Multiclass Classification Based on Combined Motor Imageries

Motor imagery (MI) allows the design of self-paced brain-computer interfaces (BCIs), which can potentially afford an intuitive and continuous interaction. However, the implementation of non-invasive MI-based BCIs with more than three commands is still a difficult task. First, the number of MIs for d...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroscience Vol. 14; p. 559858
Main Authors Lindig-León, Cecilia, Rimbert, Sébastien, Bougrain, Laurent
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 19.11.2020
Frontiers
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1662-453X
1662-4548
1662-453X
DOI10.3389/fnins.2020.559858

Cover

Abstract Motor imagery (MI) allows the design of self-paced brain-computer interfaces (BCIs), which can potentially afford an intuitive and continuous interaction. However, the implementation of non-invasive MI-based BCIs with more than three commands is still a difficult task. First, the number of MIs for decoding different actions is limited by the constraint of maintaining an adequate spacing among the corresponding sources, since the electroencephalography (EEG) activity from near regions may add up. Second, EEG generates a rather noisy image of brain activity, which results in a poor classification performance. Here, we propose a solution to address the limitation of identifiable motor activities by using combined MIs (i.e., MIs involving 2 or more body parts at the same time). And we propose two new multilabel uses of the Common Spatial Pattern (CSP) algorithm to optimize the signal-to-noise ratio, namely MC2CMI and MC2SMI approaches. We recorded EEG signals from seven healthy subjects during an 8-class EEG experiment including the rest condition and all possible combinations using the left hand, right hand, and feet. The proposed multilabel approaches convert the original 8-class problem into a set of three binary problems to facilitate the use of the CSP algorithm. In the case of the MC2CMI method, each binary problem groups together in one class all the MIs engaging one of the three selected body parts, while the rest of MIs that do not engage the same body part are grouped together in the second class. In this way, for each binary problem, the CSP algorithm produces features to determine if the specific body part is engaged in the task or not. Finally, three sets of features are merged together to predict the user intention by applying an 8-class linear discriminant analysis. The MC2SMI method is quite similar, the only difference is that any of the combined MIs is considered during the training phase, which drastically accelerates the calibration time. For all subjects, both the MC2CMI and the MC2SMI approaches reached a higher accuracy than the classic pair-wise (PW) and one-vs.-all (OVA) methods. Our results show that, when brain activity is properly modulated, multilabel approaches represent a very interesting solution to increase the number of commands, and thus to provide a better interaction.
AbstractList Motor imagery (MI) allows the design of self-paced brain-computer interfaces (BCIs), which can potentially afford an intuitive and continuous interaction. However, the implementation of non-invasive MI-based BCIs with more than three commands is still a difficult task. First, the number of MIs for decoding different actions is limited by the constraint of maintaining an adequate spacing among the corresponding sources, since the electroencephalography (EEG) activity from near regions may add up. Second, EEG generates a rather noisy image of brain activity, which results in a poor classification performance. Here, we propose a solution to address the limitation of identifiable motor activities by using combined MIs (i.e., MIs involving 2 or more body parts at the same time). And we propose two new multilabel uses of the Common Spatial Pattern (CSP) algorithm to optimize the signal-to-noise ratio, namely MC2CMI and MC2SMI approaches. We recorded EEG signals from seven healthy subjects during an 8-class EEG experiment including the rest condition and all possible combinations using the left hand, right hand, and feet. The proposed multilabel approaches convert the original 8-class problem into a set of three binary problems to facilitate the use of the CSP algorithm. In the case of the MC2CMI method, each binary problem groups together in one class all the MIs engaging one of the three selected body parts, while the rest of MIs that do not engage the same body part are grouped together in the second class. In this way, for each binary problem, the CSP algorithm produces features to determine if the specific body part is engaged in the task or not. Finally, three sets of features are merged together to predict the user intention by applying an 8-class linear discriminant analysis. The MC2SMI method is quite similar, the only difference is that any of the combined MIs is considered during the training phase, which drastically accelerates the calibration time. For all subjects, both the MC2CMI and the MC2SMI approaches reached a higher accuracy than the classic pair-wise (PW) and one-vs.-all (OVA) methods. Our results show that, when brain activity is properly modulated, multilabel approaches represent a very interesting solution to increase the number of commands, and thus to provide a better interaction.Motor imagery (MI) allows the design of self-paced brain-computer interfaces (BCIs), which can potentially afford an intuitive and continuous interaction. However, the implementation of non-invasive MI-based BCIs with more than three commands is still a difficult task. First, the number of MIs for decoding different actions is limited by the constraint of maintaining an adequate spacing among the corresponding sources, since the electroencephalography (EEG) activity from near regions may add up. Second, EEG generates a rather noisy image of brain activity, which results in a poor classification performance. Here, we propose a solution to address the limitation of identifiable motor activities by using combined MIs (i.e., MIs involving 2 or more body parts at the same time). And we propose two new multilabel uses of the Common Spatial Pattern (CSP) algorithm to optimize the signal-to-noise ratio, namely MC2CMI and MC2SMI approaches. We recorded EEG signals from seven healthy subjects during an 8-class EEG experiment including the rest condition and all possible combinations using the left hand, right hand, and feet. The proposed multilabel approaches convert the original 8-class problem into a set of three binary problems to facilitate the use of the CSP algorithm. In the case of the MC2CMI method, each binary problem groups together in one class all the MIs engaging one of the three selected body parts, while the rest of MIs that do not engage the same body part are grouped together in the second class. In this way, for each binary problem, the CSP algorithm produces features to determine if the specific body part is engaged in the task or not. Finally, three sets of features are merged together to predict the user intention by applying an 8-class linear discriminant analysis. The MC2SMI method is quite similar, the only difference is that any of the combined MIs is considered during the training phase, which drastically accelerates the calibration time. For all subjects, both the MC2CMI and the MC2SMI approaches reached a higher accuracy than the classic pair-wise (PW) and one-vs.-all (OVA) methods. Our results show that, when brain activity is properly modulated, multilabel approaches represent a very interesting solution to increase the number of commands, and thus to provide a better interaction.
Motor imagery (MI) allows the design of self-paced brain–computer interfaces (BCIs), which can potentially afford an intuitive and continuous interaction. However, the implementation of non-invasive MI-based BCIs with more than three commands is still a difficult task. First, the number of MIs for decoding different actions is limited by the constraint of maintaining an adequate spacing among the corresponding sources, since the electroencephalography (EEG) activity from near regions may add up. Second, EEG generates a rather noisy image of brain activity, which results in a poor classification performance. Here, we propose a solution to address the limitation of identifiable motor activities by using combined MIs (i.e., MIs involving 2 or more body parts at the same time). And we propose two new multilabel uses of the Common Spatial Pattern (CSP) algorithm to optimize the signal-to-noise ratio, namely MC2CMI and MC2SMI approaches. We recorded EEG signals from seven healthy subjects during an 8-class EEG experiment including the rest condition and all possible combinations using the left hand, right hand, and feet. The proposed multilabel approaches convert the original 8-class problem into a set of three binary problems to facilitate the use of the CSP algorithm. In the case of the MC2CMI method, each binary problem groups together in one class all the MIs engaging one of the three selected body parts, while the rest of MIs that do not engage the same body part are grouped together in the second class. In this way, for each binary problem, the CSP algorithm produces features to determine if the specific body part is engaged in the task or not. Finally, three sets of features are merged together to predict the user intention by applying an 8-class linear discriminant analysis. The MC2SMI method is quite similar, the only difference is that any of the combined MIs is considered during the training phase, which drastically accelerates the calibration time. For all subjects, both the MC2CMI and the MC2SMI approaches reached a higher accuracy than the classic pair-wise (PW) and one-vs.-all (OVA) methods. Our results show that, when brain activity is properly modulated, multilabel approaches represent a very interesting solution to increase the number of commands, and thus to provide a better interaction.
Motor Imagery (MI) allows the design of self-paced Brain-Computer Interfaces (BCIs), which can potentially afford an intuitive and continuous interaction. However, the implementation of non invasive MI-based BCIs with more than three commands is still a difficult task. First, the number of MIs for decoding different actions is limited by the constraint of maintaining an adequate spacing among the corresponding sources. Second, electroencephalography (EEG) generates a rather noisy image of brain activity, which results in a poor classification performance. Here, we propose a solution to address the limitation of identifiable motor activities by using combined MIs (i.e., MIs involving two or more body parts at the same time). And we propose two new multilabel uses of the Common Spatial Pattern (CSP) algorithm to optimize the signal-to-noise ratio, namely MC2CMI and MC2SMI approaches. We recorded EEG signals from 7 healthy subjects during an 8-class EEG experiment including the rest condition and all possible combinations using the left hand, right hand, and feet. The proposed approaches convert the original 8-class problem into a set of three binary problems to facilitate the use of the CSP algorithm. In the MC2CMI method, each binary problem groups together in one class all the MIs engaging one of the three selected body parts, while the rest of MIs that do not engage the same body part are grouped together in the second class. Thus, for each binary problem the CSP algorithm produces features to determine if the specific body part is engaged in the task or not. Finally, the three sets of features are merged together to predict the user intention by applying an 8-class linear discriminant analysis. The MC2SMI method is similar, the only difference is that any of the combined MIs is considered during the training phase, which drastically accelerates the calibration time. For all subjects both the MC2CMI and the MC2SMI approaches reached a higher accuracy than the classic Pair-Wise, and One-Versus-All methods. Our results show that, when brain activity is properly modulated, multilabel approaches represent a very interesting solution to increase the number of commands, and thus to provide a better interaction.
Author Lindig-León, Cecilia
Rimbert, Sébastien
Bougrain, Laurent
AuthorAffiliation 2 Faculty of Engineering, Computer Science and Psychology, Institute of Neural Information Processing, Ulm University , Ulm , Germany
1 Université de Lorraine, CNRS, LORIA, Inria , Nancy , France
AuthorAffiliation_xml – name: 2 Faculty of Engineering, Computer Science and Psychology, Institute of Neural Information Processing, Ulm University , Ulm , Germany
– name: 1 Université de Lorraine, CNRS, LORIA, Inria , Nancy , France
Author_xml – sequence: 1
  givenname: Cecilia
  surname: Lindig-León
  fullname: Lindig-León, Cecilia
– sequence: 2
  givenname: Sébastien
  surname: Rimbert
  fullname: Rimbert, Sébastien
– sequence: 3
  givenname: Laurent
  surname: Bougrain
  fullname: Bougrain, Laurent
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33328845$$D View this record in MEDLINE/PubMed
https://inria.hal.science/hal-03013795$$DView record in HAL
BookMark eNp9Uk2LFDEUDLLifugP8CIDXvQwY76TRhDWQd2BWbwoeAvp9OvZDN3JmnQv-O9NT6_L7hy8JMVLVb3kpc7RSYgBEHpN8IoxXX1ogw95RTHFKyEqLfQzdEakpEsu2K-TR_gUnee8x1hSzekLdMoYo1pzcYY-Xo_d4F1nc16sp9W33tnBx7D4bDM0iwLWsa99KPg6DjEtNr3dQfKQX6Lnre0yvLrfL9DPr19-rK-W2-_fNuvL7dIJqoYlr4Eq4ExxhiUWmrcCEwagCaasFVbryooGMK0rV6DUlWTCaccbrLira3aBNrNvE-3e3Cbf2_THROvNoRDTztg0PQKMLbaVBaVrKbjSqlat4ES2DGtKOeji9Wn2uh3rHhoHYUi2e2L69CT4G7OLd0YpgpUkxeD9bHBzJLu63Jqphll5narE3cR9d98sxd8j5MH0PjvoOhsgjtlQrrCuqorIQn17RN3HMYUy1sKSlCpVxlRYbx7f_qH_v_8sBDITXIo5J2gfKASbKTPmkBkzZcbMmSkadaRxfjhEoAzAd_9R_gWjsMUH
CitedBy_id crossref_primary_10_3389_fnhum_2022_900834
crossref_primary_10_3389_fnhum_2021_658444
crossref_primary_10_1109_TBME_2021_3064794
crossref_primary_10_1038_s41597_023_02445_z
crossref_primary_10_1007_s00521_022_07787_0
crossref_primary_10_1016_j_chb_2023_107789
Cites_doi 10.1007/BF01129656
10.1109/5.939829
10.1088/1741-2560/4/2/R01
10.1109/TNSRE.2010.2077654
10.1109/86.895947
10.1201/9781351231954-32
10.1016/j.clinph.2008.11.015
10.1016/j.jneumeth.2015.01.010
10.3389/fnhum.2018.00059
10.1126/science.aaa5417
10.1073/pnas.0403504101
10.1016/j.neuroimage.2007.01.051
10.1088/1741-2560/13/3/036024
10.1002/hbm.20658
10.1016/S0042-6989(00)00235-2
10.1186/1471-2202-10-S1-P84
10.1109/86.895946
10.1007/s11948-018-0061-1
10.1016/j.neuron.2014.11.010
10.1371/journal.pone.0047207
10.1016/S0166-2236(96)10065-5
10.1016/j.neubiorev.2013.03.017
10.1007/s10484-011-9145-2
10.1016/bs.pbr.2016.04.017
10.1109/TBME.2008.923152
10.1007/s10548-009-0121-6
10.1016/0013-4694(79)90063-4
10.3389/fpsyg.2019.02341
10.1016/0028-3932(95)00073-C
10.1126/science.83.2150.259
10.1038/srep38565
10.1007/s10827-018-0701-0
10.1109/TNSRE.2006.875642
10.1016/S0079-6123(06)59018-1
10.1093/acprof:oso/9780195388855.001.0001
10.1142/S233954781450023X
10.1016/S1388-2457(99)00141-8
10.1016/0304-3940(93)90886-P
10.1016/S0304-3940(97)00889-6
10.1162/pres.19.1.35
10.1109/MSP.2008.4408441
10.1088/1741-2560/12/1/016011
10.1023/A:1010920819831
10.1088/1741-2560/10/4/046003
10.1016/S0167-8760(01)00178-7
10.1111/j.0013-9580.2003.12001.x
10.1186/1743-0003-10-106
10.1109/NER.2015.7146708
10.1109/SMC.2015.543
10.1007/978-1-4471-6584-2_7
ContentType Journal Article
Copyright Copyright © 2020 Lindig-León, Rimbert and Bougrain.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright © 2020 Lindig-León, Rimbert and Bougrain. 2020 Lindig-León, Rimbert and Bougrain
Copyright_xml – notice: Copyright © 2020 Lindig-León, Rimbert and Bougrain.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Copyright © 2020 Lindig-León, Rimbert and Bougrain. 2020 Lindig-León, Rimbert and Bougrain
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
DOA
DOI 10.3389/fnins.2020.559858
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central - New (Subscription)
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Statistics
Computer Science
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_aee89ae78b654787b7f5416f308224e8
PMC7710761
oai_HAL_hal_03013795v1
33328845
10_3389_fnins_2020_559858
Genre Journal Article
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PUEGO
RNS
RPM
W2D
ACXDI
C1A
IAO
IEA
IHR
ISR
M~E
NPM
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c527t-4be27e43743060584f5013ee81023f5a889a5de02b9c89a689635c8c4d074cbb3
IEDL.DBID M48
ISSN 1662-453X
1662-4548
IngestDate Wed Aug 27 01:32:05 EDT 2025
Tue Sep 30 16:46:56 EDT 2025
Fri Sep 12 12:49:34 EDT 2025
Fri Sep 05 07:27:40 EDT 2025
Fri Jul 25 11:48:39 EDT 2025
Thu Jan 02 22:58:53 EST 2025
Wed Oct 01 02:21:26 EDT 2025
Thu Apr 24 23:02:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords electroencephalography (EEG)
brain-computer interface (BCI)
common spatial pattern (CSP)
combined motor imageries
multilabel classification
common spatialpattern (CSP)
Language English
License Copyright © 2020 Lindig-León, Rimbert and Bougrain.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c527t-4be27e43743060584f5013ee81023f5a889a5de02b9c89a689635c8c4d074cbb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Reviewed by: Jun Jiang, Xi'an University, China; Anubha Gupta, Indraprastha Institute of Information Technology Delhi, India
This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience
Edited by: Xun Chen, University of Science and Technology of China, China
ORCID 0000-0001-6794-0505
0000-0002-3314-7231
OpenAccessLink https://doaj.org/article/aee89ae78b654787b7f5416f308224e8
PMID 33328845
PQID 2462277889
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_aee89ae78b654787b7f5416f308224e8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7710761
hal_primary_oai_HAL_hal_03013795v1
proquest_miscellaneous_2470899916
proquest_journals_2462277889
pubmed_primary_33328845
crossref_primary_10_3389_fnins_2020_559858
crossref_citationtrail_10_3389_fnins_2020_559858
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-19
PublicationDateYYYYMMDD 2020-11-19
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-19
  day: 19
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationTitleAlternate Front Neurosci
PublicationYear 2020
Publisher Frontiers Research Foundation
Frontiers
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers
– name: Frontiers Media S.A
References Pfurtscheller (B42) 1997; 239
Dickhaus (B11) 2009; 10
Pfurtscheller (B39) 2003; 44
Yi (B58) 2013; 10
Lindig-León (B26)
(B57) 2002; 48
Grangeon (B12) 2011; 36
Jeunet (B21) 2018
Di Rienzo (B10) 2012; 7
Lotte (B28) 2012
Koles (B23) 1990; 2
Devlaminck (B9) 2010
Renard (B46) 2010; 19
Lindig-León (B25)
B31
Pfurtscheller (B41) 1999; 110
Guillot (B14) 2009; 30
Blankertz (B4); 55
Jäncke (B18) 2006; 159
Combrisson (B8) 2015; 250
Müller-Putz (B35) 2016
Jasper (B19) 1936; 83
Neuper (B36) 2001; 43
Talukdar (B50) 2019; 46
Suffczynski (B49) 1999
Pfurtscheller (B38) 2001; 41
Müller-Putz (B34) 2008; 10
Lindig-Leon (B27) 2015
Lotte (B29) 2014
Royer (B48) 2013; 18
Wolpaw (B55) 2012
Jeunet (B22) 2016; 13
Hand (B15) 2001; 45
Pfurtscheller (B40) 1979; 46
McAvinue (B32) 2009; 33
Neuper (B37) 2009; 120
Hétu (B17) 2013; 37
Vidaurre (B53) 2010; 23
Ahn (B1) 2018; 12
Cassady (B7) 2014; 2
Pfurtscheller (B44) 1993; 164
Blankertz (B6); 25
Pfurtscheller (B43) 2001; 89
LaFleur (B24) 2013; 10
Lotte (B30) 2007
Rimbert (B47) 2019; 10
Guger (B13) 2000; 8
Bishop (B2) 2006
Wolpaw (B56) 2004; 101
Blankertz (B3) 2007; 37
Hari (B16) 1997; 20
Yin (B59) 2014; 84
Blankertz (B5) 2006; 14
Meng (B33) 2016; 6
Wodlinger (B54) 2014; 12
Jeannerod (B20) 1995; 33
Ramoser (B45) 2001; 8
Thompson (B51) 2019; 25
Tyson (B52) 2015; 348
References_xml – volume: 2
  start-page: 275
  year: 1990
  ident: B23
  article-title: Spatial patterns underlying population differences in the background EEG
  publication-title: Brain Topogr
  doi: 10.1007/BF01129656
– volume: 89
  start-page: 1123
  year: 2001
  ident: B43
  article-title: Motor imagery and direct brain-computer communication
  publication-title: Proc. IEEE
  doi: 10.1109/5.939829
– year: 2007
  ident: B30
  article-title: A review of classification algorithms for EEG-based brain–computer interfaces
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2560/4/2/R01
– volume: 18
  start-page: 581
  year: 2013
  ident: B48
  article-title: (EEG) control of a virtual helicopter in 3-dimesiona space using intelligent control strategies
  publication-title: J. Neuroeng. Rehabil
  doi: 10.1109/TNSRE.2010.2077654
– volume: 8
  start-page: 447
  year: 2000
  ident: B13
  article-title: Real-time EEG analysis with subject-specific spatial patterns for a brain-computer interface (BCI)
  publication-title: IEEE Trans. Rehabil. Eng
  doi: 10.1109/86.895947
– start-page: 613
  volume-title: Brain-computer Interfaces Handbook: Technological and Theoretical Advances
  year: 2018
  ident: B21
  article-title: Mind the Traps! design guidelines for rigorous BCI experiments
  doi: 10.1201/9781351231954-32
– volume: 120
  start-page: 239
  year: 2009
  ident: B37
  article-title: Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface
  publication-title: Clin. Neurophysiol
  doi: 10.1016/j.clinph.2008.11.015
– start-page: 67
  volume-title: Event-Related Desynchronization. Handbook of Electroencephalography and Clinical Neurophysiology
  year: 1999
  ident: B49
  article-title: Event-related dynamics of alpha band rhythms: a neuronal network model of focal ERD/surround ERS
– volume: 250
  start-page: 126
  year: 2015
  ident: B8
  article-title: Exceeding chance level by chance: the caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2015.01.010
– volume: 12
  start-page: 59
  year: 2018
  ident: B1
  article-title: User's self-prediction of performance in motor imagery brain-computer interface
  publication-title: Front. Hum. Neurosci
  doi: 10.3389/fnhum.2018.00059
– ident: B31
– volume: 348
  start-page: 906
  year: 2015
  ident: B52
  article-title: Decoding motor imagery from the posterior parietal cortex of a tetraplegic human
  publication-title: Science
  doi: 10.1126/science.aaa5417
– volume: 101
  start-page: 17849
  year: 2004
  ident: B56
  article-title: Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.0403504101
– volume: 37
  start-page: 539
  year: 2007
  ident: B3
  article-title: The non-invasive berlin brain-computer interface: fast acquisition of effective performance in untrained subjects
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.01.051
– volume: 13
  start-page: 036024
  year: 2016
  ident: B22
  article-title: Why standard brain-computer interface (BCI) training protocols should be changed: an experimental study
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2560/13/3/036024
– volume: 30
  start-page: 2157
  year: 2009
  ident: B14
  article-title: Brain activity during visual versus kinesthetic imagery: an fMRI study
  publication-title: Hum. Brain Mapp
  doi: 10.1002/hbm.20658
– volume: 41
  start-page: 1257
  year: 2001
  ident: B38
  article-title: Functional brain imaging based on ERD/ERS
  publication-title: Vision Res
  doi: 10.1016/S0042-6989(00)00235-2
– volume: 10
  start-page: P84
  year: 2009
  ident: B11
  article-title: Predicting BCI performance to study BCI illiteracy
  publication-title: BMC Neurosci
  doi: 10.1186/1471-2202-10-S1-P84
– volume: 33
  start-page: 99
  year: 2009
  ident: B32
  article-title: Motor imagery: A multidimensional ability
  publication-title: J. Mental Imagery
– volume: 8
  start-page: 441
  year: 2001
  ident: B45
  article-title: Optimal spatial filtering of single trial EEG during imagined hand movement
  publication-title: IEEE Trans. Rehabil. Eng
  doi: 10.1109/86.895946
– volume: 25
  start-page: 1217
  year: 2019
  ident: B51
  article-title: Critiquing the concept of BCI illiteracy
  publication-title: Sci. Eng. Ethics
  doi: 10.1007/s11948-018-0061-1
– volume: 84
  start-page: 1170
  year: 2014
  ident: B59
  article-title: Wireless neurosensor for full-spectrum electrophysiology recordings during free behavior
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.11.010
– volume: 7
  start-page: e47207
  year: 2012
  ident: B10
  article-title: Selective effect of physical fatigue on motor imagery accuracy
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0047207
– volume: 20
  start-page: 44
  year: 1997
  ident: B16
  article-title: Human cortical oscillations: a neuromagnetic view through the skull
  publication-title: Trends Neurosci
  doi: 10.1016/S0166-2236(96)10065-5
– volume: 37
  start-page: 930
  year: 2013
  ident: B17
  article-title: The neural network of motor imagery: an ALE meta-analysis
  publication-title: Neurosci. Biobehav. Rev
  doi: 10.1016/j.neubiorev.2013.03.017
– volume-title: Pattern Recognition and Machine Learning (Information Science and Statistics)
  year: 2006
  ident: B2
– volume: 36
  start-page: 47
  year: 2011
  ident: B12
  article-title: Postural control during visual and kinesthetic motor imagery
  publication-title: Appl. Psychophysiol. Biofeedb
  doi: 10.1007/s10484-011-9145-2
– start-page: 39
  volume-title: PBR: Brain-Computer Interfaces: Lab Experiments to Real-World Applications
  year: 2016
  ident: B35
  article-title: From classic motor imagery to complex movement intention decoding: the noninvasive Graz-BCI approach
  doi: 10.1016/bs.pbr.2016.04.017
– volume: 55
  start-page: 2452
  ident: B4
  article-title: The berlin brain-computer interface: accurate performance from first-session in bci-naive subjects
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2008.923152
– volume: 23
  start-page: 194
  year: 2010
  ident: B53
  article-title: Towards a cure for BCI illiteracy
  publication-title: Brain Topogr
  doi: 10.1007/s10548-009-0121-6
– volume: 46
  start-page: 138
  year: 1979
  ident: B40
  article-title: Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement
  publication-title: Electroencephalogr. Clin. Neurophysiol
  doi: 10.1016/0013-4694(79)90063-4
– volume: 10
  start-page: 2341
  year: 2019
  ident: B47
  article-title: Hypnotic state modulates sensorimotor beta rhythms during real movement and motor imagery
  publication-title: Front. Psychol
  doi: 10.3389/fpsyg.2019.02341
– volume: 33
  start-page: 1419
  year: 1995
  ident: B20
  article-title: Mental imagery in the motor context
  publication-title: Neuropsychologia
  doi: 10.1016/0028-3932(95)00073-C
– volume: 48
  start-page: 206
  year: 2002
  ident: B57
  article-title: World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects
  publication-title: J. Postgrad. Med
– volume-title: Berlin Brain-Computer Interface Workshop
  year: 2012
  ident: B28
  article-title: On the need for alternative feedback training approaches for BCI
– volume: 83
  start-page: 259
  year: 1936
  ident: B19
  article-title: Cortical excitatory state and variability in human brain rhythms
  publication-title: Science
  doi: 10.1126/science.83.2150.259
– volume: 6
  start-page: 38565
  year: 2016
  ident: B33
  article-title: Noninvasive electroencephalogram based control of a robotic arm for reach and grasp tasks
  publication-title: Sci. Rep
  doi: 10.1038/srep38565
– volume: 46
  start-page: 55
  year: 2019
  ident: B50
  article-title: Motor imagery and mental fatigue: inter-relationship and EEG based estimation
  publication-title: J. Comput. Neurosci
  doi: 10.1007/s10827-018-0701-0
– volume: 14
  start-page: 153
  year: 2006
  ident: B5
  article-title: The BCI competition III: validating alternative approaches to actual BCI problems
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng
  doi: 10.1109/TNSRE.2006.875642
– volume: 159
  start-page: 261
  year: 2006
  ident: B18
  article-title: Converging evidence of ERD/ERS and bold responses in motor control research
  publication-title: Prog. Brain Res
  doi: 10.1016/S0079-6123(06)59018-1
– year: 2010
  ident: B9
  article-title: From circular ordinal regression to multilabel classification
  publication-title: Proceedings of the 2010 Workshop on Preference Learning, European Conference on Machine Learning
– volume-title: Brain-Computer Interfaces: Principles and Practice
  year: 2012
  ident: B55
  doi: 10.1093/acprof:oso/9780195388855.001.0001
– volume: 2
  start-page: 254
  year: 2014
  ident: B7
  article-title: The impact of mind-body awareness training on the early learning of a brain-computer interface
  publication-title: Technology
  doi: 10.1142/S233954781450023X
– volume: 10
  start-page: 52
  year: 2008
  ident: B34
  article-title: Better than random? A closer look on BCI results
  publication-title: Int. J. Bioelektromagn
– volume: 110
  start-page: 1842
  year: 1999
  ident: B41
  article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles
  publication-title: Clin. Neurophysiol
  doi: 10.1016/S1388-2457(99)00141-8
– volume: 164
  start-page: 179
  year: 1993
  ident: B44
  article-title: 40-Hz oscillations during motor behavior in man
  publication-title: Neurosci. Lett
  doi: 10.1016/0304-3940(93)90886-P
– volume: 239
  start-page: 65
  year: 1997
  ident: B42
  article-title: Motor imagery activates primary sensorimotor area in humans
  publication-title: Neurosci. Lett
  doi: 10.1016/S0304-3940(97)00889-6
– volume: 19
  start-page: 35
  year: 2010
  ident: B46
  article-title: OpenViBE: an open-source software platform to design, test and use brain-computer interfaces in real and virtual environments
  publication-title: Presence Teleoper. Virtual Environ
  doi: 10.1162/pres.19.1.35
– volume: 25
  start-page: 41
  ident: B6
  article-title: Optimizing spatial filters for robust eeg single-trial analysis
  publication-title: IEEE Signal Process. Mag
  doi: 10.1109/MSP.2008.4408441
– volume: 12
  start-page: 016011
  year: 2014
  ident: B54
  article-title: Ten-dimensional anthropomorphic arm control in a human brain–machine interface: difficulties, solutions, and limitations
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2560/12/1/016011
– volume: 45
  start-page: 171
  year: 2001
  ident: B15
  article-title: A simple generalisation of the area under the roc curve for multiple class classification problems
  publication-title: Mach. Learn
  doi: 10.1023/A:1010920819831
– start-page: 3953
  volume-title: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
  ident: B25
  article-title: Comparison of sensorimotor rhythms in EEG signals during simple and combined motor imageries over the contra and ipsilateral hemispheres
– volume: 10
  start-page: 046003
  year: 2013
  ident: B24
  article-title: Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2560/10/4/046003
– volume: 43
  start-page: 41
  year: 2001
  ident: B36
  article-title: Event-related dynamics of cortical thythms: frequency-specific features and functional correlates
  publication-title: Int. J. Psychophysiol
  doi: 10.1016/S0167-8760(01)00178-7
– volume: 44
  start-page: 2
  year: 2003
  ident: B39
  article-title: Induced oscillations in the alpha band: functional meaning
  publication-title: Epilepsia
  doi: 10.1111/j.0013-9580.2003.12001.x
– volume: 10
  start-page: 106
  year: 2013
  ident: B58
  article-title: EEG feature comparison and classification of simple and compound limb motor imagery
  publication-title: J. Neuroeng. Rehabil
  doi: 10.1186/1743-0003-10-106
– volume-title: IEEE EMBS Neural Engineering Conference
  year: 2015
  ident: B27
  article-title: Alpha rebound improves on-line detection of the end of motor imageries
  doi: 10.1109/NER.2015.7146708
– start-page: 3128
  ident: B26
  article-title: A multi-label classification method for detection of combined motor imageries
  publication-title: 2015 IEEE International Conference on Systems, Man, and Cybernetics
  doi: 10.1109/SMC.2015.543
– start-page: 5
  volume-title: Guide to Brain-Computer Music Interfacing
  year: 2014
  ident: B29
  article-title: A tutorial on EEG signal processing techniques for mental state recognition in brain-computer interfaces
  doi: 10.1007/978-1-4471-6584-2_7
SSID ssj0062842
Score 2.2846117
Snippet Motor imagery (MI) allows the design of self-paced brain-computer interfaces (BCIs), which can potentially afford an intuitive and continuous interaction....
Motor Imagery (MI) allows the design of self-paced Brain-Computer Interfaces (BCIs), which can potentially afford an intuitive and continuous interaction....
Motor imagery (MI) allows the design of self-paced brain–computer interfaces (BCIs), which can potentially afford an intuitive and continuous interaction....
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 559858
SubjectTerms Algorithms
Artificial Intelligence
brain-computer interface (BCI)
Classification
Cognitive science
combined motor imageries
common spatial pattern (CSP)
Computer Science
EEG
Electroencephalography
electroencephalography (EEG)
Human-Computer Interaction
Interfaces
Life Sciences
Machine Learning
Mental task performance
multilabel classification
Neuroimaging
Neurons and Cognition
Neuroscience
Statistics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5VnLhUbXk0haKAUA9IKRs_Ykc9LQi0oNJTkbhZsT0RSCWL0FKJf8-Mk13tUqm99GYlTmJ9Hntm4plvAA695tx2rAobpCyUD1jUPmJBygGViLGJKX3s6kc1uVaXN_pmqdQXx4T19MA9cMcNoq0bNNZzmVxrvGk1GREt06wIhSnNl5pzZ6rfgyvadEV_hkkuWH3cdncdc3OL0VcmJOf67ktaKJH1k2655VDIP-3M1-GSS_rn_B28HQzHfNwP-D28we4DbIw7cprvn_MveQrlTP_IN-BbSqsNbBjnqeolxwOlKchPSGvFnBq0EZBTTO2rKbnd-cU9k1mQ27wJ1-dnP08nxVAloQhamBnhi8KgkmQKjPiMU7Waf22iZVKGVjeW4NMRR8LXgZqVpSWngw0qkvUQvJdbsNZNO_wIeamjaFT0pWyi4gr0pm4DUr9YKcTaZjCao-bCQCHOlSx-OXIlGGiXgHYMtOuBzuBo8chDz5_xt84nPBWLjkx9nS6QQLhBINy_BCKDA5rIlXdMxt8dX2P3T5pa_y4z2J3PsxsWLY1EVUIYQ4BlsL-4TcuNz1CaDqdP3MfwQSkZ1Rls92Kx-JSUUlirdAZmRWBWxrJ6p7u7TZTehgw9U5Wf_gcAO7DOmHLCZFnvwtrs8Qk_k-U083tpkbwAL_YVHQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB_q9cUXqa0faWuJIj4IsZf9yGYRkTtpOcUeIhb6tmQ_Ygs2actV8L93ZvNBT6FvS7JJNjM7uzM7M78BeG0l5baHIisd55mwLmTa-pDh5hAE877yMX3sZFksTsWXM3m2AcshF4bCKoc1MS7UvnV0Rn7IRMGYQoNNf7y6zqhqFHlXhxIaVV9awX-IEGMPYJNRVeUJbM6Plt--D2tzgYtx9H8WlCuEynrn50QzTR_WzUVD-N1s-o5Ay6kG_J2dKgL64_5zTuGS_-ui_4ZU3tmjjrfgUa9cprNuNjyGjdBsw86sQcP68k_6Jo3hnvEcfQfex9RbR8pzGitjUsxQZFM6x53Np9jAxQINZ2yftGiap58vCfACTesncHp89OPTIusrKWROMrVCHgSmguCoLkzJDypqScefoSTghlpWSNVK-jBlVjtsFiWKpXSlEx41DGctfwqTpm3Cc0hz6VklvM155QVVqVe6dgH7-UKEoMsEpgPVjOthxqnaxS-D5gYR2kRCGyK06QidwNvxkasOY-O-znNixdiR4LHjhfbmp-mlzVT4a7oKqrRUW7lUVtUSNc-asHmYCPiSV8jItXcsZl8NXSMTkSstf-cJ7A98Nr1g40jGaZjAy_E2iiT5WaomtLfUR5EzFRXvBJ5102L8FOeclaWQCai1CbM2lvU7zcV5hP1WqAyqIt-9f1h78JCoRemSud6HyermNrxAvWllD3ph-AtNchWd
  priority: 102
  providerName: ProQuest
Title Multiclass Classification Based on Combined Motor Imageries
URI https://www.ncbi.nlm.nih.gov/pubmed/33328845
https://www.proquest.com/docview/2462277889
https://www.proquest.com/docview/2470899916
https://inria.hal.science/hal-03013795
https://pubmed.ncbi.nlm.nih.gov/PMC7710761
https://doaj.org/article/aee89ae78b654787b7f5416f308224e8
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: GX1
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central - New (Subscription)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: BENPR
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: M48
  dateStart: 20071001
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N7YUXxBgfgVEFhPaAlNE4duwIIdSijYLohBCV-mbFH9kmbelWuon999w5aURgQrxUVuI67X3k7ny-3wG8MoJq232eKJtlCTfWJ4VxPkHj4DlzrnShfGx6lE9m_PNczDdgnT1vCfjj1tCO-knNlmf7Py9v3qPCv6OIE-3tm6o-rQl5mw33CW5cqL2Ly4T6SlH-tW2ycQe20FYxkvsp7_IMOb6cQz40p9ohdN6bvOftq_YsVwD4R3t0Qscn__ZN_zxi-ZvNOrwP91pnMx410rENG75-ADujGgPt85t4Lw7HP8O--g68DaW4lpzpOHTKpDNEgW3xGC2di3GALw8MpHE8XWCoHn86JwAMDLUfwuzw4PuHSdJ2VkisYHKFPPFMep6h-zCkvCivBG2HekVADpUolSpK4fyQmcLiMFeopsIqyx16HNaY7BFs1ovaP4E4FY6V3Jk0Kx2nrvWyqKzHeS7n3hcqguGaatq2sOPU_eJMY_hBhNaB0JoIrRtCR_C6-8pFg7nxr8ljYkU3keCyw4XF8li32qdL_GtF6aUy1GtZSSMrgZ5oRVg9jHtc5CUysrfGZPRF0zUKGTNZiOs0gt01n_VaTjXjOWNSIsEieNHdRhWlvEtZ-8UVzZGUXEVHPILHjVh0j8qyjCnFRQSyJzC939K_U5-eBBhwic6hzNOn__HcZ3CXSEY1lGmxC5ur5ZV_js7Uygxga3xw9PXbIGxG4OfHeToIOvILgDggAg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9gAXBJSHSwGDgAOS23gfXluoQgm0SmgSIdRKvRnvw7RSa5eQgvrn-G3MbGyrAam33lb2Zr2ZnZ3Hzs43AK-1pNx2l0Sp4TwS2rgo09ZFqBycYNYW1qePTabJ8FB8PpJHK_CnzYWha5WtTPSC2taGzsi3mUgYU-iwZR_Of0RUNYqiq20JjaIprWB3PMRYk9ix7y5_owv3c2f0Cdf7DWN7uwcfh1FTZSAykqk5zs8x5QRHVdqjGKEoJR0NupRADUpZ4BcLaV2P6cxgM0mRZaVJjbCofY3WHMe9BWtodnDcVWuD3emXr60uSFD4-3hrQrlJ6Bws4qroFmbbZXVSEV44620RSDrVnL-iGX0BAdR3x3Q983_b998rnFd04t49uNsYs2F_wX33YcVVD2C9X6Ejf3YZvg399VJ_br8O732qryFjPfSVOOmOkmeLcICa1IbYQOGEjjq2J_W8noWjMwLYQFf-IRzeCE0fwWpVV-4JhLG0rBBWx7ywqHBZprLSOOxnE-FclgbQa6mWmwbWnKprnObo3hChc0_onAidLwgdwLvuJ-cLTI_rOg9oKbqOBMftH9Sz73mzu_MC_1pWOJVqquWcKq1KiZZuSVhATDgc5BUu5NIYw_44p2fkknKVyV9xAJvtOueNIMGZdGwfwMvuNYoAiusUlasvqI-i4C0a-gE8XrBF9ynOOUtTIQNQSwyzNJflN9XJsYcZV2h8qiTeuH5aL-D28GAyzsej6f5TuEOUo1TNONuE1fnswj1Dm22unzcbI4RvN70X_wLPclDk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8DQ6CfGCgPERNiAg4AEprHHsOBGaUMtWtWyrJsSkvZn4I2zSlozSgfYX-VXcOUm1grS3vVmJ49jnO9-d7wvgtRYU2-7SKDNJEnFtXJRr6yJkDo4zawvrw8f2p-n4kH8-Ekcr8KeLhSG3yu5M9Ae1rQ3dkW8ynjImUWHLN8vWLeJge_Tx_EdEFaTI0tqV0yjaMgt2y6cba4M8dt3lb1Tnfm5NtnHv3zA22vn6aRy1FQciI5ic41wdk44nyFb7ZC_kpaBrQpdRgoNSFPj3QljXZzo32EwzRF9hMsMtcmKjdYLj3oJVSfGiPVgd7kwPvnR8IUVG4G2vKcUpoaLQ2FhRRcQVVScV5Q5n_feUMJ3qz1_hkr6YAPK-Y3LV_F8O_ted8wp_HN2Du61gGw4aTLwPK656AGuDCpX6s8vwbehdTf0d_hp88GG_hgT30FflJH8ljyLhELmqDbGBBxUq7djer-f1LJycUbINVOsfwuGNwPQR9Kq6ck8gjIVlBbc6TgqLzJflMi-Nw3425c7lWQD9DmrKtCnOqdLGqUJVhwCtPKAVAVo1gA7g3eKT8ya_x3Wdh7QVi46Umts_qGffVUvpqsCl5YWTmaa6zpnUshQo9ZaUF4hxh4O8wo1cGmM82FP0jNTTRObiVxzARrfPqj1UcCYLEgjg5eI1Hgdk4ykqV19QH0mGXBT6A3jcoMXiV0mSsCzjIgC5hDBLc1l-U50c-5TjEgVRmcZPr5_WC7iNNKn2JtPddbhDgKOozTjfgN58duGeofg2189bugjh202T4l_AT1Ue
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiclass+Classification+Based+on+Combined+Motor+Imageries&rft.jtitle=Frontiers+in+neuroscience&rft.au=Lindig-Le%C3%B3n%2C+Cecilia&rft.au=Rimbert%2C+S%C3%A9bastien&rft.au=Bougrain%2C+Laurent&rft.date=2020-11-19&rft.issn=1662-4548&rft.volume=14&rft.spage=559858&rft_id=info:doi/10.3389%2Ffnins.2020.559858&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon