Multiclass Classification Based on Combined Motor Imageries
Motor imagery (MI) allows the design of self-paced brain-computer interfaces (BCIs), which can potentially afford an intuitive and continuous interaction. However, the implementation of non-invasive MI-based BCIs with more than three commands is still a difficult task. First, the number of MIs for d...
Saved in:
Published in | Frontiers in neuroscience Vol. 14; p. 559858 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
19.11.2020
Frontiers Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
ISSN | 1662-453X 1662-4548 1662-453X |
DOI | 10.3389/fnins.2020.559858 |
Cover
Abstract | Motor imagery (MI) allows the design of self-paced brain-computer interfaces (BCIs), which can potentially afford an intuitive and continuous interaction. However, the implementation of non-invasive MI-based BCIs with more than three commands is still a difficult task. First, the number of MIs for decoding different actions is limited by the constraint of maintaining an adequate spacing among the corresponding sources, since the electroencephalography (EEG) activity from near regions may add up. Second, EEG generates a rather noisy image of brain activity, which results in a poor classification performance. Here, we propose a solution to address the limitation of identifiable motor activities by using combined MIs (i.e., MIs involving 2 or more body parts at the same time). And we propose two new multilabel uses of the Common Spatial Pattern (CSP) algorithm to optimize the signal-to-noise ratio, namely MC2CMI and MC2SMI approaches. We recorded EEG signals from seven healthy subjects during an 8-class EEG experiment including the rest condition and all possible combinations using the left hand, right hand, and feet. The proposed multilabel approaches convert the original 8-class problem into a set of three binary problems to facilitate the use of the CSP algorithm. In the case of the MC2CMI method, each binary problem groups together in one class all the MIs engaging one of the three selected body parts, while the rest of MIs that do not engage the same body part are grouped together in the second class. In this way, for each binary problem, the CSP algorithm produces features to determine if the specific body part is engaged in the task or not. Finally, three sets of features are merged together to predict the user intention by applying an 8-class linear discriminant analysis. The MC2SMI method is quite similar, the only difference is that any of the combined MIs is considered during the training phase, which drastically accelerates the calibration time. For all subjects, both the MC2CMI and the MC2SMI approaches reached a higher accuracy than the classic pair-wise (PW) and one-vs.-all (OVA) methods. Our results show that, when brain activity is properly modulated, multilabel approaches represent a very interesting solution to increase the number of commands, and thus to provide a better interaction. |
---|---|
AbstractList | Motor imagery (MI) allows the design of self-paced brain-computer interfaces (BCIs), which can potentially afford an intuitive and continuous interaction. However, the implementation of non-invasive MI-based BCIs with more than three commands is still a difficult task. First, the number of MIs for decoding different actions is limited by the constraint of maintaining an adequate spacing among the corresponding sources, since the electroencephalography (EEG) activity from near regions may add up. Second, EEG generates a rather noisy image of brain activity, which results in a poor classification performance. Here, we propose a solution to address the limitation of identifiable motor activities by using combined MIs (i.e., MIs involving 2 or more body parts at the same time). And we propose two new multilabel uses of the Common Spatial Pattern (CSP) algorithm to optimize the signal-to-noise ratio, namely MC2CMI and MC2SMI approaches. We recorded EEG signals from seven healthy subjects during an 8-class EEG experiment including the rest condition and all possible combinations using the left hand, right hand, and feet. The proposed multilabel approaches convert the original 8-class problem into a set of three binary problems to facilitate the use of the CSP algorithm. In the case of the MC2CMI method, each binary problem groups together in one class all the MIs engaging one of the three selected body parts, while the rest of MIs that do not engage the same body part are grouped together in the second class. In this way, for each binary problem, the CSP algorithm produces features to determine if the specific body part is engaged in the task or not. Finally, three sets of features are merged together to predict the user intention by applying an 8-class linear discriminant analysis. The MC2SMI method is quite similar, the only difference is that any of the combined MIs is considered during the training phase, which drastically accelerates the calibration time. For all subjects, both the MC2CMI and the MC2SMI approaches reached a higher accuracy than the classic pair-wise (PW) and one-vs.-all (OVA) methods. Our results show that, when brain activity is properly modulated, multilabel approaches represent a very interesting solution to increase the number of commands, and thus to provide a better interaction.Motor imagery (MI) allows the design of self-paced brain-computer interfaces (BCIs), which can potentially afford an intuitive and continuous interaction. However, the implementation of non-invasive MI-based BCIs with more than three commands is still a difficult task. First, the number of MIs for decoding different actions is limited by the constraint of maintaining an adequate spacing among the corresponding sources, since the electroencephalography (EEG) activity from near regions may add up. Second, EEG generates a rather noisy image of brain activity, which results in a poor classification performance. Here, we propose a solution to address the limitation of identifiable motor activities by using combined MIs (i.e., MIs involving 2 or more body parts at the same time). And we propose two new multilabel uses of the Common Spatial Pattern (CSP) algorithm to optimize the signal-to-noise ratio, namely MC2CMI and MC2SMI approaches. We recorded EEG signals from seven healthy subjects during an 8-class EEG experiment including the rest condition and all possible combinations using the left hand, right hand, and feet. The proposed multilabel approaches convert the original 8-class problem into a set of three binary problems to facilitate the use of the CSP algorithm. In the case of the MC2CMI method, each binary problem groups together in one class all the MIs engaging one of the three selected body parts, while the rest of MIs that do not engage the same body part are grouped together in the second class. In this way, for each binary problem, the CSP algorithm produces features to determine if the specific body part is engaged in the task or not. Finally, three sets of features are merged together to predict the user intention by applying an 8-class linear discriminant analysis. The MC2SMI method is quite similar, the only difference is that any of the combined MIs is considered during the training phase, which drastically accelerates the calibration time. For all subjects, both the MC2CMI and the MC2SMI approaches reached a higher accuracy than the classic pair-wise (PW) and one-vs.-all (OVA) methods. Our results show that, when brain activity is properly modulated, multilabel approaches represent a very interesting solution to increase the number of commands, and thus to provide a better interaction. Motor imagery (MI) allows the design of self-paced brain–computer interfaces (BCIs), which can potentially afford an intuitive and continuous interaction. However, the implementation of non-invasive MI-based BCIs with more than three commands is still a difficult task. First, the number of MIs for decoding different actions is limited by the constraint of maintaining an adequate spacing among the corresponding sources, since the electroencephalography (EEG) activity from near regions may add up. Second, EEG generates a rather noisy image of brain activity, which results in a poor classification performance. Here, we propose a solution to address the limitation of identifiable motor activities by using combined MIs (i.e., MIs involving 2 or more body parts at the same time). And we propose two new multilabel uses of the Common Spatial Pattern (CSP) algorithm to optimize the signal-to-noise ratio, namely MC2CMI and MC2SMI approaches. We recorded EEG signals from seven healthy subjects during an 8-class EEG experiment including the rest condition and all possible combinations using the left hand, right hand, and feet. The proposed multilabel approaches convert the original 8-class problem into a set of three binary problems to facilitate the use of the CSP algorithm. In the case of the MC2CMI method, each binary problem groups together in one class all the MIs engaging one of the three selected body parts, while the rest of MIs that do not engage the same body part are grouped together in the second class. In this way, for each binary problem, the CSP algorithm produces features to determine if the specific body part is engaged in the task or not. Finally, three sets of features are merged together to predict the user intention by applying an 8-class linear discriminant analysis. The MC2SMI method is quite similar, the only difference is that any of the combined MIs is considered during the training phase, which drastically accelerates the calibration time. For all subjects, both the MC2CMI and the MC2SMI approaches reached a higher accuracy than the classic pair-wise (PW) and one-vs.-all (OVA) methods. Our results show that, when brain activity is properly modulated, multilabel approaches represent a very interesting solution to increase the number of commands, and thus to provide a better interaction. Motor Imagery (MI) allows the design of self-paced Brain-Computer Interfaces (BCIs), which can potentially afford an intuitive and continuous interaction. However, the implementation of non invasive MI-based BCIs with more than three commands is still a difficult task. First, the number of MIs for decoding different actions is limited by the constraint of maintaining an adequate spacing among the corresponding sources. Second, electroencephalography (EEG) generates a rather noisy image of brain activity, which results in a poor classification performance. Here, we propose a solution to address the limitation of identifiable motor activities by using combined MIs (i.e., MIs involving two or more body parts at the same time). And we propose two new multilabel uses of the Common Spatial Pattern (CSP) algorithm to optimize the signal-to-noise ratio, namely MC2CMI and MC2SMI approaches. We recorded EEG signals from 7 healthy subjects during an 8-class EEG experiment including the rest condition and all possible combinations using the left hand, right hand, and feet. The proposed approaches convert the original 8-class problem into a set of three binary problems to facilitate the use of the CSP algorithm. In the MC2CMI method, each binary problem groups together in one class all the MIs engaging one of the three selected body parts, while the rest of MIs that do not engage the same body part are grouped together in the second class. Thus, for each binary problem the CSP algorithm produces features to determine if the specific body part is engaged in the task or not. Finally, the three sets of features are merged together to predict the user intention by applying an 8-class linear discriminant analysis. The MC2SMI method is similar, the only difference is that any of the combined MIs is considered during the training phase, which drastically accelerates the calibration time. For all subjects both the MC2CMI and the MC2SMI approaches reached a higher accuracy than the classic Pair-Wise, and One-Versus-All methods. Our results show that, when brain activity is properly modulated, multilabel approaches represent a very interesting solution to increase the number of commands, and thus to provide a better interaction. |
Author | Lindig-León, Cecilia Rimbert, Sébastien Bougrain, Laurent |
AuthorAffiliation | 2 Faculty of Engineering, Computer Science and Psychology, Institute of Neural Information Processing, Ulm University , Ulm , Germany 1 Université de Lorraine, CNRS, LORIA, Inria , Nancy , France |
AuthorAffiliation_xml | – name: 2 Faculty of Engineering, Computer Science and Psychology, Institute of Neural Information Processing, Ulm University , Ulm , Germany – name: 1 Université de Lorraine, CNRS, LORIA, Inria , Nancy , France |
Author_xml | – sequence: 1 givenname: Cecilia surname: Lindig-León fullname: Lindig-León, Cecilia – sequence: 2 givenname: Sébastien surname: Rimbert fullname: Rimbert, Sébastien – sequence: 3 givenname: Laurent surname: Bougrain fullname: Bougrain, Laurent |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33328845$$D View this record in MEDLINE/PubMed https://inria.hal.science/hal-03013795$$DView record in HAL |
BookMark | eNp9Uk2LFDEUDLLifugP8CIDXvQwY76TRhDWQd2BWbwoeAvp9OvZDN3JmnQv-O9NT6_L7hy8JMVLVb3kpc7RSYgBEHpN8IoxXX1ogw95RTHFKyEqLfQzdEakpEsu2K-TR_gUnee8x1hSzekLdMoYo1pzcYY-Xo_d4F1nc16sp9W33tnBx7D4bDM0iwLWsa99KPg6DjEtNr3dQfKQX6Lnre0yvLrfL9DPr19-rK-W2-_fNuvL7dIJqoYlr4Eq4ExxhiUWmrcCEwagCaasFVbryooGMK0rV6DUlWTCaccbrLira3aBNrNvE-3e3Cbf2_THROvNoRDTztg0PQKMLbaVBaVrKbjSqlat4ES2DGtKOeji9Wn2uh3rHhoHYUi2e2L69CT4G7OLd0YpgpUkxeD9bHBzJLu63Jqphll5narE3cR9d98sxd8j5MH0PjvoOhsgjtlQrrCuqorIQn17RN3HMYUy1sKSlCpVxlRYbx7f_qH_v_8sBDITXIo5J2gfKASbKTPmkBkzZcbMmSkadaRxfjhEoAzAd_9R_gWjsMUH |
CitedBy_id | crossref_primary_10_3389_fnhum_2022_900834 crossref_primary_10_3389_fnhum_2021_658444 crossref_primary_10_1109_TBME_2021_3064794 crossref_primary_10_1038_s41597_023_02445_z crossref_primary_10_1007_s00521_022_07787_0 crossref_primary_10_1016_j_chb_2023_107789 |
Cites_doi | 10.1007/BF01129656 10.1109/5.939829 10.1088/1741-2560/4/2/R01 10.1109/TNSRE.2010.2077654 10.1109/86.895947 10.1201/9781351231954-32 10.1016/j.clinph.2008.11.015 10.1016/j.jneumeth.2015.01.010 10.3389/fnhum.2018.00059 10.1126/science.aaa5417 10.1073/pnas.0403504101 10.1016/j.neuroimage.2007.01.051 10.1088/1741-2560/13/3/036024 10.1002/hbm.20658 10.1016/S0042-6989(00)00235-2 10.1186/1471-2202-10-S1-P84 10.1109/86.895946 10.1007/s11948-018-0061-1 10.1016/j.neuron.2014.11.010 10.1371/journal.pone.0047207 10.1016/S0166-2236(96)10065-5 10.1016/j.neubiorev.2013.03.017 10.1007/s10484-011-9145-2 10.1016/bs.pbr.2016.04.017 10.1109/TBME.2008.923152 10.1007/s10548-009-0121-6 10.1016/0013-4694(79)90063-4 10.3389/fpsyg.2019.02341 10.1016/0028-3932(95)00073-C 10.1126/science.83.2150.259 10.1038/srep38565 10.1007/s10827-018-0701-0 10.1109/TNSRE.2006.875642 10.1016/S0079-6123(06)59018-1 10.1093/acprof:oso/9780195388855.001.0001 10.1142/S233954781450023X 10.1016/S1388-2457(99)00141-8 10.1016/0304-3940(93)90886-P 10.1016/S0304-3940(97)00889-6 10.1162/pres.19.1.35 10.1109/MSP.2008.4408441 10.1088/1741-2560/12/1/016011 10.1023/A:1010920819831 10.1088/1741-2560/10/4/046003 10.1016/S0167-8760(01)00178-7 10.1111/j.0013-9580.2003.12001.x 10.1186/1743-0003-10-106 10.1109/NER.2015.7146708 10.1109/SMC.2015.543 10.1007/978-1-4471-6584-2_7 |
ContentType | Journal Article |
Copyright | Copyright © 2020 Lindig-León, Rimbert and Bougrain. 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License Copyright © 2020 Lindig-León, Rimbert and Bougrain. 2020 Lindig-León, Rimbert and Bougrain |
Copyright_xml | – notice: Copyright © 2020 Lindig-León, Rimbert and Bougrain. – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Copyright © 2020 Lindig-León, Rimbert and Bougrain. 2020 Lindig-León, Rimbert and Bougrain |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 1XC VOOES 5PM DOA |
DOI | 10.3389/fnins.2020.559858 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central - New (Subscription) url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Statistics Computer Science |
EISSN | 1662-453X |
ExternalDocumentID | oai_doaj_org_article_aee89ae78b654787b7f5416f308224e8 PMC7710761 oai_HAL_hal_03013795v1 33328845 10_3389_fnins_2020_559858 |
Genre | Journal Article |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EBS EJD EMOBN F5P FRP GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PUEGO RNS RPM W2D ACXDI C1A IAO IEA IHR ISR M~E NPM 3V. 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c527t-4be27e43743060584f5013ee81023f5a889a5de02b9c89a689635c8c4d074cbb3 |
IEDL.DBID | M48 |
ISSN | 1662-453X 1662-4548 |
IngestDate | Wed Aug 27 01:32:05 EDT 2025 Tue Sep 30 16:46:56 EDT 2025 Fri Sep 12 12:49:34 EDT 2025 Fri Sep 05 07:27:40 EDT 2025 Fri Jul 25 11:48:39 EDT 2025 Thu Jan 02 22:58:53 EST 2025 Wed Oct 01 02:21:26 EDT 2025 Thu Apr 24 23:02:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | electroencephalography (EEG) brain-computer interface (BCI) common spatial pattern (CSP) combined motor imageries multilabel classification common spatialpattern (CSP) |
Language | English |
License | Copyright © 2020 Lindig-León, Rimbert and Bougrain. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c527t-4be27e43743060584f5013ee81023f5a889a5de02b9c89a689635c8c4d074cbb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Reviewed by: Jun Jiang, Xi'an University, China; Anubha Gupta, Indraprastha Institute of Information Technology Delhi, India This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience Edited by: Xun Chen, University of Science and Technology of China, China |
ORCID | 0000-0001-6794-0505 0000-0002-3314-7231 |
OpenAccessLink | https://doaj.org/article/aee89ae78b654787b7f5416f308224e8 |
PMID | 33328845 |
PQID | 2462277889 |
PQPubID | 4424402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_aee89ae78b654787b7f5416f308224e8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7710761 hal_primary_oai_HAL_hal_03013795v1 proquest_miscellaneous_2470899916 proquest_journals_2462277889 pubmed_primary_33328845 crossref_primary_10_3389_fnins_2020_559858 crossref_citationtrail_10_3389_fnins_2020_559858 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-19 |
PublicationDateYYYYMMDD | 2020-11-19 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in neuroscience |
PublicationTitleAlternate | Front Neurosci |
PublicationYear | 2020 |
Publisher | Frontiers Research Foundation Frontiers Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers – name: Frontiers Media S.A |
References | Pfurtscheller (B42) 1997; 239 Dickhaus (B11) 2009; 10 Pfurtscheller (B39) 2003; 44 Yi (B58) 2013; 10 Lindig-León (B26) (B57) 2002; 48 Grangeon (B12) 2011; 36 Jeunet (B21) 2018 Di Rienzo (B10) 2012; 7 Lotte (B28) 2012 Koles (B23) 1990; 2 Devlaminck (B9) 2010 Renard (B46) 2010; 19 Lindig-León (B25) B31 Pfurtscheller (B41) 1999; 110 Guillot (B14) 2009; 30 Blankertz (B4); 55 Jäncke (B18) 2006; 159 Combrisson (B8) 2015; 250 Müller-Putz (B35) 2016 Jasper (B19) 1936; 83 Neuper (B36) 2001; 43 Talukdar (B50) 2019; 46 Suffczynski (B49) 1999 Pfurtscheller (B38) 2001; 41 Müller-Putz (B34) 2008; 10 Lindig-Leon (B27) 2015 Lotte (B29) 2014 Royer (B48) 2013; 18 Wolpaw (B55) 2012 Jeunet (B22) 2016; 13 Hand (B15) 2001; 45 Pfurtscheller (B40) 1979; 46 McAvinue (B32) 2009; 33 Neuper (B37) 2009; 120 Hétu (B17) 2013; 37 Vidaurre (B53) 2010; 23 Ahn (B1) 2018; 12 Cassady (B7) 2014; 2 Pfurtscheller (B44) 1993; 164 Blankertz (B6); 25 Pfurtscheller (B43) 2001; 89 LaFleur (B24) 2013; 10 Lotte (B30) 2007 Rimbert (B47) 2019; 10 Guger (B13) 2000; 8 Bishop (B2) 2006 Wolpaw (B56) 2004; 101 Blankertz (B3) 2007; 37 Hari (B16) 1997; 20 Yin (B59) 2014; 84 Blankertz (B5) 2006; 14 Meng (B33) 2016; 6 Wodlinger (B54) 2014; 12 Jeannerod (B20) 1995; 33 Ramoser (B45) 2001; 8 Thompson (B51) 2019; 25 Tyson (B52) 2015; 348 |
References_xml | – volume: 2 start-page: 275 year: 1990 ident: B23 article-title: Spatial patterns underlying population differences in the background EEG publication-title: Brain Topogr doi: 10.1007/BF01129656 – volume: 89 start-page: 1123 year: 2001 ident: B43 article-title: Motor imagery and direct brain-computer communication publication-title: Proc. IEEE doi: 10.1109/5.939829 – year: 2007 ident: B30 article-title: A review of classification algorithms for EEG-based brain–computer interfaces publication-title: J. Neural Eng doi: 10.1088/1741-2560/4/2/R01 – volume: 18 start-page: 581 year: 2013 ident: B48 article-title: (EEG) control of a virtual helicopter in 3-dimesiona space using intelligent control strategies publication-title: J. Neuroeng. Rehabil doi: 10.1109/TNSRE.2010.2077654 – volume: 8 start-page: 447 year: 2000 ident: B13 article-title: Real-time EEG analysis with subject-specific spatial patterns for a brain-computer interface (BCI) publication-title: IEEE Trans. Rehabil. Eng doi: 10.1109/86.895947 – start-page: 613 volume-title: Brain-computer Interfaces Handbook: Technological and Theoretical Advances year: 2018 ident: B21 article-title: Mind the Traps! design guidelines for rigorous BCI experiments doi: 10.1201/9781351231954-32 – volume: 120 start-page: 239 year: 2009 ident: B37 article-title: Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface publication-title: Clin. Neurophysiol doi: 10.1016/j.clinph.2008.11.015 – start-page: 67 volume-title: Event-Related Desynchronization. Handbook of Electroencephalography and Clinical Neurophysiology year: 1999 ident: B49 article-title: Event-related dynamics of alpha band rhythms: a neuronal network model of focal ERD/surround ERS – volume: 250 start-page: 126 year: 2015 ident: B8 article-title: Exceeding chance level by chance: the caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.01.010 – volume: 12 start-page: 59 year: 2018 ident: B1 article-title: User's self-prediction of performance in motor imagery brain-computer interface publication-title: Front. Hum. Neurosci doi: 10.3389/fnhum.2018.00059 – ident: B31 – volume: 348 start-page: 906 year: 2015 ident: B52 article-title: Decoding motor imagery from the posterior parietal cortex of a tetraplegic human publication-title: Science doi: 10.1126/science.aaa5417 – volume: 101 start-page: 17849 year: 2004 ident: B56 article-title: Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.0403504101 – volume: 37 start-page: 539 year: 2007 ident: B3 article-title: The non-invasive berlin brain-computer interface: fast acquisition of effective performance in untrained subjects publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.01.051 – volume: 13 start-page: 036024 year: 2016 ident: B22 article-title: Why standard brain-computer interface (BCI) training protocols should be changed: an experimental study publication-title: J. Neural Eng doi: 10.1088/1741-2560/13/3/036024 – volume: 30 start-page: 2157 year: 2009 ident: B14 article-title: Brain activity during visual versus kinesthetic imagery: an fMRI study publication-title: Hum. Brain Mapp doi: 10.1002/hbm.20658 – volume: 41 start-page: 1257 year: 2001 ident: B38 article-title: Functional brain imaging based on ERD/ERS publication-title: Vision Res doi: 10.1016/S0042-6989(00)00235-2 – volume: 10 start-page: P84 year: 2009 ident: B11 article-title: Predicting BCI performance to study BCI illiteracy publication-title: BMC Neurosci doi: 10.1186/1471-2202-10-S1-P84 – volume: 33 start-page: 99 year: 2009 ident: B32 article-title: Motor imagery: A multidimensional ability publication-title: J. Mental Imagery – volume: 8 start-page: 441 year: 2001 ident: B45 article-title: Optimal spatial filtering of single trial EEG during imagined hand movement publication-title: IEEE Trans. Rehabil. Eng doi: 10.1109/86.895946 – volume: 25 start-page: 1217 year: 2019 ident: B51 article-title: Critiquing the concept of BCI illiteracy publication-title: Sci. Eng. Ethics doi: 10.1007/s11948-018-0061-1 – volume: 84 start-page: 1170 year: 2014 ident: B59 article-title: Wireless neurosensor for full-spectrum electrophysiology recordings during free behavior publication-title: Neuron doi: 10.1016/j.neuron.2014.11.010 – volume: 7 start-page: e47207 year: 2012 ident: B10 article-title: Selective effect of physical fatigue on motor imagery accuracy publication-title: PLoS ONE doi: 10.1371/journal.pone.0047207 – volume: 20 start-page: 44 year: 1997 ident: B16 article-title: Human cortical oscillations: a neuromagnetic view through the skull publication-title: Trends Neurosci doi: 10.1016/S0166-2236(96)10065-5 – volume: 37 start-page: 930 year: 2013 ident: B17 article-title: The neural network of motor imagery: an ALE meta-analysis publication-title: Neurosci. Biobehav. Rev doi: 10.1016/j.neubiorev.2013.03.017 – volume-title: Pattern Recognition and Machine Learning (Information Science and Statistics) year: 2006 ident: B2 – volume: 36 start-page: 47 year: 2011 ident: B12 article-title: Postural control during visual and kinesthetic motor imagery publication-title: Appl. Psychophysiol. Biofeedb doi: 10.1007/s10484-011-9145-2 – start-page: 39 volume-title: PBR: Brain-Computer Interfaces: Lab Experiments to Real-World Applications year: 2016 ident: B35 article-title: From classic motor imagery to complex movement intention decoding: the noninvasive Graz-BCI approach doi: 10.1016/bs.pbr.2016.04.017 – volume: 55 start-page: 2452 ident: B4 article-title: The berlin brain-computer interface: accurate performance from first-session in bci-naive subjects publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.2008.923152 – volume: 23 start-page: 194 year: 2010 ident: B53 article-title: Towards a cure for BCI illiteracy publication-title: Brain Topogr doi: 10.1007/s10548-009-0121-6 – volume: 46 start-page: 138 year: 1979 ident: B40 article-title: Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement publication-title: Electroencephalogr. Clin. Neurophysiol doi: 10.1016/0013-4694(79)90063-4 – volume: 10 start-page: 2341 year: 2019 ident: B47 article-title: Hypnotic state modulates sensorimotor beta rhythms during real movement and motor imagery publication-title: Front. Psychol doi: 10.3389/fpsyg.2019.02341 – volume: 33 start-page: 1419 year: 1995 ident: B20 article-title: Mental imagery in the motor context publication-title: Neuropsychologia doi: 10.1016/0028-3932(95)00073-C – volume: 48 start-page: 206 year: 2002 ident: B57 article-title: World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects publication-title: J. Postgrad. Med – volume-title: Berlin Brain-Computer Interface Workshop year: 2012 ident: B28 article-title: On the need for alternative feedback training approaches for BCI – volume: 83 start-page: 259 year: 1936 ident: B19 article-title: Cortical excitatory state and variability in human brain rhythms publication-title: Science doi: 10.1126/science.83.2150.259 – volume: 6 start-page: 38565 year: 2016 ident: B33 article-title: Noninvasive electroencephalogram based control of a robotic arm for reach and grasp tasks publication-title: Sci. Rep doi: 10.1038/srep38565 – volume: 46 start-page: 55 year: 2019 ident: B50 article-title: Motor imagery and mental fatigue: inter-relationship and EEG based estimation publication-title: J. Comput. Neurosci doi: 10.1007/s10827-018-0701-0 – volume: 14 start-page: 153 year: 2006 ident: B5 article-title: The BCI competition III: validating alternative approaches to actual BCI problems publication-title: IEEE Trans. Neural Syst. Rehabil. Eng doi: 10.1109/TNSRE.2006.875642 – volume: 159 start-page: 261 year: 2006 ident: B18 article-title: Converging evidence of ERD/ERS and bold responses in motor control research publication-title: Prog. Brain Res doi: 10.1016/S0079-6123(06)59018-1 – year: 2010 ident: B9 article-title: From circular ordinal regression to multilabel classification publication-title: Proceedings of the 2010 Workshop on Preference Learning, European Conference on Machine Learning – volume-title: Brain-Computer Interfaces: Principles and Practice year: 2012 ident: B55 doi: 10.1093/acprof:oso/9780195388855.001.0001 – volume: 2 start-page: 254 year: 2014 ident: B7 article-title: The impact of mind-body awareness training on the early learning of a brain-computer interface publication-title: Technology doi: 10.1142/S233954781450023X – volume: 10 start-page: 52 year: 2008 ident: B34 article-title: Better than random? A closer look on BCI results publication-title: Int. J. Bioelektromagn – volume: 110 start-page: 1842 year: 1999 ident: B41 article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles publication-title: Clin. Neurophysiol doi: 10.1016/S1388-2457(99)00141-8 – volume: 164 start-page: 179 year: 1993 ident: B44 article-title: 40-Hz oscillations during motor behavior in man publication-title: Neurosci. Lett doi: 10.1016/0304-3940(93)90886-P – volume: 239 start-page: 65 year: 1997 ident: B42 article-title: Motor imagery activates primary sensorimotor area in humans publication-title: Neurosci. Lett doi: 10.1016/S0304-3940(97)00889-6 – volume: 19 start-page: 35 year: 2010 ident: B46 article-title: OpenViBE: an open-source software platform to design, test and use brain-computer interfaces in real and virtual environments publication-title: Presence Teleoper. Virtual Environ doi: 10.1162/pres.19.1.35 – volume: 25 start-page: 41 ident: B6 article-title: Optimizing spatial filters for robust eeg single-trial analysis publication-title: IEEE Signal Process. Mag doi: 10.1109/MSP.2008.4408441 – volume: 12 start-page: 016011 year: 2014 ident: B54 article-title: Ten-dimensional anthropomorphic arm control in a human brain–machine interface: difficulties, solutions, and limitations publication-title: J. Neural Eng doi: 10.1088/1741-2560/12/1/016011 – volume: 45 start-page: 171 year: 2001 ident: B15 article-title: A simple generalisation of the area under the roc curve for multiple class classification problems publication-title: Mach. Learn doi: 10.1023/A:1010920819831 – start-page: 3953 volume-title: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) ident: B25 article-title: Comparison of sensorimotor rhythms in EEG signals during simple and combined motor imageries over the contra and ipsilateral hemispheres – volume: 10 start-page: 046003 year: 2013 ident: B24 article-title: Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface publication-title: J. Neural Eng doi: 10.1088/1741-2560/10/4/046003 – volume: 43 start-page: 41 year: 2001 ident: B36 article-title: Event-related dynamics of cortical thythms: frequency-specific features and functional correlates publication-title: Int. J. Psychophysiol doi: 10.1016/S0167-8760(01)00178-7 – volume: 44 start-page: 2 year: 2003 ident: B39 article-title: Induced oscillations in the alpha band: functional meaning publication-title: Epilepsia doi: 10.1111/j.0013-9580.2003.12001.x – volume: 10 start-page: 106 year: 2013 ident: B58 article-title: EEG feature comparison and classification of simple and compound limb motor imagery publication-title: J. Neuroeng. Rehabil doi: 10.1186/1743-0003-10-106 – volume-title: IEEE EMBS Neural Engineering Conference year: 2015 ident: B27 article-title: Alpha rebound improves on-line detection of the end of motor imageries doi: 10.1109/NER.2015.7146708 – start-page: 3128 ident: B26 article-title: A multi-label classification method for detection of combined motor imageries publication-title: 2015 IEEE International Conference on Systems, Man, and Cybernetics doi: 10.1109/SMC.2015.543 – start-page: 5 volume-title: Guide to Brain-Computer Music Interfacing year: 2014 ident: B29 article-title: A tutorial on EEG signal processing techniques for mental state recognition in brain-computer interfaces doi: 10.1007/978-1-4471-6584-2_7 |
SSID | ssj0062842 |
Score | 2.2846117 |
Snippet | Motor imagery (MI) allows the design of self-paced brain-computer interfaces (BCIs), which can potentially afford an intuitive and continuous interaction.... Motor Imagery (MI) allows the design of self-paced Brain-Computer Interfaces (BCIs), which can potentially afford an intuitive and continuous interaction.... Motor imagery (MI) allows the design of self-paced brain–computer interfaces (BCIs), which can potentially afford an intuitive and continuous interaction.... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 559858 |
SubjectTerms | Algorithms Artificial Intelligence brain-computer interface (BCI) Classification Cognitive science combined motor imageries common spatial pattern (CSP) Computer Science EEG Electroencephalography electroencephalography (EEG) Human-Computer Interaction Interfaces Life Sciences Machine Learning Mental task performance multilabel classification Neuroimaging Neurons and Cognition Neuroscience Statistics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5VnLhUbXk0haKAUA9IKRs_Ykc9LQi0oNJTkbhZsT0RSCWL0FKJf8-Mk13tUqm99GYlTmJ9Hntm4plvAA695tx2rAobpCyUD1jUPmJBygGViLGJKX3s6kc1uVaXN_pmqdQXx4T19MA9cMcNoq0bNNZzmVxrvGk1GREt06wIhSnNl5pzZ6rfgyvadEV_hkkuWH3cdncdc3OL0VcmJOf67ktaKJH1k2655VDIP-3M1-GSS_rn_B28HQzHfNwP-D28we4DbIw7cprvn_MveQrlTP_IN-BbSqsNbBjnqeolxwOlKchPSGvFnBq0EZBTTO2rKbnd-cU9k1mQ27wJ1-dnP08nxVAloQhamBnhi8KgkmQKjPiMU7Waf22iZVKGVjeW4NMRR8LXgZqVpSWngw0qkvUQvJdbsNZNO_wIeamjaFT0pWyi4gr0pm4DUr9YKcTaZjCao-bCQCHOlSx-OXIlGGiXgHYMtOuBzuBo8chDz5_xt84nPBWLjkx9nS6QQLhBINy_BCKDA5rIlXdMxt8dX2P3T5pa_y4z2J3PsxsWLY1EVUIYQ4BlsL-4TcuNz1CaDqdP3MfwQSkZ1Rls92Kx-JSUUlirdAZmRWBWxrJ6p7u7TZTehgw9U5Wf_gcAO7DOmHLCZFnvwtrs8Qk_k-U083tpkbwAL_YVHQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_q9cUXqa0faWuJIj4IsZf9yGYRkTtpOcUeIhb6tmQ_Ygs2actV8L93ZvNBT6FvS7JJNjM7uzM7M78BeG0l5baHIisd55mwLmTa-pDh5hAE877yMX3sZFksTsWXM3m2AcshF4bCKoc1MS7UvnV0Rn7IRMGYQoNNf7y6zqhqFHlXhxIaVV9awX-IEGMPYJNRVeUJbM6Plt--D2tzgYtx9H8WlCuEynrn50QzTR_WzUVD-N1s-o5Ay6kG_J2dKgL64_5zTuGS_-ui_4ZU3tmjjrfgUa9cprNuNjyGjdBsw86sQcP68k_6Jo3hnvEcfQfex9RbR8pzGitjUsxQZFM6x53Np9jAxQINZ2yftGiap58vCfACTesncHp89OPTIusrKWROMrVCHgSmguCoLkzJDypqScefoSTghlpWSNVK-jBlVjtsFiWKpXSlEx41DGctfwqTpm3Cc0hz6VklvM155QVVqVe6dgH7-UKEoMsEpgPVjOthxqnaxS-D5gYR2kRCGyK06QidwNvxkasOY-O-znNixdiR4LHjhfbmp-mlzVT4a7oKqrRUW7lUVtUSNc-asHmYCPiSV8jItXcsZl8NXSMTkSstf-cJ7A98Nr1g40jGaZjAy_E2iiT5WaomtLfUR5EzFRXvBJ5102L8FOeclaWQCai1CbM2lvU7zcV5hP1WqAyqIt-9f1h78JCoRemSud6HyermNrxAvWllD3ph-AtNchWd priority: 102 providerName: ProQuest |
Title | Multiclass Classification Based on Combined Motor Imageries |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33328845 https://www.proquest.com/docview/2462277889 https://www.proquest.com/docview/2470899916 https://inria.hal.science/hal-03013795 https://pubmed.ncbi.nlm.nih.gov/PMC7710761 https://doaj.org/article/aee89ae78b654787b7f5416f308224e8 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: GX1 dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central - New (Subscription) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1662-453X dateEnd: 20211231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: BENPR dateStart: 20071015 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1662-453X dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: M48 dateStart: 20071001 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N7YUXxBgfgVEFhPaAlNE4duwIIdSijYLohBCV-mbFH9kmbelWuon999w5aURgQrxUVuI67X3k7ny-3wG8MoJq232eKJtlCTfWJ4VxPkHj4DlzrnShfGx6lE9m_PNczDdgnT1vCfjj1tCO-knNlmf7Py9v3qPCv6OIE-3tm6o-rQl5mw33CW5cqL2Ly4T6SlH-tW2ycQe20FYxkvsp7_IMOb6cQz40p9ohdN6bvOftq_YsVwD4R3t0Qscn__ZN_zxi-ZvNOrwP91pnMx410rENG75-ADujGgPt85t4Lw7HP8O--g68DaW4lpzpOHTKpDNEgW3xGC2di3GALw8MpHE8XWCoHn86JwAMDLUfwuzw4PuHSdJ2VkisYHKFPPFMep6h-zCkvCivBG2HekVADpUolSpK4fyQmcLiMFeopsIqyx16HNaY7BFs1ovaP4E4FY6V3Jk0Kx2nrvWyqKzHeS7n3hcqguGaatq2sOPU_eJMY_hBhNaB0JoIrRtCR_C6-8pFg7nxr8ljYkU3keCyw4XF8li32qdL_GtF6aUy1GtZSSMrgZ5oRVg9jHtc5CUysrfGZPRF0zUKGTNZiOs0gt01n_VaTjXjOWNSIsEieNHdRhWlvEtZ-8UVzZGUXEVHPILHjVh0j8qyjCnFRQSyJzC939K_U5-eBBhwic6hzNOn__HcZ3CXSEY1lGmxC5ur5ZV_js7Uygxga3xw9PXbIGxG4OfHeToIOvILgDggAg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9gAXBJSHSwGDgAOS23gfXluoQgm0SmgSIdRKvRnvw7RSa5eQgvrn-G3MbGyrAam33lb2Zr2ZnZ3Hzs43AK-1pNx2l0Sp4TwS2rgo09ZFqBycYNYW1qePTabJ8FB8PpJHK_CnzYWha5WtTPSC2taGzsi3mUgYU-iwZR_Of0RUNYqiq20JjaIprWB3PMRYk9ix7y5_owv3c2f0Cdf7DWN7uwcfh1FTZSAykqk5zs8x5QRHVdqjGKEoJR0NupRADUpZ4BcLaV2P6cxgM0mRZaVJjbCofY3WHMe9BWtodnDcVWuD3emXr60uSFD4-3hrQrlJ6Bws4qroFmbbZXVSEV44620RSDrVnL-iGX0BAdR3x3Q983_b998rnFd04t49uNsYs2F_wX33YcVVD2C9X6Ejf3YZvg399VJ_br8O732qryFjPfSVOOmOkmeLcICa1IbYQOGEjjq2J_W8noWjMwLYQFf-IRzeCE0fwWpVV-4JhLG0rBBWx7ywqHBZprLSOOxnE-FclgbQa6mWmwbWnKprnObo3hChc0_onAidLwgdwLvuJ-cLTI_rOg9oKbqOBMftH9Sz73mzu_MC_1pWOJVqquWcKq1KiZZuSVhATDgc5BUu5NIYw_44p2fkknKVyV9xAJvtOueNIMGZdGwfwMvuNYoAiusUlasvqI-i4C0a-gE8XrBF9ynOOUtTIQNQSwyzNJflN9XJsYcZV2h8qiTeuH5aL-D28GAyzsej6f5TuEOUo1TNONuE1fnswj1Dm22unzcbI4RvN70X_wLPclDk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8DQ6CfGCgPERNiAg4AEprHHsOBGaUMtWtWyrJsSkvZn4I2zSlozSgfYX-VXcOUm1grS3vVmJ49jnO9-d7wvgtRYU2-7SKDNJEnFtXJRr6yJkDo4zawvrw8f2p-n4kH8-Ekcr8KeLhSG3yu5M9Ae1rQ3dkW8ynjImUWHLN8vWLeJge_Tx_EdEFaTI0tqV0yjaMgt2y6cba4M8dt3lb1Tnfm5NtnHv3zA22vn6aRy1FQciI5ic41wdk44nyFb7ZC_kpaBrQpdRgoNSFPj3QljXZzo32EwzRF9hMsMtcmKjdYLj3oJVSfGiPVgd7kwPvnR8IUVG4G2vKcUpoaLQ2FhRRcQVVScV5Q5n_feUMJ3qz1_hkr6YAPK-Y3LV_F8O_ted8wp_HN2Du61gGw4aTLwPK656AGuDCpX6s8vwbehdTf0d_hp88GG_hgT30FflJH8ljyLhELmqDbGBBxUq7djer-f1LJycUbINVOsfwuGNwPQR9Kq6ck8gjIVlBbc6TgqLzJflMi-Nw3425c7lWQD9DmrKtCnOqdLGqUJVhwCtPKAVAVo1gA7g3eKT8ya_x3Wdh7QVi46Umts_qGffVUvpqsCl5YWTmaa6zpnUshQo9ZaUF4hxh4O8wo1cGmM82FP0jNTTRObiVxzARrfPqj1UcCYLEgjg5eI1Hgdk4ykqV19QH0mGXBT6A3jcoMXiV0mSsCzjIgC5hDBLc1l-U50c-5TjEgVRmcZPr5_WC7iNNKn2JtPddbhDgKOozTjfgN58duGeofg2189bugjh202T4l_AT1Ue |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiclass+Classification+Based+on+Combined+Motor+Imageries&rft.jtitle=Frontiers+in+neuroscience&rft.au=Lindig-Le%C3%B3n%2C+Cecilia&rft.au=Rimbert%2C+S%C3%A9bastien&rft.au=Bougrain%2C+Laurent&rft.date=2020-11-19&rft.issn=1662-4548&rft.volume=14&rft.spage=559858&rft_id=info:doi/10.3389%2Ffnins.2020.559858&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon |