Tumor microenvironment governs the prognostic landscape of immunotherapy for head and neck squamous cell carcinoma: A computational model-guided analysis
Immune checkpoint inhibition (ICI) has emerged as a critical treatment strategy for squamous cell carcinoma of the head and neck (HNSCC) that halts the immune escape of the tumor cells. Increasing evidence suggests that the onset, progression, and lack of/no response of HNSCC to ICI are emergent pro...
Saved in:
Published in | PLoS computational biology Vol. 21; no. 6; p. e1013127 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
03.06.2025
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
ISSN | 1553-7358 1553-734X 1553-7358 |
DOI | 10.1371/journal.pcbi.1013127 |
Cover
Abstract | Immune checkpoint inhibition (ICI) has emerged as a critical treatment strategy for squamous cell carcinoma of the head and neck (HNSCC) that halts the immune escape of the tumor cells. Increasing evidence suggests that the onset, progression, and lack of/no response of HNSCC to ICI are emergent properties arising from the interactions within the tumor microenvironment (TME). Deciphering how the diversity of cellular and molecular interactions leads to distinct HNSCC TME subtypes subsequently governing the ICI response remains largely unexplored. We developed a cellular-molecular model of the HNSCC TME that incorporates multiple cell types, cellular states, and transitions, and molecularly mediated paracrine interactions. Simulation across the selected parameter space of the HNSCC TME network shows that distinct mechanistic balances within the TME give rise to the five clinically observed TME subtypes such as immune/non-fibrotic, immune/fibrotic, fibrotic only and immune/fibrotic desert. We predict that the cancer-associated fibroblast, beyond a critical proliferation rate, drastically worsens the ICI response by hampering the accessibility of the CD8 + killer T cells to the tumor cells. Our analysis reveals that while an Interleukin-2 (IL-2) + ICI combination therapy may improve response in the immune desert scenario, Osteopontin (OPN) and Leukemia Inhibition Factor (LIF) knockout with ICI yields the best response in a fibro-dominated scenario. Further, we predict Interleukin-8 (IL-8), and lactate can serve as crucial biomarkers for ICI-resistant HNSCC phenotypes. Overall, we provide an integrated quantitative framework that explains a wide range of TME-mediated resistance mechanisms for HNSCC and predicts TME subtype-specific targets that can lead to an improved ICI outcome. |
---|---|
AbstractList | Immune checkpoint inhibition (ICI) has emerged as a critical treatment strategy for squamous cell carcinoma of the head and neck (HNSCC) that halts the immune escape of the tumor cells. Increasing evidence suggests that the onset, progression, and lack of/no response of HNSCC to ICI are emergent properties arising from the interactions within the tumor microenvironment (TME). Deciphering how the diversity of cellular and molecular interactions leads to distinct HNSCC TME subtypes subsequently governing the ICI response remains largely unexplored. We developed a cellular-molecular model of the HNSCC TME that incorporates multiple cell types, cellular states, and transitions, and molecularly mediated paracrine interactions. Simulation across the selected parameter space of the HNSCC TME network shows that distinct mechanistic balances within the TME give rise to the five clinically observed TME subtypes such as immune/non-fibrotic, immune/fibrotic, fibrotic only and immune/fibrotic desert. We predict that the cancer-associated fibroblast, beyond a critical proliferation rate, drastically worsens the ICI response by hampering the accessibility of the CD8 + killer T cells to the tumor cells. Our analysis reveals that while an Interleukin-2 (IL-2) + ICI combination therapy may improve response in the immune desert scenario, Osteopontin (OPN) and Leukemia Inhibition Factor (LIF) knockout with ICI yields the best response in a fibro-dominated scenario. Further, we predict Interleukin-8 (IL-8), and lactate can serve as crucial biomarkers for ICI-resistant HNSCC phenotypes. Overall, we provide an integrated quantitative framework that explains a wide range of TME-mediated resistance mechanisms for HNSCC and predicts TME subtype-specific targets that can lead to an improved ICI outcome. Immune checkpoint inhibition (ICI) has emerged as a critical treatment strategy for squamous cell carcinoma of the head and neck (HNSCC) that halts the immune escape of the tumor cells. Increasing evidence suggests that the onset, progression, and lack of/no response of HNSCC to ICI are emergent properties arising from the interactions within the tumor microenvironment (TME). Deciphering how the diversity of cellular and molecular interactions leads to distinct HNSCC TME subtypes subsequently governing the ICI response remains largely unexplored. We developed a cellular-molecular model of the HNSCC TME that incorporates multiple cell types, cellular states, and transitions, and molecularly mediated paracrine interactions. Simulation across the selected parameter space of the HNSCC TME network shows that distinct mechanistic balances within the TME give rise to the five clinically observed TME subtypes such as immune/non-fibrotic, immune/fibrotic, fibrotic only and immune/fibrotic desert. We predict that the cancer-associated fibroblast, beyond a critical proliferation rate, drastically worsens the ICI response by hampering the accessibility of the CD8 + killer T cells to the tumor cells. Our analysis reveals that while an Interleukin-2 (IL-2) + ICI combination therapy may improve response in the immune desert scenario, Osteopontin (OPN) and Leukemia Inhibition Factor (LIF) knockout with ICI yields the best response in a fibro-dominated scenario. Further, we predict Interleukin-8 (IL-8), and lactate can serve as crucial biomarkers for ICI-resistant HNSCC phenotypes. Overall, we provide an integrated quantitative framework that explains a wide range of TME-mediated resistance mechanisms for HNSCC and predicts TME subtype-specific targets that can lead to an improved ICI outcome.Immune checkpoint inhibition (ICI) has emerged as a critical treatment strategy for squamous cell carcinoma of the head and neck (HNSCC) that halts the immune escape of the tumor cells. Increasing evidence suggests that the onset, progression, and lack of/no response of HNSCC to ICI are emergent properties arising from the interactions within the tumor microenvironment (TME). Deciphering how the diversity of cellular and molecular interactions leads to distinct HNSCC TME subtypes subsequently governing the ICI response remains largely unexplored. We developed a cellular-molecular model of the HNSCC TME that incorporates multiple cell types, cellular states, and transitions, and molecularly mediated paracrine interactions. Simulation across the selected parameter space of the HNSCC TME network shows that distinct mechanistic balances within the TME give rise to the five clinically observed TME subtypes such as immune/non-fibrotic, immune/fibrotic, fibrotic only and immune/fibrotic desert. We predict that the cancer-associated fibroblast, beyond a critical proliferation rate, drastically worsens the ICI response by hampering the accessibility of the CD8 + killer T cells to the tumor cells. Our analysis reveals that while an Interleukin-2 (IL-2) + ICI combination therapy may improve response in the immune desert scenario, Osteopontin (OPN) and Leukemia Inhibition Factor (LIF) knockout with ICI yields the best response in a fibro-dominated scenario. Further, we predict Interleukin-8 (IL-8), and lactate can serve as crucial biomarkers for ICI-resistant HNSCC phenotypes. Overall, we provide an integrated quantitative framework that explains a wide range of TME-mediated resistance mechanisms for HNSCC and predicts TME subtype-specific targets that can lead to an improved ICI outcome. Immune checkpoint inhibition (ICI) has emerged as a critical treatment strategy for squamous cell carcinoma of the head and neck (HNSCC) that halts the immune escape of the tumor cells. Increasing evidence suggests that the onset, progression, and lack of/no response of HNSCC to ICI are emergent properties arising from the interactions within the tumor microenvironment (TME). Deciphering how the diversity of cellular and molecular interactions leads to distinct HNSCC TME subtypes subsequently governing the ICI response remains largely unexplored. We developed a cellular-molecular model of the HNSCC TME that incorporates multiple cell types, cellular states, and transitions, and molecularly mediated paracrine interactions. Simulation across the selected parameter space of the HNSCC TME network shows that distinct mechanistic balances within the TME give rise to the five clinically observed TME subtypes such as immune/non-fibrotic, immune/fibrotic, fibrotic only and immune/fibrotic desert. We predict that the cancer-associated fibroblast, beyond a critical proliferation rate, drastically worsens the ICI response by hampering the accessibility of the CD8 + killer T cells to the tumor cells. Our analysis reveals that while an Interleukin-2 (IL-2) + ICI combination therapy may improve response in the immune desert scenario, Osteopontin (OPN) and Leukemia Inhibition Factor (LIF) knockout with ICI yields the best response in a fibro-dominated scenario. Further, we predict Interleukin-8 (IL-8), and lactate can serve as crucial biomarkers for ICI-resistant HNSCC phenotypes. Overall, we provide an integrated quantitative framework that explains a wide range of TME-mediated resistance mechanisms for HNSCC and predicts TME subtype-specific targets that can lead to an improved ICI outcome. Increasing evidence suggests that the onset, progression, and lack of/no response of Head and Neck Squamous cell carcinoma (HNSCC) to immune checkpoint inhibitor (ICI) are emergent properties arising from the interactions within the tumor microenvironment (TME). Developing a mechanistic insights into how the compositional diversity of the TME determines the outcome of immunotherapy remains largely unexplored in the context of HNSCC. In this work, we developed a mathematical model that integrates the existing knowledge about the diverse forms of cytokines mediated cell-cell interactions (paracrine, autocrine, transition) within the TME to unpack (a) the mechanisms behind the emergence of different clinically observed TME subtypes such as fibrotic only, immune/fibrotic, non-fibrotic, and desert and (b) how these subtypes govern the response to immunotherapy. Subsequently, the model-guided approach enables us to propose potential biomarkers (IL-8, and lactate) for resistant phenotypes, and to identify subtype-specific target species (IL2 for fibrotic only, OPN and LIF knockout for a subclass of immune/fibrotic) for circumventing ICI resistance. Overall, the integrated quantitative framework explains a wide range of TME-mediated resistance mechanisms for HNSCC and predicts TME subtype-specific targets that can lead to an improved ICI outcome. |
Audience | Academic |
Author | South, Andrew P. Luginbuhl, Adam J. Linnenbach, Alban Harshyne, Larry A. Curry, Joseph M. Vadigepalli, Rajanikanth Bhattacharya, Priyan Johnson, Jennifer M. Martinez-Outschoorn, Ubaldo Mahoney, Mỹ G. |
AuthorAffiliation | 4 Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America 2 Department of Otolaryngology, Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America 1 Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America National Institutes of Health (NIH), UNITED STATES OF AMERICA 5 Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America 3 Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America |
AuthorAffiliation_xml | – name: 5 Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America – name: 1 Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America – name: 2 Department of Otolaryngology, Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America – name: National Institutes of Health (NIH), UNITED STATES OF AMERICA – name: 4 Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America – name: 3 Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America |
Author_xml | – sequence: 1 givenname: Priyan orcidid: 0000-0001-6757-1789 surname: Bhattacharya fullname: Bhattacharya, Priyan – sequence: 2 givenname: Alban surname: Linnenbach fullname: Linnenbach, Alban – sequence: 3 givenname: Andrew P. surname: South fullname: South, Andrew P. – sequence: 4 givenname: Ubaldo surname: Martinez-Outschoorn fullname: Martinez-Outschoorn, Ubaldo – sequence: 5 givenname: Joseph M. surname: Curry fullname: Curry, Joseph M. – sequence: 6 givenname: Jennifer M. surname: Johnson fullname: Johnson, Jennifer M. – sequence: 7 givenname: Larry A. surname: Harshyne fullname: Harshyne, Larry A. – sequence: 8 givenname: Mỹ G. surname: Mahoney fullname: Mahoney, Mỹ G. – sequence: 9 givenname: Adam J. surname: Luginbuhl fullname: Luginbuhl, Adam J. – sequence: 10 givenname: Rajanikanth orcidid: 0000-0002-8405-1037 surname: Vadigepalli fullname: Vadigepalli, Rajanikanth |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40460357$$D View this record in MEDLINE/PubMed |
BookMark | eNptkl2P1CAUhhuzxv3Qf2AMiTd6MWNpoQzemMnGj0k2MdH1mpzCaYexhS60G-en-G-lzrjZSQwXwOE5L5zDe5mdOe8wy17SfElLQd_t_BQcdMtB13ZJc1rSQjzJLijn5UKUfHX2aH2eXca4y_O0lNWz7JzlrEobcZH9vp16H0hvdfDo7m3wrkc3ktbfY3CRjFskQ_Ct83G0mnTgTNQwIPENsX0_OZ-IAMOeNElmi2BIQohD_ZPEuwl6P0WiseuIhqCt8z28J2uifT9MI4zWpxJI7w12i3ayBud06PbRxufZ0wa6iC-O81X249PH2-svi5uvnzfX65uF5oUYF7yqRSmFLASscmmEqRtAWQvDeINQr0DkCAC0Lisq80IzzSQyrSsukMlallfZ5qBrPOzUEGwPYa88WPU34EOrIKTaO1SiWDWsNk3DtGFYaclKnktueFlQMKxKWh8OWsNU92h06mSA7kT09MTZrUqtVrSgVUHzMim8OSoEfzdhHFVv49w_cJhaqdJNnItCyvnhrw9oC-lt1jU-SeoZV-sVq6q84ownavkfKg2D6dOTpRqb4icJb08SEjPir7GFKUa1-f7tlH31uN6HQv_5KwHsACR7xRiweUBormYbq6ON1WxjdbRx-QdL-uvb |
Cites_doi | 10.1038/s41571-019-0175-7 10.1038/s41467-023-40850-5 10.1073/pnas.192461099 10.1158/1078-0432.CCR-05-0641 10.1016/j.omto.2023.100740 10.3390/pr7010037 10.1038/s41467-023-41518-w 10.7554/eLife.00747 10.4161/cam.20377 10.1038/s41467-021-25548-w 10.1016/B978-1-4557-4066-6.00033-0 10.1038/s41416-023-02361-4 10.1038/s41467-019-13091-8 10.1158/1078-0432.CCR-21-1816 10.3390/ijms24043497 10.1016/j.cell.2017.10.044 10.3390/ijms22136995 10.1111/j.1365-3083.2009.02308.x 10.1016/j.jtbi.2019.110136 10.1038/sj.embor.7401099 10.1002/JLB.2MR0220-549R 10.1016/j.jtbi.2019.03.002 10.1038/s41467-019-10369-9 10.1111/j.1365-2184.2011.00739.x 10.3390/cancers12113244 10.1016/j.celrep.2024.114392 10.3389/fimmu.2022.964442 10.1007/s00018-016-2226-x 10.3390/cancers13184720 10.1038/cddis.2015.162 10.1101/gr.275308.121 10.1016/j.coisb.2021.100377 10.1038/onc.2014.410 10.1186/s13046-022-02481-4 10.3389/fimmu.2023.1104771 10.1109/TAC.2021.3056582 10.1158/1078-0432.CCR-14-2481 10.1186/s12943-023-01826-7 10.1038/s41577-019-0221-9 10.1186/s40364-020-00228-x 10.1016/j.ccell.2021.04.014 10.1016/j.ccell.2023.02.016 10.1016/j.jtbi.2015.10.034 10.1126/scitranslmed.abo5409 10.1111/1759-7714.14998 10.1016/j.cell.2011.07.026 10.1016/j.isci.2022.105499 10.1038/s41540-022-00244-7 10.1034/j.1398-9995.1999.00099.x 10.3390/jcm9020295 10.1146/annurev.immunol.15.1.563 10.1038/bjc.1990.184 10.1038/s41467-021-21554-0 10.3390/ijms222011027 10.1002/mc.23587 10.1172/jci.insight.87030 10.1016/j.phrs.2019.04.030 10.1002/hed.25930 10.1038/s41388-019-0688-7 10.1038/s41416-020-01048-4 10.3389/fonc.2019.00827 10.1158/1078-0432.CCR-15-0685 10.1038/s41568-018-0083-7 10.1007/s12026-008-8032-2 10.1002/hed.26036 10.3389/fimmu.2023.1208870 10.1080/2162402X.2017.1315488 10.1097/CJI.0000000000000149 10.1038/nmeth.1315 10.3389/fnut.2023.1113739 10.1093/carcin/bgaa116 10.1038/s41591-018-0136-1 10.1016/S1471-4906(02)02302-5 10.1172/JCI123360 10.1016/j.physd.2008.03.044 10.1038/s41568-019-0238-1 10.1007/s00018-009-0026-2 10.1158/1078-0432.CCR-16-0224 10.1371/journal.pcbi.1004881 10.3389/fonc.2024.1412212 10.3390/ijtm2030033 10.3389/fendo.2023.1212749 10.1038/s41388-021-01663-2 10.1186/s12964-020-00627-5 10.3892/ijo.2014.2393 10.1016/j.xcrm.2024.101399 10.3390/curroncol29050247 10.1038/s41572-020-00224-3 10.1007/s00262-006-0272-1 10.1016/j.pharmthera.2020.107692 10.1016/j.oraloncology.2021.105420 10.1038/ncomms10204 10.1038/s41420-021-00556-3 10.3390/cells11172630 10.1016/j.ccell.2022.07.006 10.1016/0025-5564(90)90021-P 10.1172/JCI17129 10.1016/j.semcancer.2015.02.006 10.1186/s12943-021-01428-1 10.1200/JCO.2006.06.8627 10.3390/cancers14030744 10.1016/j.ymthe.2022.12.016 10.1016/j.bbcan.2018.10.006 |
ContentType | Journal Article |
Copyright | Copyright: © 2025 Bhattacharya et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. COPYRIGHT 2025 Public Library of Science 2025 Bhattacharya et al 2025 Bhattacharya et al |
Copyright_xml | – notice: Copyright: © 2025 Bhattacharya et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: COPYRIGHT 2025 Public Library of Science – notice: 2025 Bhattacharya et al 2025 Bhattacharya et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 5PM DOA |
DOI | 10.1371/journal.pcbi.1013127 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Computational modeling of the tumor microenvironment in head and neck cancers |
EISSN | 1553-7358 |
ExternalDocumentID | oai_doaj_org_article_728f4bdff4cd4e6c9435095d5321ad46 PMC12162103 A846606545 40460357 10_1371_journal_pcbi_1013127 |
Genre | Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: P30 CA056036 – fundername: NCI NIH HHS grantid: R01 CA244522 – fundername: ; – fundername: ; grantid: P30 CA056036 – fundername: ; grantid: R01 CA244522 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M ADRAZ C1A CGR CUY CVF ECM EIF H13 IPNFZ M48 NPM PJZUB PPXIY PQGLB RIG WOQ 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c527t-56b7397927a809d7dbfae9b7d45feab8a70eaaa1b361902c4c49e4cc657e49b93 |
IEDL.DBID | M48 |
ISSN | 1553-7358 1553-734X |
IngestDate | Wed Aug 27 01:30:10 EDT 2025 Thu Aug 21 18:24:34 EDT 2025 Fri Sep 05 15:56:18 EDT 2025 Wed Jul 16 16:53:07 EDT 2025 Tue Jul 15 03:51:55 EDT 2025 Sat Jul 12 02:48:24 EDT 2025 Mon Jul 21 05:36:09 EDT 2025 Thu Jul 03 08:38:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Copyright: © 2025 Bhattacharya et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c527t-56b7397927a809d7dbfae9b7d45feab8a70eaaa1b361902c4c49e4cc657e49b93 |
Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors have declared that no competing interests exist. |
ORCID | 0000-0001-6757-1789 0000-0002-8405-1037 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1013127 |
PMID | 40460357 |
PQID | 3215572999 |
PQPubID | 23479 |
PageCount | e1013127 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_728f4bdff4cd4e6c9435095d5321ad46 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12162103 proquest_miscellaneous_3215572999 gale_infotracmisc_A846606545 gale_infotracacademiconefile_A846606545 gale_incontextgauss_ISR_A846606545 pubmed_primary_40460357 crossref_primary_10_1371_journal_pcbi_1013127 |
PublicationCentury | 2000 |
PublicationDate | 20250603 |
PublicationDateYYYYMMDD | 2025-06-03 |
PublicationDate_xml | – month: 6 year: 2025 text: 20250603 day: 3 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, CA USA |
PublicationTitle | PLoS computational biology |
PublicationTitleAlternate | PLoS Comput Biol |
PublicationYear | 2025 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | R Pérez-Tomás (pcbi.1013127.ref090) 2020; 12 CE Weber (pcbi.1013127.ref107) 2015; 34 TM Bui (pcbi.1013127.ref048) 2020; 108 RK Nimmakayala (pcbi.1013127.ref058) 2019; 1871 MM Wang (pcbi.1013127.ref100) 2023; 129 X Mao (pcbi.1013127.ref071) 2021; 20 EJ Kay (pcbi.1013127.ref045) 2021; 28 M Mandai (pcbi.1013127.ref079) 2016; 22 C Blank (pcbi.1013127.ref063) 2007; 56 P Jiang (pcbi.1013127.ref112) 2018; 24 K Hari (pcbi.1013127.ref016) 2023 Y Iwai (pcbi.1013127.ref040) 2002; 99 DE Johnson (pcbi.1013127.ref003) 2020; 6 A Zaitsev (pcbi.1013127.ref007) 2022; 40 S Dhar (pcbi.1013127.ref067) 2022; 10 Z Li (pcbi.1013127.ref095) 2023; 31 J Punt (pcbi.1013127.ref049) 2019 K-A Norton (pcbi.1013127.ref061) 2019; 7 Y Sunami (pcbi.1013127.ref070) 2022; 14 C Quek (pcbi.1013127.ref099) 2024; 43 M Archetti (pcbi.1013127.ref038) 2019; 19 M Otranto (pcbi.1013127.ref054) 2012; 6 MA Feitelson (pcbi.1013127.ref005) 2015; 35 V Richard (pcbi.1013127.ref033) 2023; 24 A Tosi (pcbi.1013127.ref115) 2022; 41 R Butti (pcbi.1013127.ref109) 2021; 40 F Tang (pcbi.1013127.ref029) 2009; 6 H Fazilaty (pcbi.1013127.ref014) 2019; 10 AZ Ayob (pcbi.1013127.ref059) 2018; 25 M Sharf (pcbi.1013127.ref011) 2022; 67 G Tanaka (pcbi.1013127.ref025) 2008; 237 G Tau (pcbi.1013127.ref046) 1999; 54 E Raeber (pcbi.1013127.ref105) 2022; 14 S Muhammad (pcbi.1013127.ref106) 2023; 22 J Gao (pcbi.1013127.ref078) 2016; 167 W Gu (pcbi.1013127.ref018) 2022; 12 M Španko (pcbi.1013127.ref072) 2021; 22 NY den Breems (pcbi.1013127.ref051) 2016; 390 MF Bachmann (pcbi.1013127.ref047) 2007; 8 EL Estephan (pcbi.1013127.ref102) 2024; 14 A Mantovani (pcbi.1013127.ref026) 2002; 23 X Chi (pcbi.1013127.ref068) 2023; 14 Y Jiang (pcbi.1013127.ref062) 2015; 6 CU Blank (pcbi.1013127.ref050) 2019; 19 AJ Luginbuhl (pcbi.1013127.ref097) 2022; 28 RM McLoughlin (pcbi.1013127.ref080) 2003; 112 PB Gupta (pcbi.1013127.ref030) 2011; 146 Y Li (pcbi.1013127.ref019) 2021; 19 C-F Qi (pcbi.1013127.ref073) 2009; 45 J Liu (pcbi.1013127.ref082) 2014; 45 Q Tang (pcbi.1013127.ref008) 2022; 13 C Zhang (pcbi.1013127.ref091) 2023; 14 SV Puram (pcbi.1013127.ref034) 2017; 171 D Barkley (pcbi.1013127.ref032) 2021; 31 K Fousek (pcbi.1013127.ref042) 2021; 219 J Albrengues (pcbi.1013127.ref069) 2015; 6 G Baggio (pcbi.1013127.ref012) 2021; 12 AJ Boutilier (pcbi.1013127.ref053) 2021; 22 M Pascual-García (pcbi.1013127.ref110) 2019; 10 J Pu (pcbi.1013127.ref052) 2021; 7 S Ghosh (pcbi.1013127.ref015) 2011; 44 GE Mahlbacher (pcbi.1013127.ref023) 2019; 469 JD Klement (pcbi.1013127.ref084) 2018; 128 MK Keck (pcbi.1013127.ref096) 2015; 21 L Martínez-Lostao (pcbi.1013127.ref064) 2015; 21 EA Bach (pcbi.1013127.ref076) 1997; 15 BL Hill (pcbi.1013127.ref093) 2023; 62 I Bozic (pcbi.1013127.ref022) 2013; 2 SD Cárdenas (pcbi.1013127.ref036) 2022; 8 E Sahai (pcbi.1013127.ref055) 2020; 20 G Comito (pcbi.1013127.ref087) 2019; 38 Y Togashi (pcbi.1013127.ref035) 2019; 16 D Petrik (pcbi.1013127.ref108) 2006; 24 M Pillai (pcbi.1013127.ref013) 2022; 25 H-F Kao (pcbi.1013127.ref009) 2019 A Sood (pcbi.1013127.ref028) 2016; 1 KE de Visser (pcbi.1013127.ref006) 2023; 41 K Liu (pcbi.1013127.ref081) 2021; 42 S-T Tsai (pcbi.1013127.ref085) 2015; 10 A Corthay (pcbi.1013127.ref066) 2009; 70 AT Pearson (pcbi.1013127.ref010) 2016; 73 JH Kearsley (pcbi.1013127.ref027) 1990; 61 JJ Patel (pcbi.1013127.ref037) 2020; 42 PJ Asif (pcbi.1013127.ref057) 2021; 13 T-A Lin (pcbi.1013127.ref075) 2020; 9 P Zhou (pcbi.1013127.ref017) 2021; 12 S Mayer (pcbi.1013127.ref094) 2023; 14 X Bao (pcbi.1013127.ref098) 2024; 5 EV Nikolaev (pcbi.1013127.ref114) 2016; 12 R Bright (pcbi.1013127.ref104) 2017; 40 X Pang (pcbi.1013127.ref083) 2019; 144 H Tao (pcbi.1013127.ref089) 2023; 14 A Psyrri (pcbi.1013127.ref020) 2013; 8 P Economopoulou (pcbi.1013127.ref002) 2019; 9 Z Li (pcbi.1013127.ref088) 2023; 10 CJ Workman (pcbi.1013127.ref065) 2009; 66 D Jorgovanovic (pcbi.1013127.ref077) 2020; 8 Z Xiao (pcbi.1013127.ref103) 2023; 14 ME Sehl (pcbi.1013127.ref031) 2015; 10 Y Zheng (pcbi.1013127.ref041) 2019; 18 AS Halkola (pcbi.1013127.ref024) 2020; 488 Y Kariya (pcbi.1013127.ref043) 2022; 2 J Wang (pcbi.1013127.ref074) 2023; 31 A Celetti (pcbi.1013127.ref111) 2005; 11 A Brown (pcbi.1013127.ref113) 2023; 14 H Raskov (pcbi.1013127.ref039) 2021; 124 A Bagaev (pcbi.1013127.ref004) 2021; 39 C Zhang (pcbi.1013127.ref044) 2023; 14 J Hedberg (pcbi.1013127.ref001) 2015; 2 J Zhadong (pcbi.1013127.ref056) 2021; 9 Y Shiravand (pcbi.1013127.ref092) 2022; 29 JL Farlow (pcbi.1013127.ref101) 2021; 120 C Raimondi (pcbi.1013127.ref060) 2017; 6 HR Moorman (pcbi.1013127.ref086) 2022; 11 GW Swan (pcbi.1013127.ref021) 1990; 101 39386511 - bioRxiv. 2024 Sep 27:2024.09.26.615149. doi: 10.1101/2024.09.26.615149. |
References_xml | – volume: 16 start-page: 356 issue: 6 year: 2019 ident: pcbi.1013127.ref035 article-title: Regulatory T cells in cancer immunosuppression - implications for anticancer therapy publication-title: Nat Rev Clin Oncol doi: 10.1038/s41571-019-0175-7 – volume: 14 start-page: 5110 issue: 1 year: 2023 ident: pcbi.1013127.ref103 article-title: Desmoplastic stroma restricts T cell extravasation and mediates immune exclusion and immunosuppression in solid tumors publication-title: Nat Commun doi: 10.1038/s41467-023-40850-5 – year: 2023 ident: pcbi.1013127.ref016 article-title: Low dimensionality of phenotypic space as an emergent property of coordinated teams in biological regulatory networks publication-title: bioRxiv – volume: 99 start-page: 12293 issue: 19 year: 2002 ident: pcbi.1013127.ref040 article-title: Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.192461099 – volume-title: Kuby immunology year: 2019 ident: pcbi.1013127.ref049 – volume: 11 start-page: 8019 issue: 22 year: 2005 ident: pcbi.1013127.ref111 article-title: Overexpression of the cytokine osteopontin identifies aggressive laryngeal squamous cell carcinomas and enhances carcinoma cell proliferation and invasiveness publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-05-0641 – volume: 10 issue: 11 year: 2015 ident: pcbi.1013127.ref085 article-title: ICAM1 is a potential cancer stem cell marker of esophageal squamous cell carcinoma publication-title: PLoS One – volume: 31 start-page: 100740 year: 2023 ident: pcbi.1013127.ref095 article-title: Targeting the lactic acid metabolic pathway for antitumor therapy publication-title: Mol Ther Oncolytics doi: 10.1016/j.omto.2023.100740 – volume: 7 start-page: 37 issue: 1 year: 2019 ident: pcbi.1013127.ref061 article-title: Multiscale Agent-Based and Hybrid Modeling of the Tumor Immune Microenvironment publication-title: Processes (Basel) doi: 10.3390/pr7010037 – volume: 14 start-page: 5810 issue: 1 year: 2023 ident: pcbi.1013127.ref094 article-title: The tumor microenvironment shows a hierarchy of cell-cell interactions dominated by fibroblasts publication-title: Nat Commun doi: 10.1038/s41467-023-41518-w – volume: 2 year: 2013 ident: pcbi.1013127.ref022 article-title: Evolutionary dynamics of cancer in response to targeted combination therapy publication-title: Elife doi: 10.7554/eLife.00747 – volume: 6 start-page: 203 issue: 3 year: 2012 ident: pcbi.1013127.ref054 article-title: The role of the myofibroblast in tumor stroma remodeling publication-title: Cell Adh Migr doi: 10.4161/cam.20377 – volume: 12 start-page: 1 year: 2021 ident: pcbi.1013127.ref017 article-title: Dissecting transition cells from single-cell transcriptome data through multiscale stochastic dynamics publication-title: Nat Commun doi: 10.1038/s41467-021-25548-w – volume: 2 start-page: 491 year: 2015 ident: pcbi.1013127.ref001 article-title: The molecular pathogenesis of head and neck cancer in publication-title: The Molecular Basis of Cancer doi: 10.1016/B978-1-4557-4066-6.00033-0 – volume: 129 start-page: 1212 issue: 8 year: 2023 ident: pcbi.1013127.ref100 article-title: Resistance to immune checkpoint therapies by tumour-induced T-cell desertification and exclusion: key mechanisms, prognostication and new therapeutic opportunities publication-title: Br J Cancer doi: 10.1038/s41416-023-02361-4 – volume: 10 start-page: 5115 issue: 1 year: 2019 ident: pcbi.1013127.ref014 article-title: A gene regulatory network to control EMT programs in development and disease publication-title: Nat Commun doi: 10.1038/s41467-019-13091-8 – volume: 8 start-page: 246 year: 2013 ident: pcbi.1013127.ref020 article-title: Molecular pathways in head and neck cancer: Egfr, pi3k, and more publication-title: Am Soc Clin Oncol – volume: 28 start-page: 915 issue: 5 year: 2022 ident: pcbi.1013127.ref097 article-title: Tadalafil enhances immune signatures in response to neoadjuvant nivolumab in resectable head and neck squamous cell carcinoma publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-21-1816 – volume: 24 year: 2023 ident: pcbi.1013127.ref033 article-title: Cell state transitions and phenotypic heterogeneity in luminal breast cancer implicating micro-RNAs as potential regulators publication-title: Int J Mol Sci doi: 10.3390/ijms24043497 – volume: 171 issue: 7 year: 2017 ident: pcbi.1013127.ref034 article-title: Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer publication-title: Cell doi: 10.1016/j.cell.2017.10.044 – volume: 22 start-page: 1 year: 2021 ident: pcbi.1013127.ref053 article-title: Macrophage polarization states in the tumor microenvironment publication-title: Int J Mol Sci doi: 10.3390/ijms22136995 – volume: 70 start-page: 326 issue: 4 year: 2009 ident: pcbi.1013127.ref066 article-title: How do regulatory T cells work? publication-title: Scand J Immunol doi: 10.1111/j.1365-3083.2009.02308.x – volume: 488 start-page: 110136 year: 2020 ident: pcbi.1013127.ref024 article-title: Modelling of killer T-cell and cancer cell subpopulation dynamics under immuno- and chemotherapies publication-title: J Theor Biol doi: 10.1016/j.jtbi.2019.110136 – volume: 8 start-page: 1142 issue: 12 year: 2007 ident: pcbi.1013127.ref047 article-title: Interleukin 2: from immunostimulation to immunoregulation and back again publication-title: EMBO Rep doi: 10.1038/sj.embor.7401099 – volume: 108 start-page: 787 year: 2020 ident: pcbi.1013127.ref048 article-title: ICAM-1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis publication-title: J Leukoc Biol doi: 10.1002/JLB.2MR0220-549R – volume: 469 start-page: 47 year: 2019 ident: pcbi.1013127.ref023 article-title: Mathematical modeling of tumor-immune cell interactions publication-title: J Theor Biol doi: 10.1016/j.jtbi.2019.03.002 – volume: 10 start-page: 2416 issue: 1 year: 2019 ident: pcbi.1013127.ref110 article-title: LIF regulates CXCL9 in tumor-associated macrophages and prevents CD8+ T cell tumor-infiltration impairing anti-PD1 therapy publication-title: Nat Commun doi: 10.1038/s41467-019-10369-9 – volume: 44 start-page: 192 issue: 2 year: 2011 ident: pcbi.1013127.ref015 article-title: Mathematical model of the role of intercellular signalling in intercellular cooperation during tumorigenesis publication-title: Cell Prolif doi: 10.1111/j.1365-2184.2011.00739.x – volume: 12 start-page: 3244 issue: 11 year: 2020 ident: pcbi.1013127.ref090 article-title: Lactate in the tumor microenvironment: an essential molecule in cancer progression and treatment publication-title: Cancers (Basel) doi: 10.3390/cancers12113244 – volume: 43 start-page: 114392 issue: 7 year: 2024 ident: pcbi.1013127.ref099 article-title: Single-cell spatial multiomics reveals tumor microenvironment vulnerabilities in cancer resistance to immunotherapy publication-title: Cell Rep doi: 10.1016/j.celrep.2024.114392 – volume: 13 start-page: 964442 year: 2022 ident: pcbi.1013127.ref008 article-title: The role of PD-1/PD-L1 and application of immune-checkpoint inhibitors in human cancers publication-title: Front Immunol doi: 10.3389/fimmu.2022.964442 – volume: 12 start-page: 1 year: 2022 ident: pcbi.1013127.ref018 article-title: The role of feedback loops in targeted therapy for pancreatic cancer publication-title: Front. Oncol – volume: 73 start-page: 3279 issue: 17 year: 2016 ident: pcbi.1013127.ref010 article-title: Modeling head and neck cancer stem cell-mediated tumorigenesis publication-title: Cell Mol Life Sci doi: 10.1007/s00018-016-2226-x – volume: 9 start-page: 1 year: 2021 ident: pcbi.1013127.ref056 article-title: Cancer-associated fibroblast-derived interleukin-8 promotes ovarian cancer cell stemness and malignancy through the notch3-mediated signaling publication-title: Front Cell Dev Biol – volume: 13 start-page: 4720 issue: 18 year: 2021 ident: pcbi.1013127.ref057 article-title: The Role of Cancer-Associated Fibroblasts in Cancer Invasion and Metastasis publication-title: Cancers (Basel) doi: 10.3390/cancers13184720 – volume: 6 issue: 6 year: 2015 ident: pcbi.1013127.ref062 article-title: T-cell exhaustion in the tumor microenvironment publication-title: Cell Death Dis doi: 10.1038/cddis.2015.162 – volume: 31 start-page: 1719 issue: 10 year: 2021 ident: pcbi.1013127.ref032 article-title: Cancer cell states and emergent properties of the dynamic tumor system publication-title: Genome Res doi: 10.1101/gr.275308.121 – volume: 28 start-page: 100377 year: 2021 ident: pcbi.1013127.ref045 article-title: Metabolic pathways fuelling protumourigenic cancer-associated fibroblast functions publication-title: Current Opinion in Systems Biology doi: 10.1016/j.coisb.2021.100377 – volume: 34 start-page: 4821 issue: 37 year: 2015 ident: pcbi.1013127.ref107 article-title: Osteopontin mediates an MZF1-TGF-β1-dependent transformation of mesenchymal stem cells into cancer-associated fibroblasts in breast cancer publication-title: Oncogene doi: 10.1038/onc.2014.410 – volume: 41 start-page: 279 issue: 1 year: 2022 ident: pcbi.1013127.ref115 article-title: The immune microenvironment of HPV-positive and HPV-negative oropharyngeal squamous cell carcinoma: a multiparametric quantitative and spatial analysis unveils a rationale to target treatment-naïve tumors with immune checkpoint inhibitors publication-title: J Exp Clin Cancer Res doi: 10.1186/s13046-022-02481-4 – volume: 14 start-page: 1104771 year: 2023 ident: pcbi.1013127.ref068 article-title: T-cell exhaustion and stemness in antitumor immunity: Characteristics, mechanisms, and implications publication-title: Front Immunol doi: 10.3389/fimmu.2023.1104771 – volume: 67 start-page: 754 issue: 2 year: 2022 ident: pcbi.1013127.ref011 article-title: Model-free practical cooperative control for diffusively coupled systems publication-title: IEEE Trans Automat Contr doi: 10.1109/TAC.2021.3056582 – volume: 167 issue: 2 year: 2016 ident: pcbi.1013127.ref078 article-title: Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy publication-title: Cell – volume: 21 start-page: 870 issue: 4 year: 2015 ident: pcbi.1013127.ref096 article-title: Integrative analysis of head and neck cancer identifies two biologically distinct HPV and three non-HPV subtypes publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-14-2481 – volume: 22 start-page: 121 issue: 1 year: 2023 ident: pcbi.1013127.ref106 article-title: Reigniting hope in cancer treatment: the promise and pitfalls of IL-2 and IL-2R targeting strategies publication-title: Mol Cancer doi: 10.1186/s12943-023-01826-7 – volume: 19 start-page: 665 year: 2019 ident: pcbi.1013127.ref050 article-title: Defining ‘T cell exhaustion’ publication-title: Nat Rev Immunol doi: 10.1038/s41577-019-0221-9 – volume: 8 start-page: 49 year: 2020 ident: pcbi.1013127.ref077 article-title: Roles of IFN-γ in tumor progression and regression: a review publication-title: Biomark Res doi: 10.1186/s40364-020-00228-x – volume: 39 issue: 6 year: 2021 ident: pcbi.1013127.ref004 article-title: Conserved pan-cancer microenvironment subtypes predict response to immunotherapy publication-title: Cancer Cell doi: 10.1016/j.ccell.2021.04.014 – volume: 41 start-page: 374 issue: 3 year: 2023 ident: pcbi.1013127.ref006 article-title: The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth publication-title: Cancer Cell doi: 10.1016/j.ccell.2023.02.016 – volume: 390 start-page: 23 year: 2016 ident: pcbi.1013127.ref051 article-title: The re-polarisation of M2 and M1 macrophages and its role on cancer outcomes publication-title: J Theor Biol doi: 10.1016/j.jtbi.2015.10.034 – volume: 14 year: 2023 ident: pcbi.1013127.ref091 article-title: CAFs orchestrates tumor immune microenvironment—a new target in cancer therapy? publication-title: Frontiers in Pharmacology – volume: 14 start-page: 1 year: 2022 ident: pcbi.1013127.ref105 article-title: Interleukin-2–based therapies in cancer publication-title: Sci Trans Med doi: 10.1126/scitranslmed.abo5409 – volume: 18 start-page: 5399 issue: 5 year: 2019 ident: pcbi.1013127.ref041 article-title: PD-L1 expression levels on tumor cells affect their immunosuppressive activity publication-title: Oncol Lett – volume: 14 start-page: 2139 issue: 22 year: 2023 ident: pcbi.1013127.ref044 article-title: Lactate secreted by esophageal cancer cells induces M2 macrophage polarization via the AKT/ERK pathway publication-title: Thorac Cancer doi: 10.1111/1759-7714.14998 – volume: 146 start-page: 633 issue: 4 year: 2011 ident: pcbi.1013127.ref030 article-title: Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells publication-title: Cell doi: 10.1016/j.cell.2011.07.026 – volume: 25 start-page: 105499 issue: 12 year: 2022 ident: pcbi.1013127.ref013 article-title: Quantitative landscapes reveal trajectories of cell-state transitions associated with drug resistance in melanoma publication-title: iScience doi: 10.1016/j.isci.2022.105499 – volume: 8 start-page: 32 issue: 1 year: 2022 ident: pcbi.1013127.ref036 article-title: Model-informed experimental design recommendations for distinguishing intrinsic and acquired targeted therapeutic resistance in head and neck cancer publication-title: NPJ Syst Biol Appl doi: 10.1038/s41540-022-00244-7 – volume: 54 start-page: 1233 issue: 12 year: 1999 ident: pcbi.1013127.ref046 article-title: Biologic functions of the IFN-gamma receptors publication-title: Allergy doi: 10.1034/j.1398-9995.1999.00099.x – volume: 9 start-page: 295 issue: 2 year: 2020 ident: pcbi.1013127.ref075 article-title: Role and Mechanism of LIF in oral squamous cell carcinoma progression publication-title: J Clin Med doi: 10.3390/jcm9020295 – volume: 15 start-page: 563 year: 1997 ident: pcbi.1013127.ref076 article-title: The IFN gamma receptor: a paradigm for cytokine receptor signaling publication-title: Annu Rev Immunol doi: 10.1146/annurev.immunol.15.1.563 – volume: 61 start-page: 821 issue: 6 year: 1990 ident: pcbi.1013127.ref027 article-title: An immunohistochemical assessment of cellular proliferation markers in head and neck squamous cell cancers publication-title: Br J Cancer doi: 10.1038/bjc.1990.184 – volume: 12 start-page: 1429 issue: 1 year: 2021 ident: pcbi.1013127.ref012 article-title: Data-driven control of complex networks publication-title: Nat Commun doi: 10.1038/s41467-021-21554-0 – volume: 22 start-page: 11027 issue: 20 year: 2021 ident: pcbi.1013127.ref072 article-title: IL-6 in the ecosystem of head and neck cancer: possible therapeutic perspectives publication-title: Int J Mol Sci doi: 10.3390/ijms222011027 – volume: 62 start-page: 1428 year: 2023 ident: pcbi.1013127.ref093 article-title: Il-8 correlates with nonresponse to neoadjuvant nivolumab in HPV positive HNSCC via a potential extracellular vesicle mir-146a mediated mechanism publication-title: Mol. Carcinog doi: 10.1002/mc.23587 – volume: 1 issue: 6 year: 2016 ident: pcbi.1013127.ref028 article-title: Multiplexed immunofluorescence delineates proteomic cancer cell states associated with metabolism publication-title: JCI Insight doi: 10.1172/jci.insight.87030 – volume: 25 start-page: 1 year: 2018 ident: pcbi.1013127.ref059 article-title: Cancer stem cells as key drivers of tumour progression publication-title: J Biomed Sci – volume: 144 start-page: 235 year: 2019 ident: pcbi.1013127.ref083 article-title: Osteopontin as a multifaceted driver of bone metastasis and drug resistance publication-title: Pharmacol Res doi: 10.1016/j.phrs.2019.04.030 – start-page: 4 year: 2019 ident: pcbi.1013127.ref009 article-title: Immune checkpoint inhibitors for head and neck squamous cell carcinoma: Current landscape and future directions publication-title: Head Neck doi: 10.1002/hed.25930 – volume: 38 start-page: 3681 issue: 19 year: 2019 ident: pcbi.1013127.ref087 article-title: Lactate modulates CD4+ T-cell polarization and induces an immunosuppressive environment, which sustains prostate carcinoma progression via TLR8/miR21 axis publication-title: Oncogene doi: 10.1038/s41388-019-0688-7 – volume: 124 start-page: 359 issue: 2 year: 2021 ident: pcbi.1013127.ref039 article-title: Cytotoxic CD8+ T cells in cancer and cancer immunotherapy publication-title: Br J Cancer doi: 10.1038/s41416-020-01048-4 – volume: 9 start-page: 827 year: 2019 ident: pcbi.1013127.ref002 article-title: Diagnostic tumor markers in Head and Neck Squamous Cell Carcinoma (HNSCC) in the clinical setting publication-title: Front Oncol doi: 10.3389/fonc.2019.00827 – volume: 21 start-page: 5047 issue: 22 year: 2015 ident: pcbi.1013127.ref064 article-title: How do cytotoxic lymphocytes kill cancer cells? publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-15-0685 – volume: 19 start-page: 110 issue: 2 year: 2019 ident: pcbi.1013127.ref038 article-title: Cooperation among cancer cells: applying game theory to cancer publication-title: Nat Rev Cancer doi: 10.1038/s41568-018-0083-7 – volume: 45 start-page: 62 issue: 1 year: 2009 ident: pcbi.1013127.ref073 article-title: Differential expression of IRF8 in subsets of macrophages and dendritic cells and effects of IRF8 deficiency on splenic B cell and macrophage compartments publication-title: Immunol Res doi: 10.1007/s12026-008-8032-2 – volume: 42 start-page: 774 issue: 4 year: 2020 ident: pcbi.1013127.ref037 article-title: Impact of PD-L1 expression and human papillomavirus status in anti-PD1/PDL1 immunotherapy for head and neck squamous cell carcinoma-Systematic review and meta-analysis publication-title: Head Neck doi: 10.1002/hed.26036 – volume: 14 start-page: 1208870 year: 2023 ident: pcbi.1013127.ref089 article-title: Unveiling the veil of lactate in tumor-associated macrophages: a successful strategy for immunometabolic therapy publication-title: Front Immunol doi: 10.3389/fimmu.2023.1208870 – volume: 6 start-page: 1 year: 2017 ident: pcbi.1013127.ref060 article-title: PD-L1 and epithelial-mesenchymal transition in circulating tumor cells from non-small cell lung cancer patients: A molecular shield to evade immune system? publication-title: OncoImmunology doi: 10.1080/2162402X.2017.1315488 – volume: 40 start-page: 21 issue: 1 year: 2017 ident: pcbi.1013127.ref104 article-title: Clinical response rates from interleukin-2 therapy for metastatic melanoma over 30 years’ experience: a meta-analysis of 3312 patients publication-title: J Immunother doi: 10.1097/CJI.0000000000000149 – volume: 6 start-page: 377 issue: 5 year: 2009 ident: pcbi.1013127.ref029 article-title: mRNA-Seq whole-transcriptome analysis of a single cell publication-title: Nat Methods doi: 10.1038/nmeth.1315 – volume: 10 start-page: 1113739 year: 2023 ident: pcbi.1013127.ref088 article-title: Lactate in the tumor microenvironment: A rising star for targeted tumor therapy publication-title: Front Nutr doi: 10.3389/fnut.2023.1113739 – volume: 42 start-page: 414 issue: 3 year: 2021 ident: pcbi.1013127.ref081 article-title: RUNX1 promotes MAPK signaling to increase tumor progression and metastasis via OPN in head and neck cancer publication-title: Carcinogenesis doi: 10.1093/carcin/bgaa116 – volume: 24 start-page: 1550 issue: 10 year: 2018 ident: pcbi.1013127.ref112 article-title: Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response publication-title: Nat Med doi: 10.1038/s41591-018-0136-1 – volume: 23 start-page: 549 issue: 11 year: 2002 ident: pcbi.1013127.ref026 article-title: Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes publication-title: Trends Immunol doi: 10.1016/S1471-4906(02)02302-5 – volume: 128 start-page: 5549 issue: 12 year: 2018 ident: pcbi.1013127.ref084 article-title: An osteopontin/CD44 immune checkpoint controls CD8+ T cell activation and tumor immune evasion publication-title: J Clin Invest doi: 10.1172/JCI123360 – volume: 237 start-page: 2616 issue: 20 year: 2008 ident: pcbi.1013127.ref025 article-title: Bifurcation analysis on a hybrid systems model of intermittent hormonal therapy for prostate cancer publication-title: Physica D: Nonlinear Phenomena doi: 10.1016/j.physd.2008.03.044 – volume: 20 start-page: 174 issue: 3 year: 2020 ident: pcbi.1013127.ref055 article-title: A framework for advancing our understanding of cancer-associated fibroblasts publication-title: Nat Rev Cancer doi: 10.1038/s41568-019-0238-1 – volume: 66 start-page: 2603 issue: 16 year: 2009 ident: pcbi.1013127.ref065 article-title: The development and function of regulatory T cells publication-title: Cell Mol Life Sci doi: 10.1007/s00018-009-0026-2 – volume: 22 start-page: 2329 issue: 10 year: 2016 ident: pcbi.1013127.ref079 article-title: Dual Faces of IFNγ in cancer progression: a role of PD-L1 induction in the determination of pro- and antitumor immunity publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-16-0224 – volume: 12 start-page: 1 year: 2016 ident: pcbi.1013127.ref114 article-title: Quorum-sensing synchronization of synthetic toggle switches: a design based on monotone dynamical systems theory publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1004881 – volume: 14 start-page: 1 year: 2024 ident: pcbi.1013127.ref102 article-title: Altered extracellular matrix correlates with an immunosuppressive tumor microenvironment and disease progression in younger adults with oral cavity squamous cell carcinoma publication-title: Front Oncol doi: 10.3389/fonc.2024.1412212 – volume: 2 start-page: 419 issue: 3 year: 2022 ident: pcbi.1013127.ref043 article-title: Osteopontin in cancer: mechanisms and therapeutic targets publication-title: IJTM doi: 10.3390/ijtm2030033 – volume: 14 start-page: 1212749 year: 2023 ident: pcbi.1013127.ref113 article-title: Mathematical modeling clarifies the paracrine roles of insulin and glucagon on the glucose-stimulated hormonal secretion of pancreatic alpha- and beta-cells publication-title: Front Endocrinol (Lausanne) doi: 10.3389/fendo.2023.1212749 – volume: 40 start-page: 2002 issue: 11 year: 2021 ident: pcbi.1013127.ref109 article-title: Tumor-derived osteopontin drives the resident fibroblast to myofibroblast differentiation through Twist1 to promote breast cancer progression publication-title: Oncogene doi: 10.1038/s41388-021-01663-2 – volume: 19 start-page: 19 issue: 1 year: 2021 ident: pcbi.1013127.ref019 article-title: Drug resistance and Cancer stem cells publication-title: Cell Commun Signal doi: 10.1186/s12964-020-00627-5 – volume: 45 start-page: 282 issue: 1 year: 2014 ident: pcbi.1013127.ref082 article-title: Osteopontin promotes the progression of gastric cancer through the NF-κB pathway regulated by the MAPK and PI3K publication-title: Int J Oncol doi: 10.3892/ijo.2014.2393 – volume: 5 start-page: 101399 issue: 2 year: 2024 ident: pcbi.1013127.ref098 article-title: A multiomics analysis-assisted deep learning model identifies a macrophage-oriented module as a potential therapeutic target in colorectal cancer publication-title: Cell Rep Med doi: 10.1016/j.xcrm.2024.101399 – volume: 29 start-page: 3044 issue: 5 year: 2022 ident: pcbi.1013127.ref092 article-title: Immune checkpoint inhibitors in cancer therapy publication-title: Curr Oncol doi: 10.3390/curroncol29050247 – volume: 6 start-page: 92 issue: 1 year: 2020 ident: pcbi.1013127.ref003 article-title: Head and neck squamous cell carcinoma publication-title: Nat Rev Dis Primers doi: 10.1038/s41572-020-00224-3 – volume: 56 start-page: 739 issue: 5 year: 2007 ident: pcbi.1013127.ref063 article-title: Contribution of the PD-L1/PD-1 pathway to T-cell exhaustion: an update on implications for chronic infections and tumor evasion publication-title: Cancer Immunol Immunother doi: 10.1007/s00262-006-0272-1 – volume: 10 start-page: 1497 year: 2022 ident: pcbi.1013127.ref067 article-title: 1439 terminally exhausted cd8 tils promote aggressive cancer stem cells while concurrently evading anti pd1 therapy publication-title: J for Immun Th Cancer – volume: 219 start-page: 107692 year: 2021 ident: pcbi.1013127.ref042 article-title: Interleukin-8: A chemokine at the intersection of cancer plasticity, angiogenesis, and immune suppression publication-title: Pharmacol Ther doi: 10.1016/j.pharmthera.2020.107692 – volume: 120 start-page: 105420 year: 2021 ident: pcbi.1013127.ref101 article-title: Immune deserts in head and neck squamous cell carcinoma: A review of challenges and opportunities for modulating the tumor immune microenvironment publication-title: Oral Oncol doi: 10.1016/j.oraloncology.2021.105420 – volume: 6 start-page: 10204 year: 2015 ident: pcbi.1013127.ref069 article-title: Epigenetic switch drives the conversion of fibroblasts into proinvasive cancer-associated fibroblasts publication-title: Nat Commun doi: 10.1038/ncomms10204 – volume: 7 start-page: 182 issue: 1 year: 2021 ident: pcbi.1013127.ref052 article-title: M2 macrophage-derived extracellular vesicles facilitate CD8+T cell exhaustion in hepatocellular carcinoma via the miR-21-5p/YOD1/YAP/β-catenin pathway publication-title: Cell Death Discov doi: 10.1038/s41420-021-00556-3 – volume: 11 start-page: 2630 issue: 17 year: 2022 ident: pcbi.1013127.ref086 article-title: IRF8: mechanism of action and health implications publication-title: Cells doi: 10.3390/cells11172630 – volume: 40 issue: 8 year: 2022 ident: pcbi.1013127.ref007 article-title: Precise reconstruction of the TME using bulk RNA-seq and a machine learning algorithm trained on artificial transcriptomes publication-title: Cancer Cell doi: 10.1016/j.ccell.2022.07.006 – volume: 101 start-page: 237 issue: 2 year: 1990 ident: pcbi.1013127.ref021 article-title: Role of optimal control theory in cancer chemotherapy publication-title: Math Biosci doi: 10.1016/0025-5564(90)90021-P – volume: 112 start-page: 598 issue: 4 year: 2003 ident: pcbi.1013127.ref080 article-title: Interplay between IFN-gamma and IL-6 signaling governs neutrophil trafficking and apoptosis during acute inflammation publication-title: J Clin Invest doi: 10.1172/JCI17129 – volume: 35 start-page: 25 year: 2015 ident: pcbi.1013127.ref005 article-title: Sustained proliferation in cancer: mechanisms and novel therapeutic targets publication-title: Semin Cancer Biol doi: 10.1016/j.semcancer.2015.02.006 – volume: 20 start-page: 131 issue: 1 year: 2021 ident: pcbi.1013127.ref071 article-title: Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives publication-title: Mol Cancer doi: 10.1186/s12943-021-01428-1 – volume: 24 start-page: 5291 year: 2006 ident: pcbi.1013127.ref108 article-title: Plasma osteopontin is an independent prognostic marker for head and neck cancers publication-title: J Clin Oncol doi: 10.1200/JCO.2006.06.8627 – volume: 14 start-page: 744 issue: 3 year: 2022 ident: pcbi.1013127.ref070 article-title: Cancer-associated fibroblasts and tumor cells in pancreatic cancer microenvironment and metastasis: paracrine regulators, reciprocation and exosomes publication-title: Cancers (Basel) doi: 10.3390/cancers14030744 – volume: 10 issue: 9 year: 2015 ident: pcbi.1013127.ref031 article-title: Modeling of cancer stem cell state transitions predicts therapeutic response publication-title: PLoS One – volume: 31 start-page: 331 issue: 2 year: 2023 ident: pcbi.1013127.ref074 article-title: Leukemia inhibitory factor, a double-edged sword with therapeutic implications in human diseases publication-title: Mol Ther doi: 10.1016/j.ymthe.2022.12.016 – volume: 1871 start-page: 50 year: 2019 ident: pcbi.1013127.ref058 article-title: Unraveling the journey of cancer stem cells from origin to metastasis publication-title: Biochimica et Biophys. Acta (BBA) - Rev. on Cancer doi: 10.1016/j.bbcan.2018.10.006 – reference: 39386511 - bioRxiv. 2024 Sep 27:2024.09.26.615149. doi: 10.1101/2024.09.26.615149. |
SSID | ssj0035896 |
Score | 2.4645042 |
Snippet | Immune checkpoint inhibition (ICI) has emerged as a critical treatment strategy for squamous cell carcinoma of the head and neck (HNSCC) that halts the immune... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e1013127 |
SubjectTerms | Biology and Life Sciences Care and treatment Computational Biology Computer Simulation Ecology and Environmental Sciences Head and Neck Neoplasms - immunology Head and Neck Neoplasms - pathology Head and Neck Neoplasms - therapy Humans Immune Checkpoint Inhibitors - therapeutic use Immunotherapy Immunotherapy - methods Medicine and Health Sciences Methods Models, Biological Prognosis Squamous cell carcinoma Squamous Cell Carcinoma of Head and Neck - immunology Squamous Cell Carcinoma of Head and Neck - pathology Squamous Cell Carcinoma of Head and Neck - therapy Tumor Microenvironment - immunology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDeBggxC4hSaxHYc97YgqoIEB2ilvVl-Lqtqk9LdHPpT-LedcbJVIg5cuK4daccztmfGM99HyLuqqa3h3OdOOZ5zKXjexAL2FWKnSPARSo_5jm_f69Nz_nUplhOqL6wJG-CBh4U7klUTufUxcud5qJ2C-x3cAi9YVRrPE9h2oYp9MDWcwUw0iZkLSXFyyfhybJpjsjwadfTh0tk1xq4sMcpMLqWE3f_3CT25oublk5P76OQBuT86knQxCPCQ3AntI3J3oJa8fkz-nPWb7opusN5u0sxGV4lbd0vB76NYm9V2CNRMU8cv1kLRLtI19oyMnVnXFLxaCie2pzCFtsFd0O3v3mDGgGLWnzpkI2q7jTmmC-oSScSYYKSJZidf9Wsf8PMB_uQJOT_5fPbpNB9pGHInKrnLRW0lvv5V0jSF8tLbaIKy0nMRg7GNkUUwxpSWQTBWVI47rgJ3rhYycGUVe0oO2q4Nzwn1rgi-UQHCSsmj8iaqICBArz2cucxWGcn3etCXA9qGTk9uEqKUYV016k2PesvIR1TW7VzEyk4_gAXp0YL0vywoI29R1RrRMFost1mZfrvVX37-0AvwzmpsvxUZeT9Oih0o3ZmxewHkQgCt2czD2UzYrm42_GZvURqHsMatDaAzDX9HCIh1lMrIs8HCbgXj-H7NBAjczGxvJvl8pF3_SmjhZVXWENezF_9jrV6SexUSIGMaih2Sg91VH16BV7azr9MGvAEI0Tke priority: 102 providerName: Directory of Open Access Journals |
Title | Tumor microenvironment governs the prognostic landscape of immunotherapy for head and neck squamous cell carcinoma: A computational model-guided analysis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40460357 https://www.proquest.com/docview/3215572999 https://pubmed.ncbi.nlm.nih.gov/PMC12162103 https://doaj.org/article/728f4bdff4cd4e6c9435095d5321ad46 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bi9NAFB72guCLeN_urmUUwacsTTKTyQgirW5dBRdZt9C3YW6pRZvs9gL2p_hvPWeSlgYVfGlp5yTt5MyZOfePkJdJnhnNmIustCxigrMoL3ogV9g7RYCOEDv0d3y-zC5G7NOYj_fIBrO1eYCLv5p2iCc1mv84-3m7fgsC_yagNoh4c9HZjTVTtEbTOBH75DBEjDCZj23jCinPA2IXguVEAj41xXT_ukvrsAo9_f_cuXeOrnZa5c45NbxP7jUKJu3XK-IB2fPlQ3KnhpxcPyK_rlezak5nmIe3U-RGJwFzd0FBH6SYs1VW2MCZhkpgzJGiVUGnWEvSVGytKWi7FHZyR4GElt5-p4vblUZPAsVoALWIUlRWM_2a9qkN4BGN45EG-J1ospo6j5fXbVEek9Hw_PrdRdTAM0SWJ2IZ8cwIjAomQuc96YQzhfbSCMd44bXJteh5rXVsUjDSeolllknPrM248EwamT4hB2VV-iNCne15l0sP5qZghXS6kJ6D4Z452ItTk3RItOGDuqm7cKgQihNgvdTPVSHfVMO3Dhkgs7a02EM7fFHNJ6oRSSWSvGDGFQWzjvnMStAcQeF0PE1i7VjWIS-Q1Qq7ZJSYhjPRq8VCffx6pfqgtWVYlss75FVDVFTAdKubqgaYFzbWalGetihBjG1r-PlmRSkcwty30gPPFPwdzsEGkrJDntYrbDsxhnHtlMOE89baa828PVJOv4Uu4nESZ2Dvp8f_8cMn5G6CuMfofUpPycFyvvLPQBlbmi7ZF2MBr_nwQ5cc9gfvB0N4H5xffrnqBgdHN0jgb97oPek |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumor+microenvironment+governs+the+prognostic+landscape+of+immunotherapy+for+head+and+neck+squamous+cell+carcinoma%3A+A+computational+model-guided+analysis&rft.jtitle=PLoS+computational+biology&rft.au=Bhattacharya%2C+Priyan&rft.au=Linnenbach%2C+Alban&rft.au=South%2C+Andrew+P&rft.au=Martinez-Outschoorn%2C+Ubaldo&rft.date=2025-06-03&rft.issn=1553-7358&rft.eissn=1553-7358&rft.volume=21&rft.issue=6&rft.spage=e1013127&rft_id=info:doi/10.1371%2Fjournal.pcbi.1013127&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |