The thymus in myasthenia gravis: Site of "innate autoimmunity"?

Myasthenia gravis (MG) is an autoimmune disorder caused, in most cases, by autoantibodies against components of the neuromuscular junction, frequently the acetylcholine receptor (AChR), and less often the muscle‐specific kinase receptor. The thymus plays a major role in the pathogenesis of MG with a...

Full description

Saved in:
Bibliographic Details
Published inMuscle & nerve Vol. 44; no. 4; pp. 467 - 484
Main Authors Cavalcante, Paola, Le Panse, Rozen, Berrih-aknin, Sonia, Maggi, Lorenzo, Antozzi, Carlo, Baggi, Fulvio, Bernasconi, Pia, Mantegazza, Renato
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.10.2011
Wiley
Subjects
Online AccessGet full text
ISSN0148-639X
1097-4598
1097-4598
DOI10.1002/mus.22103

Cover

Abstract Myasthenia gravis (MG) is an autoimmune disorder caused, in most cases, by autoantibodies against components of the neuromuscular junction, frequently the acetylcholine receptor (AChR), and less often the muscle‐specific kinase receptor. The thymus plays a major role in the pathogenesis of MG with anti‐AChR antibodies: it shows marked pathologic alterations (hyperplastic or tumoral) in most AChR‐positive patients and contains the elements required to initiate and sustain an autoimmune reaction (AChR autoantigen, AChR‐specific T cells, and autoantibody‐secreting plasma cells). In this study we review early and more recent findings implicating the thymus as site of AChR autosensitization in MG and briefly discuss the therapeutic role of thymectomy. We also summarize data showing that the MG thymus is in a state of chronic inflammation, and we review emerging evidence of a viral contribution to the onset and maintenance of the thymic autoimmune response. Muscle Nerve, 2011
AbstractList Myasthenia gravis (MG) is an autoimmune disorder caused, in most cases, by autoantibodies against components of the neuromuscular junction, frequently the acetylcholine receptor (AChR), and less often the muscle-specific kinase receptor. The thymus plays a major role in the pathogenesis of MG with anti-AChR antibodies: it shows marked pathologic alterations (hyperplastic or tumoral) in most AChR-positive patients and contains the elements required to initiate and sustain an autoimmune reaction (AChR autoantigen, AChR-specific T cells, and autoantibody-secreting plasma cells). In this study we review early and more recent findings implicating the thymus as site of AChR autosensitization in MG and briefly discuss the therapeutic role of thymectomy. We also summarize data showing that the MG thymus is in a state of chronic inflammation, and we review emerging evidence of a viral contribution to the onset and maintenance of the thymic autoimmune response.
Myasthenia gravis (MG) is an autoimmune disorder caused, in most cases, by autoantibodies against components of the neuromuscular junction, frequently the acetylcholine receptor (AChR), and less often the muscle‐specific kinase receptor. The thymus plays a major role in the pathogenesis of MG with anti‐AChR antibodies: it shows marked pathologic alterations (hyperplastic or tumoral) in most AChR‐positive patients and contains the elements required to initiate and sustain an autoimmune reaction (AChR autoantigen, AChR‐specific T cells, and autoantibody‐secreting plasma cells). In this study we review early and more recent findings implicating the thymus as site of AChR autosensitization in MG and briefly discuss the therapeutic role of thymectomy. We also summarize data showing that the MG thymus is in a state of chronic inflammation, and we review emerging evidence of a viral contribution to the onset and maintenance of the thymic autoimmune response. Muscle Nerve, 2011
Myasthenia gravis (MG) is an autoimmune disorder caused, in most cases, by autoantibodies against components of the neuromuscular junction, frequently the acetylcholine receptor (AChR), and less often the muscle-specific kinase receptor. The thymus plays a major role in the pathogenesis of MG with anti-AChR antibodies: it shows marked pathologic alterations (hyperplastic or tumoral) in most AChR-positive patients and contains the elements required to initiate and sustain an autoimmune reaction (AChR autoantigen, AChR-specific T cells, and autoantibody-secreting plasma cells). In this study we review early and more recent findings implicating the thymus as site of AChR autosensitization in MG and briefly discuss the therapeutic role of thymectomy. We also summarize data showing that the MG thymus is in a state of chronic inflammation, and we review emerging evidence of a viral contribution to the onset and maintenance of the thymic autoimmune response.Myasthenia gravis (MG) is an autoimmune disorder caused, in most cases, by autoantibodies against components of the neuromuscular junction, frequently the acetylcholine receptor (AChR), and less often the muscle-specific kinase receptor. The thymus plays a major role in the pathogenesis of MG with anti-AChR antibodies: it shows marked pathologic alterations (hyperplastic or tumoral) in most AChR-positive patients and contains the elements required to initiate and sustain an autoimmune reaction (AChR autoantigen, AChR-specific T cells, and autoantibody-secreting plasma cells). In this study we review early and more recent findings implicating the thymus as site of AChR autosensitization in MG and briefly discuss the therapeutic role of thymectomy. We also summarize data showing that the MG thymus is in a state of chronic inflammation, and we review emerging evidence of a viral contribution to the onset and maintenance of the thymic autoimmune response.
Author Cavalcante, Paola
Le Panse, Rozen
Mantegazza, Renato
Baggi, Fulvio
Berrih-aknin, Sonia
Bernasconi, Pia
Antozzi, Carlo
Maggi, Lorenzo
Author_xml – sequence: 1
  givenname: Paola
  surname: Cavalcante
  fullname: Cavalcante, Paola
  organization: Department of Neurology IV, Neuromuscular Diseases and Neuroimmunology, Fondazione Istituto Neurologico "Carlo Besta," Via Celoria 11, 20133 Milan, Italy
– sequence: 2
  givenname: Rozen
  surname: Le Panse
  fullname: Le Panse, Rozen
  organization: Unité mixte de recherche, CNRS UMR7215/INSERM U974/UPMC/AIM, Thérapie des maladies du muscle strié, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France
– sequence: 3
  givenname: Sonia
  surname: Berrih-aknin
  fullname: Berrih-aknin, Sonia
  organization: Unité mixte de recherche, CNRS UMR7215/INSERM U974/UPMC/AIM, Thérapie des maladies du muscle strié, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France
– sequence: 4
  givenname: Lorenzo
  surname: Maggi
  fullname: Maggi, Lorenzo
  organization: Department of Neurology IV, Neuromuscular Diseases and Neuroimmunology, Fondazione Istituto Neurologico "Carlo Besta," Via Celoria 11, 20133 Milan, Italy
– sequence: 5
  givenname: Carlo
  surname: Antozzi
  fullname: Antozzi, Carlo
  organization: Department of Neurology IV, Neuromuscular Diseases and Neuroimmunology, Fondazione Istituto Neurologico "Carlo Besta," Via Celoria 11, 20133 Milan, Italy
– sequence: 6
  givenname: Fulvio
  surname: Baggi
  fullname: Baggi, Fulvio
  organization: Department of Neurology IV, Neuromuscular Diseases and Neuroimmunology, Fondazione Istituto Neurologico "Carlo Besta," Via Celoria 11, 20133 Milan, Italy
– sequence: 7
  givenname: Pia
  surname: Bernasconi
  fullname: Bernasconi, Pia
  organization: Department of Neurology IV, Neuromuscular Diseases and Neuroimmunology, Fondazione Istituto Neurologico "Carlo Besta," Via Celoria 11, 20133 Milan, Italy
– sequence: 8
  givenname: Renato
  surname: Mantegazza
  fullname: Mantegazza, Renato
  email: rmantegazza@istituto-besta.it
  organization: Department of Neurology IV, Neuromuscular Diseases and Neuroimmunology, Fondazione Istituto Neurologico "Carlo Besta," Via Celoria 11, 20133 Milan, Italy
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24570829$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21922466$$D View this record in MEDLINE/PubMed
BookMark eNp1kF1LHDEYRkNR6rr1wj8ggyDixWgyyeTDGymia4sfiCt6F96ZzbjRmYxNMm3n33fq7rZQ7FUSOOdAnk205lpnENom-JBgnB01XTjMMoLpBzQiWImU5UquoREmTKacqscNtBnCM8aYSC4-oo2MqCxjnI_QyXRukjjvh0RiXdL0EOLcOAvJk4fvNhwndzaapK2SXescDFfoYmubpnM29rsnn9B6BXUwW8tzjKbnZ9PTi_TyZvLl9PNlWuaZoGmpJKfEKD6rCsEYp6IAKApJKZemKhmvFKOFwlxhJcnwglwQRmdUVVJQoGO0v8i--vZbZ0LUjQ2lqWtwpu2CloMqOM3UQO4sya5ozEy_etuA7_XqywOwtwQglFBXHlxpw1-O5QLLt9DRgit9G4I3lS5thGhbFz3YWhOsf4-vh-X02_iDcfCPsYq-xy7rP2xt-v-D-ur-bmWkC8OGaH7-McC_aC6oyPXD9UTTa_71it0-6lv6C43koEA
CODEN MUNEDE
CitedBy_id crossref_primary_10_15406_joentr_2016_05_00126
crossref_primary_10_1007_s12035_014_8985_1
crossref_primary_10_1007_s12035_016_0024_y
crossref_primary_10_1016_j_jaut_2022_102895
crossref_primary_10_1111_hepr_12045
crossref_primary_10_1080_01616412_2017_1407021
crossref_primary_10_1016_j_expneurol_2014_01_024
crossref_primary_10_1002_mus_23964
crossref_primary_10_1016_j_heliyon_2024_e34364
crossref_primary_10_1016_j_jneuroim_2018_03_008
crossref_primary_10_1111_cen3_12238
crossref_primary_10_3109_00207454_2015_1038712
crossref_primary_10_1007_s12253_017_0213_7
crossref_primary_10_1016_j_autrev_2022_103104
crossref_primary_10_1016_j_pediatrneurol_2012_07_008
crossref_primary_10_1016_j_jns_2012_12_025
crossref_primary_10_1177_17562864241226745
crossref_primary_10_1016_j_jaut_2013_12_001
crossref_primary_10_1080_15548627_2017_1375633
crossref_primary_10_1007_s40263_023_01059_8
crossref_primary_10_1016_j_jaut_2025_103395
crossref_primary_10_1111_ane_13332
crossref_primary_10_3390_ijms22158058
crossref_primary_10_4103_0028_3886_314565
crossref_primary_10_1016_j_jns_2013_06_018
crossref_primary_10_3389_fneur_2021_596859
crossref_primary_10_1016_j_imbio_2016_06_012
crossref_primary_10_1111_nyas_13534
crossref_primary_10_1021_acschemneuro_9b00678
crossref_primary_10_1016_j_jaut_2013_12_013
crossref_primary_10_1016_j_ncl_2020_03_005
crossref_primary_10_4187_respcare_03210
crossref_primary_10_1002_mus_24635
crossref_primary_10_3389_fendo_2017_00169
crossref_primary_10_3390_biomedicines11030732
crossref_primary_10_1080_14712598_2023_2185131
crossref_primary_10_1016_j_jaut_2018_11_005
crossref_primary_10_1016_j_jneuroim_2018_03_021
crossref_primary_10_1055_s_0041_1733794
crossref_primary_10_1111_sji_12676
crossref_primary_10_1016_j_jneuroim_2013_09_006
crossref_primary_10_1007_s10072_017_3009_3
crossref_primary_10_1016_j_autrev_2013_03_010
crossref_primary_10_1016_j_jneuroim_2015_11_024
crossref_primary_10_1002_mus_26919
crossref_primary_10_1093_infdis_jiae600
crossref_primary_10_1186_s12974_017_0892_8
crossref_primary_10_1371_journal_pone_0094118
crossref_primary_10_1111_cen3_12585
crossref_primary_10_1016_j_imbio_2015_12_007
crossref_primary_10_22599_bioj_315
crossref_primary_10_1007_s13311_022_01181_3
crossref_primary_10_1002_mus_27177
Cites_doi 10.1016/S0165-5728(02)00038-3
10.1212/WNL.28.3.273
10.1007/BF00315656
10.1002/(SICI)1521-4141(199911)29:11<3538::AID-IMMU3538>3.0.CO;2-Y
10.1002/mus.21319
10.1007/BF00315690
10.1038/nri2527
10.4049/jimmunol.140.8.2589
10.1212/WNL.34.6.802
10.1016/j.jtcvs.2006.10.026
10.1093/brain/awn092
10.1093/brain/awp296
10.1016/S0140-6736(94)90858-3
10.1007/BF02788778
10.1196/annals.1254.054
10.1371/journal.pmed.0060001
10.1038/35095584
10.1172/JCI113401
10.1007/s00595-009-4134-2
10.1196/annals.1405.004
10.1016/S0140-6736(77)92118-3
10.1212/WNL.33.5.604
10.1002/ana.410220205
10.1182/blood.V89.9.3287
10.1002/cncr.10665
10.3109/08916930903518107
10.1016/S0003-4975(96)00376-1
10.1001/archneur.65.10.1358
10.1212/WNL.43.8.1581
10.1080/08916930802024772
10.4049/jimmunol.177.11.7868
10.1016/S0002-9440(10)62960-4
10.1212/01.WNL.0000065882.63904.53
10.1016/j.jaut.2005.09.010
10.1172/JCI112069
10.1038/nri1786
10.1016/j.jneuroim.2006.05.023
10.1212/WNL.41.8.1270
10.1212/WNL.35.9.1381
10.1016/j.athoracsur.2010.01.038
10.1006/clim.1999.4710
10.1016/S0140-6736(78)90073-9
10.4049/jimmunol.174.10.5941
10.1016/j.jneuroim.2005.03.011
10.4049/jimmunol.137.4.1221
10.1159/000157142
10.1016/j.surg.2008.11.009
10.1016/j.jneuroim.2008.06.028
10.1056/NEJM198501243120407
10.1212/WNL.36.5.618
10.1016/j.jneuroim.2008.06.016
10.1172/JCI3234
10.1016/j.jneuroim.2004.09.017
10.1007/BF02899226
10.1212/01.WNL.0000032502.89361.0C
10.1002/ana.410280303
10.1111/j.1749-6632.2009.05123.x
10.1038/nri916
10.1016/0092-8674(91)90007-L
10.1002/mus.20746
10.1002/eji.200939914
10.1212/WNL.26.11.1054
10.1016/S0165-5728(96)00144-0
10.1212/WNL.34.1.66
10.1212/WNL.44.9.1732
10.1016/j.jneuroim.2003.11.013
10.1212/WNL.0b013e3181d7d884
10.1002/ana.21628
10.1007/BF02899268
10.1186/1746-1596-2-13
10.1038/ni.1863
10.1084/jem.20071030
10.1002/ana.22031
10.1016/S0002-9440(10)65225-X
10.1073/pnas.91.11.4668
10.1084/jem.147.4.973
10.1212/01.WNL.0000150587.71497.B6
10.1002/ana.21902
10.1016/0165-5728(93)90021-P
10.1056/NEJM197412122912403
10.1016/j.jneuroim.2008.04.019
10.1016/0165-5728(86)90082-2
10.1002/ana.20386
10.1111/j.1600-065X.1998.tb01217.x
10.1196/annals.1254.027
10.1093/brain/awq223
10.4049/jimmunol.157.8.3752
10.1007/s00415-008-3004-y
10.1007/BF00916820
10.1016/S0022-5223(03)00938-3
10.1097/00126334-200203010-00012
10.1073/pnas.80.13.4089
10.1007/s11748-007-0185-8
10.1097/00005072-198003000-00005
10.1172/JCI114282
10.1016/S1471-4906(00)01821-4
10.1172/JCI117050
10.1016/S0022-5223(19)35684-3
10.1016/j.it.2006.12.008
10.4049/jimmunol.142.8.2654
10.1111/j.1749-6632.1998.tb10978.x
10.1212/WNL.0b013e3181d865a1
10.1056/NEJM198111263052203
10.1212/WNL.0b013e3181d31e47
10.1007/s11748-007-0177-8
10.1196/annals.1405.027
10.4049/jimmunol.136.3.887
10.4049/jimmunol.175.10.7021
10.1212/WNL.36.1.78
10.1002/ana.20061
10.1016/j.cll.2004.01.008
10.1038/nature06066
10.1016/S0002-9440(10)61762-2
10.1016/j.jneuroim.2007.01.010
10.1182/blood-2005-06-2383
10.1093/brain/awp200
10.1186/1471-2377-10-46
10.1016/j.jneuroim.2009.02.004
10.1007/BF00915728
10.1182/blood-2003-11-3900
10.1007/s004410050609
10.1212/WNL.35.2.185
10.1055/s-2004-829589
10.1212/WNL.0b013e3181a41211
10.2353/ajpath.2007.070240
10.1016/0090-1229(90)90035-O
10.1002/mus.880171208
10.1111/j.1600-065X.1998.tb01204.x
10.1016/j.jneuroim.2008.06.027
10.4049/jimmunol.167.4.1935
10.4049/jimmunol.174.9.5324
10.1111/j.1365-2249.2007.03442.x
10.4049/jimmunol.145.7.2115
10.1016/S0022-510X(03)00087-X
10.1172/JCI115843
10.1056/NEJM197805182982004
10.1093/brain/awg223
10.1016/0090-1229(85)90018-2
10.1212/WNL.55.1.16
10.1002/eji.1830270402
10.1002/ana.410190119
10.1073/pnas.87.19.7792
10.1073/pnas.0406756101
10.1200/JCO.2004.10.113
10.1212/WNL.31.8.935
10.1159/000115275
10.1146/annurev.immunol.23.021704.115601
10.1016/0022-510X(91)90260-E
10.1111/j.1365-2249.1991.tb05625.x
ContentType Journal Article
Copyright Copyright © 2011 Wiley Periodicals, Inc.
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2011 Wiley Periodicals, Inc.
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/mus.22103
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1097-4598
EndPage 484
ExternalDocumentID 21922466
24570829
10_1002_mus_22103
MUS22103
ark_67375_WNG_3N6JM4QX_Q
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
123
1CY
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AAQQT
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
FYBCS
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWD
RWI
WRC
WUP
YCJ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c5273-c98631e96dfb744637baabb83368efc46f943b906909816f9a57143d39f873a3
IEDL.DBID DR2
ISSN 0148-639X
1097-4598
IngestDate Fri Jul 11 10:15:44 EDT 2025
Mon Jul 21 05:47:30 EDT 2025
Wed Apr 02 07:28:26 EDT 2025
Tue Jul 01 00:45:53 EDT 2025
Thu Apr 24 22:56:10 EDT 2025
Wed Jan 22 16:54:10 EST 2025
Sun Sep 21 06:18:26 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Autoimmunity
Human
Immunopathology
Nervous system diseases
Neuromuscular diseases
thymus
viral infection
Pathogenesis
Autoantibody
Autoimmune disease
Neuromuscular junction
Infection
Chronic
Cholinergic receptor
Myasthenia gravis
innate immunity
inflammation
Viral disease
Tumor
Muscle
Biological receptor
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Copyright © 2011 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5273-c98631e96dfb744637baabb83368efc46f943b906909816f9a57143d39f873a3
Notes ArticleID:MUS22103
istex:FEB17B7FFE0A22CD7E7582BAF70CFF19D6FE6B35
ark:/67375/WNG-3N6JM4QX-Q
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.openaccessrepository.it/record/21834
PMID 21922466
PQID 890676329
PQPubID 23479
PageCount 18
ParticipantIDs proquest_miscellaneous_890676329
pubmed_primary_21922466
pascalfrancis_primary_24570829
crossref_citationtrail_10_1002_mus_22103
crossref_primary_10_1002_mus_22103
wiley_primary_10_1002_mus_22103_MUS22103
istex_primary_ark_67375_WNG_3N6JM4QX_Q
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2011
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: October 2011
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Hoboken, NJ
– name: United States
PublicationTitle Muscle & nerve
PublicationTitleAlternate Muscle Nerve
PublicationYear 2011
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley
References Biesecker G, Gomez CM. Inhibition of acute passive transfer experimental autoimmune myasthenia gravis with Fab antibody to complement C6. J Immunol 1989; 142: 2654-2659.
Cohen-Kaminsky S, Devergne O, Delattre RM, Klingel-Schmitt I, Emilie D, Galanaud P, et al. Interleukin-6 overproduction by cultured thymic epithelial cells from patients with myasthenia gravis is potentially involved in thymic hyperplasia. Eur Cytokine Netw 1993; 4: 121-132.
Levinson AI, Zheng Y, Gaulton G, Moore J, Pletcher CH, Song D, et al. A new model linking intra-thymic acetylcholine receptor expression and the pathogenesis of myasthenia gravis. Ann NY Acad Sci 2003; 998: 257-265.
Manca N, Perandin F, De Simone N, Giannini F, Bonifati D, Angelini C. Detection of HTLV-I tax-rex and pol gene sequences of thymus gland in large group of patients with myasthenia gravis. J Acquir Immune Defic Syndr 2002; 29: 300-306.
Mantegazza R, Beghi E, Pareyson D, Antozzi C, Peluchetti D, Sghirlanzoni A, et al. A multicentre follow-up study of 1152 patients with myasthenia gravis in Italy. J Neurol 1990; 237: 339-344.
Kyewski B, Klein L. A central role for central tolerance. Annu Rev Immunol 2006; 24: 571-606.
Münz C, Lünemann JD, Getts MT, Miller SD. Antiviral immune responses: triggers of or triggered by autoimmunity? Nat Rev Immunol 2009; 9: 246-257.
Di Rosa F, Barnaba V. Persisting viruses and chronic inflammation: understanding their relationship to autoimmunity. Immunol Rev 1998; 164: 17-27.
Abdou NI, Lisak RP, Zweiman B, Abrahamsohn I, Penn AS. The thymus in myasthenia gravis. Evidence for altered cell populations. N Engl J Med 1974; 291: 1271-1275.
Moiola L, Karachunski P, Protti MP, Howard JF, Conti-Tronconi BM. Epitopes on the beta subunit of human muscle acetylcholine receptor recognized by CD4+ cells of myasthenia gravis patients and healthy subjects. J Clin Invest 1994; 93: 1020-1028.
Thorley-Lawson D. Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol 2001; 1: 75-82.
Okumura M, Ohta M, Takeuchi Y, Shiono H, Inoue M, Fukuhara K, et al. The immunological role of thymectomy in the treatment of myasthenia gravis: implication of thymus-associated B-lymphocyte subset in reduction of the anti-acetylcholine receptor antibody titer. J Thorac Cardiovasc Surg 2003; 126: 1922-1928.
Guigou V, Emilie D, Berrih-Aknin S, Fumoux F, Fougereau M, Schiff C. Individual germinal centres of myasthenia gravis human thymuses contain polyclonal activated B cells that express all the VH and VK families. Clin Exp Immunol 1991; 83: 262-266.
Lauriola L, Ranelletti F, Maggiano N, Guerriero M, Punzi C, Marsili F, et al. Thymus changes in anti-MuSK-positive and -negative myasthenia gravis. Neurology 2005; 64: 536-538.
Maggi L, Andreetta F, Antozzi C, Baggi F, Bernasconi P, Cavalcante P, et al. Thymoma-associated myasthenia gravis: outcome, clinical and pathological correlations in 197 on a 20-year experience. J Neuroimmunol 2008; 15: 202: 237-244.
Piddlesden SJ, Jiang S, Levin JL, Vincent A, Morgan BP. Soluble complement receptor 1 (sCR1) protects against experimental autoimmune myasthenia gravis. J Neuroimmunol 1996; 71: 173-177.
Scadding GK, Vincent A, Newsom-Davis J, Henry K. Acetylcholine receptor antibody synthesis by thymic lymphocytes: correlation with thymic histology. Neurology 1981; 31: 935-943.
Jaretzki A III, Penn AS, Younger DS. "Maximal" thymectomy for myasthenia gravis. Results. J Thorac Cardiovasc Surg 1988; 95: 747-757.
Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010; 11: 373-384.
Wekerle H, Ketelsen UP. Intrathymic pathogenesis and dual genetic control of myasthenia gravis. Lancet 1977; 1: 678-680.
Punga AR, Stålberg E. Acetylcholinesterase inhibitors in MG: to be or not to be? Muscle Nerve 2009; 39: 724-728.
Tindall RSA, Cloud R, Lucky J, Rosenberg RN. Serum antibodies to cytomegalovirus in myasthenia gravis: effects of thymectomy and steroids. Neurology 1978; 28: 273-277.
Leprince C, Cohen-Kaminsky S, Berrih-Aknin S, Vernet-Der Garabedian B, Treton D, Galanaud P, et al. Thymic B cells from myasthenia gravis patients are activated B cells. Phenotypic and functional analysis. J Immunol 1990; 145: 2115-2122.
Mantegazza R, Baggi F, Bernasconi P, Antozzi C, Confalonieri P, Novellino L, et al. Video-assisted thoracoscopic extended thymectomy and extended transsternal thymectomy (T-3b) in non-thymomatous myasthenia gravis patients: remission after 6 years of follow-up. J Neurol Sci 2003; 212: 31-36.
Sims GP, Shiono H, Willcox N, Stott DI. Somatic hypermutation and selection of B cells in thymic germinal centers responding to acetylcholine receptor in myasthenia gravis. J Immunol 2001; 167: 1935-1944.
Baggi F, Andreetta F, Antozzi C, Simoncini O, Confalonieri P, Labeit S, et al. Anti-titin and antiryanodine receptor antibodies in myasthenia gravis patients with thymoma. Ann NY Acad Sci 1998; 841: 538-541.
Korn IL, Abramsky O. Myasthenia gravis following viral infection. Eur Neurol 1981; 20: 435-439.
Sommer N, Harcourt GC, Willcox N, Beason D, Newsom-Davis J. Acetylcholine receptor-reactive T lymphocytes from healthy subjects and myasthenia gravis patients. Neurology 1991; 41: 1270-1276.
Schwimmbeck PL, Dyrberg T, Drachman DB, Oldstone MBA. Molecular mimicry and myasthenia gravis. An autoantigenic site of the acetylcholine receptor alpha-subunit that has biologic activity and reacts immunochemically with herpes simplex virus. J Clin Invest 1989; 84: 1174-1180.
Sanders DB, Evoli A. Immunosuppressive therapies in myasthenia gravis. Autoimmunity 2010; 43: 428-435.
Novellino L, Longoni M, Spinelli L, Andretta M, Cozzi M, Faillace G. 'Extended' thymectomy without sternotomy performed by cervicotomy and thoracoscopic technique in the treatment of myasthenia gravis. Int Surg 1994; 79: 378-381.
Bernasconi P, Barberis M, Baggi F, Passerini L, Cannone M, Arnoldi E, et al. Increased Toll-like receptor 4 expression in thymus of myasthenia gravis patients. Am J Pathol 2005; 167: 129-139.
Giraud M, Taubert R, Vandiedonck C, Ke X, Lévi-Strauss M, Pagani F, et al. An IRF8-binding promoter variant and AIRE control CHRNA1 promiscuous expression in thymus. Nature 2007; 448: 934-937.
Roxanis I, Micklem K, McConville J, Newsom-Davis J, Willcox N. Thymic myoid cells and germinal center formation in myasthenia gravis; possible roles in pathogenesis. J Neuroimmunol 2002; 125: 185-197.
Sonett JR, Jaretzki A III. Thymectomy for nonthymomatous myasthenia gravis. A critical analysis. Ann NY Acad Sci 2008; 1132: 315-328.
Fujii Y, Monden Y, Hashimoto J, Nakahara K, Kawashima Y. Acetylcholine receptor antibody-producing cells in thymus and lymph nodes in myasthenia gravis. Clin Immunol Immunopathol 1985; 34: 141-146.
Le Panse R, Cizeron-Clairac G, Bismuth J, Berrih-Aknin S. Microarrays reveal distinct gene signatures in the thymus of seropositive and seronegative myasthenia gravis patients and the role of CC chemokine ligand 21 in thymic hyperplasia. J Immunol 2006; 177: 7868-7879.
Mesnard-Roullier L, Bismuth J, Wakkach A, Poëa-Guyon S, Berrih-Aknin S. Thymic myoid cells express high levels of muscle genes. J Neuroimmunol 2004; 148: 97-105.
Alexiev BA, Drachenberg CB, Burke AP. Thymomas: a cytological and immunohistochemical study, with emphasis on lymphoid and neuroendocrine markers. Diagn Pathol 2007; 2: 13-22.
Klavinski LS, Willcox HNA, Richmond JE, Newsom-Davis J. Attempted isolation of viruses from myasthenia gravis thymus. J Neuroimmunol 1986; 11: 287-299.
Vincent A, McConville J, Farrugia ME, Newsom-Dawis J. Seronegative myasthenia gravis. Semin Neurol 2004; 24: 125-133.
MacLennan CA, Vincent A, Marx A, Willcox N, Gilhus NE, Newsom-Davis J, et al. Preferential expression of AChR ϵ-subunit in thymomas from patients with myasthenia gravis. J Neuroimmunol 2008; 201: 28-32.
Hoch W, McConville J, Helms S, Newsom-Davis J, Melms A, Vincent A. Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat Med 2001; 7: 365-368.
Leite MI, Strobel P, Jones M, Micklem K, Moritz R, Gold R, et al. Fewer thymic changes in MuSK antibody-positive than in MuSK antibody-negative MG. Ann Neurol 2005; 57: 444-448.
Chen G, Marx A, Wen-Hu C, Yong J, Puppe B, Stroebel P, et al. New WHO histologic classification predicts prognosis of thymic epithelial tumors: a clinicopathologic study of 200 thymoma cases from China. Cancer 2002; 95: 420-429.
Vandiedonck C, Raffoux C, Eymard B, Krumeich CS, Gajdos P, Garchon HJ. Association of HLA-A in autoimmune myasthenia gravis with thymoma. J Neuroimmunol 2009; 210: 120-123.
Lennon VA, Seybold ME, Lindstrom JM, Cochrane C, Ulevitch R. Role of complement in the pathogenesis of experimental autoimmune myasthenia gravis. J Exp Med 1978; 147: 973-983.
Ragheb S, Lisak R, Lewis R, van Stavern G, Gonzales F, Simon K. A potential role for B-cell activating factor in the pathogenesis of autoimmune myasthenia gravis. Arch Neurol 2008; 65: 1358-1362.
Machens A, Loliger C, Pichlmeier U, Emskotter T, Busch C, Izbicki JR. Correlation of thymic pathology with HLA in myasthenia gravis. Clin Immunol 1999; 91: 296-301.
Dalakas M. IVIg in other autoimmune neurological disorders: current status and future prospects. J Neurol 2008; 3: 12-16.
Meraouna A, Cizeron-Clairac G, Le Panse R, Bismuth J, Truffault F, Tallaksen C, et al. The chemokine CXCL13 is a key molecule in autoimmune myasthenia gravis. Blood 2006; 108: 432-440.
Carr AS, Cardwell CR, McCarron PO, McConville J. A systematic review of population based epidemiological studies in Myasthenia Gravis. BMC Neurol 2010; 10: 46.
Padberg F, Matsuda M, Fenk R, Patenge N, Kubuschok B, Hohlfeld R, et al. Myasthenia gravis: selective enrichment of anti-acetylcholine receptor antibody production in untransformed human B cell cultures. Eur J Immunol 1999; 29: 3538-3548.
Farrugia ME, Bonifati DM, Clover L, Cossins J, Beeson D, Vincent A. Effect of sera from AChR-antibody negative myasthenia gravis patients on AChR and MuSK in cell cultures
2004; 22
2010; 11
2010; 10
2010; 1183
2005; 174
1990; 57
2005; 175
2002; 95
2007; 185
2004; 24
1976
1996; 71
2005; 64
1981; 305
1991; 238
2006; 178
2006; 177
1980; 39
1984; 51
1998; 18
2006; 24
2007; 171
2005; 105
1991; 83
1996; 62
1994; 79
1998; 841
2007; 2
1978; 147
1991; 106
1988; 81
2008; 197
1974; 291
1998; 164
1993; 47
2009; 66
2001; 167
2007; 448
2004; 148
2007; 204
1999; 29
1986; 11
1993; 43
1989; 9
1989; 8
2002; 2
2009; 210
2008; 56
1997; 27
1986; 19
1988; 95
2001; 22
2003; 212
2010; 40
1981; 20
1999
2004; 55
2010; 43
1990; 237
2006; 108
2009; 72
1991; 65
1990; 28
2002; 125
1984; 34
1985; 312
1983; 80
2008; 41
1994; 91
2008; 131
1985; 76
1994; 93
2001; 159
1989; 84
2002; 59
1986; 136
2003; 998
2007; 149
1986; 137
1986; 36
1993; 63
1997; 89
1987; 7
1983; 54
1978; 298
1978; 1
2008; 3
1988; 140
1990; 145
1976; 26
1993; 4
2007; 36
2005; 25
1994; 343
2010; 67
2007; 28
1992; 90
1990; 87
1991; 41
1989; 142
1996; I
2007; 133
2000; 55
1978; 28
2008; 65
1988; 131
2003; 126
1999; 91
1958; 6
2010; 74
1981; 31
2004; 101
2008; 1132
2005; 159
1988; 54
2009; 132
2008; 15
1994; 44
2006; 6
2008; 201
1996; 284
1995; 18
1991; 139
1983; 33
2010; 89
1987; 22
2002; 29
2005; 164
2001; 7
2005; 167
2010; 133
1977; 1
2009; 145
2009; 9
2009; 6
1999; 155
2001; 1
2003; 60
1985; 34
1998; 102
1996; 157
2005; 57
1985; 35
2009; 39
Lisak RP (e_1_2_7_121_2) 1986; 137
e_1_2_7_108_2
e_1_2_7_3_2
e_1_2_7_127_2
e_1_2_7_104_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_123_2
e_1_2_7_83_2
e_1_2_7_100_2
e_1_2_7_15_2
e_1_2_7_60_2
Leprince C (e_1_2_7_122_2) 1990; 145
e_1_2_7_41_2
e_1_2_7_87_2
e_1_2_7_11_2
e_1_2_7_64_2
e_1_2_7_45_2
e_1_2_7_68_2
e_1_2_7_161_2
e_1_2_7_26_2
e_1_2_7_49_2
e_1_2_7_142_2
e_1_2_7_146_2
e_1_2_7_116_2
e_1_2_7_90_2
Rosai J (e_1_2_7_71_2) 1999
e_1_2_7_112_2
Maggi L (e_1_2_7_22_2) 2008; 15
e_1_2_7_94_2
e_1_2_7_52_2
e_1_2_7_75_2
e_1_2_7_98_2
Savino W (e_1_2_7_74_2) 1984; 51
e_1_2_7_23_2
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_79_2
e_1_2_7_150_2
e_1_2_7_37_2
e_1_2_7_131_2
e_1_2_7_154_2
Farrugia ME (e_1_2_7_18_2) 2007; 185
e_1_2_7_135_2
e_1_2_7_158_2
Willcox HN (e_1_2_7_113_2) 1983; 54
e_1_2_7_139_2
e_1_2_7_4_2
e_1_2_7_105_2
e_1_2_7_128_2
e_1_2_7_8_2
e_1_2_7_101_2
e_1_2_7_124_2
McGuire LJ (e_1_2_7_155_2) 1988; 131
e_1_2_7_82_2
e_1_2_7_16_2
e_1_2_7_120_2
Müoller‐Hermelink HK (e_1_2_7_44_2) 1996
e_1_2_7_63_2
e_1_2_7_86_2
e_1_2_7_12_2
e_1_2_7_162_2
e_1_2_7_48_2
e_1_2_7_143_2
e_1_2_7_29_2
Moulian N (e_1_2_7_102_2) 1997; 89
Cohen‐Kaminsky S (e_1_2_7_138_2) 1993; 4
Wakkach A (e_1_2_7_77_2) 1996; 157
e_1_2_7_147_2
e_1_2_7_109_2
e_1_2_7_117_2
e_1_2_7_93_2
e_1_2_7_70_2
e_1_2_7_24_2
e_1_2_7_51_2
e_1_2_7_97_2
Meinl E (e_1_2_7_106_2) 1991; 139
e_1_2_7_20_2
e_1_2_7_55_2
e_1_2_7_36_2
e_1_2_7_78_2
e_1_2_7_151_2
e_1_2_7_59_2
e_1_2_7_132_2
e_1_2_7_136_2
e_1_2_7_159_2
e_1_2_7_5_2
e_1_2_7_129_2
e_1_2_7_9_2
e_1_2_7_125_2
e_1_2_7_17_2
e_1_2_7_81_2
e_1_2_7_13_2
e_1_2_7_62_2
e_1_2_7_43_2
e_1_2_7_85_2
e_1_2_7_66_2
e_1_2_7_47_2
e_1_2_7_89_2
e_1_2_7_140_2
e_1_2_7_163_2
e_1_2_7_28_2
e_1_2_7_144_2
e_1_2_7_114_2
e_1_2_7_110_2
e_1_2_7_50_2
e_1_2_7_92_2
e_1_2_7_25_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_73_2
e_1_2_7_96_2
Novellino L (e_1_2_7_130_2) 1994; 79
e_1_2_7_21_2
e_1_2_7_35_2
Maddison P (e_1_2_7_40_2)
e_1_2_7_58_2
e_1_2_7_152_2
e_1_2_7_39_2
e_1_2_7_133_2
e_1_2_7_156_2
e_1_2_7_137_2
Fujii Y (e_1_2_7_118_2) 1986; 136
e_1_2_7_107_2
e_1_2_7_2_2
e_1_2_7_103_2
e_1_2_7_126_2
e_1_2_7_6_2
e_1_2_7_61_2
e_1_2_7_80_2
e_1_2_7_14_2
e_1_2_7_42_2
e_1_2_7_65_2
e_1_2_7_84_2
Jaretzki A (e_1_2_7_67_2) 1988; 95
e_1_2_7_10_2
e_1_2_7_160_2
Rowland LP (e_1_2_7_32_2) 1958; 6
e_1_2_7_46_2
e_1_2_7_69_2
e_1_2_7_88_2
e_1_2_7_141_2
e_1_2_7_27_2
e_1_2_7_145_2
e_1_2_7_149_2
e_1_2_7_119_2
e_1_2_7_115_2
Verma A (e_1_2_7_148_2) 1995; 18
e_1_2_7_111_2
e_1_2_7_72_2
e_1_2_7_91_2
e_1_2_7_30_2
e_1_2_7_76_2
e_1_2_7_53_2
e_1_2_7_95_2
e_1_2_7_34_2
e_1_2_7_57_2
e_1_2_7_99_2
e_1_2_7_38_2
e_1_2_7_153_2
e_1_2_7_134_2
e_1_2_7_157_2
References_xml – reference: Giraud M, Vandiedonck C, Garchon HJ. Genetic factors in autoimmune myasthenia gravis. Ann NY Acad Sci 2008; 1132: 180-192.
– reference: Lisak RP, Laramore C, Levinson AI, Zewiman B, Moskovitz AR, Witte A. In vitro synthesis of antibodies to acetylcholine receptor by peripheral blood cells: role of suppressor T cells in normal subjects. Neurology 1984; 34: 802-805.
– reference: Antozzi C, Gemma M, Regi B, Berta E, Confalonieri P, Peluchetti D, et al. A short plasma exchange protocol is effective in severe myasthenia gravis. J Neurol 1991; 238: 103-107.
– reference: Cavalcante P, Barberis M, Cannone M, Baggi F, Antozzi C, Maggi L, et al. Detection of poliovirus-infected macrophages in thymus of patients with myasthenia gravis. Neurology 2010; 74: 1118-1126.
– reference: Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010; 11: 373-384.
– reference: Scarpino S, Di Napoli A, Stoppacciaro A, Antonelli M, Pilozzi E, Chiarle R, et al. Expression of autoimmune regulator gene (AIRE) and T regulatory cells in human thymomas. Clin Exp Immunol 2007; 149: 504-512.
– reference: Bornemann A, Kirchner T. Thymic myoid cell turnover in myasthenia gravis patients and in normal controls. Cell Tissue Res 1996; 284: 481-487.
– reference: Schönbeck S, Padberg F, Hohlfeld R, Wekerle H. Transplantation of thymic autoimmune microenvironment to severe combined immunodeficiency mice. A new model of myasthenia gravis. J Clin Invest 1992; 90: 245-250.
– reference: Poëa-Guyon S, Christadoss P, Le Panse R, Guyon T, De Baets M, Wakkach A, et al. Effects of cytokines on acetylcholine receptor expression: implications for myasthenia gravis. J Immunol 2005; 174: 5941-5949.
– reference: Tindall RSA, Cloud R, Lucky J, Rosenberg RN. Serum antibodies to cytomegalovirus in myasthenia gravis: effects of thymectomy and steroids. Neurology 1978; 28: 273-277.
– reference: Levinson AI, Zweiman B, Lisak RP. Pokeweed mitogen-induced immunoglobulin secretory responses of thymic B cells in myasthenia gravis: selective secretion of IgG versus IgM cannot be explained by helper functions of thymic T cells. Clin Immunol Immunopathol 1990; 57: 211-217.
– reference: Sanders DB, El-Salem K, Massey JM, McConville J, Vincent A. Clinical aspects of MuSK antibody positive seronegative MG. Neurology 2003; 60: 1978-1980.
– reference: Jaretzki A III, Penn AS, Younger DS. "Maximal" thymectomy for myasthenia gravis. Results. J Thorac Cardiovasc Surg 1988; 95: 747-757.
– reference: Tangarajh M, Masterman T, Helgeland L, Rot U, Jonsonn MV, Eide GE, et al. The thymus is a source of B-cell-survival factors-APRIL and BAFF-in myasthenia gravis. J Neuroimmunol 2006; 178: 161-166.
– reference: Fend F, Kirchner T, Marx A, Müller-Hermelink HK. B-cells in thymic epithelial tumours. An immunohistochemical analysis of intra- and extraepithelial B-cell compartments. Virchows Arch B Cell Pathol Incl Mod Pathol 1993; 63: 241-247.
– reference: Gomez CM, Richman DP. Anti-acetylcholine receptor antibodies directed against the alpha-bungarotoxin binding site induce a unique form of experimental myasthenia. Proc Natl Acad Sci USA 1983; 80: 4089-4093.
– reference: Baggi F, Andreetta F, Antozzi C, Simoncini O, Confalonieri P, Labeit S, et al. Anti-titin and antiryanodine receptor antibodies in myasthenia gravis patients with thymoma. Ann NY Acad Sci 1998; 841: 538-541.
– reference: Stott DI, Hiepe F, Hummel M, Steinhauser G, Berek C. Antigen-driven clonal proliferation of B cells within the target tissue of an autoimmune disease. The salivary glands of patients with Sjögren's syndrome. J Clin Invest 1998; 102: 938-946.
– reference: Mori T, Nomori H, Ikeda K, Kobayashi H, Iwatani K, Kobayashi T. The distribution of parenchyma, follicles, and lymphocyte subsets in thymus of patients with myasthenia gravis, with special reference to remission after thymectomy. J Thorac Cardiovasc Surg 2007; 133: 364-368.
– reference: Bhibhatbhan A, Kline G, Vincent A, Toth C. Anti-MuSK myasthenia gravis presenting with Epstein-Barr virus-associated mononucleosis and immune-mediated diabetes mellitus. Muscle Nerve 2007; 36: 264-266.
– reference: Guigou V, Emilie D, Berrih-Aknin S, Fumoux F, Fougereau M, Schiff C. Individual germinal centres of myasthenia gravis human thymuses contain polyclonal activated B cells that express all the VH and VK families. Clin Exp Immunol 1991; 83: 262-266.
– reference: Farrugia ME, Bonifati DM, Clover L, Cossins J, Beeson D, Vincent A. Effect of sera from AChR-antibody negative myasthenia gravis patients on AChR and MuSK in cell cultures. J Neuroimmunol 2007; 185: 136-144.
– reference: Ströbel P, Bauer A, Puppe B, Ktaushaar T, Krein A, Toyka K, et al. Tumor recurrence and survival in patients treated for thymomas and thymic squamous cell carcinomas: a retrospective analysis. J Clin Oncol 2004; 22: 1501-1509.
– reference: Wekerle H, Ketelsen UP. Intrathymic pathogenesis and dual genetic control of myasthenia gravis. Lancet 1977; 1: 678-680.
– reference: Sonett JR, Jaretzki A III. Thymectomy for nonthymomatous myasthenia gravis. A critical analysis. Ann NY Acad Sci 2008; 1132: 315-328.
– reference: Garchon HJ, Djabiri F, Viard JP, Gajdos P, Bach JF. Involvement of human muscle acetylcholine receptor alpha-subunit gene (CHRNA) in susceptibility to myasthenia gravis. Proc Natl Acad Sci USA 1994; 91: 4668-4672.
– reference: Masaoka A, Yamakama Y, Niwi H, Fukay I, Kondo S, Kobayashi M, et al. Extended thymectomy for myasthenia gravis patients: a 20-year review. Ann Thorac Surg 1996; 62: 853-859.
– reference: Bernasconi P, Barberis M, Baggi F, Passerini L, Cannone M, Arnoldi E, et al. Increased Toll-like receptor 4 expression in thymus of myasthenia gravis patients. Am J Pathol 2005; 167: 129-139.
– reference: Aoki T, Drachman DB, Asher DM, Gibbs CJ, Bahmanyar S, Wolinsky JS. Attempts to implicate viruses in myasthenia gravis. Neurology 1985; 35: 185-192.
– reference: Sommer N, Willcox N, Harcourt GC, Newsom-Davis J. Myasthenic thymus and thymoma are selectively enriched in acetylcholine receptor specific T cells. Ann Neurol 1990; 28: 312-319.
– reference: Vieira ML, Caillat-Zucman S, Gajdos P, Cohen-Kaminsky S, Casteur A, Bach JF. Identification of genomic typing non-DR3 HLA class II genes associated myasthenia gravis. J Neuroimmunol 1993; 47: 115-122.
– reference: Zeweiman B, Levinson AI, Lisak RP. Phenotypic characteristics of thymic B lymphocytes in myasthenia gravis. J Clin Immunol 1989; 9: 242-247.
– reference: Roxanis I, Micklem K, McConville J, Newsom-Davis J, Willcox N. Thymic myoid cells and germinal center formation in myasthenia gravis; possible roles in pathogenesis. J Neuroimmunol 2002; 125: 185-197.
– reference: Aloisi F, Serafini B, Magliozzi R, Howell OW, Reynolds R. Detection of Epstein-Barr virus and B-cell follicles in the multiple sclerosis brain: what you find depends on how and where you look. Brain 2010; 133: e157.
– reference: Haynes BF, Hale LP. The human thymus. A chimeric organ comprised of central and peripheral lymphoid components. Immunol Res 1998; 18: 175-192.
– reference: Alexiev BA, Drachenberg CB, Burke AP. Thymomas: a cytological and immunohistochemical study, with emphasis on lymphoid and neuroendocrine markers. Diagn Pathol 2007; 2: 13-22.
– reference: Melms A, Schalke BCG, Kirchner T, Müller-Hermelink HK, Albert E, Wekerle H. Thymus in myasthenia gravis: isolation of T-lymphocyte lines specific for the nicotinic acetylcholine receptor from thymuses of myasthenic patients. J Clin Invest 1988; 81: 902-908.
– reference: Niller HH, Wolf H, Minarovits J. Regulation and dysregulation of Epstein-Barr virus latency: implications for the development of autoimmune diseases. Autoimmunity 2008; 41: 298-328.
– reference: Stefansson K, Dieperink ME, Richman DP, Gomez CM, Marton LS. Sharing of antigenic determinants between the nicotinic acetylcholine receptor and proteins in Escherichia coli, Proteus vulgaris, and Klebsiella pneumoniae. Possible role in the pathogenesis of myasthenia gravis. N Engl J Med 1985; 312: 221-225.
– reference: Wakkach A, Guyon T, Bruand C, Tzartos S, Cohen-Kaminsky S, Berrih-Aknin S. Expression of acetylcholine receptor genes in human thymic epithelial cells: implications for myasthenia gravis. J Immunol 1996; 157: 3752-3760.
– reference: Cohen-Kaminsky S, Devergne O, Delattre RM, Klingel-Schmitt I, Emilie D, Galanaud P, et al. Interleukin-6 overproduction by cultured thymic epithelial cells from patients with myasthenia gravis is potentially involved in thymic hyperplasia. Eur Cytokine Netw 1993; 4: 121-132.
– reference: Evoli A, Tonali PA, Padua L, Monaco ML, Scuderi F, Batocchi AP, et al. Clinical correlates with anti-MuSK antibodies in generalized seronegative myasthenia gravis. Brain 2003; 126: 2304-2311.
– reference: Okumura M, Fujii Y, Shiono H, Inoue M, Minami M, Utsumi T, et al. Immunological function of thymoma and pathogenesis of paraneoplastic myasthenia gravis. Gen Thorac Cardiovasc Surg 2008; 56: 143-150.
– reference: Meinl E, Klinkert WE, Wekerle H. The thymus in myasthenia gravis. Changes typical for the human disease are absent in experimental autoimmune myasthenia gravis of the rat. Am J Pathol 1991; 139: 995-1008.
– reference: Scadding GK, Vincent A, Newsom-Davis J, Henry K. Acetylcholine receptor antibody synthesis by thymic lymphocytes: correlation with thymic histology. Neurology 1981; 31: 935-943.
– reference: Cizeron-Clairac G, Le Panse R, Frenkian-Cuvelier M, Meraouna A, Truffault F, Bismuth J, et al. Thymus and myasthenia gravis: what can we learn from DNA microarrays?. J Neuroimmunol 2008; 201: 57-63.
– reference: Vincent A, Scadding GK, Thomas HC, Newsom-Davis J. In-vitro synthesis of anti-acetylcholine-receptor-antibody by thymic lymphocytes in myasthenia gravis. Lancet 1978; 1: 305-307.
– reference: Kaminski HJ, Minarovits J. Epstein-Barr virus: trigger for autoimmunity? Ann Neurol 2010; 67: 697-698.
– reference: Crampton SP, Voynova E, Bolland S. Innate pathways to B cell activation and tolerance. Ann NY Acad Sci 2010; 1183: 58-68.
– reference: Leite MI, Jones M, Ströbel P, Marx A, Gold R, Niks E, et al. Myasthenia gravis thymus: complement vulnerability of epithelial and myoid cells, complement attack on them and correlations with autoantibody status. Am J Pathol 2007; 171: 893-905.
– reference: Humby F, Bombardieri M, Manzo A, Kelly S, Blades MC, Kirkham B, et al. Ectopic lymphoid structures support ongoing production of class-switched autoantibodies in rheumatoid synovium. PLoS Med 2009; 6: e1
– reference: Sahashi K, Engel AG, Lambert EH, Howard FM Jr. Ultrastructural localization of the terminal and lytic ninth complement component (C9) at the motor end-plate in myasthenia gravis. J Neuropathol Exp Neurol 1980; 39: 160-172.
– reference: Henderson S, Rowe M, Gregory C, Croom-Carter D, Wang F, Longnecker R, et al. Induction of Bcl-2 expression by Epstein-Barr virus latent membrane protein 1 protects infected B cells from programmed cell death. Cell 1991; 65: 1107-1115.
– reference: Abdou NI, Lisak RP, Zweiman B, Abrahamsohn I, Penn AS. The thymus in myasthenia gravis. Evidence for altered cell populations. N Engl J Med 1974; 291: 1271-1275.
– reference: Christadoss P. C5 gene influences the development of murine myasthenia gravis. J Immunol 1988; 140: 2589-2592.
– reference: Matsui N, Nakane S, Saito F, Ohigashi I, Nakagawa Y, Kurobe H, et al. Undiminished regulatory T cells in the thymus of patients with myasthenia gravis. Neurology 2010; 74: 816-820.
– reference: Hill ME, Shiono H, Newsom-Davis J, Willcox N. The myasthenia gravis thymus: a rare source of human autoantibody-secreting plasma cells for testing potential therapeutics. J Neuroimmunol 2008; 201: 50-56.
– reference: Feferman T, Maiti PK, Berrih-Aknin S, Bismuth J, Bidault J, Fuchs S, et al. Overexpression of IFN-induced protein 10 and its receptor CXCR3 in myasthenia gravis. J Immunol 2005; 174: 5324-5331.
– reference: Lauriola L, Ranelletti F, Maggiano N, Guerriero M, Punzi C, Marsili F, et al. Thymus changes in anti-MuSK-positive and -negative myasthenia gravis. Neurology 2005; 64: 536-538.
– reference: Verma A, Berger J. Myasthenia gravis associated with dual infection of HIV and HTLV-I. Muscle Nerve 1995; 18: 1355-1356.
– reference: Mesnard-Roullier L, Bismuth J, Wakkach A, Poëa-Guyon S, Berrih-Aknin S. Thymic myoid cells express high levels of muscle genes. J Neuroimmunol 2004; 148: 97-105.
– reference: Drachman DB, Angus CW, Adams RN, Michelson JD, Hoffman GJ. Myasthenia antibodies cross-link acetylcholine receptors to accelerate degradation. N Engl J Med 1978; 298: 1116-1122.
– reference: Moiola L, Karachunski P, Protti MP, Howard JF, Conti-Tronconi BM. Epitopes on the beta subunit of human muscle acetylcholine receptor recognized by CD4+ cells of myasthenia gravis patients and healthy subjects. J Clin Invest 1994; 93: 1020-1028.
– reference: Lisak RP, Laramore C, Levinson AI, Zweiman B, Moskovitz AR. Suppressor T cells in myasthenia gravis and antibodies to acetylcholine receptor. Ann Neurol 1986; 19: 87-89.
– reference: Lisak RP, Levinson AI, Zweiman B, Kornstein MJ. Antibodies to acetylcholine receptor and tetanus toxoid: in vitro synthesis by thymic lymphocytes. J Immunol 1986; 137: 1221-1225.
– reference: Kyewski B, Klein L. A central role for central tolerance. Annu Rev Immunol 2006; 24: 571-606.
– reference: Okumura M, Inoue M, Kadota Y, Hayashi A, Tokunaga T, Kusu T, et al. Biological implications of thymectomy for myasthenia gravis. Surg Today 2010; 40: 102-107.
– reference: Willis SN, Stadelmann C, Rodig SJ, Caron T, Gattenloehner S, Mallozzi SS, et al. Epstein-Barr virus infection is not characteristic feature of multiple sclerosis brain. Brain 2009; 132: 3318-3328.
– reference: Sisely A, Lisak RP, Brenner T. Proliferative response of blood cells of patients with myasthenia gravis to purified mammalian acetylcholine receptor. Pathol Immunopathol Res 1989; 8: 113--117.
– reference: Vincent A, Willcox N, Hill M, Curnow J, MacLennan C, Beeson D. Determinant spreading and immune responses to acetylcholine receptors in myasthenia gravis. Immunol Rev 1998; 164: 157-168.
– reference: Hoch W, McConville J, Helms S, Newsom-Davis J, Melms A, Vincent A. Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat Med 2001; 7: 365-368.
– reference: Mantegazza R, Baggi F, Bernasconi P, Antozzi C, Confalonieri P, Novellino L, et al. Video-assisted thoracoscopic extended thymectomy and extended transsternal thymectomy (T-3b) in non-thymomatous myasthenia gravis patients: remission after 6 years of follow-up. J Neurol Sci 2003; 212: 31-36.
– reference: Le Panse R, Cizeron-Clairac G, Bismuth J, Berrih-Aknin S. Microarrays reveal distinct gene signatures in the thymus of seropositive and seronegative myasthenia gravis patients and the role of CC chemokine ligand 21 in thymic hyperplasia. J Immunol 2006; 177: 7868-7879.
– reference: Luther C, Poeschel S, Varga M, Melms A, Tolosa E. Decreased frequency of intrathymic regulatory T cells in patients with myasthenia-associated thymoma. J Neuroimmunol 2005; 164: 124-128.
– reference: Lisak RP, Laramore C, Zweiman B, Moskovitz A. In vitro synthesis of antibodies to acetylcholine receptor by peripheral blood mononuclear cells of patients with myasthenia gravis. Neurology 1983; 33: 604-608.
– reference: Colombara M, Antonini V, Riviera AP, Mainiero F, Strippoli R, Merola M, et al. Constitutive activation of p38 and ERK1/2 MAPKs in epithelial cells of myasthenic thymus leads to IL-6 and RANTES overexpression: effects on survival and migration of peripheral T and B cells. J Immunol 2005; 175: 7021-7028.
– reference: Maddison P, McConville J, Farrugia ME, Davies N, Rose M, Norwood F, et al. The use of rituximab in myasthenia gravis and Lambert-Eaton myasthenic syndrome. J Neurol Neurosurg Psychiatry (in press).
– reference: Vandiedonck C, Beaurain G, Giraud M, Hue-Beauvais C, Eymard B, Tranchant C, et al. Pleiotropic effects of the 8.1 HLA haplotype in patients with autoimmune myasthenia gravis and thymus hyperplasia. Proc Natl Acad Sci USA 2004; 101: 1564-1569.
– reference: Willcox HN, Newsom-Davis J, Calder LR. Greatly increased autoantibody production in myasthenia gravis by thymocyte suspensions prepared with proteolytic enzymes. Clin Exp Immunol 1983; 54: 378-386.
– reference: Thorley-Lawson D. Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol 2001; 1: 75-82.
– reference: Vincent A. Unravelling the pathogenesis of myasthenia gravis. Nat Rev Immunol 2002; 2: 797-804.
– reference: Mantegazza R, Beghi E, Pareyson D, Antozzi C, Peluchetti D, Sghirlanzoni A, et al. A multicentre follow-up study of 1152 patients with myasthenia gravis in Italy. J Neurol 1990; 237: 339-344.
– reference: Bachmann K, Burkhardt D, Schreiter I, Kaifi J, Schurr P, Busch C, et al. Thymectomy is more effective than conservative treatment for myasthenia gravis regarding outcome and clinical improvement. Surgery 2009; 145: 392-398.
– reference: Sims GP, Shiono H, Willcox N, Stott DI. Somatic hypermutation and selection of B cells in thymic germinal centers responding to acetylcholine receptor in myasthenia gravis. J Immunol 2001; 167: 1935-1944.
– reference: Schwimmbeck PL, Dyrberg T, Drachman DB, Oldstone MBA. Molecular mimicry and myasthenia gravis. An autoantigenic site of the acetylcholine receptor alpha-subunit that has biologic activity and reacts immunochemically with herpes simplex virus. J Clin Invest 1989; 84: 1174-1180.
– reference: Münz C, Lünemann JD, Getts MT, Miller SD. Antiviral immune responses: triggers of or triggered by autoimmunity? Nat Rev Immunol 2009; 9: 246-257.
– reference: Jaretzki A III, Barohn RJ, Ernstoff RM, Kaminski HJ, Keesey JC, Penn AS, et al. Myasthenia gravis. Recommendations for clinical research standards. Neurology 2000; 55: 16-23.
– reference: Newsom-Davis J, Willcox N, Calder L. Thymus cells in myasthenia gravis selectively enhance production of anti-acetylcholine-receptor antibody by autologous blood lymphocytes. N Engl J Med 1981; 305: 1313-1318.
– reference: Goldstein SD, Yang SC. Assessment of robotic thymectomy using the myasthenia gravis Foundation of America guidelines. Ann Thorac Surg 2010; 89: 1080-1086.
– reference: Korn IL, Abramsky O. Myasthenia gravis following viral infection. Eur Neurol 1981; 20: 435-439.
– reference: Vandiedonck C, Giraud M, Garchon HJ. Genetics of autoimmune myasthenia gravis: the multifaceted contribution of the HLA complex. J Autoimmun 2005; 25: 6-11.
– reference: Moulian N, Bidault J, Truffault F, Yamamoto AM, Levasseur P, Berrih-Aknin S. Thymocyte Fas expression is dysregulated in myasthenia gravis patients with anti-acetylcholine receptor antibody. Blood 1997; 89: 3287-3295.
– reference: Lindstrom JM, Seybold ME, Lennon VA, Whittingham S, Duane DD. Antibody to acetylcholine receptor in myasthenia gravis. Prevalence, clinical correlates, and diagnostic value. Neurology 1976; 26: 1054-1059.
– reference: MacLennan CA, Vincent A, Marx A, Willcox N, Gilhus NE, Newsom-Davis J, et al. Preferential expression of AChR ϵ-subunit in thymomas from patients with myasthenia gravis. J Neuroimmunol 2008; 201: 28-32.
– reference: Sanders DB, Evoli A. Immunosuppressive therapies in myasthenia gravis. Autoimmunity 2010; 43: 428-435.
– reference: Punga AR, Stålberg E. Acetylcholinesterase inhibitors in MG: to be or not to be? Muscle Nerve 2009; 39: 724-728.
– reference: Savino W, Berrih S, Dardenne M. Thymic epithelial antigen, acquired during ontogeny and defined by the anti-p19 monoclonal antibody, is lost in thymomas. Lab Invest 1984; 51: 292-296.
– reference: Sommer N, Harcourt GC, Willcox N, Beason D, Newsom-Davis J. Acetylcholine receptor-reactive T lymphocytes from healthy subjects and myasthenia gravis patients. Neurology 1991; 41: 1270-1276.
– reference: Evoli A, Minisci C, Di Schino, Marsili F, Punzi C, Batocchi AP, et al. Thymoma in patients with MG: characteristic and long-term outcome. Neurology 2002; 59: 1844-1850.
– reference: Okumura M, Ohta M, Takeuchi Y, Shiono H, Inoue M, Fukuhara K, et al. The immunological role of thymectomy in the treatment of myasthenia gravis: implication of thymus-associated B-lymphocyte subset in reduction of the anti-acetylcholine receptor antibody titer. J Thorac Cardiovasc Surg 2003; 126: 1922-1928.
– reference: Carr AS, Cardwell CR, McCarron PO, McConville J. A systematic review of population based epidemiological studies in Myasthenia Gravis. BMC Neurol 2010; 10: 46.
– reference: Dalakas M. IVIg in other autoimmune neurological disorders: current status and future prospects. J Neurol 2008; 3: 12-16.
– reference: Protti MP, Manfredi AA, Straub C, Howard JF, Conti-Tronconi BM. Immunodominant regions for T helper-cell sensitization on the human nicotinic receptor alpha subunit in myasthenia gravis. Proc Natl Acad Sci 1990; 87: 7792-7796.
– reference: Aloisi F, Pujol-Borrell R. Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol 2006; 6: 205-217.
– reference: Klavinskis LS, Willcox N, Newsom-Davis J. Antivirus antibodies in myasthenia gravis. Neurology 1985; 35: 1381-1384.
– reference: Klavinski LS, Willcox HNA, Richmond JE, Newsom-Davis J. Attempted isolation of viruses from myasthenia gravis thymus. J Neuroimmunol 1986; 11: 287-299.
– reference: Shi F-D, Ljunggren H-G, Sarvetnick N. Innate immunity and autoimmunity: from self-protection to self-destruction. Trends Immunol 2001; 22: 97-101.
– reference: Di Rosa F, Barnaba V. Persisting viruses and chronic inflammation: understanding their relationship to autoimmunity. Immunol Rev 1998; 164: 17-27.
– reference: Safar D, Berrih-Aknin S, Morel E. In vitro anti-acetylcholine receptor antibody synthesis by myasthenia gravis patient lymphocytes: correlations with thymic histology and thymic epithelial cell interaction. J Clin Immunol 1987; 7: 225-234.
– reference: Antozzi C, Berta E, Confalonieri P, Zuffi M, Cornelio F, Mantegazza R. Protein-A immunoadsorption in immunosuppression-resistant myasthenia gravis. Lancet 1994; 343: 124.
– reference: Zucherman NS, Howard WA, Bismuth J, Gibson K, Edelman H, Berrih-Aknin S, et al. Ectopic GC in the thymus of myasthenia gravis patients show characteristic of normal GC. Eur J Immunol 2010; 40: 1150-1161.
– reference: Berrih-Aknin S, Ruhlmann N, Bismuth J, Cizeron-Clairac G, Zelman E, Shachar I, et al. CCL21 overexpressed on lymphatic vessels drives thymic hyperplasia in myasthenia. Ann Neurol 2009; 66: 521-531.
– reference: Leprince C, Cohen-Kaminsky S, Berrih-Aknin S, Vernet-Der Garabedian B, Treton D, Galanaud P, et al. Thymic B cells from myasthenia gravis patients are activated B cells. Phenotypic and functional analysis. J Immunol 1990; 145: 2115-2122.
– reference: Leite MI, Jacob S, Viegas S, Cossins J, Clover L, Morgan BP, et al. IgG1 antibodies to acetylcholine receptors in 'seronegative' myasthenia gravis. Brain 2008; 131: 1940-1952.
– reference: Peferoen LAN, Lamers F, Lodder LNR, Gerritsen WH, Huitinga I, Melief J, et al. Epstein-Barr virus is not a characteristic feature in the central nervous system in established multiple sclerosis. Brain 2010; 133: e137.
– reference: Armengol MP, Juan M, Lucas-Martín A, Fernández-Figueras MT, Jaraquemada D, Gallart T, et al. Thyroid autoimmune disease: demonstration of thyroid antigen-specific B cells and recombination-activating gene expression in chemokine-containing active intrathyroidal germinal centers. Am J Pathol 2001; 159: 861-873.
– reference: McGuire LJ, Huang DP, Teoh R, Arnold M, Wong L, Lee JC. Epstein-Barr virus genome in thymoma and thymic lymphoid hyperplasia. Am J Pathol 1988; 131: 385-390.
– reference: Cavalcante P, Serafini B, Rosicarelli B, Maggi L, Barberis M, Antozzi C, et al. Epstein-Barr virus persistence and reactivation in myasthenia gravis thymus. Ann Neurol 2010; 67: 726-738.
– reference: Leite MI, Strobel P, Jones M, Micklem K, Moritz R, Gold R, et al. Fewer thymic changes in MuSK antibody-positive than in MuSK antibody-negative MG. Ann Neurol 2005; 57: 444-448.
– reference: Wakkach A, Poëa S, Chastre E, Gespach C, Lecerf F, de la Porte S, et al. Establishment of a human thymic myoid cell line: phenotypic and functional characteristics. Am J Pathol 1999; 155: 1229-1240.
– reference: Savino W, Manganella G, Verley JM, Wolff A, Berrih S, Levasseur P, et al. Thymoma epithelial cells secrete thymic hormone but do not express class II antigens of the major histocompatibility complex. J Clin Invest 1985; 76: 1140-1146.
– reference: Biesecker G, Gomez CM. Inhibition of acute passive transfer experimental autoimmune myasthenia gravis with Fab antibody to complement C6. J Immunol 1989; 142: 2654-2659.
– reference: Berrih S, Morel E, Gaud C, Raimond F, Le Brigand H, Bach JF. Anti-AChR antibodies, thymic histology, and T cell subsets in myasthenia gravis. Neurology 1984; 34: 66-71.
– reference: Maggi L, Andreetta F, Antozzi C, Baggi F, Bernasconi P, Cavalcante P, et al. Thymoma-associated myasthenia gravis: outcome, clinical and pathological correlations in 197 on a 20-year experience. J Neuroimmunol 2008; 15: 202: 237-244.
– reference: Machens A, Loliger C, Pichlmeier U, Emskotter T, Busch C, Izbicki JR. Correlation of thymic pathology with HLA in myasthenia gravis. Clin Immunol 1999; 91: 296-301.
– reference: Schluep M, Willcox N, Vincent A, Dhoot GK, Newson-Davis J. Acetylcholine receptors in human thymic myoid cells in situ: an immunohistological study. Ann Neurol 1987; 22: 212-222.
– reference: Vandiedonck C, Raffoux C, Eymard B, Krumeich CS, Gajdos P, Garchon HJ. Association of HLA-A in autoimmune myasthenia gravis with thymoma. J Neuroimmunol 2009; 210: 120-123.
– reference: Fujii Y, Hashimoto J, Monden Y, Ito T, Nakahara K, Kawashima Y. Specific activation of lymphocytes against acetylcholine receptor in the thymus in myasthenia gravis. J Immunol 1986; 136: 887-891.
– reference: Meraouna A, Cizeron-Clairac G, Le Panse R, Bismuth J, Truffault F, Tallaksen C, et al. The chemokine CXCL13 is a key molecule in autoimmune myasthenia gravis. Blood 2006; 108: 432-440.
– reference: Fujii Y, Monden Y, Hashimoto J, Nakahara K, Kawashima Y. Acetylcholine receptor antibody-producing cells in thymus and lymph nodes in myasthenia gravis. Clin Immunol Immunopathol 1985; 34: 141-146.
– reference: Mantegazza R, Baggi F, Antozzi C, Confalonieri P, Morandi L, Bernasconi P, et al. Myasthenia gravis (MG): epidemiological data and prognostic factors. Ann NY Acad Sci 2003; 998: 413-423.
– reference: Gautel M, Lakey A, Barlow DP, Holmes Z, Scales S, Leonard K, et al. Titin antibodies in myasthenia gravis: identification of a major immunogenic region of titin. Neurology 1993; 43: 1581-1585.
– reference: Rowland LP, Hoefer PF, Aranow H, Merritt HH. Fatalities in myasthenia gravis: a review of 39 cases with 26 autopsies. Neurology 1958; 6: 310-326.
– reference: Kirchner T, Hoppc F, Schalke B, Müller-Hermelink HK. Microenvironment of thymic myoid cells in myasthenia gravis. Virchows Arch B Cell Pathol 1988; 54: 295-302.
– reference: Lennon VA, Seybold ME, Lindstrom JM, Cochrane C, Ulevitch R. Role of complement in the pathogenesis of experimental autoimmune myasthenia gravis. J Exp Med 1978; 147: 973-983.
– reference: Beghi E, Antozzi C, Batocchi AP, Cornelio F, Cosi V, Evoli A. Prognosis of myasthenia gravis: a multi center follow-up study of 844 patients. J Neurol Sci 1991; 106: 213-220.
– reference: Hohlfeld R, Kalies I, Kohleisen B, Heininger K, Conti-Tronconi BM, Toyka KV. Myasthenia gravis: stimulation of antireceptor autoantibodies by autoreactive T cell lines. Neurology 1986; 36: 618-621.
– reference: Ahlberg R, Yi Q, Pirskanen R, Matell G, Swerup C, Rieber EP, et al. Treatment of myasthenia gravis with anti-CD4 antibody: improvement correlates to decreased T-cell autoreactivity. Neurology 1994; 44: 1732-1737.
– reference: Murphy J, Murphy SF. Myasthenia gravis in identical twins. Neurology 1986; 36: 78-80.
– reference: McConville J, Farrugia ME, Beeson D, Kishore U, Metcalfe R, Newsom-Davis J, et al. Detection and characterization of MuSK antibodies in seronegative myasthenia gravis. Ann Neurol 2004; 55: 580-584.
– reference: Berzi A, Ayata CK, Cavalcante P, Falcone C, Candiago E, Motta T, et al. BDNF and its receptors in human myasthenic thymus: implications for cell fate in thymic pathology. J Neuroimmunol 2008; 197: 128-139.
– reference: Alshekhlee A, Miles JD, Katirji B, Preston DC, Kaminski HJ. Incidence and mortality rates of myasthenia gravis and myasthenic crisis in US hospitals. Neurology 2009; 72: 1548-1554.
– reference: Okumura M, Shiono H, Minami M, Inoue M, Utsumi T, Kadota Y, et al. Clinical and pathological aspects of thymic epithelial tumors. Gen Thorac Cardiovasc Surg 2008; 56: 10-16.
– reference: Serafini B, Rosicarelli B, Franciotta D, Magliozzi R, Reynolds R, Cinque P, et al. Dysregulated Epstein-Barr virus infection in the multiple sclerosis brain. J Exp Med 2007; 204: 2899-2912.
– reference: Manca N, Perandin F, De Simone N, Giannini F, Bonifati D, Angelini C. Detection of HTLV-I tax-rex and pol gene sequences of thymus gland in large group of patients with myasthenia gravis. J Acquir Immune Defic Syndr 2002; 29: 300-306.
– reference: Novellino L, Longoni M, Spinelli L, Andretta M, Cozzi M, Faillace G. 'Extended' thymectomy without sternotomy performed by cervicotomy and thoracoscopic technique in the treatment of myasthenia gravis. Int Surg 1994; 79: 378-381.
– reference: Sargsyan SA, Shearer AJ, Ritchie AM, Burgoon MP, Anderson S, Hemmer B, et al. Absence of Epstein-Barr virus in the brain and CSF of patients with multiple sclerosis. Neurology 2010; 74: 1127-1135.
– reference: Piddlesden SJ, Jiang S, Levin JL, Vincent A, Morgan BP. Soluble complement receptor 1 (sCR1) protects against experimental autoimmune myasthenia gravis. J Neuroimmunol 1996; 71: 173-177.
– reference: Chen G, Marx A, Wen-Hu C, Yong J, Puppe B, Stroebel P, et al. New WHO histologic classification predicts prognosis of thymic epithelial tumors: a clinicopathologic study of 200 thymoma cases from China. Cancer 2002; 95: 420-429.
– reference: Balandina A, Lecart S, Dartevelle P, Saoudi A, Berrih-Aknin S. Functional defect of regulatory CD4(+)CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis. Blood 2005; 105: 735-741.
– reference: Vincent A, McConville J, Farrugia ME, Newsom-Dawis J. Seronegative myasthenia gravis. Semin Neurol 2004; 24: 125-133.
– reference: Shiono H, Fujii Y, Okumura M, Takeuchi Y, Inoue M, Matsuda H. Failure to down-regulate Bcl-2 protein in thymic germinal center B cells in myasthenia gravis. Eur J Immunol 1997; 27: 805-809.
– reference: Ragheb S, Lisak R, Lewis R, van Stavern G, Gonzales F, Simon K. A potential role for B-cell activating factor in the pathogenesis of autoimmune myasthenia gravis. Arch Neurol 2008; 65: 1358-1362.
– reference: Ruan QG, She JX. Autoimmune polyglandular syndrome type I and the autoimmune regulator. Clin Lab Med 2004; 24: 305-317.
– reference: Levinson AI, Zheng Y, Gaulton G, Moore J, Pletcher CH, Song D, et al. A new model linking intra-thymic acetylcholine receptor expression and the pathogenesis of myasthenia gravis. Ann NY Acad Sci 2003; 998: 257-265.
– reference: Villadangos JA, Heath WR, Carbone FR. Outside looking in: the inner workings of the crosspresentation pathway within dendritic cells. Trends Immunol 2007; 28: 45-47.
– reference: Ragheb S, Mohamed M, Lisak RP. Myasthenia gravis patients, but not healthy subjects, recognize epitopes that are unique to the ϵ-subunit of the acetylcholine receptor. J Neuroimmunol 2005; 159: 137-145.
– reference: Padberg F, Matsuda M, Fenk R, Patenge N, Kubuschok B, Hohlfeld R, et al. Myasthenia gravis: selective enrichment of anti-acetylcholine receptor antibody production in untransformed human B cell cultures. Eur J Immunol 1999; 29: 3538-3548.
– reference: Giraud M, Taubert R, Vandiedonck C, Ke X, Lévi-Strauss M, Pagani F, et al. An IRF8-binding promoter variant and AIRE control CHRNA1 promiscuous expression in thymus. Nature 2007; 448: 934-937.
– volume: 26
  start-page: 1054
  year: 1976
  end-page: 1059
  article-title: Antibody to acetylcholine receptor in myasthenia gravis. Prevalence, clinical correlates, and diagnostic value
  publication-title: Neurology
– volume: 131
  start-page: 1940
  year: 2008
  end-page: 1952
  article-title: IgG1 antibodies to acetylcholine receptors in ‘seronegative’ myasthenia gravis
  publication-title: Brain
– volume: 24
  start-page: 125
  year: 2004
  end-page: 133
  article-title: Seronegative myasthenia gravis
  publication-title: Semin Neurol
– volume: 24
  start-page: 571
  year: 2006
  end-page: 606
  article-title: A central role for central tolerance
  publication-title: Annu Rev Immunol
– volume: 18
  start-page: 1355
  year: 1995
  end-page: 1356
  article-title: Myasthenia gravis associated with dual infection of HIV and HTLV‐I
  publication-title: Muscle Nerve
– volume: 6
  start-page: 205
  year: 2006
  end-page: 217
  article-title: Lymphoid neogenesis in chronic inflammatory diseases
  publication-title: Nat Rev Immunol
– volume: 22
  start-page: 1501
  year: 2004
  end-page: 1509
  article-title: Tumor recurrence and survival in patients treated for thymomas and thymic squamous cell carcinomas: a retrospective analysis
  publication-title: J Clin Oncol
– volume: 7
  start-page: 225
  year: 1987
  end-page: 234
  article-title: In vitro anti‐acetylcholine receptor antibody synthesis by myasthenia gravis patient lymphocytes: correlations with thymic histology and thymic epithelial cell interaction
  publication-title: J Clin Immunol
– volume: 201
  start-page: 28
  year: 2008
  end-page: 32
  article-title: Preferential expression of AChR ϵ‐subunit in thymomas from patients with myasthenia gravis
  publication-title: J Neuroimmunol
– volume: 87
  start-page: 7792
  year: 1990
  end-page: 7796
  article-title: Immunodominant regions for T helper‐cell sensitization on the human nicotinic receptor alpha subunit in myasthenia gravis
  publication-title: Proc Natl Acad Sci
– volume: 139
  start-page: 995
  year: 1991
  end-page: 1008
  article-title: The thymus in myasthenia gravis. Changes typical for the human disease are absent in experimental autoimmune myasthenia gravis of the rat
  publication-title: Am J Pathol
– volume: 998
  start-page: 413
  year: 2003
  end-page: 423
  article-title: Myasthenia gravis (MG): epidemiological data and prognostic factors
  publication-title: Ann NY Acad Sci
– volume: 57
  start-page: 211
  year: 1990
  end-page: 217
  article-title: Pokeweed mitogen‐induced immunoglobulin secretory responses of thymic B cells in myasthenia gravis: selective secretion of IgG versus IgM cannot be explained by helper functions of thymic T cells
  publication-title: Clin Immunol Immunopathol
– volume: 67
  start-page: 697
  year: 2010
  end-page: 698
  article-title: Epstein–Barr virus: trigger for autoimmunity?
  publication-title: Ann Neurol
– volume: 41
  start-page: 1270
  year: 1991
  end-page: 1276
  article-title: Acetylcholine receptor‐reactive T lymphocytes from healthy subjects and myasthenia gravis patients
  publication-title: Neurology
– volume: 157
  start-page: 3752
  year: 1996
  end-page: 3760
  article-title: Expression of acetylcholine receptor genes in human thymic epithelial cells: implications for myasthenia gravis
  publication-title: J Immunol
– volume: 95
  start-page: 420
  year: 2002
  end-page: 429
  article-title: New WHO histologic classification predicts prognosis of thymic epithelial tumors: a clinicopathologic study of 200 thymoma cases from China
  publication-title: Cancer
– volume: 41
  start-page: 298
  year: 2008
  end-page: 328
  article-title: Regulation and dysregulation of Epstein–Barr virus latency: implications for the development of autoimmune diseases
  publication-title: Autoimmunity
– volume: 81
  start-page: 902
  year: 1988
  end-page: 908
  article-title: Thymus in myasthenia gravis: isolation of T‐lymphocyte lines specific for the nicotinic acetylcholine receptor from thymuses of myasthenic patients
  publication-title: J Clin Invest
– volume: 54
  start-page: 295
  year: 1988
  end-page: 302
  article-title: Microenvironment of thymic myoid cells in myasthenia gravis
  publication-title: Virchows Arch B Cell Pathol
– volume: 210
  start-page: 120
  year: 2009
  end-page: 123
  article-title: Association of HLA‐A in autoimmune myasthenia gravis with thymoma
  publication-title: J Neuroimmunol
– volume: 76
  start-page: 1140
  year: 1985
  end-page: 1146
  article-title: Thymoma epithelial cells secrete thymic hormone but do not express class II antigens of the major histocompatibility complex
  publication-title: J Clin Invest
– volume: 83
  start-page: 262
  year: 1991
  end-page: 266
  article-title: Individual germinal centres of myasthenia gravis human thymuses contain polyclonal activated B cells that express all the VH and VK families
  publication-title: Clin Exp Immunol
– volume: 28
  start-page: 273
  year: 1978
  end-page: 277
  article-title: Serum antibodies to cytomegalovirus in myasthenia gravis: effects of thymectomy and steroids
  publication-title: Neurology
– volume: 9
  start-page: 242
  year: 1989
  end-page: 247
  article-title: Phenotypic characteristics of thymic B lymphocytes in myasthenia gravis
  publication-title: J Clin Immunol
– volume: 27
  start-page: 805
  year: 1997
  end-page: 809
  article-title: Failure to down‐regulate Bcl‐2 protein in thymic germinal center B cells in myasthenia gravis
  publication-title: Eur J Immunol
– volume: 90
  start-page: 245
  year: 1992
  end-page: 250
  article-title: Transplantation of thymic autoimmune microenvironment to severe combined immunodeficiency mice. A new model of myasthenia gravis
  publication-title: J Clin Invest
– article-title: The use of rituximab in myasthenia gravis and Lambert–Eaton myasthenic syndrome
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 105
  start-page: 735
  year: 2005
  end-page: 741
  article-title: Functional defect of regulatory CD4(+)CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis
  publication-title: Blood
– volume: 67
  start-page: 726
  year: 2010
  end-page: 738
  article-title: Epstein–Barr virus persistence and reactivation in myasthenia gravis thymus
  publication-title: Ann Neurol
– volume: 126
  start-page: 1922
  year: 2003
  end-page: 1928
  article-title: The immunological role of thymectomy in the treatment of myasthenia gravis: implication of thymus‐associated B‐lymphocyte subset in reduction of the anti‐acetylcholine receptor antibody titer
  publication-title: J Thorac Cardiovasc Surg
– volume: 35
  start-page: 1381
  year: 1985
  end-page: 1384
  article-title: Antivirus antibodies in myasthenia gravis
  publication-title: Neurology
– volume: 22
  start-page: 97
  year: 2001
  end-page: 101
  article-title: Innate immunity and autoimmunity: from self‐protection to self‐destruction
  publication-title: Trends Immunol
– volume: 34
  start-page: 66
  year: 1984
  end-page: 71
  article-title: Anti‐AChR antibodies, thymic histology, and T cell subsets in myasthenia gravis
  publication-title: Neurology
– volume: 36
  start-page: 618
  year: 1986
  end-page: 621
  article-title: Myasthenia gravis: stimulation of antireceptor autoantibodies by autoreactive T cell lines
  publication-title: Neurology
– volume: 167
  start-page: 129
  year: 2005
  end-page: 139
  article-title: Increased Toll‐like receptor 4 expression in thymus of myasthenia gravis patients
  publication-title: Am J Pathol
– volume: 133
  start-page: 364
  year: 2007
  end-page: 368
  article-title: The distribution of parenchyma, follicles, and lymphocyte subsets in thymus of patients with myasthenia gravis, with special reference to remission after thymectomy
  publication-title: J Thorac Cardiovasc Surg
– volume: 2
  start-page: 797
  year: 2002
  end-page: 804
  article-title: Unravelling the pathogenesis of myasthenia gravis
  publication-title: Nat Rev Immunol
– volume: 133
  start-page: e137
  year: 2010
  article-title: Epstein–Barr virus is not a characteristic feature in the central nervous system in established multiple sclerosis
  publication-title: Brain
– volume: 66
  start-page: 521
  year: 2009
  end-page: 531
  article-title: CCL21 overexpressed on lymphatic vessels drives thymic hyperplasia in myasthenia
  publication-title: Ann Neurol
– volume: 43
  start-page: 1581
  year: 1993
  end-page: 1585
  article-title: Titin antibodies in myasthenia gravis: identification of a major immunogenic region of titin
  publication-title: Neurology
– volume: 11
  start-page: 287
  year: 1986
  end-page: 299
  article-title: Attempted isolation of viruses from myasthenia gravis thymus
  publication-title: J Neuroimmunol
– volume: 237
  start-page: 339
  year: 1990
  end-page: 344
  article-title: A multicentre follow‐up study of 1152 patients with myasthenia gravis in Italy
  publication-title: J Neurol
– volume: 28
  start-page: 312
  year: 1990
  end-page: 319
  article-title: Myasthenic thymus and thymoma are selectively enriched in acetylcholine receptor specific T cells
  publication-title: Ann Neurol
– volume: 3
  start-page: 12
  year: 2008
  end-page: 16
  article-title: IVIg in other autoimmune neurological disorders: current status and future prospects
  publication-title: J Neurol
– volume: 174
  start-page: 5941
  year: 2005
  end-page: 5949
  article-title: Effects of cytokines on acetylcholine receptor expression: implications for myasthenia gravis
  publication-title: J Immunol
– volume: 39
  start-page: 724
  year: 2009
  end-page: 728
  article-title: Acetylcholinesterase inhibitors in MG: to be or not to be?
  publication-title: Muscle Nerve
– volume: 174
  start-page: 5324
  year: 2005
  end-page: 5331
  article-title: Overexpression of IFN‐induced protein 10 and its receptor CXCR3 in myasthenia gravis
  publication-title: J Immunol
– volume: 212
  start-page: 31
  year: 2003
  end-page: 36
  article-title: Video‐assisted thoracoscopic extended thymectomy and extended transsternal thymectomy (T‐3b) in non‐thymomatous myasthenia gravis patients: remission after 6 years of follow‐up
  publication-title: J Neurol Sci
– volume: 108
  start-page: 432
  year: 2006
  end-page: 440
  article-title: The chemokine CXCL13 is a key molecule in autoimmune myasthenia gravis
  publication-title: Blood
– volume: 74
  start-page: 816
  year: 2010
  end-page: 820
  article-title: Undiminished regulatory T cells in the thymus of patients with myasthenia gravis
  publication-title: Neurology
– volume: 6
  start-page: e1
  year: 2009
  article-title: Ectopic lymphoid structures support ongoing production of class‐switched autoantibodies in rheumatoid synovium
  publication-title: PLoS Med
– volume: 201
  start-page: 57
  year: 2008
  end-page: 63
  article-title: Thymus and myasthenia gravis: what can we learn from DNA microarrays?
  publication-title: J Neuroimmunol
– volume: 185
  start-page: 136
  year: 2007
  end-page: 144
  article-title: Effect of sera from AChR‐antibody negative myasthenia gravis patients on AChR and MuSK in cell cultures
  publication-title: J Neuroimmunol
– volume: 137
  start-page: 1221
  year: 1986
  end-page: 1225
  article-title: Antibodies to acetylcholine receptor and tetanus toxoid: in vitro synthesis by thymic lymphocytes
  publication-title: J Immunol
– volume: 93
  start-page: 1020
  year: 1994
  end-page: 1028
  article-title: Epitopes on the beta subunit of human muscle acetylcholine receptor recognized by CD4+ cells of myasthenia gravis patients and healthy subjects
  publication-title: J Clin Invest
– volume: 40
  start-page: 1150
  year: 2010
  end-page: 1161
  article-title: Ectopic GC in the thymus of myasthenia gravis patients show characteristic of normal GC
  publication-title: Eur J Immunol
– volume: 178
  start-page: 161
  year: 2006
  end-page: 166
  article-title: The thymus is a source of B‐cell‐survival factors—APRIL and BAFF—in myasthenia gravis
  publication-title: J Neuroimmunol
– volume: 65
  start-page: 1107
  year: 1991
  end-page: 1115
  article-title: Induction of Bcl‐2 expression by Epstein–Barr virus latent membrane protein 1 protects infected B cells from programmed cell death
  publication-title: Cell
– volume: 131
  start-page: 385
  year: 1988
  end-page: 390
  article-title: Epstein–Barr virus genome in thymoma and thymic lymphoid hyperplasia
  publication-title: Am J Pathol
– volume: 57
  start-page: 444
  year: 2005
  end-page: 448
  article-title: Fewer thymic changes in MuSK antibody‐positive than in MuSK antibody‐negative MG
  publication-title: Ann Neurol
– volume: 28
  start-page: 45
  year: 2007
  end-page: 47
  article-title: Outside looking in: the inner workings of the crosspresentation pathway within dendritic cells
  publication-title: Trends Immunol
– volume: 998
  start-page: 257
  year: 2003
  end-page: 265
  article-title: A new model linking intra‐thymic acetylcholine receptor expression and the pathogenesis of myasthenia gravis
  publication-title: Ann NY Acad Sci
– volume: 298
  start-page: 1116
  year: 1978
  end-page: 1122
  article-title: Myasthenia antibodies cross‐link acetylcholine receptors to accelerate degradation
  publication-title: N Engl J Med
– volume: 22
  start-page: 212
  year: 1987
  end-page: 222
  article-title: Acetylcholine receptors in human thymic myoid cells in situ: an immunohistological study
  publication-title: Ann Neurol
– volume: 140
  start-page: 2589
  year: 1988
  end-page: 2592
  article-title: C5 gene influences the development of murine myasthenia gravis
  publication-title: J Immunol
– volume: 291
  start-page: 1271
  year: 1974
  end-page: 1275
  article-title: The thymus in myasthenia gravis. Evidence for altered cell populations
  publication-title: N Engl J Med
– volume: 59
  start-page: 1844
  year: 2002
  end-page: 1850
  article-title: Thymoma in patients with MG: characteristic and long‐term outcome
  publication-title: Neurology
– volume: 51
  start-page: 292
  year: 1984
  end-page: 296
  article-title: Thymic epithelial antigen, acquired during ontogeny and defined by the anti‐p19 monoclonal antibody, is lost in thymomas
  publication-title: Lab Invest
– volume: 132
  start-page: 3318
  year: 2009
  end-page: 3328
  article-title: Epstein–Barr virus infection is not characteristic feature of multiple sclerosis brain
  publication-title: Brain
– start-page: 34
  year: 1976
  end-page: 161
– volume: 177
  start-page: 7868
  year: 2006
  end-page: 7879
  article-title: Microarrays reveal distinct gene signatures in the thymus of seropositive and seronegative myasthenia gravis patients and the role of CC chemokine ligand 21 in thymic hyperplasia
  publication-title: J Immunol
– volume: 1
  start-page: 75
  year: 2001
  end-page: 82
  article-title: Epstein–Barr virus: exploiting the immune system
  publication-title: Nat Rev Immunol
– volume: 60
  start-page: 1978
  year: 2003
  end-page: 1980
  article-title: Clinical aspects of MuSK antibody positive seronegative MG
  publication-title: Neurology
– volume: 149
  start-page: 504
  year: 2007
  end-page: 512
  article-title: Expression of autoimmune regulator gene (AIRE) and T regulatory cells in human thymomas
  publication-title: Clin Exp Immunol
– volume: I
  start-page: 1218
  year: 1996
  end-page: 1243
– volume: 62
  start-page: 853
  year: 1996
  end-page: 859
  article-title: Extended thymectomy for myasthenia gravis patients: a 20‐year review
  publication-title: Ann Thorac Surg
– volume: 164
  start-page: 157
  year: 1998
  end-page: 168
  article-title: Determinant spreading and immune responses to acetylcholine receptors in myasthenia gravis
  publication-title: Immunol Rev
– volume: 171
  start-page: 893
  year: 2007
  end-page: 905
  article-title: Myasthenia gravis thymus: complement vulnerability of epithelial and myoid cells, complement attack on them and correlations with autoantibody status
  publication-title: Am J Pathol
– volume: 55
  start-page: 16
  year: 2000
  end-page: 23
  article-title: Myasthenia gravis. Recommendations for clinical research standards
  publication-title: Neurology
– volume: 11
  start-page: 373
  year: 2010
  end-page: 384
  article-title: The role of pattern‐recognition receptors in innate immunity: update on Toll‐like receptors
  publication-title: Nat Immunol
– volume: 54
  start-page: 378
  year: 1983
  end-page: 386
  article-title: Greatly increased autoantibody production in myasthenia gravis by thymocyte suspensions prepared with proteolytic enzymes
  publication-title: Clin Exp Immunol
– volume: 238
  start-page: 103
  year: 1991
  end-page: 107
  article-title: A short plasma exchange protocol is effective in severe myasthenia gravis
  publication-title: J Neurol
– volume: 102
  start-page: 938
  year: 1998
  end-page: 946
  article-title: Antigen‐driven clonal proliferation of B cells within the target tissue of an autoimmune disease. The salivary glands of patients with Sjögren's syndrome
  publication-title: J Clin Invest
– volume: 43
  start-page: 428
  year: 2010
  end-page: 435
  article-title: Immunosuppressive therapies in myasthenia gravis
  publication-title: Autoimmunity
– volume: 343
  start-page: 124
  year: 1994
  article-title: Protein‐A immunoadsorption in immunosuppression‐resistant myasthenia gravis
  publication-title: Lancet
– volume: 19
  start-page: 87
  year: 1986
  end-page: 89
  article-title: Suppressor T cells in myasthenia gravis and antibodies to acetylcholine receptor
  publication-title: Ann Neurol
– volume: 63
  start-page: 241
  year: 1993
  end-page: 247
  article-title: B‐cells in thymic epithelial tumours. An immunohistochemical analysis of intra‐ and extraepithelial B‐cell compartments
  publication-title: Virchows Arch B Cell Pathol Incl Mod Pathol
– volume: 1183
  start-page: 58
  year: 2010
  end-page: 68
  article-title: Innate pathways to B cell activation and tolerance
  publication-title: Ann NY Acad Sci
– volume: 95
  start-page: 747
  year: 1988
  end-page: 757
  article-title: “Maximal” thymectomy for myasthenia gravis. Results
  publication-title: J Thorac Cardiovasc Surg
– volume: 64
  start-page: 536
  year: 2005
  end-page: 538
  article-title: Thymus changes in anti‐MuSK‐positive and ‐negative myasthenia gravis
  publication-title: Neurology
– volume: 10
  start-page: 46
  year: 2010
  article-title: A systematic review of population based epidemiological studies in Myasthenia Gravis
  publication-title: BMC Neurol
– volume: 312
  start-page: 221
  year: 1985
  end-page: 225
  article-title: Sharing of antigenic determinants between the nicotinic acetylcholine receptor and proteins in , , and . Possible role in the pathogenesis of myasthenia gravis
  publication-title: N Engl J Med
– volume: 55
  start-page: 580
  year: 2004
  end-page: 584
  article-title: Detection and characterization of MuSK antibodies in seronegative myasthenia gravis
  publication-title: Ann Neurol
– volume: 91
  start-page: 296
  year: 1999
  end-page: 301
  article-title: Correlation of thymic pathology with HLA in myasthenia gravis
  publication-title: Clin Immunol
– volume: 71
  start-page: 173
  year: 1996
  end-page: 177
  article-title: Soluble complement receptor 1 (sCR1) protects against experimental autoimmune myasthenia gravis
  publication-title: J Neuroimmunol
– volume: 164
  start-page: 17
  year: 1998
  end-page: 27
  article-title: Persisting viruses and chronic inflammation: understanding their relationship to autoimmunity
  publication-title: Immunol Rev
– volume: 841
  start-page: 538
  year: 1998
  end-page: 541
  article-title: Anti‐titin and antiryanodine receptor antibodies in myasthenia gravis patients with thymoma
  publication-title: Ann NY Acad Sci
– volume: 72
  start-page: 1548
  year: 2009
  end-page: 1554
  article-title: Incidence and mortality rates of myasthenia gravis and myasthenic crisis in US hospitals
  publication-title: Neurology
– volume: 47
  start-page: 115
  year: 1993
  end-page: 122
  article-title: Identification of genomic typing non‐DR3 HLA class II genes associated myasthenia gravis
  publication-title: J Neuroimmunol
– volume: 34
  start-page: 141
  year: 1985
  end-page: 146
  article-title: Acetylcholine receptor antibody‐producing cells in thymus and lymph nodes in myasthenia gravis
  publication-title: Clin Immunol Immunopathol
– volume: 89
  start-page: 3287
  year: 1997
  end-page: 3295
  article-title: Thymocyte Fas expression is dysregulated in myasthenia gravis patients with anti‐acetylcholine receptor antibody
  publication-title: Blood
– start-page: 9
  year: 1999
  end-page: 14
– volume: 15
  start-page: 202
  year: 2008
  end-page: 244
  article-title: Thymoma‐associated myasthenia gravis: outcome, clinical and pathological correlations in 197 on a 20‐year experience
  publication-title: J Neuroimmunol
– volume: 29
  start-page: 300
  year: 2002
  end-page: 306
  article-title: Detection of HTLV‐I tax‐rex and pol gene sequences of thymus gland in large group of patients with myasthenia gravis
  publication-title: J Acquir Immune Defic Syndr
– volume: 159
  start-page: 861
  year: 2001
  end-page: 873
  article-title: Thyroid autoimmune disease: demonstration of thyroid antigen‐specific B cells and recombination‐activating gene expression in chemokine‐containing active intrathyroidal germinal centers
  publication-title: Am J Pathol
– volume: 25
  start-page: 6
  year: 2005
  end-page: 11
  article-title: Genetics of autoimmune myasthenia gravis: the multifaceted contribution of the HLA complex
  publication-title: J Autoimmun
– volume: 56
  start-page: 143
  year: 2008
  end-page: 150
  article-title: Immunological function of thymoma and pathogenesis of paraneoplastic myasthenia gravis
  publication-title: Gen Thorac Cardiovasc Surg
– volume: 284
  start-page: 481
  year: 1996
  end-page: 487
  article-title: Thymic myoid cell turnover in myasthenia gravis patients and in normal controls
  publication-title: Cell Tissue Res
– volume: 29
  start-page: 3538
  year: 1999
  end-page: 3548
  article-title: Myasthenia gravis: selective enrichment of anti‐acetylcholine receptor antibody production in untransformed human B cell cultures
  publication-title: Eur J Immunol
– volume: 164
  start-page: 124
  year: 2005
  end-page: 128
  article-title: Decreased frequency of intrathymic regulatory T cells in patients with myasthenia‐associated thymoma
  publication-title: J Neuroimmunol
– volume: 33
  start-page: 604
  year: 1983
  end-page: 608
  article-title: In vitro synthesis of antibodies to acetylcholine receptor by peripheral blood mononuclear cells of patients with myasthenia gravis
  publication-title: Neurology
– volume: 89
  start-page: 1080
  year: 2010
  end-page: 1086
  article-title: Assessment of robotic thymectomy using the myasthenia gravis Foundation of America guidelines
  publication-title: Ann Thorac Surg
– volume: 145
  start-page: 2115
  year: 1990
  end-page: 2122
  article-title: Thymic B cells from myasthenia gravis patients are activated B cells. Phenotypic and functional analysis
  publication-title: J Immunol
– volume: 9
  start-page: 246
  year: 2009
  end-page: 257
  article-title: Antiviral immune responses: triggers of or triggered by autoimmunity?
  publication-title: Nat Rev Immunol
– volume: 20
  start-page: 435
  year: 1981
  end-page: 439
  article-title: Myasthenia gravis following viral infection
  publication-title: Eur Neurol
– volume: 56
  start-page: 10
  year: 2008
  end-page: 16
  article-title: Clinical and pathological aspects of thymic epithelial tumors
  publication-title: Gen Thorac Cardiovasc Surg
– volume: 204
  start-page: 2899
  year: 2007
  end-page: 2912
  article-title: Dysregulated Epstein–Barr virus infection in the multiple sclerosis brain
  publication-title: J Exp Med
– volume: 79
  start-page: 378
  year: 1994
  end-page: 381
  article-title: ‘Extended’ thymectomy without sternotomy performed by cervicotomy and thoracoscopic technique in the treatment of myasthenia gravis
  publication-title: Int Surg
– volume: 65
  start-page: 1358
  year: 2008
  end-page: 1362
  article-title: A potential role for B‐cell activating factor in the pathogenesis of autoimmune myasthenia gravis
  publication-title: Arch Neurol
– volume: 8
  start-page: 113
  year: 1989
  end-page: ‐117
  article-title: Proliferative response of blood cells of patients with myasthenia gravis to purified mammalian acetylcholine receptor
  publication-title: Pathol Immunopathol Res
– volume: 34
  start-page: 802
  year: 1984
  end-page: 805
  article-title: In vitro synthesis of antibodies to acetylcholine receptor by peripheral blood cells: role of suppressor T cells in normal subjects
  publication-title: Neurology
– volume: 31
  start-page: 935
  year: 1981
  end-page: 943
  article-title: Acetylcholine receptor antibody synthesis by thymic lymphocytes: correlation with thymic histology
  publication-title: Neurology
– volume: 305
  start-page: 1313
  year: 1981
  end-page: 1318
  article-title: Thymus cells in myasthenia gravis selectively enhance production of anti‐acetylcholine‐receptor antibody by autologous blood lymphocytes
  publication-title: N Engl J Med
– volume: 136
  start-page: 887
  year: 1986
  end-page: 891
  article-title: Specific activation of lymphocytes against acetylcholine receptor in the thymus in myasthenia gravis
  publication-title: J Immunol
– volume: 36
  start-page: 264
  year: 2007
  end-page: 266
  article-title: Anti‐MuSK myasthenia gravis presenting with Epstein–Barr virus‐associated mononucleosis and immune‐mediated diabetes mellitus
  publication-title: Muscle Nerve
– volume: 6
  start-page: 310
  year: 1958
  end-page: 326
  article-title: Fatalities in myasthenia gravis: a review of 39 cases with 26 autopsies
  publication-title: Neurology
– volume: 197
  start-page: 128
  year: 2008
  end-page: 139
  article-title: BDNF and its receptors in human myasthenic thymus: implications for cell fate in thymic pathology
  publication-title: J Neuroimmunol
– volume: 133
  year: 2010
  end-page: e157
  article-title: Detection of Epstein–Barr virus and B‐cell follicles in the multiple sclerosis brain: what you find depends on how and where you look
  publication-title: Brain
– volume: 201
  start-page: 50
  year: 2008
  end-page: 56
  article-title: The myasthenia gravis thymus: a rare source of human autoantibody‐secreting plasma cells for testing potential therapeutics
  publication-title: J Neuroimmunol
– volume: 4
  start-page: 121
  year: 1993
  end-page: 132
  article-title: Interleukin‐6 overproduction by cultured thymic epithelial cells from patients with myasthenia gravis is potentially involved in thymic hyperplasia
  publication-title: Eur Cytokine Netw
– volume: 167
  start-page: 1935
  year: 2001
  end-page: 1944
  article-title: Somatic hypermutation and selection of B cells in thymic germinal centers responding to acetylcholine receptor in myasthenia gravis
  publication-title: J Immunol
– volume: 448
  start-page: 934
  year: 2007
  end-page: 937
  article-title: An IRF8‐binding promoter variant and AIRE control CHRNA1 promiscuous expression in thymus
  publication-title: Nature
– volume: 142
  start-page: 2654
  year: 1989
  end-page: 2659
  article-title: Inhibition of acute passive transfer experimental autoimmune myasthenia gravis with Fab antibody to complement C6
  publication-title: J Immunol
– volume: 24
  start-page: 305
  year: 2004
  end-page: 317
  article-title: Autoimmune polyglandular syndrome type I and the autoimmune regulator
  publication-title: Clin Lab Med
– volume: 1132
  start-page: 180
  year: 2008
  end-page: 192
  article-title: Genetic factors in autoimmune myasthenia gravis
  publication-title: Ann NY Acad Sci
– volume: 1
  start-page: 678
  year: 1977
  end-page: 680
  article-title: Intrathymic pathogenesis and dual genetic control of myasthenia gravis
  publication-title: Lancet
– volume: 35
  start-page: 185
  year: 1985
  end-page: 192
  article-title: Attempts to implicate viruses in myasthenia gravis
  publication-title: Neurology
– volume: 106
  start-page: 213
  year: 1991
  end-page: 220
  article-title: Prognosis of myasthenia gravis: a multi center follow‐up study of 844 patients
  publication-title: J Neurol Sci
– volume: 74
  start-page: 1118
  year: 2010
  end-page: 1126
  article-title: Detection of poliovirus‐infected macrophages in thymus of patients with myasthenia gravis
  publication-title: Neurology
– volume: 40
  start-page: 102
  year: 2010
  end-page: 107
  article-title: Biological implications of thymectomy for myasthenia gravis
  publication-title: Surg Today
– volume: 1
  start-page: 305
  year: 1978
  end-page: 307
  article-title: In‐vitro synthesis of anti‐acetylcholine‐receptor‐antibody by thymic lymphocytes in myasthenia gravis
  publication-title: Lancet
– volume: 36
  start-page: 78
  year: 1986
  end-page: 80
  article-title: Myasthenia gravis in identical twins
  publication-title: Neurology
– volume: 91
  start-page: 4668
  year: 1994
  end-page: 4672
  article-title: Involvement of human muscle acetylcholine receptor alpha‐subunit gene (CHRNA) in susceptibility to myasthenia gravis
  publication-title: Proc Natl Acad Sci USA
– volume: 125
  start-page: 185
  year: 2002
  end-page: 197
  article-title: Thymic myoid cells and germinal center formation in myasthenia gravis; possible roles in pathogenesis
  publication-title: J Neuroimmunol
– volume: 147
  start-page: 973
  year: 1978
  end-page: 983
  article-title: Role of complement in the pathogenesis of experimental autoimmune myasthenia gravis
  publication-title: J Exp Med
– volume: 80
  start-page: 4089
  year: 1983
  end-page: 4093
  article-title: Anti‐acetylcholine receptor antibodies directed against the alpha‐bungarotoxin binding site induce a unique form of experimental myasthenia
  publication-title: Proc Natl Acad Sci USA
– volume: 18
  start-page: 175
  year: 1998
  end-page: 192
  article-title: The human thymus. A chimeric organ comprised of central and peripheral lymphoid components
  publication-title: Immunol Res
– volume: 101
  start-page: 1564
  year: 2004
  end-page: 1569
  article-title: Pleiotropic effects of the 8.1 HLA haplotype in patients with autoimmune myasthenia gravis and thymus hyperplasia
  publication-title: Proc Natl Acad Sci USA
– volume: 39
  start-page: 160
  year: 1980
  end-page: 172
  article-title: Ultrastructural localization of the terminal and lytic ninth complement component (C9) at the motor end‐plate in myasthenia gravis
  publication-title: J Neuropathol Exp Neurol
– volume: 44
  start-page: 1732
  year: 1994
  end-page: 1737
  article-title: Treatment of myasthenia gravis with anti‐CD4 antibody: improvement correlates to decreased T‐cell autoreactivity
  publication-title: Neurology
– volume: 126
  start-page: 2304
  year: 2003
  end-page: 2311
  article-title: Clinical correlates with anti‐MuSK antibodies in generalized seronegative myasthenia gravis
  publication-title: Brain
– volume: 145
  start-page: 392
  year: 2009
  end-page: 398
  article-title: Thymectomy is more effective than conservative treatment for myasthenia gravis regarding outcome and clinical improvement
  publication-title: Surgery
– volume: 84
  start-page: 1174
  year: 1989
  end-page: 1180
  article-title: Molecular mimicry and myasthenia gravis. An autoantigenic site of the acetylcholine receptor alpha‐subunit that has biologic activity and reacts immunochemically with herpes simplex virus
  publication-title: J Clin Invest
– volume: 159
  start-page: 137
  year: 2005
  end-page: 145
  article-title: Myasthenia gravis patients, but not healthy subjects, recognize epitopes that are unique to the ϵ‐subunit of the acetylcholine receptor
  publication-title: J Neuroimmunol
– volume: 1132
  start-page: 315
  year: 2008
  end-page: 328
  article-title: Thymectomy for nonthymomatous myasthenia gravis. A critical analysis
  publication-title: Ann NY Acad Sci
– volume: 2
  start-page: 13
  year: 2007
  end-page: 22
  article-title: Thymomas: a cytological and immunohistochemical study, with emphasis on lymphoid and neuroendocrine markers
  publication-title: Diagn Pathol
– volume: 148
  start-page: 97
  year: 2004
  end-page: 105
  article-title: Thymic myoid cells express high levels of muscle genes
  publication-title: J Neuroimmunol
– volume: 7
  start-page: 365
  year: 2001
  end-page: 368
  article-title: Auto‐antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies
  publication-title: Nat Med
– volume: 175
  start-page: 7021
  year: 2005
  end-page: 7028
  article-title: Constitutive activation of p38 and ERK1/2 MAPKs in epithelial cells of myasthenic thymus leads to IL‐6 and RANTES overexpression: effects on survival and migration of peripheral T and B cells
  publication-title: J Immunol
– volume: 74
  start-page: 1127
  year: 2010
  end-page: 1135
  article-title: Absence of Epstein–Barr virus in the brain and CSF of patients with multiple sclerosis
  publication-title: Neurology
– volume: 155
  start-page: 1229
  year: 1999
  end-page: 1240
  article-title: Establishment of a human thymic myoid cell line: phenotypic and functional characteristics
  publication-title: Am J Pathol
– ident: e_1_2_7_52_2
  doi: 10.1016/S0165-5728(02)00038-3
– ident: e_1_2_7_152_2
  doi: 10.1212/WNL.28.3.273
– ident: e_1_2_7_33_2
  doi: 10.1007/BF00315656
– ident: e_1_2_7_117_2
  doi: 10.1002/(SICI)1521-4141(199911)29:11<3538::AID-IMMU3538>3.0.CO;2-Y
– ident: e_1_2_7_36_2
  doi: 10.1002/mus.21319
– ident: e_1_2_7_37_2
  doi: 10.1007/BF00315690
– ident: e_1_2_7_141_2
  doi: 10.1038/nri2527
– ident: e_1_2_7_12_2
  doi: 10.4049/jimmunol.140.8.2589
– ident: e_1_2_7_115_2
  doi: 10.1212/WNL.34.6.802
– ident: e_1_2_7_128_2
  doi: 10.1016/j.jtcvs.2006.10.026
– ident: e_1_2_7_19_2
  doi: 10.1093/brain/awn092
– ident: e_1_2_7_160_2
  doi: 10.1093/brain/awp296
– ident: e_1_2_7_39_2
  doi: 10.1016/S0140-6736(94)90858-3
– ident: e_1_2_7_57_2
  doi: 10.1007/BF02788778
– ident: e_1_2_7_3_2
  doi: 10.1196/annals.1254.054
– ident: e_1_2_7_47_2
  doi: 10.1371/journal.pmed.0060001
– ident: e_1_2_7_61_2
  doi: 10.1038/35095584
– ident: e_1_2_7_78_2
  doi: 10.1172/JCI113401
– ident: e_1_2_7_134_2
  doi: 10.1007/s00595-009-4134-2
– ident: e_1_2_7_126_2
  doi: 10.1196/annals.1405.004
– ident: e_1_2_7_53_2
  doi: 10.1016/S0140-6736(77)92118-3
– ident: e_1_2_7_114_2
  doi: 10.1212/WNL.33.5.604
– ident: e_1_2_7_54_2
  doi: 10.1002/ana.410220205
– volume: 89
  start-page: 3287
  year: 1997
  ident: e_1_2_7_102_2
  article-title: Thymocyte Fas expression is dysregulated in myasthenia gravis patients with anti‐acetylcholine receptor antibody
  publication-title: Blood
  doi: 10.1182/blood.V89.9.3287
– ident: e_1_2_7_65_2
  doi: 10.1002/cncr.10665
– ident: e_1_2_7_35_2
  doi: 10.3109/08916930903518107
– ident: e_1_2_7_64_2
  doi: 10.1016/S0003-4975(96)00376-1
– ident: e_1_2_7_60_2
  doi: 10.1001/archneur.65.10.1358
– ident: e_1_2_7_20_2
  doi: 10.1212/WNL.43.8.1581
– ident: e_1_2_7_142_2
  doi: 10.1080/08916930802024772
– ident: e_1_2_7_107_2
  doi: 10.4049/jimmunol.177.11.7868
– ident: e_1_2_7_157_2
  doi: 10.1016/S0002-9440(10)62960-4
– ident: e_1_2_7_15_2
  doi: 10.1212/01.WNL.0000065882.63904.53
– ident: e_1_2_7_25_2
  doi: 10.1016/j.jaut.2005.09.010
– ident: e_1_2_7_73_2
  doi: 10.1172/JCI112069
– ident: e_1_2_7_46_2
  doi: 10.1038/nri1786
– volume: 4
  start-page: 121
  year: 1993
  ident: e_1_2_7_138_2
  article-title: Interleukin‐6 overproduction by cultured thymic epithelial cells from patients with myasthenia gravis is potentially involved in thymic hyperplasia
  publication-title: Eur Cytokine Netw
– ident: e_1_2_7_59_2
  doi: 10.1016/j.jneuroim.2006.05.023
– ident: e_1_2_7_96_2
  doi: 10.1212/WNL.41.8.1270
– ident: e_1_2_7_151_2
  doi: 10.1212/WNL.35.9.1381
– ident: e_1_2_7_131_2
  doi: 10.1016/j.athoracsur.2010.01.038
– ident: e_1_2_7_24_2
  doi: 10.1006/clim.1999.4710
– ident: e_1_2_7_111_2
  doi: 10.1016/S0140-6736(78)90073-9
– ident: e_1_2_7_84_2
  doi: 10.4049/jimmunol.174.10.5941
– ident: e_1_2_7_89_2
– ident: e_1_2_7_105_2
  doi: 10.1016/j.jneuroim.2005.03.011
– volume: 137
  start-page: 1221
  year: 1986
  ident: e_1_2_7_121_2
  article-title: Antibodies to acetylcholine receptor and tetanus toxoid: in vitro synthesis by thymic lymphocytes
  publication-title: J Immunol
  doi: 10.4049/jimmunol.137.4.1221
– ident: e_1_2_7_99_2
  doi: 10.1159/000157142
– ident: e_1_2_7_132_2
  doi: 10.1016/j.surg.2008.11.009
– ident: e_1_2_7_140_2
  doi: 10.1016/j.jneuroim.2008.06.028
– ident: e_1_2_7_150_2
  doi: 10.1056/NEJM198501243120407
– ident: e_1_2_7_94_2
  doi: 10.1212/WNL.36.5.618
– ident: e_1_2_7_90_2
  doi: 10.1016/j.jneuroim.2008.06.016
– ident: e_1_2_7_50_2
  doi: 10.1172/JCI3234
– ident: e_1_2_7_101_2
  doi: 10.1016/j.jneuroim.2004.09.017
– ident: e_1_2_7_85_2
  doi: 10.1007/BF02899226
– ident: e_1_2_7_69_2
  doi: 10.1212/01.WNL.0000032502.89361.0C
– ident: e_1_2_7_79_2
  doi: 10.1002/ana.410280303
– volume: 6
  start-page: 310
  year: 1958
  ident: e_1_2_7_32_2
  article-title: Fatalities in myasthenia gravis: a review of 39 cases with 26 autopsies
  publication-title: Neurology
– volume: 54
  start-page: 378
  year: 1983
  ident: e_1_2_7_113_2
  article-title: Greatly increased autoantibody production in myasthenia gravis by thymocyte suspensions prepared with proteolytic enzymes
  publication-title: Clin Exp Immunol
– ident: e_1_2_7_136_2
  doi: 10.1111/j.1749-6632.2009.05123.x
– volume: 131
  start-page: 385
  year: 1988
  ident: e_1_2_7_155_2
  article-title: Epstein–Barr virus genome in thymoma and thymic lymphoid hyperplasia
  publication-title: Am J Pathol
– ident: e_1_2_7_4_2
  doi: 10.1038/nri916
– ident: e_1_2_7_63_2
  doi: 10.1016/0092-8674(91)90007-L
– ident: e_1_2_7_147_2
  doi: 10.1002/mus.20746
– ident: e_1_2_7_51_2
  doi: 10.1002/eji.200939914
– ident: e_1_2_7_5_2
  doi: 10.1212/WNL.26.11.1054
– ident: e_1_2_7_7_2
  doi: 10.1016/S0165-5728(96)00144-0
– ident: e_1_2_7_68_2
  doi: 10.1212/WNL.34.1.66
– ident: e_1_2_7_95_2
  doi: 10.1212/WNL.44.9.1732
– ident: e_1_2_7_82_2
  doi: 10.1016/j.jneuroim.2003.11.013
– ident: e_1_2_7_158_2
  doi: 10.1212/WNL.0b013e3181d7d884
– ident: e_1_2_7_56_2
  doi: 10.1002/ana.21628
– ident: e_1_2_7_75_2
  doi: 10.1007/BF02899268
– ident: e_1_2_7_76_2
  doi: 10.1186/1746-1596-2-13
– volume: 79
  start-page: 378
  year: 1994
  ident: e_1_2_7_130_2
  article-title: ‘Extended’ thymectomy without sternotomy performed by cervicotomy and thoracoscopic technique in the treatment of myasthenia gravis
  publication-title: Int Surg
– ident: e_1_2_7_143_2
  doi: 10.1038/ni.1863
– ident: e_1_2_7_124_2
  doi: 10.1084/jem.20071030
– ident: e_1_2_7_163_2
  doi: 10.1002/ana.22031
– ident: e_1_2_7_55_2
  doi: 10.1016/S0002-9440(10)65225-X
– ident: e_1_2_7_30_2
  doi: 10.1073/pnas.91.11.4668
– ident: e_1_2_7_10_2
  doi: 10.1084/jem.147.4.973
– ident: e_1_2_7_43_2
  doi: 10.1212/01.WNL.0000150587.71497.B6
– ident: e_1_2_7_45_2
  doi: 10.1002/ana.21902
– ident: e_1_2_7_27_2
  doi: 10.1016/0165-5728(93)90021-P
– ident: e_1_2_7_145_2
  doi: 10.1056/NEJM197412122912403
– ident: e_1_2_7_123_2
  doi: 10.1016/j.jneuroim.2008.04.019
– ident: e_1_2_7_154_2
  doi: 10.1016/0165-5728(86)90082-2
– ident: e_1_2_7_42_2
  doi: 10.1002/ana.20386
– ident: e_1_2_7_83_2
  doi: 10.1111/j.1600-065X.1998.tb01217.x
– ident: e_1_2_7_98_2
  doi: 10.1196/annals.1254.027
– ident: e_1_2_7_162_2
  doi: 10.1093/brain/awq223
– volume: 157
  start-page: 3752
  year: 1996
  ident: e_1_2_7_77_2
  article-title: Expression of acetylcholine receptor genes in human thymic epithelial cells: implications for myasthenia gravis
  publication-title: J Immunol
  doi: 10.4049/jimmunol.157.8.3752
– ident: e_1_2_7_38_2
  doi: 10.1007/s00415-008-3004-y
– volume: 18
  start-page: 1355
  year: 1995
  ident: e_1_2_7_148_2
  article-title: Myasthenia gravis associated with dual infection of HIV and HTLV‐I
  publication-title: Muscle Nerve
– ident: e_1_2_7_110_2
  doi: 10.1007/BF00916820
– ident: e_1_2_7_127_2
  doi: 10.1016/S0022-5223(03)00938-3
– ident: e_1_2_7_156_2
  doi: 10.1097/00126334-200203010-00012
– volume: 139
  start-page: 995
  year: 1991
  ident: e_1_2_7_106_2
  article-title: The thymus in myasthenia gravis. Changes typical for the human disease are absent in experimental autoimmune myasthenia gravis of the rat
  publication-title: Am J Pathol
– ident: e_1_2_7_9_2
  doi: 10.1073/pnas.80.13.4089
– ident: e_1_2_7_70_2
  doi: 10.1007/s11748-007-0185-8
– ident: e_1_2_7_6_2
  doi: 10.1097/00005072-198003000-00005
– ident: e_1_2_7_149_2
  doi: 10.1172/JCI114282
– ident: e_1_2_7_135_2
  doi: 10.1016/S1471-4906(00)01821-4
– ident: e_1_2_7_97_2
  doi: 10.1172/JCI117050
– volume: 95
  start-page: 747
  year: 1988
  ident: e_1_2_7_67_2
  article-title: “Maximal” thymectomy for myasthenia gravis. Results
  publication-title: J Thorac Cardiovasc Surg
  doi: 10.1016/S0022-5223(19)35684-3
– ident: e_1_2_7_86_2
  doi: 10.1016/j.it.2006.12.008
– ident: e_1_2_7_11_2
  doi: 10.4049/jimmunol.142.8.2654
– ident: e_1_2_7_21_2
  doi: 10.1111/j.1749-6632.1998.tb10978.x
– ident: e_1_2_7_161_2
  doi: 10.1212/WNL.0b013e3181d865a1
– ident: e_1_2_7_120_2
  doi: 10.1056/NEJM198111263052203
– ident: e_1_2_7_104_2
  doi: 10.1212/WNL.0b013e3181d31e47
– ident: e_1_2_7_66_2
  doi: 10.1007/s11748-007-0177-8
– ident: e_1_2_7_29_2
  doi: 10.1196/annals.1405.027
– volume: 136
  start-page: 887
  year: 1986
  ident: e_1_2_7_118_2
  article-title: Specific activation of lymphocytes against acetylcholine receptor in the thymus in myasthenia gravis
  publication-title: J Immunol
  doi: 10.4049/jimmunol.136.3.887
– ident: e_1_2_7_139_2
  doi: 10.4049/jimmunol.175.10.7021
– ident: e_1_2_7_23_2
  doi: 10.1212/WNL.36.1.78
– ident: e_1_2_7_16_2
  doi: 10.1002/ana.20061
– start-page: 1218
  volume-title: Anderson's pathology
  year: 1996
  ident: e_1_2_7_44_2
– ident: e_1_2_7_92_2
  doi: 10.1016/j.cll.2004.01.008
– ident: e_1_2_7_31_2
  doi: 10.1038/nature06066
– ident: e_1_2_7_48_2
  doi: 10.1016/S0002-9440(10)61762-2
– volume: 185
  start-page: 136
  year: 2007
  ident: e_1_2_7_18_2
  article-title: Effect of sera from AChR‐antibody negative myasthenia gravis patients on AChR and MuSK in cell cultures
  publication-title: J Neuroimmunol
  doi: 10.1016/j.jneuroim.2007.01.010
– ident: e_1_2_7_58_2
  doi: 10.1182/blood-2005-06-2383
– ident: e_1_2_7_159_2
  doi: 10.1093/brain/awp200
– ident: e_1_2_7_2_2
  doi: 10.1186/1471-2377-10-46
– ident: e_1_2_7_28_2
  doi: 10.1016/j.jneuroim.2009.02.004
– ident: e_1_2_7_119_2
  doi: 10.1007/BF00915728
– ident: e_1_2_7_103_2
  doi: 10.1182/blood-2003-11-3900
– ident: e_1_2_7_88_2
  doi: 10.1007/s004410050609
– ident: e_1_2_7_153_2
  doi: 10.1212/WNL.35.2.185
– ident: e_1_2_7_17_2
  doi: 10.1055/s-2004-829589
– ident: e_1_2_7_34_2
  doi: 10.1212/WNL.0b013e3181a41211
– ident: e_1_2_7_87_2
  doi: 10.2353/ajpath.2007.070240
– ident: e_1_2_7_109_2
  doi: 10.1016/0090-1229(90)90035-O
– ident: e_1_2_7_13_2
  doi: 10.1002/mus.880171208
– ident: e_1_2_7_144_2
  doi: 10.1111/j.1600-065X.1998.tb01204.x
– ident: e_1_2_7_80_2
  doi: 10.1016/j.jneuroim.2008.06.027
– ident: e_1_2_7_49_2
  doi: 10.4049/jimmunol.167.4.1935
– volume: 51
  start-page: 292
  year: 1984
  ident: e_1_2_7_74_2
  article-title: Thymic epithelial antigen, acquired during ontogeny and defined by the anti‐p19 monoclonal antibody, is lost in thymomas
  publication-title: Lab Invest
– ident: e_1_2_7_137_2
  doi: 10.4049/jimmunol.174.9.5324
– ident: e_1_2_7_93_2
  doi: 10.1111/j.1365-2249.2007.03442.x
– volume: 145
  start-page: 2115
  year: 1990
  ident: e_1_2_7_122_2
  article-title: Thymic B cells from myasthenia gravis patients are activated B cells. Phenotypic and functional analysis
  publication-title: J Immunol
  doi: 10.4049/jimmunol.145.7.2115
– ident: e_1_2_7_41_2
  doi: 10.1016/S0022-510X(03)00087-X
– ident: e_1_2_7_81_2
  doi: 10.1172/JCI115843
– ident: e_1_2_7_8_2
  doi: 10.1056/NEJM197805182982004
– ident: e_1_2_7_14_2
  doi: 10.1093/brain/awg223
– ident: e_1_2_7_129_2
  doi: 10.1016/0090-1229(85)90018-2
– ident: e_1_2_7_133_2
  doi: 10.1212/WNL.55.1.16
– ident: e_1_2_7_62_2
  doi: 10.1002/eji.1830270402
– ident: e_1_2_7_116_2
  doi: 10.1002/ana.410190119
– ident: e_1_2_7_100_2
  doi: 10.1073/pnas.87.19.7792
– volume: 15
  start-page: 202
  year: 2008
  ident: e_1_2_7_22_2
  article-title: Thymoma‐associated myasthenia gravis: outcome, clinical and pathological correlations in 197 on a 20‐year experience
  publication-title: J Neuroimmunol
– ident: e_1_2_7_40_2
  article-title: The use of rituximab in myasthenia gravis and Lambert–Eaton myasthenic syndrome
  publication-title: J Neurol Neurosurg Psychiatry
– start-page: 9
  volume-title: World Health Organization. International histological classification of tumors
  year: 1999
  ident: e_1_2_7_71_2
– ident: e_1_2_7_26_2
  doi: 10.1073/pnas.0406756101
– ident: e_1_2_7_72_2
  doi: 10.1200/JCO.2004.10.113
– ident: e_1_2_7_112_2
  doi: 10.1212/WNL.31.8.935
– ident: e_1_2_7_146_2
  doi: 10.1159/000115275
– ident: e_1_2_7_91_2
  doi: 10.1146/annurev.immunol.23.021704.115601
– ident: e_1_2_7_125_2
  doi: 10.1016/0022-510X(91)90260-E
– ident: e_1_2_7_108_2
  doi: 10.1111/j.1365-2249.1991.tb05625.x
SSID ssj0001867
Score 2.2768645
SecondaryResourceType review_article
Snippet Myasthenia gravis (MG) is an autoimmune disorder caused, in most cases, by autoantibodies against components of the neuromuscular junction, frequently the...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 467
SubjectTerms Autoantibodies - immunology
Autoimmune Diseases - immunology
Autoimmune Diseases - metabolism
Autoimmune Diseases - pathology
Biological and medical sciences
Diseases of striated muscles. Neuromuscular diseases
Humans
Immunity, Innate - physiology
inflammation
innate immunity
Medical sciences
Muscle
myasthenia gravis
Myasthenia Gravis - immunology
Myasthenia Gravis - pathology
Myasthenia Gravis - therapy
Neurology
Pharmacology. Drug treatments
thymus
Thymus Gland - abnormalities
Thymus Gland - immunology
Thymus Gland - metabolism
viral infection
Title The thymus in myasthenia gravis: Site of "innate autoimmunity"?
URI https://api.istex.fr/ark:/67375/WNG-3N6JM4QX-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmus.22103
https://www.ncbi.nlm.nih.gov/pubmed/21922466
https://www.proquest.com/docview/890676329
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhgdJLm763jyBKKb14Y1uyLLWHUtKmIbALaRK6h4KQvBKYNN4Se6HpKT8k-XP5JZ2R1162pFB6k2EGe17SyBp9Q8grA3uS1GcsUi72EVcGQkpNk0hyacAdvOQ2oH2Oxd4x359kkzXyrrsL0-JD9D_cMDLCfI0Bbmy9vQQNPZ3XwxQ2LIj0mTCBuPkfvyyhoxCorS1flBGswpMOVShOt3vOlbVoA9X6E2sjTQ3q8W1fi5sSz9U8NixEu3fJt06Etv7kZDhv7LD49Qe643_KuEnuLBJU-qH1qHtkzVX3ya3R4gj-AdkBx6JgXWCiZUVPz02NAAqlodjJqKzf0kPIYunM0-uLy7KqIJelZt7MynARpTm_vrh6_5Ac7X462tmLFp0YogIB2qJCScESp8TU2xw2kCy3xlgrGRPS-YILrzizClGPlUzgyWTYV33KlJc5M-wRWa9mlXtCaB672DrDZeI8d0Vukmma4EAW1sXMDMibziS6WKCUY7OM77rFV041iKeDTgbkZU_6o4XmuInodbBrT2HOTrCWLc_01_FnzcZif8QPJvpgQLZWDN8zpDzL8QLygNDOEzSEIJ6rmMrN4EUSBIdpGkketx6yZIYEOuVCgFjBzn__UD06PgyDp_9O-ozcTruSxOQ5WW_O5u4F5EiN3QrB8BsNbgzJ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9swED-6Fra9rPu_7E8nxhh7cWpbsi2NQRllXdY1ga4pzcsQkiOB6eqMxoF1T_0g3ZfrJ-lJjh0yOhh7s-GEfbo76Sfp9DuA1wrXJLFNaCBMaAMmFIaUGEcBZ1yhO1jOtGf7HKS9Q7Y7SkYr8L65C1PzQ7Qbbi4y_HjtAtxtSG8uWENPZtNujCsWegPW_Pmcg0RfF-RRjqqtTmDkAc7Do4ZXKIw326ZLs9Ga69ifLjtSTbGDbF3Z4jrouYxk_VS0sw7fGiXqDJTj7qzS3fzXH_yO_6vlXbgzx6jkQ-1U92DFlPfhZn9-Cv8AttG3CBoYG5GiJCdnauo4FApFXDGjYvqOHCCQJRNLLs8virJEOEvUrJoU_i5KdXZ5_nvrIQx3Pg63e8G8GEOQO462IBc8pZER6djqDNeQNNNKac0pTbmxOUutYFQLR3wseIRvKnGl1cdUWJ5RRR_BajkpzRMgWWhCbRTjkbHM5JmKxnHkHniuTUhVB942NpH5nKjc1cv4LmuK5ViietL3SQdetaI_anaO64TeeMO2Eur02KWzZYk8GnySdJDu9tn-SO53YGPJ8m2DmCWZu4PcAdK4gsQodEcrqjQT_BBHxXGkdiKPaxdZNEYMHbM0RbW8of_-o7J_eOAfnv676Eu41Rv29-Te58GXZ3A7bjIUo-ewWp3OzAuETJXe8JFxBc3vEOc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVqq48H4sj2IhhLhkm8SO48ABocJSCruitFX3gGTZiS1Fpdmqm5Uop_4Q-HP9JYydTVaLioS4OdKMkvHMeMbx-BuAZwr3JLFNaJCZ0AYsU-hSWREFggmF5mAF0x7tc8S3D9jOOBmvwKv2LkyDD9H9cHOe4ddr5-Anhd1cgIYez6b9GDcs9AqsMY5h0mVEXxbYUQ6pralfFAGG4XELKxTGmx3rUjBac_P63RVHqinOj20aW1yWeS4nsj4SDa7D11aGpgDlqD-rdT__8Qe8438KeQOuzTNU8qYxqZuwYqpbsD6cn8Hfhi20LILqRSZSVuT4TE0dgkKpiGtlVE5fkj1MY8nEkovzn2VVYTJL1KyelP4mSn12cf7r9R3YH7zb39oO5q0YgtwhtAV5JjiNTMYLq1PcQdJUK6W1oJQLY3PGbcaozhzscSYifFKJa6xe0MyKlCp6F1arSWXuA0lDE2qjmIiMZSZPVVTEkRuIXJuQqh68aFUi8zlMueuW8U02AMuxRPGkn5MePO1ITxpsjsuInnu9dhTq9MgVs6WJPBy9l3TEd4Zsdyx3e7CxpPiOIWZJ6m4g94C0liDRB93BiqrMBF8kUHBcpx3JvcZCFsyYQceMcxTL6_nvHyqHB3t-8ODfSZ_A-ue3A_npw-jjQ7gat-WJ0SNYrU9n5jHmS7Xe8H7xG5aUD5Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+thymus+in+myasthenia+gravis%3A+Site+of+%22innate+autoimmunity%22%3F&rft.jtitle=Muscle+%26+nerve&rft.au=Cavalcante%2C+Paola&rft.au=Le+Panse%2C+Rozen&rft.au=Berrih-Aknin%2C+Sonia&rft.au=Maggi%2C+Lorenzo&rft.date=2011-10-01&rft.issn=1097-4598&rft.eissn=1097-4598&rft.volume=44&rft.issue=4&rft.spage=467&rft_id=info:doi/10.1002%2Fmus.22103&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-639X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-639X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-639X&client=summon