The thymus in myasthenia gravis: Site of "innate autoimmunity"?
Myasthenia gravis (MG) is an autoimmune disorder caused, in most cases, by autoantibodies against components of the neuromuscular junction, frequently the acetylcholine receptor (AChR), and less often the muscle‐specific kinase receptor. The thymus plays a major role in the pathogenesis of MG with a...
Saved in:
Published in | Muscle & nerve Vol. 44; no. 4; pp. 467 - 484 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.10.2011
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 0148-639X 1097-4598 1097-4598 |
DOI | 10.1002/mus.22103 |
Cover
Abstract | Myasthenia gravis (MG) is an autoimmune disorder caused, in most cases, by autoantibodies against components of the neuromuscular junction, frequently the acetylcholine receptor (AChR), and less often the muscle‐specific kinase receptor. The thymus plays a major role in the pathogenesis of MG with anti‐AChR antibodies: it shows marked pathologic alterations (hyperplastic or tumoral) in most AChR‐positive patients and contains the elements required to initiate and sustain an autoimmune reaction (AChR autoantigen, AChR‐specific T cells, and autoantibody‐secreting plasma cells). In this study we review early and more recent findings implicating the thymus as site of AChR autosensitization in MG and briefly discuss the therapeutic role of thymectomy. We also summarize data showing that the MG thymus is in a state of chronic inflammation, and we review emerging evidence of a viral contribution to the onset and maintenance of the thymic autoimmune response. Muscle Nerve, 2011 |
---|---|
AbstractList | Myasthenia gravis (MG) is an autoimmune disorder caused, in most cases, by autoantibodies against components of the neuromuscular junction, frequently the acetylcholine receptor (AChR), and less often the muscle-specific kinase receptor. The thymus plays a major role in the pathogenesis of MG with anti-AChR antibodies: it shows marked pathologic alterations (hyperplastic or tumoral) in most AChR-positive patients and contains the elements required to initiate and sustain an autoimmune reaction (AChR autoantigen, AChR-specific T cells, and autoantibody-secreting plasma cells). In this study we review early and more recent findings implicating the thymus as site of AChR autosensitization in MG and briefly discuss the therapeutic role of thymectomy. We also summarize data showing that the MG thymus is in a state of chronic inflammation, and we review emerging evidence of a viral contribution to the onset and maintenance of the thymic autoimmune response. Myasthenia gravis (MG) is an autoimmune disorder caused, in most cases, by autoantibodies against components of the neuromuscular junction, frequently the acetylcholine receptor (AChR), and less often the muscle‐specific kinase receptor. The thymus plays a major role in the pathogenesis of MG with anti‐AChR antibodies: it shows marked pathologic alterations (hyperplastic or tumoral) in most AChR‐positive patients and contains the elements required to initiate and sustain an autoimmune reaction (AChR autoantigen, AChR‐specific T cells, and autoantibody‐secreting plasma cells). In this study we review early and more recent findings implicating the thymus as site of AChR autosensitization in MG and briefly discuss the therapeutic role of thymectomy. We also summarize data showing that the MG thymus is in a state of chronic inflammation, and we review emerging evidence of a viral contribution to the onset and maintenance of the thymic autoimmune response. Muscle Nerve, 2011 Myasthenia gravis (MG) is an autoimmune disorder caused, in most cases, by autoantibodies against components of the neuromuscular junction, frequently the acetylcholine receptor (AChR), and less often the muscle-specific kinase receptor. The thymus plays a major role in the pathogenesis of MG with anti-AChR antibodies: it shows marked pathologic alterations (hyperplastic or tumoral) in most AChR-positive patients and contains the elements required to initiate and sustain an autoimmune reaction (AChR autoantigen, AChR-specific T cells, and autoantibody-secreting plasma cells). In this study we review early and more recent findings implicating the thymus as site of AChR autosensitization in MG and briefly discuss the therapeutic role of thymectomy. We also summarize data showing that the MG thymus is in a state of chronic inflammation, and we review emerging evidence of a viral contribution to the onset and maintenance of the thymic autoimmune response.Myasthenia gravis (MG) is an autoimmune disorder caused, in most cases, by autoantibodies against components of the neuromuscular junction, frequently the acetylcholine receptor (AChR), and less often the muscle-specific kinase receptor. The thymus plays a major role in the pathogenesis of MG with anti-AChR antibodies: it shows marked pathologic alterations (hyperplastic or tumoral) in most AChR-positive patients and contains the elements required to initiate and sustain an autoimmune reaction (AChR autoantigen, AChR-specific T cells, and autoantibody-secreting plasma cells). In this study we review early and more recent findings implicating the thymus as site of AChR autosensitization in MG and briefly discuss the therapeutic role of thymectomy. We also summarize data showing that the MG thymus is in a state of chronic inflammation, and we review emerging evidence of a viral contribution to the onset and maintenance of the thymic autoimmune response. |
Author | Cavalcante, Paola Le Panse, Rozen Mantegazza, Renato Baggi, Fulvio Berrih-aknin, Sonia Bernasconi, Pia Antozzi, Carlo Maggi, Lorenzo |
Author_xml | – sequence: 1 givenname: Paola surname: Cavalcante fullname: Cavalcante, Paola organization: Department of Neurology IV, Neuromuscular Diseases and Neuroimmunology, Fondazione Istituto Neurologico "Carlo Besta," Via Celoria 11, 20133 Milan, Italy – sequence: 2 givenname: Rozen surname: Le Panse fullname: Le Panse, Rozen organization: Unité mixte de recherche, CNRS UMR7215/INSERM U974/UPMC/AIM, Thérapie des maladies du muscle strié, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France – sequence: 3 givenname: Sonia surname: Berrih-aknin fullname: Berrih-aknin, Sonia organization: Unité mixte de recherche, CNRS UMR7215/INSERM U974/UPMC/AIM, Thérapie des maladies du muscle strié, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France – sequence: 4 givenname: Lorenzo surname: Maggi fullname: Maggi, Lorenzo organization: Department of Neurology IV, Neuromuscular Diseases and Neuroimmunology, Fondazione Istituto Neurologico "Carlo Besta," Via Celoria 11, 20133 Milan, Italy – sequence: 5 givenname: Carlo surname: Antozzi fullname: Antozzi, Carlo organization: Department of Neurology IV, Neuromuscular Diseases and Neuroimmunology, Fondazione Istituto Neurologico "Carlo Besta," Via Celoria 11, 20133 Milan, Italy – sequence: 6 givenname: Fulvio surname: Baggi fullname: Baggi, Fulvio organization: Department of Neurology IV, Neuromuscular Diseases and Neuroimmunology, Fondazione Istituto Neurologico "Carlo Besta," Via Celoria 11, 20133 Milan, Italy – sequence: 7 givenname: Pia surname: Bernasconi fullname: Bernasconi, Pia organization: Department of Neurology IV, Neuromuscular Diseases and Neuroimmunology, Fondazione Istituto Neurologico "Carlo Besta," Via Celoria 11, 20133 Milan, Italy – sequence: 8 givenname: Renato surname: Mantegazza fullname: Mantegazza, Renato email: rmantegazza@istituto-besta.it organization: Department of Neurology IV, Neuromuscular Diseases and Neuroimmunology, Fondazione Istituto Neurologico "Carlo Besta," Via Celoria 11, 20133 Milan, Italy |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24570829$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21922466$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kF1LHDEYRkNR6rr1wj8ggyDixWgyyeTDGymia4sfiCt6F96ZzbjRmYxNMm3n33fq7rZQ7FUSOOdAnk205lpnENom-JBgnB01XTjMMoLpBzQiWImU5UquoREmTKacqscNtBnCM8aYSC4-oo2MqCxjnI_QyXRukjjvh0RiXdL0EOLcOAvJk4fvNhwndzaapK2SXescDFfoYmubpnM29rsnn9B6BXUwW8tzjKbnZ9PTi_TyZvLl9PNlWuaZoGmpJKfEKD6rCsEYp6IAKApJKZemKhmvFKOFwlxhJcnwglwQRmdUVVJQoGO0v8i--vZbZ0LUjQ2lqWtwpu2CloMqOM3UQO4sya5ozEy_etuA7_XqywOwtwQglFBXHlxpw1-O5QLLt9DRgit9G4I3lS5thGhbFz3YWhOsf4-vh-X02_iDcfCPsYq-xy7rP2xt-v-D-ur-bmWkC8OGaH7-McC_aC6oyPXD9UTTa_71it0-6lv6C43koEA |
CODEN | MUNEDE |
CitedBy_id | crossref_primary_10_15406_joentr_2016_05_00126 crossref_primary_10_1007_s12035_014_8985_1 crossref_primary_10_1007_s12035_016_0024_y crossref_primary_10_1016_j_jaut_2022_102895 crossref_primary_10_1111_hepr_12045 crossref_primary_10_1080_01616412_2017_1407021 crossref_primary_10_1016_j_expneurol_2014_01_024 crossref_primary_10_1002_mus_23964 crossref_primary_10_1016_j_heliyon_2024_e34364 crossref_primary_10_1016_j_jneuroim_2018_03_008 crossref_primary_10_1111_cen3_12238 crossref_primary_10_3109_00207454_2015_1038712 crossref_primary_10_1007_s12253_017_0213_7 crossref_primary_10_1016_j_autrev_2022_103104 crossref_primary_10_1016_j_pediatrneurol_2012_07_008 crossref_primary_10_1016_j_jns_2012_12_025 crossref_primary_10_1177_17562864241226745 crossref_primary_10_1016_j_jaut_2013_12_001 crossref_primary_10_1080_15548627_2017_1375633 crossref_primary_10_1007_s40263_023_01059_8 crossref_primary_10_1016_j_jaut_2025_103395 crossref_primary_10_1111_ane_13332 crossref_primary_10_3390_ijms22158058 crossref_primary_10_4103_0028_3886_314565 crossref_primary_10_1016_j_jns_2013_06_018 crossref_primary_10_3389_fneur_2021_596859 crossref_primary_10_1016_j_imbio_2016_06_012 crossref_primary_10_1111_nyas_13534 crossref_primary_10_1021_acschemneuro_9b00678 crossref_primary_10_1016_j_jaut_2013_12_013 crossref_primary_10_1016_j_ncl_2020_03_005 crossref_primary_10_4187_respcare_03210 crossref_primary_10_1002_mus_24635 crossref_primary_10_3389_fendo_2017_00169 crossref_primary_10_3390_biomedicines11030732 crossref_primary_10_1080_14712598_2023_2185131 crossref_primary_10_1016_j_jaut_2018_11_005 crossref_primary_10_1016_j_jneuroim_2018_03_021 crossref_primary_10_1055_s_0041_1733794 crossref_primary_10_1111_sji_12676 crossref_primary_10_1016_j_jneuroim_2013_09_006 crossref_primary_10_1007_s10072_017_3009_3 crossref_primary_10_1016_j_autrev_2013_03_010 crossref_primary_10_1016_j_jneuroim_2015_11_024 crossref_primary_10_1002_mus_26919 crossref_primary_10_1093_infdis_jiae600 crossref_primary_10_1186_s12974_017_0892_8 crossref_primary_10_1371_journal_pone_0094118 crossref_primary_10_1111_cen3_12585 crossref_primary_10_1016_j_imbio_2015_12_007 crossref_primary_10_22599_bioj_315 crossref_primary_10_1007_s13311_022_01181_3 crossref_primary_10_1002_mus_27177 |
Cites_doi | 10.1016/S0165-5728(02)00038-3 10.1212/WNL.28.3.273 10.1007/BF00315656 10.1002/(SICI)1521-4141(199911)29:11<3538::AID-IMMU3538>3.0.CO;2-Y 10.1002/mus.21319 10.1007/BF00315690 10.1038/nri2527 10.4049/jimmunol.140.8.2589 10.1212/WNL.34.6.802 10.1016/j.jtcvs.2006.10.026 10.1093/brain/awn092 10.1093/brain/awp296 10.1016/S0140-6736(94)90858-3 10.1007/BF02788778 10.1196/annals.1254.054 10.1371/journal.pmed.0060001 10.1038/35095584 10.1172/JCI113401 10.1007/s00595-009-4134-2 10.1196/annals.1405.004 10.1016/S0140-6736(77)92118-3 10.1212/WNL.33.5.604 10.1002/ana.410220205 10.1182/blood.V89.9.3287 10.1002/cncr.10665 10.3109/08916930903518107 10.1016/S0003-4975(96)00376-1 10.1001/archneur.65.10.1358 10.1212/WNL.43.8.1581 10.1080/08916930802024772 10.4049/jimmunol.177.11.7868 10.1016/S0002-9440(10)62960-4 10.1212/01.WNL.0000065882.63904.53 10.1016/j.jaut.2005.09.010 10.1172/JCI112069 10.1038/nri1786 10.1016/j.jneuroim.2006.05.023 10.1212/WNL.41.8.1270 10.1212/WNL.35.9.1381 10.1016/j.athoracsur.2010.01.038 10.1006/clim.1999.4710 10.1016/S0140-6736(78)90073-9 10.4049/jimmunol.174.10.5941 10.1016/j.jneuroim.2005.03.011 10.4049/jimmunol.137.4.1221 10.1159/000157142 10.1016/j.surg.2008.11.009 10.1016/j.jneuroim.2008.06.028 10.1056/NEJM198501243120407 10.1212/WNL.36.5.618 10.1016/j.jneuroim.2008.06.016 10.1172/JCI3234 10.1016/j.jneuroim.2004.09.017 10.1007/BF02899226 10.1212/01.WNL.0000032502.89361.0C 10.1002/ana.410280303 10.1111/j.1749-6632.2009.05123.x 10.1038/nri916 10.1016/0092-8674(91)90007-L 10.1002/mus.20746 10.1002/eji.200939914 10.1212/WNL.26.11.1054 10.1016/S0165-5728(96)00144-0 10.1212/WNL.34.1.66 10.1212/WNL.44.9.1732 10.1016/j.jneuroim.2003.11.013 10.1212/WNL.0b013e3181d7d884 10.1002/ana.21628 10.1007/BF02899268 10.1186/1746-1596-2-13 10.1038/ni.1863 10.1084/jem.20071030 10.1002/ana.22031 10.1016/S0002-9440(10)65225-X 10.1073/pnas.91.11.4668 10.1084/jem.147.4.973 10.1212/01.WNL.0000150587.71497.B6 10.1002/ana.21902 10.1016/0165-5728(93)90021-P 10.1056/NEJM197412122912403 10.1016/j.jneuroim.2008.04.019 10.1016/0165-5728(86)90082-2 10.1002/ana.20386 10.1111/j.1600-065X.1998.tb01217.x 10.1196/annals.1254.027 10.1093/brain/awq223 10.4049/jimmunol.157.8.3752 10.1007/s00415-008-3004-y 10.1007/BF00916820 10.1016/S0022-5223(03)00938-3 10.1097/00126334-200203010-00012 10.1073/pnas.80.13.4089 10.1007/s11748-007-0185-8 10.1097/00005072-198003000-00005 10.1172/JCI114282 10.1016/S1471-4906(00)01821-4 10.1172/JCI117050 10.1016/S0022-5223(19)35684-3 10.1016/j.it.2006.12.008 10.4049/jimmunol.142.8.2654 10.1111/j.1749-6632.1998.tb10978.x 10.1212/WNL.0b013e3181d865a1 10.1056/NEJM198111263052203 10.1212/WNL.0b013e3181d31e47 10.1007/s11748-007-0177-8 10.1196/annals.1405.027 10.4049/jimmunol.136.3.887 10.4049/jimmunol.175.10.7021 10.1212/WNL.36.1.78 10.1002/ana.20061 10.1016/j.cll.2004.01.008 10.1038/nature06066 10.1016/S0002-9440(10)61762-2 10.1016/j.jneuroim.2007.01.010 10.1182/blood-2005-06-2383 10.1093/brain/awp200 10.1186/1471-2377-10-46 10.1016/j.jneuroim.2009.02.004 10.1007/BF00915728 10.1182/blood-2003-11-3900 10.1007/s004410050609 10.1212/WNL.35.2.185 10.1055/s-2004-829589 10.1212/WNL.0b013e3181a41211 10.2353/ajpath.2007.070240 10.1016/0090-1229(90)90035-O 10.1002/mus.880171208 10.1111/j.1600-065X.1998.tb01204.x 10.1016/j.jneuroim.2008.06.027 10.4049/jimmunol.167.4.1935 10.4049/jimmunol.174.9.5324 10.1111/j.1365-2249.2007.03442.x 10.4049/jimmunol.145.7.2115 10.1016/S0022-510X(03)00087-X 10.1172/JCI115843 10.1056/NEJM197805182982004 10.1093/brain/awg223 10.1016/0090-1229(85)90018-2 10.1212/WNL.55.1.16 10.1002/eji.1830270402 10.1002/ana.410190119 10.1073/pnas.87.19.7792 10.1073/pnas.0406756101 10.1200/JCO.2004.10.113 10.1212/WNL.31.8.935 10.1159/000115275 10.1146/annurev.immunol.23.021704.115601 10.1016/0022-510X(91)90260-E 10.1111/j.1365-2249.1991.tb05625.x |
ContentType | Journal Article |
Copyright | Copyright © 2011 Wiley Periodicals, Inc. 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2011 Wiley Periodicals, Inc. – notice: 2015 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/mus.22103 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1097-4598 |
EndPage | 484 |
ExternalDocumentID | 21922466 24570829 10_1002_mus_22103 MUS22103 ark_67375_WNG_3N6JM4QX_Q |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 123 1CY 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AAQQT AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRMAN DRSTM EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC FYBCS G-S G.N GNP GODZA H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E W8V W99 WBKPD WH7 WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWD RWI WRC WUP YCJ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c5273-c98631e96dfb744637baabb83368efc46f943b906909816f9a57143d39f873a3 |
IEDL.DBID | DR2 |
ISSN | 0148-639X 1097-4598 |
IngestDate | Fri Jul 11 10:15:44 EDT 2025 Mon Jul 21 05:47:30 EDT 2025 Wed Apr 02 07:28:26 EDT 2025 Tue Jul 01 00:45:53 EDT 2025 Thu Apr 24 22:56:10 EDT 2025 Wed Jan 22 16:54:10 EST 2025 Sun Sep 21 06:18:26 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Autoimmunity Human Immunopathology Nervous system diseases Neuromuscular diseases thymus viral infection Pathogenesis Autoantibody Autoimmune disease Neuromuscular junction Infection Chronic Cholinergic receptor Myasthenia gravis innate immunity inflammation Viral disease Tumor Muscle Biological receptor |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Copyright © 2011 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5273-c98631e96dfb744637baabb83368efc46f943b906909816f9a57143d39f873a3 |
Notes | ArticleID:MUS22103 istex:FEB17B7FFE0A22CD7E7582BAF70CFF19D6FE6B35 ark:/67375/WNG-3N6JM4QX-Q ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.openaccessrepository.it/record/21834 |
PMID | 21922466 |
PQID | 890676329 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_890676329 pubmed_primary_21922466 pascalfrancis_primary_24570829 crossref_citationtrail_10_1002_mus_22103 crossref_primary_10_1002_mus_22103 wiley_primary_10_1002_mus_22103_MUS22103 istex_primary_ark_67375_WNG_3N6JM4QX_Q |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2011 |
PublicationDateYYYYMMDD | 2011-10-01 |
PublicationDate_xml | – month: 10 year: 2011 text: October 2011 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: Hoboken, NJ – name: United States |
PublicationTitle | Muscle & nerve |
PublicationTitleAlternate | Muscle Nerve |
PublicationYear | 2011 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley |
References | Biesecker G, Gomez CM. Inhibition of acute passive transfer experimental autoimmune myasthenia gravis with Fab antibody to complement C6. J Immunol 1989; 142: 2654-2659. Cohen-Kaminsky S, Devergne O, Delattre RM, Klingel-Schmitt I, Emilie D, Galanaud P, et al. Interleukin-6 overproduction by cultured thymic epithelial cells from patients with myasthenia gravis is potentially involved in thymic hyperplasia. Eur Cytokine Netw 1993; 4: 121-132. Levinson AI, Zheng Y, Gaulton G, Moore J, Pletcher CH, Song D, et al. A new model linking intra-thymic acetylcholine receptor expression and the pathogenesis of myasthenia gravis. Ann NY Acad Sci 2003; 998: 257-265. Manca N, Perandin F, De Simone N, Giannini F, Bonifati D, Angelini C. Detection of HTLV-I tax-rex and pol gene sequences of thymus gland in large group of patients with myasthenia gravis. J Acquir Immune Defic Syndr 2002; 29: 300-306. Mantegazza R, Beghi E, Pareyson D, Antozzi C, Peluchetti D, Sghirlanzoni A, et al. A multicentre follow-up study of 1152 patients with myasthenia gravis in Italy. J Neurol 1990; 237: 339-344. Kyewski B, Klein L. A central role for central tolerance. Annu Rev Immunol 2006; 24: 571-606. Münz C, Lünemann JD, Getts MT, Miller SD. Antiviral immune responses: triggers of or triggered by autoimmunity? Nat Rev Immunol 2009; 9: 246-257. Di Rosa F, Barnaba V. Persisting viruses and chronic inflammation: understanding their relationship to autoimmunity. Immunol Rev 1998; 164: 17-27. Abdou NI, Lisak RP, Zweiman B, Abrahamsohn I, Penn AS. The thymus in myasthenia gravis. Evidence for altered cell populations. N Engl J Med 1974; 291: 1271-1275. Moiola L, Karachunski P, Protti MP, Howard JF, Conti-Tronconi BM. Epitopes on the beta subunit of human muscle acetylcholine receptor recognized by CD4+ cells of myasthenia gravis patients and healthy subjects. J Clin Invest 1994; 93: 1020-1028. Thorley-Lawson D. Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol 2001; 1: 75-82. Okumura M, Ohta M, Takeuchi Y, Shiono H, Inoue M, Fukuhara K, et al. The immunological role of thymectomy in the treatment of myasthenia gravis: implication of thymus-associated B-lymphocyte subset in reduction of the anti-acetylcholine receptor antibody titer. J Thorac Cardiovasc Surg 2003; 126: 1922-1928. Guigou V, Emilie D, Berrih-Aknin S, Fumoux F, Fougereau M, Schiff C. Individual germinal centres of myasthenia gravis human thymuses contain polyclonal activated B cells that express all the VH and VK families. Clin Exp Immunol 1991; 83: 262-266. Lauriola L, Ranelletti F, Maggiano N, Guerriero M, Punzi C, Marsili F, et al. Thymus changes in anti-MuSK-positive and -negative myasthenia gravis. Neurology 2005; 64: 536-538. Maggi L, Andreetta F, Antozzi C, Baggi F, Bernasconi P, Cavalcante P, et al. Thymoma-associated myasthenia gravis: outcome, clinical and pathological correlations in 197 on a 20-year experience. J Neuroimmunol 2008; 15: 202: 237-244. Piddlesden SJ, Jiang S, Levin JL, Vincent A, Morgan BP. Soluble complement receptor 1 (sCR1) protects against experimental autoimmune myasthenia gravis. J Neuroimmunol 1996; 71: 173-177. Scadding GK, Vincent A, Newsom-Davis J, Henry K. Acetylcholine receptor antibody synthesis by thymic lymphocytes: correlation with thymic histology. Neurology 1981; 31: 935-943. Jaretzki A III, Penn AS, Younger DS. "Maximal" thymectomy for myasthenia gravis. Results. J Thorac Cardiovasc Surg 1988; 95: 747-757. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010; 11: 373-384. Wekerle H, Ketelsen UP. Intrathymic pathogenesis and dual genetic control of myasthenia gravis. Lancet 1977; 1: 678-680. Punga AR, Stålberg E. Acetylcholinesterase inhibitors in MG: to be or not to be? Muscle Nerve 2009; 39: 724-728. Tindall RSA, Cloud R, Lucky J, Rosenberg RN. Serum antibodies to cytomegalovirus in myasthenia gravis: effects of thymectomy and steroids. Neurology 1978; 28: 273-277. Leprince C, Cohen-Kaminsky S, Berrih-Aknin S, Vernet-Der Garabedian B, Treton D, Galanaud P, et al. Thymic B cells from myasthenia gravis patients are activated B cells. Phenotypic and functional analysis. J Immunol 1990; 145: 2115-2122. Mantegazza R, Baggi F, Bernasconi P, Antozzi C, Confalonieri P, Novellino L, et al. Video-assisted thoracoscopic extended thymectomy and extended transsternal thymectomy (T-3b) in non-thymomatous myasthenia gravis patients: remission after 6 years of follow-up. J Neurol Sci 2003; 212: 31-36. Sims GP, Shiono H, Willcox N, Stott DI. Somatic hypermutation and selection of B cells in thymic germinal centers responding to acetylcholine receptor in myasthenia gravis. J Immunol 2001; 167: 1935-1944. Baggi F, Andreetta F, Antozzi C, Simoncini O, Confalonieri P, Labeit S, et al. Anti-titin and antiryanodine receptor antibodies in myasthenia gravis patients with thymoma. Ann NY Acad Sci 1998; 841: 538-541. Korn IL, Abramsky O. Myasthenia gravis following viral infection. Eur Neurol 1981; 20: 435-439. Sommer N, Harcourt GC, Willcox N, Beason D, Newsom-Davis J. Acetylcholine receptor-reactive T lymphocytes from healthy subjects and myasthenia gravis patients. Neurology 1991; 41: 1270-1276. Schwimmbeck PL, Dyrberg T, Drachman DB, Oldstone MBA. Molecular mimicry and myasthenia gravis. An autoantigenic site of the acetylcholine receptor alpha-subunit that has biologic activity and reacts immunochemically with herpes simplex virus. J Clin Invest 1989; 84: 1174-1180. Sanders DB, Evoli A. Immunosuppressive therapies in myasthenia gravis. Autoimmunity 2010; 43: 428-435. Novellino L, Longoni M, Spinelli L, Andretta M, Cozzi M, Faillace G. 'Extended' thymectomy without sternotomy performed by cervicotomy and thoracoscopic technique in the treatment of myasthenia gravis. Int Surg 1994; 79: 378-381. Bernasconi P, Barberis M, Baggi F, Passerini L, Cannone M, Arnoldi E, et al. Increased Toll-like receptor 4 expression in thymus of myasthenia gravis patients. Am J Pathol 2005; 167: 129-139. Giraud M, Taubert R, Vandiedonck C, Ke X, Lévi-Strauss M, Pagani F, et al. An IRF8-binding promoter variant and AIRE control CHRNA1 promiscuous expression in thymus. Nature 2007; 448: 934-937. Roxanis I, Micklem K, McConville J, Newsom-Davis J, Willcox N. Thymic myoid cells and germinal center formation in myasthenia gravis; possible roles in pathogenesis. J Neuroimmunol 2002; 125: 185-197. Sonett JR, Jaretzki A III. Thymectomy for nonthymomatous myasthenia gravis. A critical analysis. Ann NY Acad Sci 2008; 1132: 315-328. Fujii Y, Monden Y, Hashimoto J, Nakahara K, Kawashima Y. Acetylcholine receptor antibody-producing cells in thymus and lymph nodes in myasthenia gravis. Clin Immunol Immunopathol 1985; 34: 141-146. Le Panse R, Cizeron-Clairac G, Bismuth J, Berrih-Aknin S. Microarrays reveal distinct gene signatures in the thymus of seropositive and seronegative myasthenia gravis patients and the role of CC chemokine ligand 21 in thymic hyperplasia. J Immunol 2006; 177: 7868-7879. Mesnard-Roullier L, Bismuth J, Wakkach A, Poëa-Guyon S, Berrih-Aknin S. Thymic myoid cells express high levels of muscle genes. J Neuroimmunol 2004; 148: 97-105. Alexiev BA, Drachenberg CB, Burke AP. Thymomas: a cytological and immunohistochemical study, with emphasis on lymphoid and neuroendocrine markers. Diagn Pathol 2007; 2: 13-22. Klavinski LS, Willcox HNA, Richmond JE, Newsom-Davis J. Attempted isolation of viruses from myasthenia gravis thymus. J Neuroimmunol 1986; 11: 287-299. Vincent A, McConville J, Farrugia ME, Newsom-Dawis J. Seronegative myasthenia gravis. Semin Neurol 2004; 24: 125-133. MacLennan CA, Vincent A, Marx A, Willcox N, Gilhus NE, Newsom-Davis J, et al. Preferential expression of AChR ϵ-subunit in thymomas from patients with myasthenia gravis. J Neuroimmunol 2008; 201: 28-32. Hoch W, McConville J, Helms S, Newsom-Davis J, Melms A, Vincent A. Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat Med 2001; 7: 365-368. Leite MI, Strobel P, Jones M, Micklem K, Moritz R, Gold R, et al. Fewer thymic changes in MuSK antibody-positive than in MuSK antibody-negative MG. Ann Neurol 2005; 57: 444-448. Chen G, Marx A, Wen-Hu C, Yong J, Puppe B, Stroebel P, et al. New WHO histologic classification predicts prognosis of thymic epithelial tumors: a clinicopathologic study of 200 thymoma cases from China. Cancer 2002; 95: 420-429. Vandiedonck C, Raffoux C, Eymard B, Krumeich CS, Gajdos P, Garchon HJ. Association of HLA-A in autoimmune myasthenia gravis with thymoma. J Neuroimmunol 2009; 210: 120-123. Lennon VA, Seybold ME, Lindstrom JM, Cochrane C, Ulevitch R. Role of complement in the pathogenesis of experimental autoimmune myasthenia gravis. J Exp Med 1978; 147: 973-983. Ragheb S, Lisak R, Lewis R, van Stavern G, Gonzales F, Simon K. A potential role for B-cell activating factor in the pathogenesis of autoimmune myasthenia gravis. Arch Neurol 2008; 65: 1358-1362. Machens A, Loliger C, Pichlmeier U, Emskotter T, Busch C, Izbicki JR. Correlation of thymic pathology with HLA in myasthenia gravis. Clin Immunol 1999; 91: 296-301. Dalakas M. IVIg in other autoimmune neurological disorders: current status and future prospects. J Neurol 2008; 3: 12-16. Meraouna A, Cizeron-Clairac G, Le Panse R, Bismuth J, Truffault F, Tallaksen C, et al. The chemokine CXCL13 is a key molecule in autoimmune myasthenia gravis. Blood 2006; 108: 432-440. Carr AS, Cardwell CR, McCarron PO, McConville J. A systematic review of population based epidemiological studies in Myasthenia Gravis. BMC Neurol 2010; 10: 46. Padberg F, Matsuda M, Fenk R, Patenge N, Kubuschok B, Hohlfeld R, et al. Myasthenia gravis: selective enrichment of anti-acetylcholine receptor antibody production in untransformed human B cell cultures. Eur J Immunol 1999; 29: 3538-3548. Farrugia ME, Bonifati DM, Clover L, Cossins J, Beeson D, Vincent A. Effect of sera from AChR-antibody negative myasthenia gravis patients on AChR and MuSK in cell cultures 2004; 22 2010; 11 2010; 10 2010; 1183 2005; 174 1990; 57 2005; 175 2002; 95 2007; 185 2004; 24 1976 1996; 71 2005; 64 1981; 305 1991; 238 2006; 178 2006; 177 1980; 39 1984; 51 1998; 18 2006; 24 2007; 171 2005; 105 1991; 83 1996; 62 1994; 79 1998; 841 2007; 2 1978; 147 1991; 106 1988; 81 2008; 197 1974; 291 1998; 164 1993; 47 2009; 66 2001; 167 2007; 448 2004; 148 2007; 204 1999; 29 1986; 11 1993; 43 1989; 9 1989; 8 2002; 2 2009; 210 2008; 56 1997; 27 1986; 19 1988; 95 2001; 22 2003; 212 2010; 40 1981; 20 1999 2004; 55 2010; 43 1990; 237 2006; 108 2009; 72 1991; 65 1990; 28 2002; 125 1984; 34 1985; 312 1983; 80 2008; 41 1994; 91 2008; 131 1985; 76 1994; 93 2001; 159 1989; 84 2002; 59 1986; 136 2003; 998 2007; 149 1986; 137 1986; 36 1993; 63 1997; 89 1987; 7 1983; 54 1978; 298 1978; 1 2008; 3 1988; 140 1990; 145 1976; 26 1993; 4 2007; 36 2005; 25 1994; 343 2010; 67 2007; 28 1992; 90 1990; 87 1991; 41 1989; 142 1996; I 2007; 133 2000; 55 1978; 28 2008; 65 1988; 131 2003; 126 1999; 91 1958; 6 2010; 74 1981; 31 2004; 101 2008; 1132 2005; 159 1988; 54 2009; 132 2008; 15 1994; 44 2006; 6 2008; 201 1996; 284 1995; 18 1991; 139 1983; 33 2010; 89 1987; 22 2002; 29 2005; 164 2001; 7 2005; 167 2010; 133 1977; 1 2009; 145 2009; 9 2009; 6 1999; 155 2001; 1 2003; 60 1985; 34 1998; 102 1996; 157 2005; 57 1985; 35 2009; 39 Lisak RP (e_1_2_7_121_2) 1986; 137 e_1_2_7_108_2 e_1_2_7_3_2 e_1_2_7_127_2 e_1_2_7_104_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_123_2 e_1_2_7_83_2 e_1_2_7_100_2 e_1_2_7_15_2 e_1_2_7_60_2 Leprince C (e_1_2_7_122_2) 1990; 145 e_1_2_7_41_2 e_1_2_7_87_2 e_1_2_7_11_2 e_1_2_7_64_2 e_1_2_7_45_2 e_1_2_7_68_2 e_1_2_7_161_2 e_1_2_7_26_2 e_1_2_7_49_2 e_1_2_7_142_2 e_1_2_7_146_2 e_1_2_7_116_2 e_1_2_7_90_2 Rosai J (e_1_2_7_71_2) 1999 e_1_2_7_112_2 Maggi L (e_1_2_7_22_2) 2008; 15 e_1_2_7_94_2 e_1_2_7_52_2 e_1_2_7_75_2 e_1_2_7_98_2 Savino W (e_1_2_7_74_2) 1984; 51 e_1_2_7_23_2 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_79_2 e_1_2_7_150_2 e_1_2_7_37_2 e_1_2_7_131_2 e_1_2_7_154_2 Farrugia ME (e_1_2_7_18_2) 2007; 185 e_1_2_7_135_2 e_1_2_7_158_2 Willcox HN (e_1_2_7_113_2) 1983; 54 e_1_2_7_139_2 e_1_2_7_4_2 e_1_2_7_105_2 e_1_2_7_128_2 e_1_2_7_8_2 e_1_2_7_101_2 e_1_2_7_124_2 McGuire LJ (e_1_2_7_155_2) 1988; 131 e_1_2_7_82_2 e_1_2_7_16_2 e_1_2_7_120_2 Müoller‐Hermelink HK (e_1_2_7_44_2) 1996 e_1_2_7_63_2 e_1_2_7_86_2 e_1_2_7_12_2 e_1_2_7_162_2 e_1_2_7_48_2 e_1_2_7_143_2 e_1_2_7_29_2 Moulian N (e_1_2_7_102_2) 1997; 89 Cohen‐Kaminsky S (e_1_2_7_138_2) 1993; 4 Wakkach A (e_1_2_7_77_2) 1996; 157 e_1_2_7_147_2 e_1_2_7_109_2 e_1_2_7_117_2 e_1_2_7_93_2 e_1_2_7_70_2 e_1_2_7_24_2 e_1_2_7_51_2 e_1_2_7_97_2 Meinl E (e_1_2_7_106_2) 1991; 139 e_1_2_7_20_2 e_1_2_7_55_2 e_1_2_7_36_2 e_1_2_7_78_2 e_1_2_7_151_2 e_1_2_7_59_2 e_1_2_7_132_2 e_1_2_7_136_2 e_1_2_7_159_2 e_1_2_7_5_2 e_1_2_7_129_2 e_1_2_7_9_2 e_1_2_7_125_2 e_1_2_7_17_2 e_1_2_7_81_2 e_1_2_7_13_2 e_1_2_7_62_2 e_1_2_7_43_2 e_1_2_7_85_2 e_1_2_7_66_2 e_1_2_7_47_2 e_1_2_7_89_2 e_1_2_7_140_2 e_1_2_7_163_2 e_1_2_7_28_2 e_1_2_7_144_2 e_1_2_7_114_2 e_1_2_7_110_2 e_1_2_7_50_2 e_1_2_7_92_2 e_1_2_7_25_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_73_2 e_1_2_7_96_2 Novellino L (e_1_2_7_130_2) 1994; 79 e_1_2_7_21_2 e_1_2_7_35_2 Maddison P (e_1_2_7_40_2) e_1_2_7_58_2 e_1_2_7_152_2 e_1_2_7_39_2 e_1_2_7_133_2 e_1_2_7_156_2 e_1_2_7_137_2 Fujii Y (e_1_2_7_118_2) 1986; 136 e_1_2_7_107_2 e_1_2_7_2_2 e_1_2_7_103_2 e_1_2_7_126_2 e_1_2_7_6_2 e_1_2_7_61_2 e_1_2_7_80_2 e_1_2_7_14_2 e_1_2_7_42_2 e_1_2_7_65_2 e_1_2_7_84_2 Jaretzki A (e_1_2_7_67_2) 1988; 95 e_1_2_7_10_2 e_1_2_7_160_2 Rowland LP (e_1_2_7_32_2) 1958; 6 e_1_2_7_46_2 e_1_2_7_69_2 e_1_2_7_88_2 e_1_2_7_141_2 e_1_2_7_27_2 e_1_2_7_145_2 e_1_2_7_149_2 e_1_2_7_119_2 e_1_2_7_115_2 Verma A (e_1_2_7_148_2) 1995; 18 e_1_2_7_111_2 e_1_2_7_72_2 e_1_2_7_91_2 e_1_2_7_30_2 e_1_2_7_76_2 e_1_2_7_53_2 e_1_2_7_95_2 e_1_2_7_34_2 e_1_2_7_57_2 e_1_2_7_99_2 e_1_2_7_38_2 e_1_2_7_153_2 e_1_2_7_134_2 e_1_2_7_157_2 |
References_xml | – reference: Giraud M, Vandiedonck C, Garchon HJ. Genetic factors in autoimmune myasthenia gravis. Ann NY Acad Sci 2008; 1132: 180-192. – reference: Lisak RP, Laramore C, Levinson AI, Zewiman B, Moskovitz AR, Witte A. In vitro synthesis of antibodies to acetylcholine receptor by peripheral blood cells: role of suppressor T cells in normal subjects. Neurology 1984; 34: 802-805. – reference: Antozzi C, Gemma M, Regi B, Berta E, Confalonieri P, Peluchetti D, et al. A short plasma exchange protocol is effective in severe myasthenia gravis. J Neurol 1991; 238: 103-107. – reference: Cavalcante P, Barberis M, Cannone M, Baggi F, Antozzi C, Maggi L, et al. Detection of poliovirus-infected macrophages in thymus of patients with myasthenia gravis. Neurology 2010; 74: 1118-1126. – reference: Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010; 11: 373-384. – reference: Scarpino S, Di Napoli A, Stoppacciaro A, Antonelli M, Pilozzi E, Chiarle R, et al. Expression of autoimmune regulator gene (AIRE) and T regulatory cells in human thymomas. Clin Exp Immunol 2007; 149: 504-512. – reference: Bornemann A, Kirchner T. Thymic myoid cell turnover in myasthenia gravis patients and in normal controls. Cell Tissue Res 1996; 284: 481-487. – reference: Schönbeck S, Padberg F, Hohlfeld R, Wekerle H. Transplantation of thymic autoimmune microenvironment to severe combined immunodeficiency mice. A new model of myasthenia gravis. J Clin Invest 1992; 90: 245-250. – reference: Poëa-Guyon S, Christadoss P, Le Panse R, Guyon T, De Baets M, Wakkach A, et al. Effects of cytokines on acetylcholine receptor expression: implications for myasthenia gravis. J Immunol 2005; 174: 5941-5949. – reference: Tindall RSA, Cloud R, Lucky J, Rosenberg RN. Serum antibodies to cytomegalovirus in myasthenia gravis: effects of thymectomy and steroids. Neurology 1978; 28: 273-277. – reference: Levinson AI, Zweiman B, Lisak RP. Pokeweed mitogen-induced immunoglobulin secretory responses of thymic B cells in myasthenia gravis: selective secretion of IgG versus IgM cannot be explained by helper functions of thymic T cells. Clin Immunol Immunopathol 1990; 57: 211-217. – reference: Sanders DB, El-Salem K, Massey JM, McConville J, Vincent A. Clinical aspects of MuSK antibody positive seronegative MG. Neurology 2003; 60: 1978-1980. – reference: Jaretzki A III, Penn AS, Younger DS. "Maximal" thymectomy for myasthenia gravis. Results. J Thorac Cardiovasc Surg 1988; 95: 747-757. – reference: Tangarajh M, Masterman T, Helgeland L, Rot U, Jonsonn MV, Eide GE, et al. The thymus is a source of B-cell-survival factors-APRIL and BAFF-in myasthenia gravis. J Neuroimmunol 2006; 178: 161-166. – reference: Fend F, Kirchner T, Marx A, Müller-Hermelink HK. B-cells in thymic epithelial tumours. An immunohistochemical analysis of intra- and extraepithelial B-cell compartments. Virchows Arch B Cell Pathol Incl Mod Pathol 1993; 63: 241-247. – reference: Gomez CM, Richman DP. Anti-acetylcholine receptor antibodies directed against the alpha-bungarotoxin binding site induce a unique form of experimental myasthenia. Proc Natl Acad Sci USA 1983; 80: 4089-4093. – reference: Baggi F, Andreetta F, Antozzi C, Simoncini O, Confalonieri P, Labeit S, et al. Anti-titin and antiryanodine receptor antibodies in myasthenia gravis patients with thymoma. Ann NY Acad Sci 1998; 841: 538-541. – reference: Stott DI, Hiepe F, Hummel M, Steinhauser G, Berek C. Antigen-driven clonal proliferation of B cells within the target tissue of an autoimmune disease. The salivary glands of patients with Sjögren's syndrome. J Clin Invest 1998; 102: 938-946. – reference: Mori T, Nomori H, Ikeda K, Kobayashi H, Iwatani K, Kobayashi T. The distribution of parenchyma, follicles, and lymphocyte subsets in thymus of patients with myasthenia gravis, with special reference to remission after thymectomy. J Thorac Cardiovasc Surg 2007; 133: 364-368. – reference: Bhibhatbhan A, Kline G, Vincent A, Toth C. Anti-MuSK myasthenia gravis presenting with Epstein-Barr virus-associated mononucleosis and immune-mediated diabetes mellitus. Muscle Nerve 2007; 36: 264-266. – reference: Guigou V, Emilie D, Berrih-Aknin S, Fumoux F, Fougereau M, Schiff C. Individual germinal centres of myasthenia gravis human thymuses contain polyclonal activated B cells that express all the VH and VK families. Clin Exp Immunol 1991; 83: 262-266. – reference: Farrugia ME, Bonifati DM, Clover L, Cossins J, Beeson D, Vincent A. Effect of sera from AChR-antibody negative myasthenia gravis patients on AChR and MuSK in cell cultures. J Neuroimmunol 2007; 185: 136-144. – reference: Ströbel P, Bauer A, Puppe B, Ktaushaar T, Krein A, Toyka K, et al. Tumor recurrence and survival in patients treated for thymomas and thymic squamous cell carcinomas: a retrospective analysis. J Clin Oncol 2004; 22: 1501-1509. – reference: Wekerle H, Ketelsen UP. Intrathymic pathogenesis and dual genetic control of myasthenia gravis. Lancet 1977; 1: 678-680. – reference: Sonett JR, Jaretzki A III. Thymectomy for nonthymomatous myasthenia gravis. A critical analysis. Ann NY Acad Sci 2008; 1132: 315-328. – reference: Garchon HJ, Djabiri F, Viard JP, Gajdos P, Bach JF. Involvement of human muscle acetylcholine receptor alpha-subunit gene (CHRNA) in susceptibility to myasthenia gravis. Proc Natl Acad Sci USA 1994; 91: 4668-4672. – reference: Masaoka A, Yamakama Y, Niwi H, Fukay I, Kondo S, Kobayashi M, et al. Extended thymectomy for myasthenia gravis patients: a 20-year review. Ann Thorac Surg 1996; 62: 853-859. – reference: Bernasconi P, Barberis M, Baggi F, Passerini L, Cannone M, Arnoldi E, et al. Increased Toll-like receptor 4 expression in thymus of myasthenia gravis patients. Am J Pathol 2005; 167: 129-139. – reference: Aoki T, Drachman DB, Asher DM, Gibbs CJ, Bahmanyar S, Wolinsky JS. Attempts to implicate viruses in myasthenia gravis. Neurology 1985; 35: 185-192. – reference: Sommer N, Willcox N, Harcourt GC, Newsom-Davis J. Myasthenic thymus and thymoma are selectively enriched in acetylcholine receptor specific T cells. Ann Neurol 1990; 28: 312-319. – reference: Vieira ML, Caillat-Zucman S, Gajdos P, Cohen-Kaminsky S, Casteur A, Bach JF. Identification of genomic typing non-DR3 HLA class II genes associated myasthenia gravis. J Neuroimmunol 1993; 47: 115-122. – reference: Zeweiman B, Levinson AI, Lisak RP. Phenotypic characteristics of thymic B lymphocytes in myasthenia gravis. J Clin Immunol 1989; 9: 242-247. – reference: Roxanis I, Micklem K, McConville J, Newsom-Davis J, Willcox N. Thymic myoid cells and germinal center formation in myasthenia gravis; possible roles in pathogenesis. J Neuroimmunol 2002; 125: 185-197. – reference: Aloisi F, Serafini B, Magliozzi R, Howell OW, Reynolds R. Detection of Epstein-Barr virus and B-cell follicles in the multiple sclerosis brain: what you find depends on how and where you look. Brain 2010; 133: e157. – reference: Haynes BF, Hale LP. The human thymus. A chimeric organ comprised of central and peripheral lymphoid components. Immunol Res 1998; 18: 175-192. – reference: Alexiev BA, Drachenberg CB, Burke AP. Thymomas: a cytological and immunohistochemical study, with emphasis on lymphoid and neuroendocrine markers. Diagn Pathol 2007; 2: 13-22. – reference: Melms A, Schalke BCG, Kirchner T, Müller-Hermelink HK, Albert E, Wekerle H. Thymus in myasthenia gravis: isolation of T-lymphocyte lines specific for the nicotinic acetylcholine receptor from thymuses of myasthenic patients. J Clin Invest 1988; 81: 902-908. – reference: Niller HH, Wolf H, Minarovits J. Regulation and dysregulation of Epstein-Barr virus latency: implications for the development of autoimmune diseases. Autoimmunity 2008; 41: 298-328. – reference: Stefansson K, Dieperink ME, Richman DP, Gomez CM, Marton LS. Sharing of antigenic determinants between the nicotinic acetylcholine receptor and proteins in Escherichia coli, Proteus vulgaris, and Klebsiella pneumoniae. Possible role in the pathogenesis of myasthenia gravis. N Engl J Med 1985; 312: 221-225. – reference: Wakkach A, Guyon T, Bruand C, Tzartos S, Cohen-Kaminsky S, Berrih-Aknin S. Expression of acetylcholine receptor genes in human thymic epithelial cells: implications for myasthenia gravis. J Immunol 1996; 157: 3752-3760. – reference: Cohen-Kaminsky S, Devergne O, Delattre RM, Klingel-Schmitt I, Emilie D, Galanaud P, et al. Interleukin-6 overproduction by cultured thymic epithelial cells from patients with myasthenia gravis is potentially involved in thymic hyperplasia. Eur Cytokine Netw 1993; 4: 121-132. – reference: Evoli A, Tonali PA, Padua L, Monaco ML, Scuderi F, Batocchi AP, et al. Clinical correlates with anti-MuSK antibodies in generalized seronegative myasthenia gravis. Brain 2003; 126: 2304-2311. – reference: Okumura M, Fujii Y, Shiono H, Inoue M, Minami M, Utsumi T, et al. Immunological function of thymoma and pathogenesis of paraneoplastic myasthenia gravis. Gen Thorac Cardiovasc Surg 2008; 56: 143-150. – reference: Meinl E, Klinkert WE, Wekerle H. The thymus in myasthenia gravis. Changes typical for the human disease are absent in experimental autoimmune myasthenia gravis of the rat. Am J Pathol 1991; 139: 995-1008. – reference: Scadding GK, Vincent A, Newsom-Davis J, Henry K. Acetylcholine receptor antibody synthesis by thymic lymphocytes: correlation with thymic histology. Neurology 1981; 31: 935-943. – reference: Cizeron-Clairac G, Le Panse R, Frenkian-Cuvelier M, Meraouna A, Truffault F, Bismuth J, et al. Thymus and myasthenia gravis: what can we learn from DNA microarrays?. J Neuroimmunol 2008; 201: 57-63. – reference: Vincent A, Scadding GK, Thomas HC, Newsom-Davis J. In-vitro synthesis of anti-acetylcholine-receptor-antibody by thymic lymphocytes in myasthenia gravis. Lancet 1978; 1: 305-307. – reference: Kaminski HJ, Minarovits J. Epstein-Barr virus: trigger for autoimmunity? Ann Neurol 2010; 67: 697-698. – reference: Crampton SP, Voynova E, Bolland S. Innate pathways to B cell activation and tolerance. Ann NY Acad Sci 2010; 1183: 58-68. – reference: Leite MI, Jones M, Ströbel P, Marx A, Gold R, Niks E, et al. Myasthenia gravis thymus: complement vulnerability of epithelial and myoid cells, complement attack on them and correlations with autoantibody status. Am J Pathol 2007; 171: 893-905. – reference: Humby F, Bombardieri M, Manzo A, Kelly S, Blades MC, Kirkham B, et al. Ectopic lymphoid structures support ongoing production of class-switched autoantibodies in rheumatoid synovium. PLoS Med 2009; 6: e1 – reference: Sahashi K, Engel AG, Lambert EH, Howard FM Jr. Ultrastructural localization of the terminal and lytic ninth complement component (C9) at the motor end-plate in myasthenia gravis. J Neuropathol Exp Neurol 1980; 39: 160-172. – reference: Henderson S, Rowe M, Gregory C, Croom-Carter D, Wang F, Longnecker R, et al. Induction of Bcl-2 expression by Epstein-Barr virus latent membrane protein 1 protects infected B cells from programmed cell death. Cell 1991; 65: 1107-1115. – reference: Abdou NI, Lisak RP, Zweiman B, Abrahamsohn I, Penn AS. The thymus in myasthenia gravis. Evidence for altered cell populations. N Engl J Med 1974; 291: 1271-1275. – reference: Christadoss P. C5 gene influences the development of murine myasthenia gravis. J Immunol 1988; 140: 2589-2592. – reference: Matsui N, Nakane S, Saito F, Ohigashi I, Nakagawa Y, Kurobe H, et al. Undiminished regulatory T cells in the thymus of patients with myasthenia gravis. Neurology 2010; 74: 816-820. – reference: Hill ME, Shiono H, Newsom-Davis J, Willcox N. The myasthenia gravis thymus: a rare source of human autoantibody-secreting plasma cells for testing potential therapeutics. J Neuroimmunol 2008; 201: 50-56. – reference: Feferman T, Maiti PK, Berrih-Aknin S, Bismuth J, Bidault J, Fuchs S, et al. Overexpression of IFN-induced protein 10 and its receptor CXCR3 in myasthenia gravis. J Immunol 2005; 174: 5324-5331. – reference: Lauriola L, Ranelletti F, Maggiano N, Guerriero M, Punzi C, Marsili F, et al. Thymus changes in anti-MuSK-positive and -negative myasthenia gravis. Neurology 2005; 64: 536-538. – reference: Verma A, Berger J. Myasthenia gravis associated with dual infection of HIV and HTLV-I. Muscle Nerve 1995; 18: 1355-1356. – reference: Mesnard-Roullier L, Bismuth J, Wakkach A, Poëa-Guyon S, Berrih-Aknin S. Thymic myoid cells express high levels of muscle genes. J Neuroimmunol 2004; 148: 97-105. – reference: Drachman DB, Angus CW, Adams RN, Michelson JD, Hoffman GJ. Myasthenia antibodies cross-link acetylcholine receptors to accelerate degradation. N Engl J Med 1978; 298: 1116-1122. – reference: Moiola L, Karachunski P, Protti MP, Howard JF, Conti-Tronconi BM. Epitopes on the beta subunit of human muscle acetylcholine receptor recognized by CD4+ cells of myasthenia gravis patients and healthy subjects. J Clin Invest 1994; 93: 1020-1028. – reference: Lisak RP, Laramore C, Levinson AI, Zweiman B, Moskovitz AR. Suppressor T cells in myasthenia gravis and antibodies to acetylcholine receptor. Ann Neurol 1986; 19: 87-89. – reference: Lisak RP, Levinson AI, Zweiman B, Kornstein MJ. Antibodies to acetylcholine receptor and tetanus toxoid: in vitro synthesis by thymic lymphocytes. J Immunol 1986; 137: 1221-1225. – reference: Kyewski B, Klein L. A central role for central tolerance. Annu Rev Immunol 2006; 24: 571-606. – reference: Okumura M, Inoue M, Kadota Y, Hayashi A, Tokunaga T, Kusu T, et al. Biological implications of thymectomy for myasthenia gravis. Surg Today 2010; 40: 102-107. – reference: Willis SN, Stadelmann C, Rodig SJ, Caron T, Gattenloehner S, Mallozzi SS, et al. Epstein-Barr virus infection is not characteristic feature of multiple sclerosis brain. Brain 2009; 132: 3318-3328. – reference: Sisely A, Lisak RP, Brenner T. Proliferative response of blood cells of patients with myasthenia gravis to purified mammalian acetylcholine receptor. Pathol Immunopathol Res 1989; 8: 113--117. – reference: Vincent A, Willcox N, Hill M, Curnow J, MacLennan C, Beeson D. Determinant spreading and immune responses to acetylcholine receptors in myasthenia gravis. Immunol Rev 1998; 164: 157-168. – reference: Hoch W, McConville J, Helms S, Newsom-Davis J, Melms A, Vincent A. Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat Med 2001; 7: 365-368. – reference: Mantegazza R, Baggi F, Bernasconi P, Antozzi C, Confalonieri P, Novellino L, et al. Video-assisted thoracoscopic extended thymectomy and extended transsternal thymectomy (T-3b) in non-thymomatous myasthenia gravis patients: remission after 6 years of follow-up. J Neurol Sci 2003; 212: 31-36. – reference: Le Panse R, Cizeron-Clairac G, Bismuth J, Berrih-Aknin S. Microarrays reveal distinct gene signatures in the thymus of seropositive and seronegative myasthenia gravis patients and the role of CC chemokine ligand 21 in thymic hyperplasia. J Immunol 2006; 177: 7868-7879. – reference: Luther C, Poeschel S, Varga M, Melms A, Tolosa E. Decreased frequency of intrathymic regulatory T cells in patients with myasthenia-associated thymoma. J Neuroimmunol 2005; 164: 124-128. – reference: Lisak RP, Laramore C, Zweiman B, Moskovitz A. In vitro synthesis of antibodies to acetylcholine receptor by peripheral blood mononuclear cells of patients with myasthenia gravis. Neurology 1983; 33: 604-608. – reference: Colombara M, Antonini V, Riviera AP, Mainiero F, Strippoli R, Merola M, et al. Constitutive activation of p38 and ERK1/2 MAPKs in epithelial cells of myasthenic thymus leads to IL-6 and RANTES overexpression: effects on survival and migration of peripheral T and B cells. J Immunol 2005; 175: 7021-7028. – reference: Maddison P, McConville J, Farrugia ME, Davies N, Rose M, Norwood F, et al. The use of rituximab in myasthenia gravis and Lambert-Eaton myasthenic syndrome. J Neurol Neurosurg Psychiatry (in press). – reference: Vandiedonck C, Beaurain G, Giraud M, Hue-Beauvais C, Eymard B, Tranchant C, et al. Pleiotropic effects of the 8.1 HLA haplotype in patients with autoimmune myasthenia gravis and thymus hyperplasia. Proc Natl Acad Sci USA 2004; 101: 1564-1569. – reference: Willcox HN, Newsom-Davis J, Calder LR. Greatly increased autoantibody production in myasthenia gravis by thymocyte suspensions prepared with proteolytic enzymes. Clin Exp Immunol 1983; 54: 378-386. – reference: Thorley-Lawson D. Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol 2001; 1: 75-82. – reference: Vincent A. Unravelling the pathogenesis of myasthenia gravis. Nat Rev Immunol 2002; 2: 797-804. – reference: Mantegazza R, Beghi E, Pareyson D, Antozzi C, Peluchetti D, Sghirlanzoni A, et al. A multicentre follow-up study of 1152 patients with myasthenia gravis in Italy. J Neurol 1990; 237: 339-344. – reference: Bachmann K, Burkhardt D, Schreiter I, Kaifi J, Schurr P, Busch C, et al. Thymectomy is more effective than conservative treatment for myasthenia gravis regarding outcome and clinical improvement. Surgery 2009; 145: 392-398. – reference: Sims GP, Shiono H, Willcox N, Stott DI. Somatic hypermutation and selection of B cells in thymic germinal centers responding to acetylcholine receptor in myasthenia gravis. J Immunol 2001; 167: 1935-1944. – reference: Schwimmbeck PL, Dyrberg T, Drachman DB, Oldstone MBA. Molecular mimicry and myasthenia gravis. An autoantigenic site of the acetylcholine receptor alpha-subunit that has biologic activity and reacts immunochemically with herpes simplex virus. J Clin Invest 1989; 84: 1174-1180. – reference: Münz C, Lünemann JD, Getts MT, Miller SD. Antiviral immune responses: triggers of or triggered by autoimmunity? Nat Rev Immunol 2009; 9: 246-257. – reference: Jaretzki A III, Barohn RJ, Ernstoff RM, Kaminski HJ, Keesey JC, Penn AS, et al. Myasthenia gravis. Recommendations for clinical research standards. Neurology 2000; 55: 16-23. – reference: Newsom-Davis J, Willcox N, Calder L. Thymus cells in myasthenia gravis selectively enhance production of anti-acetylcholine-receptor antibody by autologous blood lymphocytes. N Engl J Med 1981; 305: 1313-1318. – reference: Goldstein SD, Yang SC. Assessment of robotic thymectomy using the myasthenia gravis Foundation of America guidelines. Ann Thorac Surg 2010; 89: 1080-1086. – reference: Korn IL, Abramsky O. Myasthenia gravis following viral infection. Eur Neurol 1981; 20: 435-439. – reference: Vandiedonck C, Giraud M, Garchon HJ. Genetics of autoimmune myasthenia gravis: the multifaceted contribution of the HLA complex. J Autoimmun 2005; 25: 6-11. – reference: Moulian N, Bidault J, Truffault F, Yamamoto AM, Levasseur P, Berrih-Aknin S. Thymocyte Fas expression is dysregulated in myasthenia gravis patients with anti-acetylcholine receptor antibody. Blood 1997; 89: 3287-3295. – reference: Lindstrom JM, Seybold ME, Lennon VA, Whittingham S, Duane DD. Antibody to acetylcholine receptor in myasthenia gravis. Prevalence, clinical correlates, and diagnostic value. Neurology 1976; 26: 1054-1059. – reference: MacLennan CA, Vincent A, Marx A, Willcox N, Gilhus NE, Newsom-Davis J, et al. Preferential expression of AChR ϵ-subunit in thymomas from patients with myasthenia gravis. J Neuroimmunol 2008; 201: 28-32. – reference: Sanders DB, Evoli A. Immunosuppressive therapies in myasthenia gravis. Autoimmunity 2010; 43: 428-435. – reference: Punga AR, Stålberg E. Acetylcholinesterase inhibitors in MG: to be or not to be? Muscle Nerve 2009; 39: 724-728. – reference: Savino W, Berrih S, Dardenne M. Thymic epithelial antigen, acquired during ontogeny and defined by the anti-p19 monoclonal antibody, is lost in thymomas. Lab Invest 1984; 51: 292-296. – reference: Sommer N, Harcourt GC, Willcox N, Beason D, Newsom-Davis J. Acetylcholine receptor-reactive T lymphocytes from healthy subjects and myasthenia gravis patients. Neurology 1991; 41: 1270-1276. – reference: Evoli A, Minisci C, Di Schino, Marsili F, Punzi C, Batocchi AP, et al. Thymoma in patients with MG: characteristic and long-term outcome. Neurology 2002; 59: 1844-1850. – reference: Okumura M, Ohta M, Takeuchi Y, Shiono H, Inoue M, Fukuhara K, et al. The immunological role of thymectomy in the treatment of myasthenia gravis: implication of thymus-associated B-lymphocyte subset in reduction of the anti-acetylcholine receptor antibody titer. J Thorac Cardiovasc Surg 2003; 126: 1922-1928. – reference: Carr AS, Cardwell CR, McCarron PO, McConville J. A systematic review of population based epidemiological studies in Myasthenia Gravis. BMC Neurol 2010; 10: 46. – reference: Dalakas M. IVIg in other autoimmune neurological disorders: current status and future prospects. J Neurol 2008; 3: 12-16. – reference: Protti MP, Manfredi AA, Straub C, Howard JF, Conti-Tronconi BM. Immunodominant regions for T helper-cell sensitization on the human nicotinic receptor alpha subunit in myasthenia gravis. Proc Natl Acad Sci 1990; 87: 7792-7796. – reference: Aloisi F, Pujol-Borrell R. Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol 2006; 6: 205-217. – reference: Klavinskis LS, Willcox N, Newsom-Davis J. Antivirus antibodies in myasthenia gravis. Neurology 1985; 35: 1381-1384. – reference: Klavinski LS, Willcox HNA, Richmond JE, Newsom-Davis J. Attempted isolation of viruses from myasthenia gravis thymus. J Neuroimmunol 1986; 11: 287-299. – reference: Shi F-D, Ljunggren H-G, Sarvetnick N. Innate immunity and autoimmunity: from self-protection to self-destruction. Trends Immunol 2001; 22: 97-101. – reference: Di Rosa F, Barnaba V. Persisting viruses and chronic inflammation: understanding their relationship to autoimmunity. Immunol Rev 1998; 164: 17-27. – reference: Safar D, Berrih-Aknin S, Morel E. In vitro anti-acetylcholine receptor antibody synthesis by myasthenia gravis patient lymphocytes: correlations with thymic histology and thymic epithelial cell interaction. J Clin Immunol 1987; 7: 225-234. – reference: Antozzi C, Berta E, Confalonieri P, Zuffi M, Cornelio F, Mantegazza R. Protein-A immunoadsorption in immunosuppression-resistant myasthenia gravis. Lancet 1994; 343: 124. – reference: Zucherman NS, Howard WA, Bismuth J, Gibson K, Edelman H, Berrih-Aknin S, et al. Ectopic GC in the thymus of myasthenia gravis patients show characteristic of normal GC. Eur J Immunol 2010; 40: 1150-1161. – reference: Berrih-Aknin S, Ruhlmann N, Bismuth J, Cizeron-Clairac G, Zelman E, Shachar I, et al. CCL21 overexpressed on lymphatic vessels drives thymic hyperplasia in myasthenia. Ann Neurol 2009; 66: 521-531. – reference: Leprince C, Cohen-Kaminsky S, Berrih-Aknin S, Vernet-Der Garabedian B, Treton D, Galanaud P, et al. Thymic B cells from myasthenia gravis patients are activated B cells. Phenotypic and functional analysis. J Immunol 1990; 145: 2115-2122. – reference: Leite MI, Jacob S, Viegas S, Cossins J, Clover L, Morgan BP, et al. IgG1 antibodies to acetylcholine receptors in 'seronegative' myasthenia gravis. Brain 2008; 131: 1940-1952. – reference: Peferoen LAN, Lamers F, Lodder LNR, Gerritsen WH, Huitinga I, Melief J, et al. Epstein-Barr virus is not a characteristic feature in the central nervous system in established multiple sclerosis. Brain 2010; 133: e137. – reference: Armengol MP, Juan M, Lucas-Martín A, Fernández-Figueras MT, Jaraquemada D, Gallart T, et al. Thyroid autoimmune disease: demonstration of thyroid antigen-specific B cells and recombination-activating gene expression in chemokine-containing active intrathyroidal germinal centers. Am J Pathol 2001; 159: 861-873. – reference: McGuire LJ, Huang DP, Teoh R, Arnold M, Wong L, Lee JC. Epstein-Barr virus genome in thymoma and thymic lymphoid hyperplasia. Am J Pathol 1988; 131: 385-390. – reference: Cavalcante P, Serafini B, Rosicarelli B, Maggi L, Barberis M, Antozzi C, et al. Epstein-Barr virus persistence and reactivation in myasthenia gravis thymus. Ann Neurol 2010; 67: 726-738. – reference: Leite MI, Strobel P, Jones M, Micklem K, Moritz R, Gold R, et al. Fewer thymic changes in MuSK antibody-positive than in MuSK antibody-negative MG. Ann Neurol 2005; 57: 444-448. – reference: Wakkach A, Poëa S, Chastre E, Gespach C, Lecerf F, de la Porte S, et al. Establishment of a human thymic myoid cell line: phenotypic and functional characteristics. Am J Pathol 1999; 155: 1229-1240. – reference: Savino W, Manganella G, Verley JM, Wolff A, Berrih S, Levasseur P, et al. Thymoma epithelial cells secrete thymic hormone but do not express class II antigens of the major histocompatibility complex. J Clin Invest 1985; 76: 1140-1146. – reference: Biesecker G, Gomez CM. Inhibition of acute passive transfer experimental autoimmune myasthenia gravis with Fab antibody to complement C6. J Immunol 1989; 142: 2654-2659. – reference: Berrih S, Morel E, Gaud C, Raimond F, Le Brigand H, Bach JF. Anti-AChR antibodies, thymic histology, and T cell subsets in myasthenia gravis. Neurology 1984; 34: 66-71. – reference: Maggi L, Andreetta F, Antozzi C, Baggi F, Bernasconi P, Cavalcante P, et al. Thymoma-associated myasthenia gravis: outcome, clinical and pathological correlations in 197 on a 20-year experience. J Neuroimmunol 2008; 15: 202: 237-244. – reference: Machens A, Loliger C, Pichlmeier U, Emskotter T, Busch C, Izbicki JR. Correlation of thymic pathology with HLA in myasthenia gravis. Clin Immunol 1999; 91: 296-301. – reference: Schluep M, Willcox N, Vincent A, Dhoot GK, Newson-Davis J. Acetylcholine receptors in human thymic myoid cells in situ: an immunohistological study. Ann Neurol 1987; 22: 212-222. – reference: Vandiedonck C, Raffoux C, Eymard B, Krumeich CS, Gajdos P, Garchon HJ. Association of HLA-A in autoimmune myasthenia gravis with thymoma. J Neuroimmunol 2009; 210: 120-123. – reference: Fujii Y, Hashimoto J, Monden Y, Ito T, Nakahara K, Kawashima Y. Specific activation of lymphocytes against acetylcholine receptor in the thymus in myasthenia gravis. J Immunol 1986; 136: 887-891. – reference: Meraouna A, Cizeron-Clairac G, Le Panse R, Bismuth J, Truffault F, Tallaksen C, et al. The chemokine CXCL13 is a key molecule in autoimmune myasthenia gravis. Blood 2006; 108: 432-440. – reference: Fujii Y, Monden Y, Hashimoto J, Nakahara K, Kawashima Y. Acetylcholine receptor antibody-producing cells in thymus and lymph nodes in myasthenia gravis. Clin Immunol Immunopathol 1985; 34: 141-146. – reference: Mantegazza R, Baggi F, Antozzi C, Confalonieri P, Morandi L, Bernasconi P, et al. Myasthenia gravis (MG): epidemiological data and prognostic factors. Ann NY Acad Sci 2003; 998: 413-423. – reference: Gautel M, Lakey A, Barlow DP, Holmes Z, Scales S, Leonard K, et al. Titin antibodies in myasthenia gravis: identification of a major immunogenic region of titin. Neurology 1993; 43: 1581-1585. – reference: Rowland LP, Hoefer PF, Aranow H, Merritt HH. Fatalities in myasthenia gravis: a review of 39 cases with 26 autopsies. Neurology 1958; 6: 310-326. – reference: Kirchner T, Hoppc F, Schalke B, Müller-Hermelink HK. Microenvironment of thymic myoid cells in myasthenia gravis. Virchows Arch B Cell Pathol 1988; 54: 295-302. – reference: Lennon VA, Seybold ME, Lindstrom JM, Cochrane C, Ulevitch R. Role of complement in the pathogenesis of experimental autoimmune myasthenia gravis. J Exp Med 1978; 147: 973-983. – reference: Beghi E, Antozzi C, Batocchi AP, Cornelio F, Cosi V, Evoli A. Prognosis of myasthenia gravis: a multi center follow-up study of 844 patients. J Neurol Sci 1991; 106: 213-220. – reference: Hohlfeld R, Kalies I, Kohleisen B, Heininger K, Conti-Tronconi BM, Toyka KV. Myasthenia gravis: stimulation of antireceptor autoantibodies by autoreactive T cell lines. Neurology 1986; 36: 618-621. – reference: Ahlberg R, Yi Q, Pirskanen R, Matell G, Swerup C, Rieber EP, et al. Treatment of myasthenia gravis with anti-CD4 antibody: improvement correlates to decreased T-cell autoreactivity. Neurology 1994; 44: 1732-1737. – reference: Murphy J, Murphy SF. Myasthenia gravis in identical twins. Neurology 1986; 36: 78-80. – reference: McConville J, Farrugia ME, Beeson D, Kishore U, Metcalfe R, Newsom-Davis J, et al. Detection and characterization of MuSK antibodies in seronegative myasthenia gravis. Ann Neurol 2004; 55: 580-584. – reference: Berzi A, Ayata CK, Cavalcante P, Falcone C, Candiago E, Motta T, et al. BDNF and its receptors in human myasthenic thymus: implications for cell fate in thymic pathology. J Neuroimmunol 2008; 197: 128-139. – reference: Alshekhlee A, Miles JD, Katirji B, Preston DC, Kaminski HJ. Incidence and mortality rates of myasthenia gravis and myasthenic crisis in US hospitals. Neurology 2009; 72: 1548-1554. – reference: Okumura M, Shiono H, Minami M, Inoue M, Utsumi T, Kadota Y, et al. Clinical and pathological aspects of thymic epithelial tumors. Gen Thorac Cardiovasc Surg 2008; 56: 10-16. – reference: Serafini B, Rosicarelli B, Franciotta D, Magliozzi R, Reynolds R, Cinque P, et al. Dysregulated Epstein-Barr virus infection in the multiple sclerosis brain. J Exp Med 2007; 204: 2899-2912. – reference: Manca N, Perandin F, De Simone N, Giannini F, Bonifati D, Angelini C. Detection of HTLV-I tax-rex and pol gene sequences of thymus gland in large group of patients with myasthenia gravis. J Acquir Immune Defic Syndr 2002; 29: 300-306. – reference: Novellino L, Longoni M, Spinelli L, Andretta M, Cozzi M, Faillace G. 'Extended' thymectomy without sternotomy performed by cervicotomy and thoracoscopic technique in the treatment of myasthenia gravis. Int Surg 1994; 79: 378-381. – reference: Sargsyan SA, Shearer AJ, Ritchie AM, Burgoon MP, Anderson S, Hemmer B, et al. Absence of Epstein-Barr virus in the brain and CSF of patients with multiple sclerosis. Neurology 2010; 74: 1127-1135. – reference: Piddlesden SJ, Jiang S, Levin JL, Vincent A, Morgan BP. Soluble complement receptor 1 (sCR1) protects against experimental autoimmune myasthenia gravis. J Neuroimmunol 1996; 71: 173-177. – reference: Chen G, Marx A, Wen-Hu C, Yong J, Puppe B, Stroebel P, et al. New WHO histologic classification predicts prognosis of thymic epithelial tumors: a clinicopathologic study of 200 thymoma cases from China. Cancer 2002; 95: 420-429. – reference: Balandina A, Lecart S, Dartevelle P, Saoudi A, Berrih-Aknin S. Functional defect of regulatory CD4(+)CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis. Blood 2005; 105: 735-741. – reference: Vincent A, McConville J, Farrugia ME, Newsom-Dawis J. Seronegative myasthenia gravis. Semin Neurol 2004; 24: 125-133. – reference: Shiono H, Fujii Y, Okumura M, Takeuchi Y, Inoue M, Matsuda H. Failure to down-regulate Bcl-2 protein in thymic germinal center B cells in myasthenia gravis. Eur J Immunol 1997; 27: 805-809. – reference: Ragheb S, Lisak R, Lewis R, van Stavern G, Gonzales F, Simon K. A potential role for B-cell activating factor in the pathogenesis of autoimmune myasthenia gravis. Arch Neurol 2008; 65: 1358-1362. – reference: Ruan QG, She JX. Autoimmune polyglandular syndrome type I and the autoimmune regulator. Clin Lab Med 2004; 24: 305-317. – reference: Levinson AI, Zheng Y, Gaulton G, Moore J, Pletcher CH, Song D, et al. A new model linking intra-thymic acetylcholine receptor expression and the pathogenesis of myasthenia gravis. Ann NY Acad Sci 2003; 998: 257-265. – reference: Villadangos JA, Heath WR, Carbone FR. Outside looking in: the inner workings of the crosspresentation pathway within dendritic cells. Trends Immunol 2007; 28: 45-47. – reference: Ragheb S, Mohamed M, Lisak RP. Myasthenia gravis patients, but not healthy subjects, recognize epitopes that are unique to the ϵ-subunit of the acetylcholine receptor. J Neuroimmunol 2005; 159: 137-145. – reference: Padberg F, Matsuda M, Fenk R, Patenge N, Kubuschok B, Hohlfeld R, et al. Myasthenia gravis: selective enrichment of anti-acetylcholine receptor antibody production in untransformed human B cell cultures. Eur J Immunol 1999; 29: 3538-3548. – reference: Giraud M, Taubert R, Vandiedonck C, Ke X, Lévi-Strauss M, Pagani F, et al. An IRF8-binding promoter variant and AIRE control CHRNA1 promiscuous expression in thymus. Nature 2007; 448: 934-937. – volume: 26 start-page: 1054 year: 1976 end-page: 1059 article-title: Antibody to acetylcholine receptor in myasthenia gravis. Prevalence, clinical correlates, and diagnostic value publication-title: Neurology – volume: 131 start-page: 1940 year: 2008 end-page: 1952 article-title: IgG1 antibodies to acetylcholine receptors in ‘seronegative’ myasthenia gravis publication-title: Brain – volume: 24 start-page: 125 year: 2004 end-page: 133 article-title: Seronegative myasthenia gravis publication-title: Semin Neurol – volume: 24 start-page: 571 year: 2006 end-page: 606 article-title: A central role for central tolerance publication-title: Annu Rev Immunol – volume: 18 start-page: 1355 year: 1995 end-page: 1356 article-title: Myasthenia gravis associated with dual infection of HIV and HTLV‐I publication-title: Muscle Nerve – volume: 6 start-page: 205 year: 2006 end-page: 217 article-title: Lymphoid neogenesis in chronic inflammatory diseases publication-title: Nat Rev Immunol – volume: 22 start-page: 1501 year: 2004 end-page: 1509 article-title: Tumor recurrence and survival in patients treated for thymomas and thymic squamous cell carcinomas: a retrospective analysis publication-title: J Clin Oncol – volume: 7 start-page: 225 year: 1987 end-page: 234 article-title: In vitro anti‐acetylcholine receptor antibody synthesis by myasthenia gravis patient lymphocytes: correlations with thymic histology and thymic epithelial cell interaction publication-title: J Clin Immunol – volume: 201 start-page: 28 year: 2008 end-page: 32 article-title: Preferential expression of AChR ϵ‐subunit in thymomas from patients with myasthenia gravis publication-title: J Neuroimmunol – volume: 87 start-page: 7792 year: 1990 end-page: 7796 article-title: Immunodominant regions for T helper‐cell sensitization on the human nicotinic receptor alpha subunit in myasthenia gravis publication-title: Proc Natl Acad Sci – volume: 139 start-page: 995 year: 1991 end-page: 1008 article-title: The thymus in myasthenia gravis. Changes typical for the human disease are absent in experimental autoimmune myasthenia gravis of the rat publication-title: Am J Pathol – volume: 998 start-page: 413 year: 2003 end-page: 423 article-title: Myasthenia gravis (MG): epidemiological data and prognostic factors publication-title: Ann NY Acad Sci – volume: 57 start-page: 211 year: 1990 end-page: 217 article-title: Pokeweed mitogen‐induced immunoglobulin secretory responses of thymic B cells in myasthenia gravis: selective secretion of IgG versus IgM cannot be explained by helper functions of thymic T cells publication-title: Clin Immunol Immunopathol – volume: 67 start-page: 697 year: 2010 end-page: 698 article-title: Epstein–Barr virus: trigger for autoimmunity? publication-title: Ann Neurol – volume: 41 start-page: 1270 year: 1991 end-page: 1276 article-title: Acetylcholine receptor‐reactive T lymphocytes from healthy subjects and myasthenia gravis patients publication-title: Neurology – volume: 157 start-page: 3752 year: 1996 end-page: 3760 article-title: Expression of acetylcholine receptor genes in human thymic epithelial cells: implications for myasthenia gravis publication-title: J Immunol – volume: 95 start-page: 420 year: 2002 end-page: 429 article-title: New WHO histologic classification predicts prognosis of thymic epithelial tumors: a clinicopathologic study of 200 thymoma cases from China publication-title: Cancer – volume: 41 start-page: 298 year: 2008 end-page: 328 article-title: Regulation and dysregulation of Epstein–Barr virus latency: implications for the development of autoimmune diseases publication-title: Autoimmunity – volume: 81 start-page: 902 year: 1988 end-page: 908 article-title: Thymus in myasthenia gravis: isolation of T‐lymphocyte lines specific for the nicotinic acetylcholine receptor from thymuses of myasthenic patients publication-title: J Clin Invest – volume: 54 start-page: 295 year: 1988 end-page: 302 article-title: Microenvironment of thymic myoid cells in myasthenia gravis publication-title: Virchows Arch B Cell Pathol – volume: 210 start-page: 120 year: 2009 end-page: 123 article-title: Association of HLA‐A in autoimmune myasthenia gravis with thymoma publication-title: J Neuroimmunol – volume: 76 start-page: 1140 year: 1985 end-page: 1146 article-title: Thymoma epithelial cells secrete thymic hormone but do not express class II antigens of the major histocompatibility complex publication-title: J Clin Invest – volume: 83 start-page: 262 year: 1991 end-page: 266 article-title: Individual germinal centres of myasthenia gravis human thymuses contain polyclonal activated B cells that express all the VH and VK families publication-title: Clin Exp Immunol – volume: 28 start-page: 273 year: 1978 end-page: 277 article-title: Serum antibodies to cytomegalovirus in myasthenia gravis: effects of thymectomy and steroids publication-title: Neurology – volume: 9 start-page: 242 year: 1989 end-page: 247 article-title: Phenotypic characteristics of thymic B lymphocytes in myasthenia gravis publication-title: J Clin Immunol – volume: 27 start-page: 805 year: 1997 end-page: 809 article-title: Failure to down‐regulate Bcl‐2 protein in thymic germinal center B cells in myasthenia gravis publication-title: Eur J Immunol – volume: 90 start-page: 245 year: 1992 end-page: 250 article-title: Transplantation of thymic autoimmune microenvironment to severe combined immunodeficiency mice. A new model of myasthenia gravis publication-title: J Clin Invest – article-title: The use of rituximab in myasthenia gravis and Lambert–Eaton myasthenic syndrome publication-title: J Neurol Neurosurg Psychiatry – volume: 105 start-page: 735 year: 2005 end-page: 741 article-title: Functional defect of regulatory CD4(+)CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis publication-title: Blood – volume: 67 start-page: 726 year: 2010 end-page: 738 article-title: Epstein–Barr virus persistence and reactivation in myasthenia gravis thymus publication-title: Ann Neurol – volume: 126 start-page: 1922 year: 2003 end-page: 1928 article-title: The immunological role of thymectomy in the treatment of myasthenia gravis: implication of thymus‐associated B‐lymphocyte subset in reduction of the anti‐acetylcholine receptor antibody titer publication-title: J Thorac Cardiovasc Surg – volume: 35 start-page: 1381 year: 1985 end-page: 1384 article-title: Antivirus antibodies in myasthenia gravis publication-title: Neurology – volume: 22 start-page: 97 year: 2001 end-page: 101 article-title: Innate immunity and autoimmunity: from self‐protection to self‐destruction publication-title: Trends Immunol – volume: 34 start-page: 66 year: 1984 end-page: 71 article-title: Anti‐AChR antibodies, thymic histology, and T cell subsets in myasthenia gravis publication-title: Neurology – volume: 36 start-page: 618 year: 1986 end-page: 621 article-title: Myasthenia gravis: stimulation of antireceptor autoantibodies by autoreactive T cell lines publication-title: Neurology – volume: 167 start-page: 129 year: 2005 end-page: 139 article-title: Increased Toll‐like receptor 4 expression in thymus of myasthenia gravis patients publication-title: Am J Pathol – volume: 133 start-page: 364 year: 2007 end-page: 368 article-title: The distribution of parenchyma, follicles, and lymphocyte subsets in thymus of patients with myasthenia gravis, with special reference to remission after thymectomy publication-title: J Thorac Cardiovasc Surg – volume: 2 start-page: 797 year: 2002 end-page: 804 article-title: Unravelling the pathogenesis of myasthenia gravis publication-title: Nat Rev Immunol – volume: 133 start-page: e137 year: 2010 article-title: Epstein–Barr virus is not a characteristic feature in the central nervous system in established multiple sclerosis publication-title: Brain – volume: 66 start-page: 521 year: 2009 end-page: 531 article-title: CCL21 overexpressed on lymphatic vessels drives thymic hyperplasia in myasthenia publication-title: Ann Neurol – volume: 43 start-page: 1581 year: 1993 end-page: 1585 article-title: Titin antibodies in myasthenia gravis: identification of a major immunogenic region of titin publication-title: Neurology – volume: 11 start-page: 287 year: 1986 end-page: 299 article-title: Attempted isolation of viruses from myasthenia gravis thymus publication-title: J Neuroimmunol – volume: 237 start-page: 339 year: 1990 end-page: 344 article-title: A multicentre follow‐up study of 1152 patients with myasthenia gravis in Italy publication-title: J Neurol – volume: 28 start-page: 312 year: 1990 end-page: 319 article-title: Myasthenic thymus and thymoma are selectively enriched in acetylcholine receptor specific T cells publication-title: Ann Neurol – volume: 3 start-page: 12 year: 2008 end-page: 16 article-title: IVIg in other autoimmune neurological disorders: current status and future prospects publication-title: J Neurol – volume: 174 start-page: 5941 year: 2005 end-page: 5949 article-title: Effects of cytokines on acetylcholine receptor expression: implications for myasthenia gravis publication-title: J Immunol – volume: 39 start-page: 724 year: 2009 end-page: 728 article-title: Acetylcholinesterase inhibitors in MG: to be or not to be? publication-title: Muscle Nerve – volume: 174 start-page: 5324 year: 2005 end-page: 5331 article-title: Overexpression of IFN‐induced protein 10 and its receptor CXCR3 in myasthenia gravis publication-title: J Immunol – volume: 212 start-page: 31 year: 2003 end-page: 36 article-title: Video‐assisted thoracoscopic extended thymectomy and extended transsternal thymectomy (T‐3b) in non‐thymomatous myasthenia gravis patients: remission after 6 years of follow‐up publication-title: J Neurol Sci – volume: 108 start-page: 432 year: 2006 end-page: 440 article-title: The chemokine CXCL13 is a key molecule in autoimmune myasthenia gravis publication-title: Blood – volume: 74 start-page: 816 year: 2010 end-page: 820 article-title: Undiminished regulatory T cells in the thymus of patients with myasthenia gravis publication-title: Neurology – volume: 6 start-page: e1 year: 2009 article-title: Ectopic lymphoid structures support ongoing production of class‐switched autoantibodies in rheumatoid synovium publication-title: PLoS Med – volume: 201 start-page: 57 year: 2008 end-page: 63 article-title: Thymus and myasthenia gravis: what can we learn from DNA microarrays? publication-title: J Neuroimmunol – volume: 185 start-page: 136 year: 2007 end-page: 144 article-title: Effect of sera from AChR‐antibody negative myasthenia gravis patients on AChR and MuSK in cell cultures publication-title: J Neuroimmunol – volume: 137 start-page: 1221 year: 1986 end-page: 1225 article-title: Antibodies to acetylcholine receptor and tetanus toxoid: in vitro synthesis by thymic lymphocytes publication-title: J Immunol – volume: 93 start-page: 1020 year: 1994 end-page: 1028 article-title: Epitopes on the beta subunit of human muscle acetylcholine receptor recognized by CD4+ cells of myasthenia gravis patients and healthy subjects publication-title: J Clin Invest – volume: 40 start-page: 1150 year: 2010 end-page: 1161 article-title: Ectopic GC in the thymus of myasthenia gravis patients show characteristic of normal GC publication-title: Eur J Immunol – volume: 178 start-page: 161 year: 2006 end-page: 166 article-title: The thymus is a source of B‐cell‐survival factors—APRIL and BAFF—in myasthenia gravis publication-title: J Neuroimmunol – volume: 65 start-page: 1107 year: 1991 end-page: 1115 article-title: Induction of Bcl‐2 expression by Epstein–Barr virus latent membrane protein 1 protects infected B cells from programmed cell death publication-title: Cell – volume: 131 start-page: 385 year: 1988 end-page: 390 article-title: Epstein–Barr virus genome in thymoma and thymic lymphoid hyperplasia publication-title: Am J Pathol – volume: 57 start-page: 444 year: 2005 end-page: 448 article-title: Fewer thymic changes in MuSK antibody‐positive than in MuSK antibody‐negative MG publication-title: Ann Neurol – volume: 28 start-page: 45 year: 2007 end-page: 47 article-title: Outside looking in: the inner workings of the crosspresentation pathway within dendritic cells publication-title: Trends Immunol – volume: 998 start-page: 257 year: 2003 end-page: 265 article-title: A new model linking intra‐thymic acetylcholine receptor expression and the pathogenesis of myasthenia gravis publication-title: Ann NY Acad Sci – volume: 298 start-page: 1116 year: 1978 end-page: 1122 article-title: Myasthenia antibodies cross‐link acetylcholine receptors to accelerate degradation publication-title: N Engl J Med – volume: 22 start-page: 212 year: 1987 end-page: 222 article-title: Acetylcholine receptors in human thymic myoid cells in situ: an immunohistological study publication-title: Ann Neurol – volume: 140 start-page: 2589 year: 1988 end-page: 2592 article-title: C5 gene influences the development of murine myasthenia gravis publication-title: J Immunol – volume: 291 start-page: 1271 year: 1974 end-page: 1275 article-title: The thymus in myasthenia gravis. Evidence for altered cell populations publication-title: N Engl J Med – volume: 59 start-page: 1844 year: 2002 end-page: 1850 article-title: Thymoma in patients with MG: characteristic and long‐term outcome publication-title: Neurology – volume: 51 start-page: 292 year: 1984 end-page: 296 article-title: Thymic epithelial antigen, acquired during ontogeny and defined by the anti‐p19 monoclonal antibody, is lost in thymomas publication-title: Lab Invest – volume: 132 start-page: 3318 year: 2009 end-page: 3328 article-title: Epstein–Barr virus infection is not characteristic feature of multiple sclerosis brain publication-title: Brain – start-page: 34 year: 1976 end-page: 161 – volume: 177 start-page: 7868 year: 2006 end-page: 7879 article-title: Microarrays reveal distinct gene signatures in the thymus of seropositive and seronegative myasthenia gravis patients and the role of CC chemokine ligand 21 in thymic hyperplasia publication-title: J Immunol – volume: 1 start-page: 75 year: 2001 end-page: 82 article-title: Epstein–Barr virus: exploiting the immune system publication-title: Nat Rev Immunol – volume: 60 start-page: 1978 year: 2003 end-page: 1980 article-title: Clinical aspects of MuSK antibody positive seronegative MG publication-title: Neurology – volume: 149 start-page: 504 year: 2007 end-page: 512 article-title: Expression of autoimmune regulator gene (AIRE) and T regulatory cells in human thymomas publication-title: Clin Exp Immunol – volume: I start-page: 1218 year: 1996 end-page: 1243 – volume: 62 start-page: 853 year: 1996 end-page: 859 article-title: Extended thymectomy for myasthenia gravis patients: a 20‐year review publication-title: Ann Thorac Surg – volume: 164 start-page: 157 year: 1998 end-page: 168 article-title: Determinant spreading and immune responses to acetylcholine receptors in myasthenia gravis publication-title: Immunol Rev – volume: 171 start-page: 893 year: 2007 end-page: 905 article-title: Myasthenia gravis thymus: complement vulnerability of epithelial and myoid cells, complement attack on them and correlations with autoantibody status publication-title: Am J Pathol – volume: 55 start-page: 16 year: 2000 end-page: 23 article-title: Myasthenia gravis. Recommendations for clinical research standards publication-title: Neurology – volume: 11 start-page: 373 year: 2010 end-page: 384 article-title: The role of pattern‐recognition receptors in innate immunity: update on Toll‐like receptors publication-title: Nat Immunol – volume: 54 start-page: 378 year: 1983 end-page: 386 article-title: Greatly increased autoantibody production in myasthenia gravis by thymocyte suspensions prepared with proteolytic enzymes publication-title: Clin Exp Immunol – volume: 238 start-page: 103 year: 1991 end-page: 107 article-title: A short plasma exchange protocol is effective in severe myasthenia gravis publication-title: J Neurol – volume: 102 start-page: 938 year: 1998 end-page: 946 article-title: Antigen‐driven clonal proliferation of B cells within the target tissue of an autoimmune disease. The salivary glands of patients with Sjögren's syndrome publication-title: J Clin Invest – volume: 43 start-page: 428 year: 2010 end-page: 435 article-title: Immunosuppressive therapies in myasthenia gravis publication-title: Autoimmunity – volume: 343 start-page: 124 year: 1994 article-title: Protein‐A immunoadsorption in immunosuppression‐resistant myasthenia gravis publication-title: Lancet – volume: 19 start-page: 87 year: 1986 end-page: 89 article-title: Suppressor T cells in myasthenia gravis and antibodies to acetylcholine receptor publication-title: Ann Neurol – volume: 63 start-page: 241 year: 1993 end-page: 247 article-title: B‐cells in thymic epithelial tumours. An immunohistochemical analysis of intra‐ and extraepithelial B‐cell compartments publication-title: Virchows Arch B Cell Pathol Incl Mod Pathol – volume: 1183 start-page: 58 year: 2010 end-page: 68 article-title: Innate pathways to B cell activation and tolerance publication-title: Ann NY Acad Sci – volume: 95 start-page: 747 year: 1988 end-page: 757 article-title: “Maximal” thymectomy for myasthenia gravis. Results publication-title: J Thorac Cardiovasc Surg – volume: 64 start-page: 536 year: 2005 end-page: 538 article-title: Thymus changes in anti‐MuSK‐positive and ‐negative myasthenia gravis publication-title: Neurology – volume: 10 start-page: 46 year: 2010 article-title: A systematic review of population based epidemiological studies in Myasthenia Gravis publication-title: BMC Neurol – volume: 312 start-page: 221 year: 1985 end-page: 225 article-title: Sharing of antigenic determinants between the nicotinic acetylcholine receptor and proteins in , , and . Possible role in the pathogenesis of myasthenia gravis publication-title: N Engl J Med – volume: 55 start-page: 580 year: 2004 end-page: 584 article-title: Detection and characterization of MuSK antibodies in seronegative myasthenia gravis publication-title: Ann Neurol – volume: 91 start-page: 296 year: 1999 end-page: 301 article-title: Correlation of thymic pathology with HLA in myasthenia gravis publication-title: Clin Immunol – volume: 71 start-page: 173 year: 1996 end-page: 177 article-title: Soluble complement receptor 1 (sCR1) protects against experimental autoimmune myasthenia gravis publication-title: J Neuroimmunol – volume: 164 start-page: 17 year: 1998 end-page: 27 article-title: Persisting viruses and chronic inflammation: understanding their relationship to autoimmunity publication-title: Immunol Rev – volume: 841 start-page: 538 year: 1998 end-page: 541 article-title: Anti‐titin and antiryanodine receptor antibodies in myasthenia gravis patients with thymoma publication-title: Ann NY Acad Sci – volume: 72 start-page: 1548 year: 2009 end-page: 1554 article-title: Incidence and mortality rates of myasthenia gravis and myasthenic crisis in US hospitals publication-title: Neurology – volume: 47 start-page: 115 year: 1993 end-page: 122 article-title: Identification of genomic typing non‐DR3 HLA class II genes associated myasthenia gravis publication-title: J Neuroimmunol – volume: 34 start-page: 141 year: 1985 end-page: 146 article-title: Acetylcholine receptor antibody‐producing cells in thymus and lymph nodes in myasthenia gravis publication-title: Clin Immunol Immunopathol – volume: 89 start-page: 3287 year: 1997 end-page: 3295 article-title: Thymocyte Fas expression is dysregulated in myasthenia gravis patients with anti‐acetylcholine receptor antibody publication-title: Blood – start-page: 9 year: 1999 end-page: 14 – volume: 15 start-page: 202 year: 2008 end-page: 244 article-title: Thymoma‐associated myasthenia gravis: outcome, clinical and pathological correlations in 197 on a 20‐year experience publication-title: J Neuroimmunol – volume: 29 start-page: 300 year: 2002 end-page: 306 article-title: Detection of HTLV‐I tax‐rex and pol gene sequences of thymus gland in large group of patients with myasthenia gravis publication-title: J Acquir Immune Defic Syndr – volume: 159 start-page: 861 year: 2001 end-page: 873 article-title: Thyroid autoimmune disease: demonstration of thyroid antigen‐specific B cells and recombination‐activating gene expression in chemokine‐containing active intrathyroidal germinal centers publication-title: Am J Pathol – volume: 25 start-page: 6 year: 2005 end-page: 11 article-title: Genetics of autoimmune myasthenia gravis: the multifaceted contribution of the HLA complex publication-title: J Autoimmun – volume: 56 start-page: 143 year: 2008 end-page: 150 article-title: Immunological function of thymoma and pathogenesis of paraneoplastic myasthenia gravis publication-title: Gen Thorac Cardiovasc Surg – volume: 284 start-page: 481 year: 1996 end-page: 487 article-title: Thymic myoid cell turnover in myasthenia gravis patients and in normal controls publication-title: Cell Tissue Res – volume: 29 start-page: 3538 year: 1999 end-page: 3548 article-title: Myasthenia gravis: selective enrichment of anti‐acetylcholine receptor antibody production in untransformed human B cell cultures publication-title: Eur J Immunol – volume: 164 start-page: 124 year: 2005 end-page: 128 article-title: Decreased frequency of intrathymic regulatory T cells in patients with myasthenia‐associated thymoma publication-title: J Neuroimmunol – volume: 33 start-page: 604 year: 1983 end-page: 608 article-title: In vitro synthesis of antibodies to acetylcholine receptor by peripheral blood mononuclear cells of patients with myasthenia gravis publication-title: Neurology – volume: 89 start-page: 1080 year: 2010 end-page: 1086 article-title: Assessment of robotic thymectomy using the myasthenia gravis Foundation of America guidelines publication-title: Ann Thorac Surg – volume: 145 start-page: 2115 year: 1990 end-page: 2122 article-title: Thymic B cells from myasthenia gravis patients are activated B cells. Phenotypic and functional analysis publication-title: J Immunol – volume: 9 start-page: 246 year: 2009 end-page: 257 article-title: Antiviral immune responses: triggers of or triggered by autoimmunity? publication-title: Nat Rev Immunol – volume: 20 start-page: 435 year: 1981 end-page: 439 article-title: Myasthenia gravis following viral infection publication-title: Eur Neurol – volume: 56 start-page: 10 year: 2008 end-page: 16 article-title: Clinical and pathological aspects of thymic epithelial tumors publication-title: Gen Thorac Cardiovasc Surg – volume: 204 start-page: 2899 year: 2007 end-page: 2912 article-title: Dysregulated Epstein–Barr virus infection in the multiple sclerosis brain publication-title: J Exp Med – volume: 79 start-page: 378 year: 1994 end-page: 381 article-title: ‘Extended’ thymectomy without sternotomy performed by cervicotomy and thoracoscopic technique in the treatment of myasthenia gravis publication-title: Int Surg – volume: 65 start-page: 1358 year: 2008 end-page: 1362 article-title: A potential role for B‐cell activating factor in the pathogenesis of autoimmune myasthenia gravis publication-title: Arch Neurol – volume: 8 start-page: 113 year: 1989 end-page: ‐117 article-title: Proliferative response of blood cells of patients with myasthenia gravis to purified mammalian acetylcholine receptor publication-title: Pathol Immunopathol Res – volume: 34 start-page: 802 year: 1984 end-page: 805 article-title: In vitro synthesis of antibodies to acetylcholine receptor by peripheral blood cells: role of suppressor T cells in normal subjects publication-title: Neurology – volume: 31 start-page: 935 year: 1981 end-page: 943 article-title: Acetylcholine receptor antibody synthesis by thymic lymphocytes: correlation with thymic histology publication-title: Neurology – volume: 305 start-page: 1313 year: 1981 end-page: 1318 article-title: Thymus cells in myasthenia gravis selectively enhance production of anti‐acetylcholine‐receptor antibody by autologous blood lymphocytes publication-title: N Engl J Med – volume: 136 start-page: 887 year: 1986 end-page: 891 article-title: Specific activation of lymphocytes against acetylcholine receptor in the thymus in myasthenia gravis publication-title: J Immunol – volume: 36 start-page: 264 year: 2007 end-page: 266 article-title: Anti‐MuSK myasthenia gravis presenting with Epstein–Barr virus‐associated mononucleosis and immune‐mediated diabetes mellitus publication-title: Muscle Nerve – volume: 6 start-page: 310 year: 1958 end-page: 326 article-title: Fatalities in myasthenia gravis: a review of 39 cases with 26 autopsies publication-title: Neurology – volume: 197 start-page: 128 year: 2008 end-page: 139 article-title: BDNF and its receptors in human myasthenic thymus: implications for cell fate in thymic pathology publication-title: J Neuroimmunol – volume: 133 year: 2010 end-page: e157 article-title: Detection of Epstein–Barr virus and B‐cell follicles in the multiple sclerosis brain: what you find depends on how and where you look publication-title: Brain – volume: 201 start-page: 50 year: 2008 end-page: 56 article-title: The myasthenia gravis thymus: a rare source of human autoantibody‐secreting plasma cells for testing potential therapeutics publication-title: J Neuroimmunol – volume: 4 start-page: 121 year: 1993 end-page: 132 article-title: Interleukin‐6 overproduction by cultured thymic epithelial cells from patients with myasthenia gravis is potentially involved in thymic hyperplasia publication-title: Eur Cytokine Netw – volume: 167 start-page: 1935 year: 2001 end-page: 1944 article-title: Somatic hypermutation and selection of B cells in thymic germinal centers responding to acetylcholine receptor in myasthenia gravis publication-title: J Immunol – volume: 448 start-page: 934 year: 2007 end-page: 937 article-title: An IRF8‐binding promoter variant and AIRE control CHRNA1 promiscuous expression in thymus publication-title: Nature – volume: 142 start-page: 2654 year: 1989 end-page: 2659 article-title: Inhibition of acute passive transfer experimental autoimmune myasthenia gravis with Fab antibody to complement C6 publication-title: J Immunol – volume: 24 start-page: 305 year: 2004 end-page: 317 article-title: Autoimmune polyglandular syndrome type I and the autoimmune regulator publication-title: Clin Lab Med – volume: 1132 start-page: 180 year: 2008 end-page: 192 article-title: Genetic factors in autoimmune myasthenia gravis publication-title: Ann NY Acad Sci – volume: 1 start-page: 678 year: 1977 end-page: 680 article-title: Intrathymic pathogenesis and dual genetic control of myasthenia gravis publication-title: Lancet – volume: 35 start-page: 185 year: 1985 end-page: 192 article-title: Attempts to implicate viruses in myasthenia gravis publication-title: Neurology – volume: 106 start-page: 213 year: 1991 end-page: 220 article-title: Prognosis of myasthenia gravis: a multi center follow‐up study of 844 patients publication-title: J Neurol Sci – volume: 74 start-page: 1118 year: 2010 end-page: 1126 article-title: Detection of poliovirus‐infected macrophages in thymus of patients with myasthenia gravis publication-title: Neurology – volume: 40 start-page: 102 year: 2010 end-page: 107 article-title: Biological implications of thymectomy for myasthenia gravis publication-title: Surg Today – volume: 1 start-page: 305 year: 1978 end-page: 307 article-title: In‐vitro synthesis of anti‐acetylcholine‐receptor‐antibody by thymic lymphocytes in myasthenia gravis publication-title: Lancet – volume: 36 start-page: 78 year: 1986 end-page: 80 article-title: Myasthenia gravis in identical twins publication-title: Neurology – volume: 91 start-page: 4668 year: 1994 end-page: 4672 article-title: Involvement of human muscle acetylcholine receptor alpha‐subunit gene (CHRNA) in susceptibility to myasthenia gravis publication-title: Proc Natl Acad Sci USA – volume: 125 start-page: 185 year: 2002 end-page: 197 article-title: Thymic myoid cells and germinal center formation in myasthenia gravis; possible roles in pathogenesis publication-title: J Neuroimmunol – volume: 147 start-page: 973 year: 1978 end-page: 983 article-title: Role of complement in the pathogenesis of experimental autoimmune myasthenia gravis publication-title: J Exp Med – volume: 80 start-page: 4089 year: 1983 end-page: 4093 article-title: Anti‐acetylcholine receptor antibodies directed against the alpha‐bungarotoxin binding site induce a unique form of experimental myasthenia publication-title: Proc Natl Acad Sci USA – volume: 18 start-page: 175 year: 1998 end-page: 192 article-title: The human thymus. A chimeric organ comprised of central and peripheral lymphoid components publication-title: Immunol Res – volume: 101 start-page: 1564 year: 2004 end-page: 1569 article-title: Pleiotropic effects of the 8.1 HLA haplotype in patients with autoimmune myasthenia gravis and thymus hyperplasia publication-title: Proc Natl Acad Sci USA – volume: 39 start-page: 160 year: 1980 end-page: 172 article-title: Ultrastructural localization of the terminal and lytic ninth complement component (C9) at the motor end‐plate in myasthenia gravis publication-title: J Neuropathol Exp Neurol – volume: 44 start-page: 1732 year: 1994 end-page: 1737 article-title: Treatment of myasthenia gravis with anti‐CD4 antibody: improvement correlates to decreased T‐cell autoreactivity publication-title: Neurology – volume: 126 start-page: 2304 year: 2003 end-page: 2311 article-title: Clinical correlates with anti‐MuSK antibodies in generalized seronegative myasthenia gravis publication-title: Brain – volume: 145 start-page: 392 year: 2009 end-page: 398 article-title: Thymectomy is more effective than conservative treatment for myasthenia gravis regarding outcome and clinical improvement publication-title: Surgery – volume: 84 start-page: 1174 year: 1989 end-page: 1180 article-title: Molecular mimicry and myasthenia gravis. An autoantigenic site of the acetylcholine receptor alpha‐subunit that has biologic activity and reacts immunochemically with herpes simplex virus publication-title: J Clin Invest – volume: 159 start-page: 137 year: 2005 end-page: 145 article-title: Myasthenia gravis patients, but not healthy subjects, recognize epitopes that are unique to the ϵ‐subunit of the acetylcholine receptor publication-title: J Neuroimmunol – volume: 1132 start-page: 315 year: 2008 end-page: 328 article-title: Thymectomy for nonthymomatous myasthenia gravis. A critical analysis publication-title: Ann NY Acad Sci – volume: 2 start-page: 13 year: 2007 end-page: 22 article-title: Thymomas: a cytological and immunohistochemical study, with emphasis on lymphoid and neuroendocrine markers publication-title: Diagn Pathol – volume: 148 start-page: 97 year: 2004 end-page: 105 article-title: Thymic myoid cells express high levels of muscle genes publication-title: J Neuroimmunol – volume: 7 start-page: 365 year: 2001 end-page: 368 article-title: Auto‐antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies publication-title: Nat Med – volume: 175 start-page: 7021 year: 2005 end-page: 7028 article-title: Constitutive activation of p38 and ERK1/2 MAPKs in epithelial cells of myasthenic thymus leads to IL‐6 and RANTES overexpression: effects on survival and migration of peripheral T and B cells publication-title: J Immunol – volume: 74 start-page: 1127 year: 2010 end-page: 1135 article-title: Absence of Epstein–Barr virus in the brain and CSF of patients with multiple sclerosis publication-title: Neurology – volume: 155 start-page: 1229 year: 1999 end-page: 1240 article-title: Establishment of a human thymic myoid cell line: phenotypic and functional characteristics publication-title: Am J Pathol – ident: e_1_2_7_52_2 doi: 10.1016/S0165-5728(02)00038-3 – ident: e_1_2_7_152_2 doi: 10.1212/WNL.28.3.273 – ident: e_1_2_7_33_2 doi: 10.1007/BF00315656 – ident: e_1_2_7_117_2 doi: 10.1002/(SICI)1521-4141(199911)29:11<3538::AID-IMMU3538>3.0.CO;2-Y – ident: e_1_2_7_36_2 doi: 10.1002/mus.21319 – ident: e_1_2_7_37_2 doi: 10.1007/BF00315690 – ident: e_1_2_7_141_2 doi: 10.1038/nri2527 – ident: e_1_2_7_12_2 doi: 10.4049/jimmunol.140.8.2589 – ident: e_1_2_7_115_2 doi: 10.1212/WNL.34.6.802 – ident: e_1_2_7_128_2 doi: 10.1016/j.jtcvs.2006.10.026 – ident: e_1_2_7_19_2 doi: 10.1093/brain/awn092 – ident: e_1_2_7_160_2 doi: 10.1093/brain/awp296 – ident: e_1_2_7_39_2 doi: 10.1016/S0140-6736(94)90858-3 – ident: e_1_2_7_57_2 doi: 10.1007/BF02788778 – ident: e_1_2_7_3_2 doi: 10.1196/annals.1254.054 – ident: e_1_2_7_47_2 doi: 10.1371/journal.pmed.0060001 – ident: e_1_2_7_61_2 doi: 10.1038/35095584 – ident: e_1_2_7_78_2 doi: 10.1172/JCI113401 – ident: e_1_2_7_134_2 doi: 10.1007/s00595-009-4134-2 – ident: e_1_2_7_126_2 doi: 10.1196/annals.1405.004 – ident: e_1_2_7_53_2 doi: 10.1016/S0140-6736(77)92118-3 – ident: e_1_2_7_114_2 doi: 10.1212/WNL.33.5.604 – ident: e_1_2_7_54_2 doi: 10.1002/ana.410220205 – volume: 89 start-page: 3287 year: 1997 ident: e_1_2_7_102_2 article-title: Thymocyte Fas expression is dysregulated in myasthenia gravis patients with anti‐acetylcholine receptor antibody publication-title: Blood doi: 10.1182/blood.V89.9.3287 – ident: e_1_2_7_65_2 doi: 10.1002/cncr.10665 – ident: e_1_2_7_35_2 doi: 10.3109/08916930903518107 – ident: e_1_2_7_64_2 doi: 10.1016/S0003-4975(96)00376-1 – ident: e_1_2_7_60_2 doi: 10.1001/archneur.65.10.1358 – ident: e_1_2_7_20_2 doi: 10.1212/WNL.43.8.1581 – ident: e_1_2_7_142_2 doi: 10.1080/08916930802024772 – ident: e_1_2_7_107_2 doi: 10.4049/jimmunol.177.11.7868 – ident: e_1_2_7_157_2 doi: 10.1016/S0002-9440(10)62960-4 – ident: e_1_2_7_15_2 doi: 10.1212/01.WNL.0000065882.63904.53 – ident: e_1_2_7_25_2 doi: 10.1016/j.jaut.2005.09.010 – ident: e_1_2_7_73_2 doi: 10.1172/JCI112069 – ident: e_1_2_7_46_2 doi: 10.1038/nri1786 – volume: 4 start-page: 121 year: 1993 ident: e_1_2_7_138_2 article-title: Interleukin‐6 overproduction by cultured thymic epithelial cells from patients with myasthenia gravis is potentially involved in thymic hyperplasia publication-title: Eur Cytokine Netw – ident: e_1_2_7_59_2 doi: 10.1016/j.jneuroim.2006.05.023 – ident: e_1_2_7_96_2 doi: 10.1212/WNL.41.8.1270 – ident: e_1_2_7_151_2 doi: 10.1212/WNL.35.9.1381 – ident: e_1_2_7_131_2 doi: 10.1016/j.athoracsur.2010.01.038 – ident: e_1_2_7_24_2 doi: 10.1006/clim.1999.4710 – ident: e_1_2_7_111_2 doi: 10.1016/S0140-6736(78)90073-9 – ident: e_1_2_7_84_2 doi: 10.4049/jimmunol.174.10.5941 – ident: e_1_2_7_89_2 – ident: e_1_2_7_105_2 doi: 10.1016/j.jneuroim.2005.03.011 – volume: 137 start-page: 1221 year: 1986 ident: e_1_2_7_121_2 article-title: Antibodies to acetylcholine receptor and tetanus toxoid: in vitro synthesis by thymic lymphocytes publication-title: J Immunol doi: 10.4049/jimmunol.137.4.1221 – ident: e_1_2_7_99_2 doi: 10.1159/000157142 – ident: e_1_2_7_132_2 doi: 10.1016/j.surg.2008.11.009 – ident: e_1_2_7_140_2 doi: 10.1016/j.jneuroim.2008.06.028 – ident: e_1_2_7_150_2 doi: 10.1056/NEJM198501243120407 – ident: e_1_2_7_94_2 doi: 10.1212/WNL.36.5.618 – ident: e_1_2_7_90_2 doi: 10.1016/j.jneuroim.2008.06.016 – ident: e_1_2_7_50_2 doi: 10.1172/JCI3234 – ident: e_1_2_7_101_2 doi: 10.1016/j.jneuroim.2004.09.017 – ident: e_1_2_7_85_2 doi: 10.1007/BF02899226 – ident: e_1_2_7_69_2 doi: 10.1212/01.WNL.0000032502.89361.0C – ident: e_1_2_7_79_2 doi: 10.1002/ana.410280303 – volume: 6 start-page: 310 year: 1958 ident: e_1_2_7_32_2 article-title: Fatalities in myasthenia gravis: a review of 39 cases with 26 autopsies publication-title: Neurology – volume: 54 start-page: 378 year: 1983 ident: e_1_2_7_113_2 article-title: Greatly increased autoantibody production in myasthenia gravis by thymocyte suspensions prepared with proteolytic enzymes publication-title: Clin Exp Immunol – ident: e_1_2_7_136_2 doi: 10.1111/j.1749-6632.2009.05123.x – volume: 131 start-page: 385 year: 1988 ident: e_1_2_7_155_2 article-title: Epstein–Barr virus genome in thymoma and thymic lymphoid hyperplasia publication-title: Am J Pathol – ident: e_1_2_7_4_2 doi: 10.1038/nri916 – ident: e_1_2_7_63_2 doi: 10.1016/0092-8674(91)90007-L – ident: e_1_2_7_147_2 doi: 10.1002/mus.20746 – ident: e_1_2_7_51_2 doi: 10.1002/eji.200939914 – ident: e_1_2_7_5_2 doi: 10.1212/WNL.26.11.1054 – ident: e_1_2_7_7_2 doi: 10.1016/S0165-5728(96)00144-0 – ident: e_1_2_7_68_2 doi: 10.1212/WNL.34.1.66 – ident: e_1_2_7_95_2 doi: 10.1212/WNL.44.9.1732 – ident: e_1_2_7_82_2 doi: 10.1016/j.jneuroim.2003.11.013 – ident: e_1_2_7_158_2 doi: 10.1212/WNL.0b013e3181d7d884 – ident: e_1_2_7_56_2 doi: 10.1002/ana.21628 – ident: e_1_2_7_75_2 doi: 10.1007/BF02899268 – ident: e_1_2_7_76_2 doi: 10.1186/1746-1596-2-13 – volume: 79 start-page: 378 year: 1994 ident: e_1_2_7_130_2 article-title: ‘Extended’ thymectomy without sternotomy performed by cervicotomy and thoracoscopic technique in the treatment of myasthenia gravis publication-title: Int Surg – ident: e_1_2_7_143_2 doi: 10.1038/ni.1863 – ident: e_1_2_7_124_2 doi: 10.1084/jem.20071030 – ident: e_1_2_7_163_2 doi: 10.1002/ana.22031 – ident: e_1_2_7_55_2 doi: 10.1016/S0002-9440(10)65225-X – ident: e_1_2_7_30_2 doi: 10.1073/pnas.91.11.4668 – ident: e_1_2_7_10_2 doi: 10.1084/jem.147.4.973 – ident: e_1_2_7_43_2 doi: 10.1212/01.WNL.0000150587.71497.B6 – ident: e_1_2_7_45_2 doi: 10.1002/ana.21902 – ident: e_1_2_7_27_2 doi: 10.1016/0165-5728(93)90021-P – ident: e_1_2_7_145_2 doi: 10.1056/NEJM197412122912403 – ident: e_1_2_7_123_2 doi: 10.1016/j.jneuroim.2008.04.019 – ident: e_1_2_7_154_2 doi: 10.1016/0165-5728(86)90082-2 – ident: e_1_2_7_42_2 doi: 10.1002/ana.20386 – ident: e_1_2_7_83_2 doi: 10.1111/j.1600-065X.1998.tb01217.x – ident: e_1_2_7_98_2 doi: 10.1196/annals.1254.027 – ident: e_1_2_7_162_2 doi: 10.1093/brain/awq223 – volume: 157 start-page: 3752 year: 1996 ident: e_1_2_7_77_2 article-title: Expression of acetylcholine receptor genes in human thymic epithelial cells: implications for myasthenia gravis publication-title: J Immunol doi: 10.4049/jimmunol.157.8.3752 – ident: e_1_2_7_38_2 doi: 10.1007/s00415-008-3004-y – volume: 18 start-page: 1355 year: 1995 ident: e_1_2_7_148_2 article-title: Myasthenia gravis associated with dual infection of HIV and HTLV‐I publication-title: Muscle Nerve – ident: e_1_2_7_110_2 doi: 10.1007/BF00916820 – ident: e_1_2_7_127_2 doi: 10.1016/S0022-5223(03)00938-3 – ident: e_1_2_7_156_2 doi: 10.1097/00126334-200203010-00012 – volume: 139 start-page: 995 year: 1991 ident: e_1_2_7_106_2 article-title: The thymus in myasthenia gravis. Changes typical for the human disease are absent in experimental autoimmune myasthenia gravis of the rat publication-title: Am J Pathol – ident: e_1_2_7_9_2 doi: 10.1073/pnas.80.13.4089 – ident: e_1_2_7_70_2 doi: 10.1007/s11748-007-0185-8 – ident: e_1_2_7_6_2 doi: 10.1097/00005072-198003000-00005 – ident: e_1_2_7_149_2 doi: 10.1172/JCI114282 – ident: e_1_2_7_135_2 doi: 10.1016/S1471-4906(00)01821-4 – ident: e_1_2_7_97_2 doi: 10.1172/JCI117050 – volume: 95 start-page: 747 year: 1988 ident: e_1_2_7_67_2 article-title: “Maximal” thymectomy for myasthenia gravis. Results publication-title: J Thorac Cardiovasc Surg doi: 10.1016/S0022-5223(19)35684-3 – ident: e_1_2_7_86_2 doi: 10.1016/j.it.2006.12.008 – ident: e_1_2_7_11_2 doi: 10.4049/jimmunol.142.8.2654 – ident: e_1_2_7_21_2 doi: 10.1111/j.1749-6632.1998.tb10978.x – ident: e_1_2_7_161_2 doi: 10.1212/WNL.0b013e3181d865a1 – ident: e_1_2_7_120_2 doi: 10.1056/NEJM198111263052203 – ident: e_1_2_7_104_2 doi: 10.1212/WNL.0b013e3181d31e47 – ident: e_1_2_7_66_2 doi: 10.1007/s11748-007-0177-8 – ident: e_1_2_7_29_2 doi: 10.1196/annals.1405.027 – volume: 136 start-page: 887 year: 1986 ident: e_1_2_7_118_2 article-title: Specific activation of lymphocytes against acetylcholine receptor in the thymus in myasthenia gravis publication-title: J Immunol doi: 10.4049/jimmunol.136.3.887 – ident: e_1_2_7_139_2 doi: 10.4049/jimmunol.175.10.7021 – ident: e_1_2_7_23_2 doi: 10.1212/WNL.36.1.78 – ident: e_1_2_7_16_2 doi: 10.1002/ana.20061 – start-page: 1218 volume-title: Anderson's pathology year: 1996 ident: e_1_2_7_44_2 – ident: e_1_2_7_92_2 doi: 10.1016/j.cll.2004.01.008 – ident: e_1_2_7_31_2 doi: 10.1038/nature06066 – ident: e_1_2_7_48_2 doi: 10.1016/S0002-9440(10)61762-2 – volume: 185 start-page: 136 year: 2007 ident: e_1_2_7_18_2 article-title: Effect of sera from AChR‐antibody negative myasthenia gravis patients on AChR and MuSK in cell cultures publication-title: J Neuroimmunol doi: 10.1016/j.jneuroim.2007.01.010 – ident: e_1_2_7_58_2 doi: 10.1182/blood-2005-06-2383 – ident: e_1_2_7_159_2 doi: 10.1093/brain/awp200 – ident: e_1_2_7_2_2 doi: 10.1186/1471-2377-10-46 – ident: e_1_2_7_28_2 doi: 10.1016/j.jneuroim.2009.02.004 – ident: e_1_2_7_119_2 doi: 10.1007/BF00915728 – ident: e_1_2_7_103_2 doi: 10.1182/blood-2003-11-3900 – ident: e_1_2_7_88_2 doi: 10.1007/s004410050609 – ident: e_1_2_7_153_2 doi: 10.1212/WNL.35.2.185 – ident: e_1_2_7_17_2 doi: 10.1055/s-2004-829589 – ident: e_1_2_7_34_2 doi: 10.1212/WNL.0b013e3181a41211 – ident: e_1_2_7_87_2 doi: 10.2353/ajpath.2007.070240 – ident: e_1_2_7_109_2 doi: 10.1016/0090-1229(90)90035-O – ident: e_1_2_7_13_2 doi: 10.1002/mus.880171208 – ident: e_1_2_7_144_2 doi: 10.1111/j.1600-065X.1998.tb01204.x – ident: e_1_2_7_80_2 doi: 10.1016/j.jneuroim.2008.06.027 – ident: e_1_2_7_49_2 doi: 10.4049/jimmunol.167.4.1935 – volume: 51 start-page: 292 year: 1984 ident: e_1_2_7_74_2 article-title: Thymic epithelial antigen, acquired during ontogeny and defined by the anti‐p19 monoclonal antibody, is lost in thymomas publication-title: Lab Invest – ident: e_1_2_7_137_2 doi: 10.4049/jimmunol.174.9.5324 – ident: e_1_2_7_93_2 doi: 10.1111/j.1365-2249.2007.03442.x – volume: 145 start-page: 2115 year: 1990 ident: e_1_2_7_122_2 article-title: Thymic B cells from myasthenia gravis patients are activated B cells. Phenotypic and functional analysis publication-title: J Immunol doi: 10.4049/jimmunol.145.7.2115 – ident: e_1_2_7_41_2 doi: 10.1016/S0022-510X(03)00087-X – ident: e_1_2_7_81_2 doi: 10.1172/JCI115843 – ident: e_1_2_7_8_2 doi: 10.1056/NEJM197805182982004 – ident: e_1_2_7_14_2 doi: 10.1093/brain/awg223 – ident: e_1_2_7_129_2 doi: 10.1016/0090-1229(85)90018-2 – ident: e_1_2_7_133_2 doi: 10.1212/WNL.55.1.16 – ident: e_1_2_7_62_2 doi: 10.1002/eji.1830270402 – ident: e_1_2_7_116_2 doi: 10.1002/ana.410190119 – ident: e_1_2_7_100_2 doi: 10.1073/pnas.87.19.7792 – volume: 15 start-page: 202 year: 2008 ident: e_1_2_7_22_2 article-title: Thymoma‐associated myasthenia gravis: outcome, clinical and pathological correlations in 197 on a 20‐year experience publication-title: J Neuroimmunol – ident: e_1_2_7_40_2 article-title: The use of rituximab in myasthenia gravis and Lambert–Eaton myasthenic syndrome publication-title: J Neurol Neurosurg Psychiatry – start-page: 9 volume-title: World Health Organization. International histological classification of tumors year: 1999 ident: e_1_2_7_71_2 – ident: e_1_2_7_26_2 doi: 10.1073/pnas.0406756101 – ident: e_1_2_7_72_2 doi: 10.1200/JCO.2004.10.113 – ident: e_1_2_7_112_2 doi: 10.1212/WNL.31.8.935 – ident: e_1_2_7_146_2 doi: 10.1159/000115275 – ident: e_1_2_7_91_2 doi: 10.1146/annurev.immunol.23.021704.115601 – ident: e_1_2_7_125_2 doi: 10.1016/0022-510X(91)90260-E – ident: e_1_2_7_108_2 doi: 10.1111/j.1365-2249.1991.tb05625.x |
SSID | ssj0001867 |
Score | 2.2768645 |
SecondaryResourceType | review_article |
Snippet | Myasthenia gravis (MG) is an autoimmune disorder caused, in most cases, by autoantibodies against components of the neuromuscular junction, frequently the... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 467 |
SubjectTerms | Autoantibodies - immunology Autoimmune Diseases - immunology Autoimmune Diseases - metabolism Autoimmune Diseases - pathology Biological and medical sciences Diseases of striated muscles. Neuromuscular diseases Humans Immunity, Innate - physiology inflammation innate immunity Medical sciences Muscle myasthenia gravis Myasthenia Gravis - immunology Myasthenia Gravis - pathology Myasthenia Gravis - therapy Neurology Pharmacology. Drug treatments thymus Thymus Gland - abnormalities Thymus Gland - immunology Thymus Gland - metabolism viral infection |
Title | The thymus in myasthenia gravis: Site of "innate autoimmunity"? |
URI | https://api.istex.fr/ark:/67375/WNG-3N6JM4QX-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmus.22103 https://www.ncbi.nlm.nih.gov/pubmed/21922466 https://www.proquest.com/docview/890676329 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhgdJLm763jyBKKb14Y1uyLLWHUtKmIbALaRK6h4KQvBKYNN4Se6HpKT8k-XP5JZ2R1162pFB6k2EGe17SyBp9Q8grA3uS1GcsUi72EVcGQkpNk0hyacAdvOQ2oH2Oxd4x359kkzXyrrsL0-JD9D_cMDLCfI0Bbmy9vQQNPZ3XwxQ2LIj0mTCBuPkfvyyhoxCorS1flBGswpMOVShOt3vOlbVoA9X6E2sjTQ3q8W1fi5sSz9U8NixEu3fJt06Etv7kZDhv7LD49Qe643_KuEnuLBJU-qH1qHtkzVX3ya3R4gj-AdkBx6JgXWCiZUVPz02NAAqlodjJqKzf0kPIYunM0-uLy7KqIJelZt7MynARpTm_vrh6_5Ac7X462tmLFp0YogIB2qJCScESp8TU2xw2kCy3xlgrGRPS-YILrzizClGPlUzgyWTYV33KlJc5M-wRWa9mlXtCaB672DrDZeI8d0Vukmma4EAW1sXMDMibziS6WKCUY7OM77rFV041iKeDTgbkZU_6o4XmuInodbBrT2HOTrCWLc_01_FnzcZif8QPJvpgQLZWDN8zpDzL8QLygNDOEzSEIJ6rmMrN4EUSBIdpGkketx6yZIYEOuVCgFjBzn__UD06PgyDp_9O-ozcTruSxOQ5WW_O5u4F5EiN3QrB8BsNbgzJ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9swED-6Fra9rPu_7E8nxhh7cWpbsi2NQRllXdY1ga4pzcsQkiOB6eqMxoF1T_0g3ZfrJ-lJjh0yOhh7s-GEfbo76Sfp9DuA1wrXJLFNaCBMaAMmFIaUGEcBZ1yhO1jOtGf7HKS9Q7Y7SkYr8L65C1PzQ7Qbbi4y_HjtAtxtSG8uWENPZtNujCsWegPW_Pmcg0RfF-RRjqqtTmDkAc7Do4ZXKIw326ZLs9Ga69ifLjtSTbGDbF3Z4jrouYxk_VS0sw7fGiXqDJTj7qzS3fzXH_yO_6vlXbgzx6jkQ-1U92DFlPfhZn9-Cv8AttG3CBoYG5GiJCdnauo4FApFXDGjYvqOHCCQJRNLLs8virJEOEvUrJoU_i5KdXZ5_nvrIQx3Pg63e8G8GEOQO462IBc8pZER6djqDNeQNNNKac0pTbmxOUutYFQLR3wseIRvKnGl1cdUWJ5RRR_BajkpzRMgWWhCbRTjkbHM5JmKxnHkHniuTUhVB942NpH5nKjc1cv4LmuK5ViietL3SQdetaI_anaO64TeeMO2Eur02KWzZYk8GnySdJDu9tn-SO53YGPJ8m2DmCWZu4PcAdK4gsQodEcrqjQT_BBHxXGkdiKPaxdZNEYMHbM0RbW8of_-o7J_eOAfnv676Eu41Rv29-Te58GXZ3A7bjIUo-ewWp3OzAuETJXe8JFxBc3vEOc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVqq48H4sj2IhhLhkm8SO48ABocJSCruitFX3gGTZiS1Fpdmqm5Uop_4Q-HP9JYydTVaLioS4OdKMkvHMeMbx-BuAZwr3JLFNaJCZ0AYsU-hSWREFggmF5mAF0x7tc8S3D9jOOBmvwKv2LkyDD9H9cHOe4ddr5-Anhd1cgIYez6b9GDcs9AqsMY5h0mVEXxbYUQ6pralfFAGG4XELKxTGmx3rUjBac_P63RVHqinOj20aW1yWeS4nsj4SDa7D11aGpgDlqD-rdT__8Qe8438KeQOuzTNU8qYxqZuwYqpbsD6cn8Hfhi20LILqRSZSVuT4TE0dgkKpiGtlVE5fkj1MY8nEkovzn2VVYTJL1KyelP4mSn12cf7r9R3YH7zb39oO5q0YgtwhtAV5JjiNTMYLq1PcQdJUK6W1oJQLY3PGbcaozhzscSYifFKJa6xe0MyKlCp6F1arSWXuA0lDE2qjmIiMZSZPVVTEkRuIXJuQqh68aFUi8zlMueuW8U02AMuxRPGkn5MePO1ITxpsjsuInnu9dhTq9MgVs6WJPBy9l3TEd4Zsdyx3e7CxpPiOIWZJ6m4g94C0liDRB93BiqrMBF8kUHBcpx3JvcZCFsyYQceMcxTL6_nvHyqHB3t-8ODfSZ_A-ue3A_npw-jjQ7gat-WJ0SNYrU9n5jHmS7Xe8H7xG5aUD5Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+thymus+in+myasthenia+gravis%3A+Site+of+%22innate+autoimmunity%22%3F&rft.jtitle=Muscle+%26+nerve&rft.au=Cavalcante%2C+Paola&rft.au=Le+Panse%2C+Rozen&rft.au=Berrih-Aknin%2C+Sonia&rft.au=Maggi%2C+Lorenzo&rft.date=2011-10-01&rft.issn=1097-4598&rft.eissn=1097-4598&rft.volume=44&rft.issue=4&rft.spage=467&rft_id=info:doi/10.1002%2Fmus.22103&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-639X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-639X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-639X&client=summon |