832
crossref_primary_10_1073_pnas_1316981110
crossref_primary_10_1128_spectrum_00681_24
crossref_primary_10_1007_s00253_021_11338_3
crossref_primary_10_3389_fmicb_2022_970520
crossref_primary_10_3390_md22040177
crossref_primary_10_3390_biomedicines11030668
crossref_primary_10_1080_08905436_2014_932287
crossref_primary_10_3389_fphar_2018_00203
crossref_primary_10_3390_microorganisms13040708
crossref_primary_10_3390_molecules18033266
crossref_primary_10_3390_s120303762
crossref_primary_10_3390_antibiotics11020178
crossref_primary_10_1038_nrmicro_2016_89
crossref_primary_10_4236_jbise_2020_132002
crossref_primary_10_1007_s13738_020_02093_9
crossref_primary_10_1038_s41589_022_01089_1
crossref_primary_10_1021_acsinfecdis_8b00115
crossref_primary_10_4103_2221_1691_314044
crossref_primary_10_1016_j_mimet_2013_01_005
crossref_primary_10_3389_fchem_2024_1286675
crossref_primary_10_1016_j_bmcl_2018_12_068
crossref_primary_10_1016_j_mib_2009_12_005
crossref_primary_10_1016_j_tetlet_2023_154620
crossref_primary_10_3390_ijms21249512
crossref_primary_10_1016_j_ejmech_2020_112252
crossref_primary_10_1093_femspd_ftu019
crossref_primary_10_35534_sbe_2023_10018
crossref_primary_10_1128_mBio_01291_17
crossref_primary_10_1016_j_biotechadv_2016_06_003
crossref_primary_10_1016_j_pharma_2018_02_004
crossref_primary_10_1016_j_bioelechem_2022_108050
crossref_primary_10_1021_acs_joc_6b00522
crossref_primary_10_2217_fmb_11_60
crossref_primary_10_1007_s00044_017_2110_8
crossref_primary_10_1021_acschembio_4c00641
crossref_primary_10_1038_s41598_023_42833_4
crossref_primary_10_1517_13543776_2013_779674
crossref_primary_10_1016_j_bios_2017_11_040
crossref_primary_10_1016_j_pbiomolbio_2023_08_005
crossref_primary_10_1080_10406638_2023_2165511
crossref_primary_10_3390_ijms20225696
crossref_primary_10_1016_j_tim_2010_07_002
crossref_primary_10_3389_fcimb_2018_00292
crossref_primary_10_1128_CMR_00084_16
crossref_primary_10_1007_s00018_019_03319_7
crossref_primary_10_3389_fmicb_2017_00349
Cites_doi 10.1099/mic.0.27954-0
10.1073/pnas.0407661102
10.1146/annurev.micro.50.1.727
10.1128/jb.172.6.2946-2954.1990
10.1038/nature00833
10.1099/mic.0.2008/019281-0
10.1074/jbc.M604108200
10.1016/j.ijmm.2006.01.042
10.1016/j.cell.2004.06.009
10.1021/ja0530321
10.1101/gad.1502407
10.1021/ja074135h
10.1093/emboj/cdg366
10.1073/pnas.0601754103
10.1128/JB.186.20.6902-6914.2004
10.1016/S0021-9258(20)88238-6
10.1016/j.bbrc.2006.05.168
10.1146/annurev.genet.42.110807.091640
10.1111/j.1365-2958.2006.05210.x
10.1128/JB.185.23.7001-7007.2003
10.1111/j.1365-2958.1993.tb01737.x
10.1073/pnas.98.4.1507
10.1128/JB.01723-06
10.1111/j.1365-2958.2004.04529.x
10.1128/jb.176.2.269-275.1994
10.1128/jb.171.5.2406-2414.1989
10.1073/pnas.96.9.4832
10.1111/j.1365-2958.1994.tb00422.x
10.1146/annurev.bioeng.10.061807.160536
10.1016/j.bmcl.2008.07.089
10.1099/00221287-143-12-3703
10.1016/j.cell.2008.06.023
10.1128/AAC.00665-06
10.1046/j.1365-2958.2000.01684.x
10.1099/00221287-148-1-87
10.1046/j.1365-2958.2002.02987.x
10.1146/annurev.cellbio.21.012704.131001
10.1016/S1369-5274(02)00293-X
ContentType Journal Article
Copyright 2009 Elsevier Inc.
Copyright_xml – notice: 2009 Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.molcel.2009.05.029
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4164
EndPage 153
ExternalDocumentID PMC2741501
19647512
10_1016_j_molcel_2009_05_029
S1097276509004699
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: N01 CO012400
– fundername: Howard Hughes Medical Institute
– fundername: NIAID NIH HHS
  grantid: R01 AI054442
– fundername: NCI NIH HHS
  grantid: N01-CO-12400
– fundername: NIGMS NIH HHS
  grantid: R01 GM065859
– fundername: NIGMS NIH HHS
  grantid: 5R01GM065859
– fundername: NIAID NIH HHS
  grantid: 5R01 AI 054442
– fundername: NIGMS NIH HHS
  grantid: T32 GM007205
– fundername: NIGMS NIH HHS
  grantid: GM787552
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1~5
2WC
4.4
457
4G.
5RE
62-
6I.
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFFNX
AFTJW
AGHFR
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HH5
HVGLF
HZ~
IH2
IHE
IXB
J1W
JIG
KQ8
L7B
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
WQ6
ZA5
.55
.GJ
29M
3O-
53G
5VS
AAHBH
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FGOYB
OZT
R2-
UHS
X7M
ZGI
ZXP
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c527t-7c74549862dec8ba869319bc3a5c9fcee487385de13d4e15ed99bee0848b993c3
IEDL.DBID IXB
ISSN 1097-2765
1097-4164
IngestDate Thu Aug 21 17:52:18 EDT 2025
Fri Sep 05 10:43:11 EDT 2025
Mon Jul 21 06:03:58 EDT 2025
Tue Jul 01 03:40:38 EDT 2025
Thu Apr 24 22:57:45 EDT 2025
Fri Feb 23 02:19:48 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords MICROBIO
HUMDISEASE
SIGNALING
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c527t-7c74549862dec8ba869319bc3a5c9fcee487385de13d4e15ed99bee0848b993c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1097276509004699
PMID 19647512
PQID 67547401
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2741501
proquest_miscellaneous_67547401
pubmed_primary_19647512
crossref_citationtrail_10_1016_j_molcel_2009_05_029
crossref_primary_10_1016_j_molcel_2009_05_029
elsevier_sciencedirect_doi_10_1016_j_molcel_2009_05_029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-07-31
PublicationDateYYYYMMDD 2009-07-31
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-07-31
  day: 31
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cell
PublicationTitleAlternate Mol Cell
PublicationYear 2009
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Geske, Mattmann, Blackwell (bib12) 2008; 18
Richard (bib28) 1993; 86
Geske, Wezeman, Siegel, Blackwell (bib10) 2005; 127
Martin, Showalter, Silverman (bib21) 1989; 171
Waters, Bassler (bib37) 2005; 21
Wright, Jin, Novick (bib39) 2005; 102
Zhu, Winans (bib42) 2001; 98
Freeman, Lilley, Bassler (bib6) 2000; 35
Zhang, Pappas, Brace, Miller, Oulmassov, Molyneaux, Anderson, Bashkin, Winans, Joachimiak (bib40) 2002; 417
Minogue, Wehland-von Trebra, Bernhard, von Bodman (bib23) 2002; 44
(bib26) 2006
Fuqua, Winans, Greenberg (bib8) 1996; 50
Muh, Schuster, Heim, Singh, Olson, Greenberg (bib25) 2006; 50
Jung, Odenbach, Timmen (bib17) 2007; 189
Gale (bib9) 1981
Hentzer, Wu, Andersen, Riedel, Rasmussen, Bagge, Kumar, Schembri, Song, Kristoffersen (bib15) 2003; 22
Novick, Geisinger (bib27) 2008; 42
Fuqua, Winans, Greenberg (bib7) 1994; 176
Koch, Liljefors, Persson, Nielsen, Kjelleberg, Givskov (bib18) 2005; 151
Hentzer, Riedel, Rasmussen, Heydorn, Andersen, Parsek, Rice, Eberl, Molin, Hoiby (bib14) 2002; 148
Showalter, Martin, Silverman (bib29) 1990; 172
Swem, Swem, Wingreen, Bassler (bib31) 2008; 134
Bassler, Wright, Silverman (bib3) 1994; 13
Minogue, Carlier, Koutsoudis, von Bodman (bib24) 2005; 56
Lenz, Mok, Lilley, Kulkarni, Wingreen, Bassler (bib20) 2004; 118
Bassler, Wright, Showalter, Silverman (bib2) 1993; 9
Zhu, Winans (bib41) 1999; 96
Cao, Meighen (bib4) 1989; 264
Jayaraman, Wood (bib16) 2008; 10
Vaitkevicius, Lindmark, Ou, Song, Toma, Iwanaga, Zhu, Andersson, Hammarstrom, Tuck (bib35) 2006; 103
Geske, O'Neill, Miller, Mattmann, Blackwell (bib11) 2007; 129
Willcox, Zhu, Conibear, Hume, Givskov, Kjelleberg, Rice (bib38) 2008; 154
Sjoblom, Brader, Koch, Palva (bib30) 2006; 60
Timmen, Bassler, Jung (bib33) 2006; 281
Aballay, Ausubel (bib1) 2002; 5
Tu, Bassler (bib34) 2007; 21
Henke, Bassler (bib13) 2004; 186
McClean, Winson, Fish, Taylor, Chhabra, Camara, Daykin, Lamb, Swift, Bycroft (bib22) 1997; 143
Kong, Vuong, Otto (bib19) 2006; 296
Throup, Winson, Bainton, Bycroft, Williams, Stewart (bib32) 1995
von Bodman, Ball, Faini, Herrera, Minogue, Urbanowski, Stevens (bib36) 2003; 185
Dhakal, Lee, Kim, Choy, Ahnn, Rhee (bib5) 2006; 346
Freeman (10.1016/j.molcel.2009.05.029_bib6) 2000; 35
Waters (10.1016/j.molcel.2009.05.029_bib37) 2005; 21
McClean (10.1016/j.molcel.2009.05.029_bib22) 1997; 143
Novick (10.1016/j.molcel.2009.05.029_bib27) 2008; 42
(10.1016/j.molcel.2009.05.029_bib26) 2006
Zhang (10.1016/j.molcel.2009.05.029_bib40) 2002; 417
Sjoblom (10.1016/j.molcel.2009.05.029_bib30) 2006; 60
Zhu (10.1016/j.molcel.2009.05.029_bib41) 1999; 96
Lenz (10.1016/j.molcel.2009.05.029_bib20) 2004; 118
Jung (10.1016/j.molcel.2009.05.029_bib17) 2007; 189
Throup (10.1016/j.molcel.2009.05.029_bib32) 1995
Aballay (10.1016/j.molcel.2009.05.029_bib1) 2002; 5
Kong (10.1016/j.molcel.2009.05.029_bib19) 2006; 296
Henke (10.1016/j.molcel.2009.05.029_bib13) 2004; 186
Hentzer (10.1016/j.molcel.2009.05.029_bib14) 2002; 148
Minogue (10.1016/j.molcel.2009.05.029_bib24) 2005; 56
Jayaraman (10.1016/j.molcel.2009.05.029_bib16) 2008; 10
Martin (10.1016/j.molcel.2009.05.029_bib21) 1989; 171
Geske (10.1016/j.molcel.2009.05.029_bib12) 2008; 18
Swem (10.1016/j.molcel.2009.05.029_bib31) 2008; 134
Dhakal (10.1016/j.molcel.2009.05.029_bib5) 2006; 346
Willcox (10.1016/j.molcel.2009.05.029_bib38) 2008; 154
Gale (10.1016/j.molcel.2009.05.029_bib9) 1981
Hentzer (10.1016/j.molcel.2009.05.029_bib15) 2003; 22
Wright (10.1016/j.molcel.2009.05.029_bib39) 2005; 102
Koch (10.1016/j.molcel.2009.05.029_bib18) 2005; 151
Minogue (10.1016/j.molcel.2009.05.029_bib23) 2002; 44
Cao (10.1016/j.molcel.2009.05.029_bib4) 1989; 264
Timmen (10.1016/j.molcel.2009.05.029_bib33) 2006; 281
Vaitkevicius (10.1016/j.molcel.2009.05.029_bib35) 2006; 103
Richard (10.1016/j.molcel.2009.05.029_bib28) 1993; 86
Muh (10.1016/j.molcel.2009.05.029_bib25) 2006; 50
Fuqua (10.1016/j.molcel.2009.05.029_bib7) 1994; 176
von Bodman (10.1016/j.molcel.2009.05.029_bib36) 2003; 185
Bassler (10.1016/j.molcel.2009.05.029_bib3) 1994; 13
Zhu (10.1016/j.molcel.2009.05.029_bib42) 2001; 98
Geske (10.1016/j.molcel.2009.05.029_bib10) 2005; 127
Fuqua (10.1016/j.molcel.2009.05.029_bib8) 1996; 50
Geske (10.1016/j.molcel.2009.05.029_bib11) 2007; 129
Showalter (10.1016/j.molcel.2009.05.029_bib29) 1990; 172
Tu (10.1016/j.molcel.2009.05.029_bib34) 2007; 21
Bassler (10.1016/j.molcel.2009.05.029_bib2) 1993; 9
References_xml – volume: 42
  start-page: 541
  year: 2008
  end-page: 564
  ident: bib27
  article-title: Quorum sensing in staphylococci
  publication-title: Annu. Rev. Genet.
– volume: 127
  start-page: 12762
  year: 2005
  end-page: 12763
  ident: bib10
  article-title: Small molecule inhibitors of bacterial quorum sensing and biofilm formation
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 221
  year: 2007
  end-page: 233
  ident: bib34
  article-title: Multiple small RNAs act additively to integrate sensory information and control quorum sensing in
  publication-title: Genes Dev.
– volume: 44
  start-page: 1625
  year: 2002
  end-page: 1635
  ident: bib23
  article-title: The autoregulatory role of EsaR, a quorum-sensing regulator in
  publication-title: Mol. Microbiol.
– volume: 118
  start-page: 69
  year: 2004
  end-page: 82
  ident: bib20
  article-title: The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in
  publication-title: Cell
– volume: 134
  start-page: 461
  year: 2008
  end-page: 473
  ident: bib31
  article-title: Deducing receptor signaling parameters from in vivo analysis: LuxN/AI-1 quorum sensing in
  publication-title: Cell
– start-page: 89
  year: 1995
  end-page: 92
  ident: bib32
  article-title: Signalling in bacteria beyond bioluminescence
  publication-title: Bioluminescence and Chemiluminescence: Fundamentals and Applied Aspects
– year: 1981
  ident: bib9
  article-title: The Molecular Basis of Antibiotic Action
– volume: 13
  start-page: 273
  year: 1994
  end-page: 286
  ident: bib3
  article-title: Multiple signalling systems controlling expression of luminescence in
  publication-title: Mol. Microbiol.
– volume: 86
  start-page: 169
  year: 1993
  end-page: 173
  ident: bib28
  article-title: [Chromobacterium violaceum, opportunist pathogenic bacteria in tropical and subtropical regions]
  publication-title: Bul. Soc. Pathol. Exot.
– volume: 151
  start-page: 3589
  year: 2005
  end-page: 3602
  ident: bib18
  article-title: The LuxR receptor: the sites of interaction with quorum-sensing signals and inhibitors
  publication-title: Microbiology
– volume: 281
  start-page: 24398
  year: 2006
  end-page: 24404
  ident: bib33
  article-title: AI-1 influences the kinase activity but not the phosphatase activity of LuxN of
  publication-title: J. Biol. Chem.
– volume: 22
  start-page: 3803
  year: 2003
  end-page: 3815
  ident: bib15
  article-title: Attenuation of
  publication-title: EMBO J.
– volume: 186
  start-page: 6902
  year: 2004
  end-page: 6914
  ident: bib13
  article-title: Three parallel quorum-sensing systems regulate gene expression in
  publication-title: J. Bacteriol.
– volume: 172
  start-page: 2946
  year: 1990
  end-page: 2954
  ident: bib29
  article-title: Cloning and nucleotide sequence of
  publication-title: J. Bacteriol.
– volume: 176
  start-page: 269
  year: 1994
  end-page: 275
  ident: bib7
  article-title: Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators
  publication-title: J. Bacteriol.
– volume: 50
  start-page: 727
  year: 1996
  end-page: 751
  ident: bib8
  article-title: Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators
  publication-title: Annu. Rev. Microbiol.
– volume: 5
  start-page: 97
  year: 2002
  end-page: 101
  ident: bib1
  article-title: as a host for the study of host-pathogen interactions
  publication-title: Curr. Opin. Microbiol.
– year: 2006
  ident: bib26
  article-title: Treating Infectious Diseases in a Microbial World
– volume: 189
  start-page: 2945
  year: 2007
  end-page: 2948
  ident: bib17
  article-title: The quorum-sensing hybrid histidine kinase LuxN of
  publication-title: J. Bacteriol.
– volume: 10
  start-page: 145
  year: 2008
  end-page: 167
  ident: bib16
  article-title: Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 56
  start-page: 189
  year: 2005
  end-page: 203
  ident: bib24
  article-title: The cell density-dependent expression of stewartan exopolysaccharide in
  publication-title: Mol. Microbiol.
– volume: 346
  start-page: 751
  year: 2006
  end-page: 757
  ident: bib5
  article-title: as a simple model host for
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 264
  start-page: 21670
  year: 1989
  end-page: 21676
  ident: bib4
  article-title: Purification and structural identification of an autoinducer for the luminescence system of
  publication-title: J. Biol. Chem.
– volume: 154
  start-page: 2184
  year: 2008
  end-page: 2194
  ident: bib38
  article-title: Role of quorum sensing by
  publication-title: Microbiology
– volume: 60
  start-page: 1474
  year: 2006
  end-page: 1489
  ident: bib30
  article-title: Cooperation of two distinct ExpR regulators controls quorum sensing specificity and virulence in the plant pathogen
  publication-title: Mol. Microbiol.
– volume: 96
  start-page: 4832
  year: 1999
  end-page: 4837
  ident: bib41
  article-title: Autoinducer binding by the quorum-sensing regulator TraR increases affinity for target promoters in vitro and decreases TraR turnover rates in whole cells
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 171
  start-page: 2406
  year: 1989
  end-page: 2414
  ident: bib21
  article-title: Identification of a locus controlling expression of luminescence genes in
  publication-title: J. Bacteriol.
– volume: 21
  start-page: 319
  year: 2005
  end-page: 346
  ident: bib37
  article-title: QUORUM SENSING: Cell-to-Cell Communication in Bacteria
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 98
  start-page: 1507
  year: 2001
  end-page: 1512
  ident: bib42
  article-title: The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 143
  start-page: 3703
  year: 1997
  end-page: 3711
  ident: bib22
  article-title: Quorum sensing and
  publication-title: Microbiology
– volume: 417
  start-page: 971
  year: 2002
  end-page: 974
  ident: bib40
  article-title: Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA
  publication-title: Nature
– volume: 296
  start-page: 133
  year: 2006
  end-page: 139
  ident: bib19
  article-title: quorum sensing in biofilm formation and infection
  publication-title: Int. J. Med. Microbiol.
– volume: 50
  start-page: 3674
  year: 2006
  end-page: 3679
  ident: bib25
  article-title: Novel Pseudomonas aeruginosa quorum-sensing inhibitors identified in an ultra-high-throughput screen
  publication-title: Antimicrob. Agents Chemother.
– volume: 129
  start-page: 13613
  year: 2007
  end-page: 13625
  ident: bib11
  article-title: Modulation of bacterial quorum sensing with synthetic ligands: systematic evaluation of N-acylated homoserine lactones in multiple species and new insights into their mechanisms of action
  publication-title: J. Am. Chem. Soc.
– volume: 102
  start-page: 1691
  year: 2005
  end-page: 1696
  ident: bib39
  article-title: Transient interference with staphylococcal quorum sensing blocks abscess formation
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 185
  start-page: 7001
  year: 2003
  end-page: 7007
  ident: bib36
  article-title: The quorum sensing negative regulators EsaR and ExpR(Ecc), homologues within the LuxR family, retain the ability to function as activators of transcription
  publication-title: J. Bacteriol.
– volume: 9
  start-page: 773
  year: 1993
  end-page: 786
  ident: bib2
  article-title: Intercellular signalling in
  publication-title: Mol. Microbiol.
– volume: 148
  start-page: 87
  year: 2002
  end-page: 102
  ident: bib14
  article-title: Inhibition of quorum sensing in
  publication-title: Microbiology
– volume: 103
  start-page: 9280
  year: 2006
  end-page: 9285
  ident: bib35
  article-title: A
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 35
  start-page: 139
  year: 2000
  end-page: 149
  ident: bib6
  article-title: A genetic analysis of the functions of LuxN: a two-component hybrid sensor kinase that regulates quorum sensing in
  publication-title: Mol. Microbiol.
– volume: 18
  start-page: 5978
  year: 2008
  end-page: 5981
  ident: bib12
  article-title: Evaluation of a focused library of N-aryl L-homoserine lactones reveals a new set of potent quorum sensing modulators
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 151
  start-page: 3589
  year: 2005
  ident: 10.1016/j.molcel.2009.05.029_bib18
  article-title: The LuxR receptor: the sites of interaction with quorum-sensing signals and inhibitors
  publication-title: Microbiology
  doi: 10.1099/mic.0.27954-0
– volume: 102
  start-page: 1691
  year: 2005
  ident: 10.1016/j.molcel.2009.05.029_bib39
  article-title: Transient interference with staphylococcal quorum sensing blocks abscess formation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0407661102
– volume: 50
  start-page: 727
  year: 1996
  ident: 10.1016/j.molcel.2009.05.029_bib8
  article-title: Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.50.1.727
– volume: 172
  start-page: 2946
  year: 1990
  ident: 10.1016/j.molcel.2009.05.029_bib29
  article-title: Cloning and nucleotide sequence of luxR, a regulatory gene controlling bioluminescence in Vibrio harveyi
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.172.6.2946-2954.1990
– volume: 417
  start-page: 971
  year: 2002
  ident: 10.1016/j.molcel.2009.05.029_bib40
  article-title: Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA
  publication-title: Nature
  doi: 10.1038/nature00833
– volume: 154
  start-page: 2184
  year: 2008
  ident: 10.1016/j.molcel.2009.05.029_bib38
  article-title: Role of quorum sensing by Pseudomonas aeruginosa in microbial keratitis and cystic fibrosis
  publication-title: Microbiology
  doi: 10.1099/mic.0.2008/019281-0
– year: 2006
  ident: 10.1016/j.molcel.2009.05.029_bib26
– volume: 281
  start-page: 24398
  year: 2006
  ident: 10.1016/j.molcel.2009.05.029_bib33
  article-title: AI-1 influences the kinase activity but not the phosphatase activity of LuxN of Vibrio harveyi
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M604108200
– volume: 296
  start-page: 133
  year: 2006
  ident: 10.1016/j.molcel.2009.05.029_bib19
  article-title: Staphylococcus quorum sensing in biofilm formation and infection
  publication-title: Int. J. Med. Microbiol.
  doi: 10.1016/j.ijmm.2006.01.042
– volume: 118
  start-page: 69
  year: 2004
  ident: 10.1016/j.molcel.2009.05.029_bib20
  article-title: The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae
  publication-title: Cell
  doi: 10.1016/j.cell.2004.06.009
– volume: 127
  start-page: 12762
  year: 2005
  ident: 10.1016/j.molcel.2009.05.029_bib10
  article-title: Small molecule inhibitors of bacterial quorum sensing and biofilm formation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0530321
– volume: 21
  start-page: 221
  year: 2007
  ident: 10.1016/j.molcel.2009.05.029_bib34
  article-title: Multiple small RNAs act additively to integrate sensory information and control quorum sensing in Vibrio harveyi
  publication-title: Genes Dev.
  doi: 10.1101/gad.1502407
– volume: 129
  start-page: 13613
  year: 2007
  ident: 10.1016/j.molcel.2009.05.029_bib11
  article-title: Modulation of bacterial quorum sensing with synthetic ligands: systematic evaluation of N-acylated homoserine lactones in multiple species and new insights into their mechanisms of action
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja074135h
– volume: 22
  start-page: 3803
  year: 2003
  ident: 10.1016/j.molcel.2009.05.029_bib15
  article-title: Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdg366
– volume: 103
  start-page: 9280
  year: 2006
  ident: 10.1016/j.molcel.2009.05.029_bib35
  article-title: A Vibrio cholerae protease needed for killing of Caenorhabditis elegans has a role in protection from natural predator grazing
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0601754103
– volume: 186
  start-page: 6902
  year: 2004
  ident: 10.1016/j.molcel.2009.05.029_bib13
  article-title: Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.186.20.6902-6914.2004
– volume: 86
  start-page: 169
  year: 1993
  ident: 10.1016/j.molcel.2009.05.029_bib28
  article-title: [Chromobacterium violaceum, opportunist pathogenic bacteria in tropical and subtropical regions]
  publication-title: Bul. Soc. Pathol. Exot.
– volume: 264
  start-page: 21670
  year: 1989
  ident: 10.1016/j.molcel.2009.05.029_bib4
  article-title: Purification and structural identification of an autoinducer for the luminescence system of Vibrio harveyi
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(20)88238-6
– volume: 346
  start-page: 751
  year: 2006
  ident: 10.1016/j.molcel.2009.05.029_bib5
  article-title: Caenorhabditis elegans as a simple model host for Vibrio vulnificus infection
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2006.05.168
– volume: 42
  start-page: 541
  year: 2008
  ident: 10.1016/j.molcel.2009.05.029_bib27
  article-title: Quorum sensing in staphylococci
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.genet.42.110807.091640
– volume: 60
  start-page: 1474
  year: 2006
  ident: 10.1016/j.molcel.2009.05.029_bib30
  article-title: Cooperation of two distinct ExpR regulators controls quorum sensing specificity and virulence in the plant pathogen Erwinia carotovora
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2006.05210.x
– volume: 185
  start-page: 7001
  year: 2003
  ident: 10.1016/j.molcel.2009.05.029_bib36
  article-title: The quorum sensing negative regulators EsaR and ExpR(Ecc), homologues within the LuxR family, retain the ability to function as activators of transcription
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.185.23.7001-7007.2003
– volume: 9
  start-page: 773
  year: 1993
  ident: 10.1016/j.molcel.2009.05.029_bib2
  article-title: Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.1993.tb01737.x
– volume: 98
  start-page: 1507
  year: 2001
  ident: 10.1016/j.molcel.2009.05.029_bib42
  article-title: The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.98.4.1507
– volume: 189
  start-page: 2945
  year: 2007
  ident: 10.1016/j.molcel.2009.05.029_bib17
  article-title: The quorum-sensing hybrid histidine kinase LuxN of Vibrio harveyi contains a periplasmically located N terminus
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01723-06
– volume: 56
  start-page: 189
  year: 2005
  ident: 10.1016/j.molcel.2009.05.029_bib24
  article-title: The cell density-dependent expression of stewartan exopolysaccharide in Pantoea stewartii ssp. stewartii is a function of EsaR-mediated repression of the rcsA gene
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2004.04529.x
– volume: 176
  start-page: 269
  year: 1994
  ident: 10.1016/j.molcel.2009.05.029_bib7
  article-title: Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.176.2.269-275.1994
– volume: 171
  start-page: 2406
  year: 1989
  ident: 10.1016/j.molcel.2009.05.029_bib21
  article-title: Identification of a locus controlling expression of luminescence genes in Vibrio harveyi
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.171.5.2406-2414.1989
– volume: 96
  start-page: 4832
  year: 1999
  ident: 10.1016/j.molcel.2009.05.029_bib41
  article-title: Autoinducer binding by the quorum-sensing regulator TraR increases affinity for target promoters in vitro and decreases TraR turnover rates in whole cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.96.9.4832
– volume: 13
  start-page: 273
  year: 1994
  ident: 10.1016/j.molcel.2009.05.029_bib3
  article-title: Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.1994.tb00422.x
– volume: 10
  start-page: 145
  year: 2008
  ident: 10.1016/j.molcel.2009.05.029_bib16
  article-title: Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev.bioeng.10.061807.160536
– volume: 18
  start-page: 5978
  year: 2008
  ident: 10.1016/j.molcel.2009.05.029_bib12
  article-title: Evaluation of a focused library of N-aryl L-homoserine lactones reveals a new set of potent quorum sensing modulators
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2008.07.089
– volume: 143
  start-page: 3703
  year: 1997
  ident: 10.1016/j.molcel.2009.05.029_bib22
  article-title: Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones
  publication-title: Microbiology
  doi: 10.1099/00221287-143-12-3703
– volume: 134
  start-page: 461
  year: 2008
  ident: 10.1016/j.molcel.2009.05.029_bib31
  article-title: Deducing receptor signaling parameters from in vivo analysis: LuxN/AI-1 quorum sensing in Vibrio harveyi
  publication-title: Cell
  doi: 10.1016/j.cell.2008.06.023
– volume: 50
  start-page: 3674
  year: 2006
  ident: 10.1016/j.molcel.2009.05.029_bib25
  article-title: Novel Pseudomonas aeruginosa quorum-sensing inhibitors identified in an ultra-high-throughput screen
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00665-06
– start-page: 89
  year: 1995
  ident: 10.1016/j.molcel.2009.05.029_bib32
  article-title: Signalling in bacteria beyond bioluminescence
– year: 1981
  ident: 10.1016/j.molcel.2009.05.029_bib9
– volume: 35
  start-page: 139
  year: 2000
  ident: 10.1016/j.molcel.2009.05.029_bib6
  article-title: A genetic analysis of the functions of LuxN: a two-component hybrid sensor kinase that regulates quorum sensing in Vibrio harveyi
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2000.01684.x
– volume: 148
  start-page: 87
  year: 2002
  ident: 10.1016/j.molcel.2009.05.029_bib14
  article-title: Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound
  publication-title: Microbiology
  doi: 10.1099/00221287-148-1-87
– volume: 44
  start-page: 1625
  year: 2002
  ident: 10.1016/j.molcel.2009.05.029_bib23
  article-title: The autoregulatory role of EsaR, a quorum-sensing regulator in Pantoea stewartii ssp. stewartii: evidence for a repressor function
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2002.02987.x
– volume: 21
  start-page: 319
  year: 2005
  ident: 10.1016/j.molcel.2009.05.029_bib37
  article-title: QUORUM SENSING: Cell-to-Cell Communication in Bacteria
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev.cellbio.21.012704.131001
– volume: 5
  start-page: 97
  year: 2002
  ident: 10.1016/j.molcel.2009.05.029_bib1
  article-title: Caenorhabditis elegans as a host for the study of host-pathogen interactions
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/S1369-5274(02)00293-X
SSID ssj0014589
Score 2.4069963
Snippet Quorum sensing is a process of bacterial communication involving production and detection of secreted molecules called autoinducers. Gram-negative bacteria use...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 143
SubjectTerms Animals
Anti-Bacterial Agents - chemical synthesis
Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
Bacterial Proteins - antagonists & inhibitors
Bacterial Proteins - metabolism
Caenorhabditis elegans - microbiology
Chromobacterium - drug effects
Chromobacterium - pathogenicity
Chromobacterium - physiology
Escherichia coli - genetics
HUMDISEASE
Inhibitory Concentration 50
Microbial Sensitivity Tests
MICROBIO
Quorum Sensing - drug effects
Receptors, Cell Surface - metabolism
Receptors, Cytoplasmic and Nuclear - metabolism
Repressor Proteins - antagonists & inhibitors
SIGNALING
Trans-Activators - antagonists & inhibitors
Title A Quorum-Sensing Antagonist Targets Both Membrane-Bound and Cytoplasmic Receptors and Controls Bacterial Pathogenicity
URI https://dx.doi.org/10.1016/j.molcel.2009.05.029
https://www.ncbi.nlm.nih.gov/pubmed/19647512
https://www.proquest.com/docview/67547401
https://pubmed.ncbi.nlm.nih.gov/PMC2741501
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yEHwRv52fefA1bmuTdnnchjKEieIGewttkmlla4fbBP9775p2OhUGPvSlTdqQS3K_6939jpCrUNhmyGXAjJCGcR1qFns8Zp41khtQaCON-c69-6A74HdDMdwgnTIXBsMqi7Pfnen5aV3cqRWzWZsmSe0JfadeiAxwuZGHSXyYVYpJfMP20pPARV4GDxszbF2mz-UxXpNsrO24YK0U1_UcaP6pnn7Dz59RlN_U0u0O2S7wJG25Ie-SDZvukU1XYfJjn7y36OMC-RbYE0aqp8-0laIfCvlyaT-PAp_RNkiL9uwEDOfUsjYWWqIRXJ2PeTYFdD1JNAV4aadYmcc9cQHu0NWRPcMIHgBKZrAaEw24_oAMbm_6nS4rSi0wLbxwzkIdcrAUwbwxVjfjqBlI2Jux9iOh5QgUKdg1flMY2_ANtw0BkpSxtUjGHwPC0f4hqaRZao8JlTAhxmA5jchyLwILWDcCwDEW3yTkqEr8coaVLnjIsRzGWJUBZ6_KyQVLZEpVFwrkUiVs2WvqeDjWtA9L4amV9aRAVazpeVnKWsFWQ_8JTH62mCmwrTgWMKySIyf5r5FgPi9AJ_jqyppYNkAS79UnafKSk3kjfZCoN07-Pd5TsuU8XPi_-YxU5m8Lew5AaR5f5DvhE50pFV8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED4BE2IvE-PXOsbww15N28Ru6se2GiobRUwUqW9WYrsQ1CYVtEj899zFSUdhEtIe-tLYreWzfd_lzt8H8COSrh0J1eJWKsuFiQxPApHwwFklLDq0saH7zoOLVv9a_BrJ0Rr0qrswVFZZnv3-TC9O6_Kbejmb9Vma1q8odxpExABXBHlqHT4gGmjQ0j4bdZepBCELHTxqzal5dX-uKPKa5hPjJiVtpTxpFEjzn_7pLf58XUb5wi-dbsOnElCyjh_zZ1hz2Q5seonJp1147LA_CyJc4FdUqp7dsE5GiSgizGXDogz8gXXRXGzgphg5Z453SWmJxfjpPc3zGcLraWoY4ks3I2ke_8RXuGNXz_aMI7hELJnjckwNAvs9uD79Oez1eam1wI0MojmPTCQwVMT4xjrTTuJ2S-HmTEwYS6PG6EkxsAnb0rpmaIVrSjSlSpwjNv4EIY4J92EjyzP3BZjCCbGW9DRiJ4IYQ2DTbCGQcfRLUo1rEFYzrE1JRE56GBNdVZzdaW8X0shUuiE12qUGfNlr5ok43mkfVcbTKwtKo694p-dxZWuNe40SKDj5-eJBY3AlSMGwBgfe8n9HQhd6ETvhv66siWUDYvFefZKltwWbN_EHyUbz63-P9xi2-sPBuT4_u_h9CB99uotePn-Djfn9wh0hapon34td8QyTvhiC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Quorum-Sensing+Antagonist+Targets+Both+Membrane-Bound+and+Cytoplasmic+Receptors+and+Controls+Bacterial+Pathogenicity&rft.jtitle=Molecular+cell&rft.au=Swem%2C+Lee+R.&rft.au=Swem%2C+Danielle+L.&rft.au=O%27Loughlin%2C+Colleen+T.&rft.au=Gatmaitan%2C+Raleene&rft.date=2009-07-31&rft.issn=1097-2765&rft.volume=35&rft.issue=2&rft.spage=143&rft.epage=153&rft_id=info:doi/10.1016%2Fj.molcel.2009.05.029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_molcel_2009_05_029
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon