Quantifying trabecular bone material anisotropy and orientation using low resolution clinical CT images: A feasibility study
•Quantified fabric using grey-level structure tensor in upsized micro-CT images.•Derived anisotropic stiffness entries and main orientation using micro finite element.•Fabric explained 94% of the variance in anisotropic stiffness entries.•Fabric predicted main orientation with 4.8° mean error.•It is...
Saved in:
| Published in | Medical engineering & physics Vol. 38; no. 9; pp. 978 - 987 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Elsevier Ltd
01.09.2016
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1350-4533 1873-4030 1873-4030 |
| DOI | 10.1016/j.medengphy.2016.06.011 |
Cover
| Abstract | •Quantified fabric using grey-level structure tensor in upsized micro-CT images.•Derived anisotropic stiffness entries and main orientation using micro finite element.•Fabric explained 94% of the variance in anisotropic stiffness entries.•Fabric predicted main orientation with 4.8° mean error.•It is possible to estimate anisotropy in clinical CT images.
Accounting for spatial variation of trabecular material anisotropy and orientation can improve the accuracy of quantitative computed tomography-based finite element (FE) modeling of bone. The objective of this study was to investigate the feasibility of quantifying trabecular material anisotropy and orientation using clinical computed tomography (CT). Forty four cubic volumes of interest were obtained from micro-CT images of the human radius. Micro-FE modeling was performed on the samples to obtain orthotropic stiffness entries as well as trabecular orientation. Simulated computed tomography images (0.32, 0.37, and 0.5mm isotropic voxel sizes) were created by resampling micro-CT images with added image noise. The gray-level structure tensor was used to derive fabric eigenvalues and eigenvectors in simulated CT images. For ‘best case’ comparison purposes, Mean Intercept Length was used to define fabric from micro-CT images. Regression was used in combination with eigenvalues, imaged density and FE to inversely derive the constants used in Cowin and Zysset–Curnier fabric-elasticity equations, and for comparing image derived fabric-elasticity stiffness entries to those obtained using micro-FE. Image derived eigenvectors (which indicated trabecular orientation) were then compared to orientation derived using micro-FE. When using clinically available voxel sizes, gray-level structure tensor derived fabric combined with Cowin's equations was able to explain 94–97% of the variance in orthotropic stiffness entries while Zysset–Curnier equations explained 82–88% of the variance in stiffness. Image derived orientation deviated by 4.4–10.8° from micro-FE derived orientation. Our results indicate potential to account for spatial variation of trabecular material anisotropy and orientation in subject-specific finite element modeling of bone using clinically available CT. |
|---|---|
| AbstractList | Accounting for spatial variation of trabecular material anisotropy and orientation can improve the accuracy of quantitative computed tomography-based finite element (FE) modeling of bone. The objective of this study was to investigate the feasibility of quantifying trabecular material anisotropy and orientation using clinical computed tomography (CT). Forty four cubic volumes of interest were obtained from micro-CT images of the human radius. Micro-FE modeling was performed on the samples to obtain orthotropic stiffness entries as well as trabecular orientation. Simulated computed tomography images (0.32, 0.37, and 0.5mm isotropic voxel sizes) were created by resampling micro-CT images with added image noise. The gray-level structure tensor was used to derive fabric eigenvalues and eigenvectors in simulated CT images. For 'best case' comparison purposes, Mean Intercept Length was used to define fabric from micro-CT images. Regression was used in combination with eigenvalues, imaged density and FE to inversely derive the constants used in Cowin and Zysset-Curnier fabric-elasticity equations, and for comparing image derived fabric-elasticity stiffness entries to those obtained using micro-FE. Image derived eigenvectors (which indicated trabecular orientation) were then compared to orientation derived using micro-FE. When using clinically available voxel sizes, gray-level structure tensor derived fabric combined with Cowin's equations was able to explain 94-97% of the variance in orthotropic stiffness entries while Zysset-Curnier equations explained 82-88% of the variance in stiffness. Image derived orientation deviated by 4.4-10.8° from micro-FE derived orientation. Our results indicate potential to account for spatial variation of trabecular material anisotropy and orientation in subject-specific finite element modeling of bone using clinically available CT.Accounting for spatial variation of trabecular material anisotropy and orientation can improve the accuracy of quantitative computed tomography-based finite element (FE) modeling of bone. The objective of this study was to investigate the feasibility of quantifying trabecular material anisotropy and orientation using clinical computed tomography (CT). Forty four cubic volumes of interest were obtained from micro-CT images of the human radius. Micro-FE modeling was performed on the samples to obtain orthotropic stiffness entries as well as trabecular orientation. Simulated computed tomography images (0.32, 0.37, and 0.5mm isotropic voxel sizes) were created by resampling micro-CT images with added image noise. The gray-level structure tensor was used to derive fabric eigenvalues and eigenvectors in simulated CT images. For 'best case' comparison purposes, Mean Intercept Length was used to define fabric from micro-CT images. Regression was used in combination with eigenvalues, imaged density and FE to inversely derive the constants used in Cowin and Zysset-Curnier fabric-elasticity equations, and for comparing image derived fabric-elasticity stiffness entries to those obtained using micro-FE. Image derived eigenvectors (which indicated trabecular orientation) were then compared to orientation derived using micro-FE. When using clinically available voxel sizes, gray-level structure tensor derived fabric combined with Cowin's equations was able to explain 94-97% of the variance in orthotropic stiffness entries while Zysset-Curnier equations explained 82-88% of the variance in stiffness. Image derived orientation deviated by 4.4-10.8° from micro-FE derived orientation. Our results indicate potential to account for spatial variation of trabecular material anisotropy and orientation in subject-specific finite element modeling of bone using clinically available CT. Accounting for spatial variation of trabecular material anisotropy and orientation can improve the accuracy of quantitative computed tomography-based finite element (FE) modeling of bone. The objective of this study was to investigate the feasibility of quantifying trabecular material anisotropy and orientation using clinical computed tomography (CT). Forty four cubic volumes of interest were obtained from micro-CT images of the human radius. Micro-FE modeling was performed on the samples to obtain orthotropic stiffness entries as well as trabecular orientation. Simulated computed tomography images (0.32, 0.37, and 0.5mm isotropic voxel sizes) were created by resampling micro-CT images with added image noise. The gray-level structure tensor was used to derive fabric eigenvalues and eigenvectors in simulated CT images. For 'best case' comparison purposes, Mean Intercept Length was used to define fabric from micro-CT images. Regression was used in combination with eigenvalues, imaged density and FE to inversely derive the constants used in Cowin and Zysset-Curnier fabric-elasticity equations, and for comparing image derived fabric-elasticity stiffness entries to those obtained using micro-FE. Image derived eigenvectors (which indicated trabecular orientation) were then compared to orientation derived using micro-FE. When using clinically available voxel sizes, gray-level structure tensor derived fabric combined with Cowin's equations was able to explain 94-97% of the variance in orthotropic stiffness entries while Zysset-Curnier equations explained 82-88% of the variance in stiffness. Image derived orientation deviated by 4.4-10.8° from micro-FE derived orientation. Our results indicate potential to account for spatial variation of trabecular material anisotropy and orientation in subject-specific finite element modeling of bone using clinically available CT. •Quantified fabric using grey-level structure tensor in upsized micro-CT images.•Derived anisotropic stiffness entries and main orientation using micro finite element.•Fabric explained 94% of the variance in anisotropic stiffness entries.•Fabric predicted main orientation with 4.8° mean error.•It is possible to estimate anisotropy in clinical CT images. Accounting for spatial variation of trabecular material anisotropy and orientation can improve the accuracy of quantitative computed tomography-based finite element (FE) modeling of bone. The objective of this study was to investigate the feasibility of quantifying trabecular material anisotropy and orientation using clinical computed tomography (CT). Forty four cubic volumes of interest were obtained from micro-CT images of the human radius. Micro-FE modeling was performed on the samples to obtain orthotropic stiffness entries as well as trabecular orientation. Simulated computed tomography images (0.32, 0.37, and 0.5mm isotropic voxel sizes) were created by resampling micro-CT images with added image noise. The gray-level structure tensor was used to derive fabric eigenvalues and eigenvectors in simulated CT images. For ‘best case’ comparison purposes, Mean Intercept Length was used to define fabric from micro-CT images. Regression was used in combination with eigenvalues, imaged density and FE to inversely derive the constants used in Cowin and Zysset–Curnier fabric-elasticity equations, and for comparing image derived fabric-elasticity stiffness entries to those obtained using micro-FE. Image derived eigenvectors (which indicated trabecular orientation) were then compared to orientation derived using micro-FE. When using clinically available voxel sizes, gray-level structure tensor derived fabric combined with Cowin's equations was able to explain 94–97% of the variance in orthotropic stiffness entries while Zysset–Curnier equations explained 82–88% of the variance in stiffness. Image derived orientation deviated by 4.4–10.8° from micro-FE derived orientation. Our results indicate potential to account for spatial variation of trabecular material anisotropy and orientation in subject-specific finite element modeling of bone using clinically available CT. Highlights • Quantified fabric using grey-level structure tensor in upsized micro-CT images. • Derived anisotropic stiffness entries and main orientation using micro finite element. • Fabric explained 94% of the variance in anisotropic stiffness entries. • Fabric predicted main orientation with 4.8° mean error. • It is possible to estimate anisotropy in clinical CT images. |
| Author | Johnston, James D. Cooper, David M.L. Nazemi, S. Majid |
| Author_xml | – sequence: 1 givenname: S. Majid surname: Nazemi fullname: Nazemi, S. Majid email: majid.nazemi@gmail.com organization: Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada – sequence: 2 givenname: David M.L. surname: Cooper fullname: Cooper, David M.L. organization: Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, 107 Wiggins Rd, SK S7N 5E5, Canada – sequence: 3 givenname: James D. surname: Johnston fullname: Johnston, James D. email: jd.johnston@usask.ca organization: Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27372175$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUl2L1DAULbLifuhf0Dz60jEfTdsRVIbBVWFBxPU5pMltzZhJxiRdKfjjN7W7-7AgDFySm8s5J8k997w4cd5BUbwieEUwqd_sVnvQ4IbDz2lFc2GFcxDypDgjbcPKCjN8knPGcVlxxk6L8xh3GOOqqtmz4pQ2rKGk4WfF32-jdMn0k3EDSkF2oEYrA-ryfWgvEwQjLZLORJ-CP0w51cgHAy7JZLxDY5yZ1v9BAaK347-issYZlYnba2T2coD4Fm1QDzKazliTJhTTqKfnxdNe2ggv7vaL4sflx-vt5_Lq66cv281VqTitUwltX2vW1u1arhWXvKka1vMOc66rNc0Hvuacg251hnPZyVrTDoC0qtW9qiW7KNiiaw0MIHzojLihwkuz5KMdhFSiA0Fp3ealwW2VWa8X1iH43yPEJPYmKrBWOvBjFKQlFakoYThDX95Bxy4bIw4h_zpM4r7PGdAsABV8jAH6BwjBYnZU7MSDo2J2VOAchGTmu0dMZZbWZ7eMPYK_WfiQG3xjIIiosnsKtAmgktDeHKHx_pHGvcG_YIK482Nw2T9BRKQCi-_z3M1jR2qGCeVzKz_8X-CoJ9wCZjPuzQ |
| CitedBy_id | crossref_primary_10_1016_j_bone_2017_07_012 crossref_primary_10_1016_j_clinbiomech_2016_10_012 crossref_primary_10_1080_10255842_2019_1699542 crossref_primary_10_2140_memocs_2018_6_353 crossref_primary_10_1016_j_medengphy_2016_10_003 crossref_primary_10_2140_memocs_2023_11_541 crossref_primary_10_1016_j_bone_2017_01_016 crossref_primary_10_2140_memocs_2021_9_33 crossref_primary_10_1186_s41747_020_00180_3 crossref_primary_10_1007_s11517_024_03162_4 crossref_primary_10_1016_j_jbiomech_2017_05_018 crossref_primary_10_1007_s11012_021_01452_x crossref_primary_10_3390_ijms23105593 |
| Cites_doi | 10.1016/S0021-9290(98)00108-0 10.1016/j.medengphy.2007.12.009 10.1016/j.jbiomech.2013.07.047 10.1115/1.2800865 10.1016/0021-9290(91)90308-A 10.1016/j.bone.2006.10.022 10.1016/j.clinbiomech.2007.08.024 10.1016/0021-9290(89)90073-0 10.1016/j.jbiomech.2015.10.012 10.1359/jbmr.081201 10.1016/j.joca.2005.09.008 10.1016/j.clinbiomech.2008.11.003 10.1016/0167-6636(95)00018-6 10.1016/j.jbiomech.2008.05.017 10.1115/1.4025179 10.1115/1.2913335 10.1016/0167-6636(85)90012-2 10.1007/s10237-012-0443-2 10.1016/j.medengphy.2012.03.003 10.1016/j.medengphy.2007.04.008 10.1016/S8756-3282(02)00736-6 10.1016/j.bone.2011.10.002 10.1007/s10237-007-0109-7 10.1002/jbmr.2437 10.1016/j.jbiomech.2009.04.042 10.1016/S8756-3282(03)00210-2 10.1016/S0021-9290(96)80021-2 10.1115/1.2834756 10.1118/1.3582946 10.1016/j.medengphy.2005.06.003 10.3109/03008207.2015.1013627 10.1016/j.jbiomech.2013.07.042 10.1007/s10237-010-0245-3 10.1016/j.jbiomech.2013.04.016 10.1016/j.medengphy.2011.09.006 10.1007/s10439-014-0983-y 10.1016/j.clinbiomech.2009.03.009 10.1359/jbmr.061011 10.1002/jbm.820281111 10.1016/0021-9290(94)90056-6 10.1016/S0041-624X(96)00078-9 10.1016/S8756-3282(99)00190-8 10.1016/j.medengphy.2011.07.016 10.1016/j.bone.2009.09.032 10.1002/jor.1100090315 10.1016/S0021-9290(03)00071-X 10.1016/j.jbiomech.2014.08.020 |
| ContentType | Journal Article |
| Copyright | 2016 IPEM IPEM Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2016 IPEM – notice: IPEM – notice: Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 Q33 |
| DOI | 10.1016/j.medengphy.2016.06.011 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Université de Liège - Open Repository and Bibliography (ORBI) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Chemistry |
| EISSN | 1873-4030 |
| EndPage | 987 |
| ExternalDocumentID | oai_orbi_ulg_ac_be_2268_227084 27372175 10_1016_j_medengphy_2016_06_011 S1350453316301254 1_s2_0_S1350453316301254 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN 9M8 AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEE HMK HMO HVGLF HZ~ IHE J1W JJJVA KOM LY7 M28 M31 M41 MO0 N9A O-L O9- OAUVE OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SDP SEL SES SET SEW SPC SPCBC SSH SST SSZ T5K TN5 WUQ YNT YQT Z5R ZGI ZY4 ~G- ~HD AACTN AAXKI ABTAH AFCTW AFKWA AJOXV AMFUW RIG AAIAV ABLVK ABYKQ AJBFU LCYCR AAYXX CITATION AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7X8 Q33 |
| ID | FETCH-LOGICAL-c526t-e8f6d38689a9c5a57473f5b055d49247359555ed8d5265aba6d2bee18c8dfc6a3 |
| IEDL.DBID | .~1 |
| ISSN | 1350-4533 1873-4030 |
| IngestDate | Sat Oct 18 19:06:08 EDT 2025 Sun Sep 28 02:38:19 EDT 2025 Mon Jul 21 05:56:18 EDT 2025 Wed Oct 01 05:03:27 EDT 2025 Thu Apr 24 22:52:57 EDT 2025 Fri Feb 23 02:29:18 EST 2024 Tue Feb 25 20:06:43 EST 2025 Tue Oct 14 19:35:18 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Trabecular bone anisotropic elastic properties Fabric-elasticity equations Trabecular bone main orientation Clinical CT images |
| Language | English |
| License | Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c526t-e8f6d38689a9c5a57473f5b055d49247359555ed8d5265aba6d2bee18c8dfc6a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 scopus-id:2-s2.0-84978371872 |
| PMID | 27372175 |
| PQID | 1814142130 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | liege_orbi_v2_oai_orbi_ulg_ac_be_2268_227084 proquest_miscellaneous_1814142130 pubmed_primary_27372175 crossref_primary_10_1016_j_medengphy_2016_06_011 crossref_citationtrail_10_1016_j_medengphy_2016_06_011 elsevier_sciencedirect_doi_10_1016_j_medengphy_2016_06_011 elsevier_clinicalkeyesjournals_1_s2_0_S1350453316301254 elsevier_clinicalkey_doi_10_1016_j_medengphy_2016_06_011 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2016-09-01 |
| PublicationDateYYYYMMDD | 2016-09-01 |
| PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Medical engineering & physics |
| PublicationTitleAlternate | Med Eng Phys |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Tabor, Petryniak, Latała, Konopka (bib0026) 2013; 35 Gross, Pahr, Zysset (bib0024) 2013; 12 Hollister, Fyhrie, Jepsen, Goldstein (bib0033) 1991; 24 Pettersen, Wik, Skallerud (bib0001) 2009; 24 Enns-Bray, Owoc, Nishiyama, Boyd (bib0015) 2014; 47 Morgan, Bayraktar, Keaveny (bib0044) 2003; 36 Unnikrishnan, Barest, Berry, Hussein, Morgan (bib0016) 2013; 135 Baca, Horak, Mikulenka, Dzupa (bib0046) 2008; 30 Hazrati Marangalou, Ito, Cataldi, Taddei, van Rietbergen (bib0041) 2013; 46 Snyder, Schneider (bib0052) 1991; 9 Chevalier, Quek, Borah, Gross, Stewart, Lang (bib0008) 2010; 46 Crawford, Cann, Keaveny (bib0011) 2003; 33 Orwoll, Marshall, Nielson, Cummings, Lapidus, Cauley (bib0004) 2009; 24 Rho (bib0050) 1996; 34 Maquer, Musy, Wandel, Gross, Zysset (bib0023) 2015; 30 Duchemin, Bousson, Raossanaly, Bergot, Laredo, Skalli (bib0047) 2008; 30 Chappard, Peyrin, Bonnassie, Lemineur, Brunet-Imbault, Lespessailles (bib0014) 2006; 14 Gray, Taddei, Zavatsky, Cristofolini, Gill (bib0013) 2008; 130 Zysset, Curnier (bib0022) 1995; 21 Rohrbach, Grimal, Varga, Peyrin, Langer, Laugier (bib0053) 2015; 56 Chandran, Zysset, Reyes (bib0035) 2015 Keaveny, McClung, Wan, Kopperdahl, Mitlak, Krohn (bib0007) 2012; 50 Pistoia, van Rietbergen, Lochmüller, Lill, Eckstein, Rüegsegger (bib0031) 2002; 30 Dall'Ara, Varga, Pahr, Zysset (bib0036) 2011; 38 Tabor, Rokita (bib0038) 2007; 40 Cowin (bib0021) 1985; 4 Edwards, Schnitzer, Troy (bib0012) 2013; 46 Schileo, Dall'Ara, Taddei, Malandrino, Schotkamp, Baleani (bib0048) 2008; 41 Pahr, Zysset (bib0032) 2007; 7 Ladd, Kinney (bib0029) 1998; 31 Helgason, Perilli, Schileo, Taddei, Brynjólfsson, Viceconti (bib0009) 2008; 23 Varga, Dall'Ara, Pahr, Pretterklieber, Zysset (bib0043) 2011; 10 Larsson, Luisier, Kersh, Dall'Ara, Zysset, Pandy (bib0028) 2014; 42 Tabor (bib0039) 2012; 34 Pettersen, Wik, Skallerud (bib0002) 2009; 24 Ashman, Rho, Turner (bib0010) 1989; 22 Edwards, Troy (bib0005) 2012; 34 Niebur, Yuen, Hsia, Keaveny (bib0030) 1999; 121 Peng, Bai, Zeng, Zhou (bib0045) 2006; 28 Kersh, Zysset, Pahr, Wolfram, Larsson, Pandy (bib0027) 2013; 46 Van Rietbergen, Odgaard, Kabel, Huiskes (bib0034) 1996; 29 Lenaerts, Wirth, van Lenthe (bib0037) 2014; 2 Mirzaei, Zeinali, Razmjoo, Nazemi (bib0003) 2009; 42 Zysset, Goulet, Hollister (bib0042) 1998; 120 Keller (bib0051) 1994; 27 Synek, Chevalier, Baumbach, Pahr (bib0017) 2015; 48 Kabel, van Rietbergen, Odgaard, Huiskes (bib0025) 1999; 25 Keaveny, Donley, Hoffmann, Mitlak, Glass, San Martin (bib0006) 2007; 22 Keyak, Lee, Skinner (bib0049) 1994; 28 Hazrati Marangalou (10.1016/j.medengphy.2016.06.011_bib0041) 2013; 46 Rho (10.1016/j.medengphy.2016.06.011_bib0050) 1996; 34 Varga (10.1016/j.medengphy.2016.06.011_bib0043) 2011; 10 Helgason (10.1016/j.medengphy.2016.06.011_bib0009) 2008; 23 Keaveny (10.1016/j.medengphy.2016.06.011_bib0006) 2007; 22 Tabor (10.1016/j.medengphy.2016.06.011_bib0026) 2013; 35 Larsson (10.1016/j.medengphy.2016.06.011_bib0028) 2014; 42 Baca (10.1016/j.medengphy.2016.06.011_bib0046) 2008; 30 Crawford (10.1016/j.medengphy.2016.06.011_bib0011) 2003; 33 Orwoll (10.1016/j.medengphy.2016.06.011_bib0004) 2009; 24 Chandran (10.1016/j.medengphy.2016.06.011_bib0035) 2015 Pahr (10.1016/j.medengphy.2016.06.011_bib0032) 2007; 7 Hollister (10.1016/j.medengphy.2016.06.011_bib0033) 1991; 24 Tabor (10.1016/j.medengphy.2016.06.011_bib0039) 2012; 34 Zysset (10.1016/j.medengphy.2016.06.011_bib0042) 1998; 120 Pettersen (10.1016/j.medengphy.2016.06.011_bib0002) 2009; 24 Chevalier (10.1016/j.medengphy.2016.06.011_bib0008) 2010; 46 Keyak (10.1016/j.medengphy.2016.06.011_bib0049) 1994; 28 Keaveny (10.1016/j.medengphy.2016.06.011_bib0007) 2012; 50 Enns-Bray (10.1016/j.medengphy.2016.06.011_bib0015) 2014; 47 Kabel (10.1016/j.medengphy.2016.06.011_bib0025) 1999; 25 Edwards (10.1016/j.medengphy.2016.06.011_bib0005) 2012; 34 Tabor (10.1016/j.medengphy.2016.06.011_bib0038) 2007; 40 Ladd (10.1016/j.medengphy.2016.06.011_bib0029) 1998; 31 Peng (10.1016/j.medengphy.2016.06.011_bib0045) 2006; 28 Pistoia (10.1016/j.medengphy.2016.06.011_bib0031) 2002; 30 Maquer (10.1016/j.medengphy.2016.06.011_bib0023) 2015; 30 Unnikrishnan (10.1016/j.medengphy.2016.06.011_bib0016) 2013; 135 Gross (10.1016/j.medengphy.2016.06.011_bib0024) 2013; 12 Niebur (10.1016/j.medengphy.2016.06.011_bib0030) 1999; 121 Mirzaei (10.1016/j.medengphy.2016.06.011_bib0003) 2009; 42 Pettersen (10.1016/j.medengphy.2016.06.011_bib0001) 2009; 24 Snyder (10.1016/j.medengphy.2016.06.011_bib0052) 1991; 9 Cowin (10.1016/j.medengphy.2016.06.011_bib0021) 1985; 4 Schileo (10.1016/j.medengphy.2016.06.011_bib0048) 2008; 41 Rohrbach (10.1016/j.medengphy.2016.06.011_bib0053) 2015; 56 Duchemin (10.1016/j.medengphy.2016.06.011_bib0047) 2008; 30 Zysset (10.1016/j.medengphy.2016.06.011_bib0022) 1995; 21 Van Rietbergen (10.1016/j.medengphy.2016.06.011_bib0034) 1996; 29 Kersh (10.1016/j.medengphy.2016.06.011_bib0027) 2013; 46 Morgan (10.1016/j.medengphy.2016.06.011_bib0044) 2003; 36 Gray (10.1016/j.medengphy.2016.06.011_bib0013) 2008; 130 Chappard (10.1016/j.medengphy.2016.06.011_bib0014) 2006; 14 Ashman (10.1016/j.medengphy.2016.06.011_bib0010) 1989; 22 Keller (10.1016/j.medengphy.2016.06.011_bib0051) 1994; 27 Lenaerts (10.1016/j.medengphy.2016.06.011_bib0037) 2014; 2 Dall'Ara (10.1016/j.medengphy.2016.06.011_bib0036) 2011; 38 Edwards (10.1016/j.medengphy.2016.06.011_bib0012) 2013; 46 Synek (10.1016/j.medengphy.2016.06.011_bib0017) 2015; 48 |
| References_xml | – volume: 4 start-page: 137 year: 1985 end-page: 147 ident: bib0021 article-title: The relationship between the elasticity tensor and the fabric tensor publication-title: Mech Mater – volume: 42 start-page: 1584 year: 2009 end-page: 1591 ident: bib0003 article-title: On prediction of the strength levels and failure patterns of human vertebrae using quantitative computed tomography (QCT)-based finite element method publication-title: J Biomech – volume: 34 start-page: 290 year: 2012 end-page: 298 ident: bib0005 article-title: Finite element prediction of surface strain and fracture strength at the distal radius publication-title: Med Eng Phys – volume: 30 start-page: 842 year: 2002 end-page: 848 ident: bib0031 article-title: Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images publication-title: Bone – volume: 28 start-page: 1329 year: 1994 end-page: 1336 ident: bib0049 article-title: Correlations between orthogonal mechanical properties and density of trabecular bone: use of different densitometric measures publication-title: J Biomed Mater Res – volume: 24 start-page: 480 year: 2009 end-page: 487 ident: bib0002 article-title: Subject specific finite element analysis of implant stability for a cementless femoral stem publication-title: Clin Biomech – volume: 22 start-page: 149 year: 2007 end-page: 157 ident: bib0006 article-title: Effects of teriparatide and alendronate on vertebral strength as assessed by finite element modeling of qct scans in women with osteoporosis publication-title: J Bone Miner Res – volume: 46 start-page: 2659 year: 2013 end-page: 2666 ident: bib0027 article-title: Measurement of structural anisotropy in femoral trabecular bone using clinical-resolution CT images publication-title: J Biomech – volume: 46 start-page: 1655 year: 2013 end-page: 1662 ident: bib0012 article-title: Torsional stiffness and strength of the proximal tibia are better predicted by finite element models than DXA or QCT publication-title: J Biomech – volume: 56 start-page: 120 year: 2015 end-page: 132 ident: bib0053 article-title: Distribution of mesoscale elastic properties and mass density in the human femoral shaft publication-title: Connect Tissue Res – volume: 48 start-page: 4116 year: 2015 end-page: 4123 ident: bib0017 article-title: The influence of bone density and anisotropy in finite element models of distal radius fracture osteosynthesis: evaluations and comparison to experiments publication-title: J Biomech – volume: 29 start-page: 1653 year: 1996 end-page: 1657 ident: bib0034 article-title: Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture publication-title: J Biomech – volume: 22 start-page: 895 year: 1989 end-page: 900 ident: bib0010 article-title: Anatomical variation of orthotropic elastic moduli of the proximal human tibia publication-title: J Biomech – volume: 121 start-page: 629 year: 1999 end-page: 635 ident: bib0030 article-title: Convergence behavior of high-resolution finite element models of trabecular bone publication-title: J Biomech Eng – volume: 23 start-page: 135 year: 2008 end-page: 146 ident: bib0009 article-title: Mathematical relationships between bone density and mechanical properties: a literature review publication-title: Clin Biomech – volume: 31 start-page: 941 year: 1998 end-page: 945 ident: bib0029 article-title: Numerical errors and uncertainties in finite-element modeling of trabecular bone publication-title: J Biomech – volume: 27 start-page: 1159 year: 1994 end-page: 1168 ident: bib0051 article-title: Predicting the compressive mechanical behavior of bone publication-title: J Biomech – volume: 10 start-page: 431 year: 2011 end-page: 444 ident: bib0043 article-title: Validation of an HR-pQCT-based homogenized finite element approach using mechanical testing of ultra-distal radius sections publication-title: Biomech Model Mechanobiol – volume: 30 start-page: 1000 year: 2015 end-page: 1008 ident: bib0023 article-title: Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables publication-title: J Bone Miner Res – volume: 36 start-page: 897 year: 2003 end-page: 904 ident: bib0044 article-title: Trabecular bone modulus–density relationships depend on anatomic site publication-title: J Biomech – volume: 9 start-page: 422 year: 1991 end-page: 431 ident: bib0052 article-title: Estimation of mechanical properties of cortical bone by computed tomography publication-title: J Orthop Res – volume: 30 start-page: 321 year: 2008 end-page: 328 ident: bib0047 article-title: Prediction of mechanical properties of cortical bone by quantitative computed tomography publication-title: Med Eng Phys – volume: 46 start-page: 41 year: 2010 end-page: 48 ident: bib0008 article-title: Biomechanical effects of teriparatide in women with osteoporosis treated previously with alendronate and risedronate: Results from quantitative computed tomography-based finite element analysis of the vertebral body publication-title: Bone – volume: 25 start-page: 481 year: 1999 end-page: 486 ident: bib0025 article-title: Constitutive relationships of fabric, density, and elastic properties in cancellous bone architecture publication-title: Bone – volume: 2 start-page: 1 year: 2014 end-page: 8 ident: bib0037 article-title: Quantification of trabecular spatial orientation from low-resolution images publication-title: Comput Methods Biomech Biomed Eng – volume: 24 start-page: 475 year: 2009 end-page: 483 ident: bib0004 article-title: Finite element analysis of the proximal femur and hip fracture risk in older men publication-title: J Bone Miner Res – volume: 38 start-page: 2602 year: 2011 end-page: 2608 ident: bib0036 article-title: A calibration methodology of QCT BMD for human vertebral body with registered micro-CT images publication-title: Med Phys – volume: 21 start-page: 243 year: 1995 end-page: 250 ident: bib0022 article-title: An alternative model for anisotropic elasticity based on fabric tensors publication-title: Mech Mater – volume: 34 start-page: 777 year: 1996 end-page: 783 ident: bib0050 article-title: An ultrasonic method for measuring the elastic properties of human tibial cortical and cancellous bone publication-title: Ultrasonics – start-page: 621 year: 2015 end-page: 628 ident: bib0035 article-title: Prediction of trabecular bone anisotropy from quantitative computed tomography using supervised learning and a novel morphometric feature descriptor publication-title: Medical image computing and computer-assisted intervention – MICCAI 2015 – volume: 50 start-page: 165 year: 2012 end-page: 170 ident: bib0007 article-title: Femoral strength in osteoporotic women treated with teriparatide or alendronate publication-title: Bone – volume: 14 start-page: 215 year: 2006 end-page: 223 ident: bib0014 article-title: Subchondral bone micro-architectural alterations in osteoarthritis: a synchrotron micro-computed tomography study publication-title: Osteoarthr Cartil – volume: 47 start-page: 3272 year: 2014 end-page: 3278 ident: bib0015 article-title: Mapping anisotropy of the proximal femur for enhanced image based finite element analysis publication-title: J Biomech – volume: 40 start-page: 966 year: 2007 end-page: 972 ident: bib0038 article-title: Quantifying anisotropy of trabecular bone from gray-level images publication-title: Bone – volume: 24 start-page: 196 year: 2009 end-page: 202 ident: bib0001 article-title: Subject specific finite element analysis of stress shielding around a cementless femoral stem publication-title: Clin Biomech – volume: 30 start-page: 924 year: 2008 end-page: 930 ident: bib0046 article-title: Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses publication-title: Med Eng Phys – volume: 35 start-page: 7 year: 2013 end-page: 15 ident: bib0026 article-title: The potential of multi-slice computed tomography based quantification of the structural anisotropy of vertebral trabecular bone publication-title: Med Eng Phys – volume: 28 start-page: 227 year: 2006 end-page: 233 ident: bib0045 article-title: Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions publication-title: Med Eng Phys – volume: 34 start-page: 598 year: 2012 end-page: 604 ident: bib0039 article-title: Equivalence of mean intercept length and gradient fabric tensors – 3d study publication-title: Med Eng Phys – volume: 46 start-page: 2356 year: 2013 end-page: 2362 ident: bib0041 article-title: A novel approach to estimate trabecular bone anisotropy using a database approach publication-title: J Biomech – volume: 130 year: 2008 ident: bib0013 article-title: Experimental validation of a finite element model of a human cadaveric tibia publication-title: J Biomech Eng – volume: 42 start-page: 950 year: 2014 end-page: 959 ident: bib0028 article-title: Assessment of transverse isotropy in clinical-level ct images of trabecular bone using the gradient structure tensor publication-title: Ann Biomed Eng – volume: 7 start-page: 463 year: 2007 end-page: 476 ident: bib0032 article-title: Influence of boundary conditions on computed apparent elastic properties of cancellous bone publication-title: Biomech Model Mechanobiol – volume: 24 start-page: 825 year: 1991 end-page: 839 ident: bib0033 article-title: Application of homogenization theory to the study of trabecular bone mechanics publication-title: J Biomech – volume: 41 start-page: 2483 year: 2008 end-page: 2491 ident: bib0048 article-title: An accurate estimation of bone density improves the accuracy of subject-specific finite element models publication-title: J Biomech – volume: 33 start-page: 744 year: 2003 end-page: 750 ident: bib0011 article-title: Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography publication-title: Bone – volume: 12 start-page: 793 year: 2013 end-page: 800 ident: bib0024 article-title: Morphology–elasticity relationships using decreasing fabric information of human trabecular bone from three major anatomical locations publication-title: Biomech Model Mechanobiol – volume: 135 year: 2013 ident: bib0016 article-title: Effect of specimen-specific anisotropic material properties in quantitative computed tomography-based finite element analysis of the vertebra publication-title: J Biomech Eng – volume: 120 start-page: 640 year: 1998 end-page: 646 ident: bib0042 article-title: A global relationship between trabecular bone morphology and homogenized elastic properties publication-title: J Biomech Eng – volume: 31 start-page: 941 year: 1998 ident: 10.1016/j.medengphy.2016.06.011_bib0029 article-title: Numerical errors and uncertainties in finite-element modeling of trabecular bone publication-title: J Biomech doi: 10.1016/S0021-9290(98)00108-0 – volume: 30 start-page: 924 year: 2008 ident: 10.1016/j.medengphy.2016.06.011_bib0046 article-title: Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2007.12.009 – volume: 46 start-page: 2659 year: 2013 ident: 10.1016/j.medengphy.2016.06.011_bib0027 article-title: Measurement of structural anisotropy in femoral trabecular bone using clinical-resolution CT images publication-title: J Biomech doi: 10.1016/j.jbiomech.2013.07.047 – volume: 121 start-page: 629 year: 1999 ident: 10.1016/j.medengphy.2016.06.011_bib0030 article-title: Convergence behavior of high-resolution finite element models of trabecular bone publication-title: J Biomech Eng doi: 10.1115/1.2800865 – volume: 24 start-page: 825 year: 1991 ident: 10.1016/j.medengphy.2016.06.011_bib0033 article-title: Application of homogenization theory to the study of trabecular bone mechanics publication-title: J Biomech doi: 10.1016/0021-9290(91)90308-A – volume: 40 start-page: 966 year: 2007 ident: 10.1016/j.medengphy.2016.06.011_bib0038 article-title: Quantifying anisotropy of trabecular bone from gray-level images publication-title: Bone doi: 10.1016/j.bone.2006.10.022 – volume: 23 start-page: 135 year: 2008 ident: 10.1016/j.medengphy.2016.06.011_bib0009 article-title: Mathematical relationships between bone density and mechanical properties: a literature review publication-title: Clin Biomech doi: 10.1016/j.clinbiomech.2007.08.024 – volume: 22 start-page: 895 year: 1989 ident: 10.1016/j.medengphy.2016.06.011_bib0010 article-title: Anatomical variation of orthotropic elastic moduli of the proximal human tibia publication-title: J Biomech doi: 10.1016/0021-9290(89)90073-0 – start-page: 621 year: 2015 ident: 10.1016/j.medengphy.2016.06.011_bib0035 article-title: Prediction of trabecular bone anisotropy from quantitative computed tomography using supervised learning and a novel morphometric feature descriptor – volume: 48 start-page: 4116 issue: 15 year: 2015 ident: 10.1016/j.medengphy.2016.06.011_bib0017 article-title: The influence of bone density and anisotropy in finite element models of distal radius fracture osteosynthesis: evaluations and comparison to experiments publication-title: J Biomech doi: 10.1016/j.jbiomech.2015.10.012 – volume: 24 start-page: 475 issue: 3 year: 2009 ident: 10.1016/j.medengphy.2016.06.011_bib0004 article-title: Finite element analysis of the proximal femur and hip fracture risk in older men publication-title: J Bone Miner Res doi: 10.1359/jbmr.081201 – volume: 14 start-page: 215 year: 2006 ident: 10.1016/j.medengphy.2016.06.011_bib0014 article-title: Subchondral bone micro-architectural alterations in osteoarthritis: a synchrotron micro-computed tomography study publication-title: Osteoarthr Cartil doi: 10.1016/j.joca.2005.09.008 – volume: 24 start-page: 196 year: 2009 ident: 10.1016/j.medengphy.2016.06.011_bib0001 article-title: Subject specific finite element analysis of stress shielding around a cementless femoral stem publication-title: Clin Biomech doi: 10.1016/j.clinbiomech.2008.11.003 – volume: 21 start-page: 243 year: 1995 ident: 10.1016/j.medengphy.2016.06.011_bib0022 article-title: An alternative model for anisotropic elasticity based on fabric tensors publication-title: Mech Mater doi: 10.1016/0167-6636(95)00018-6 – volume: 41 start-page: 2483 year: 2008 ident: 10.1016/j.medengphy.2016.06.011_bib0048 article-title: An accurate estimation of bone density improves the accuracy of subject-specific finite element models publication-title: J Biomech doi: 10.1016/j.jbiomech.2008.05.017 – volume: 135 year: 2013 ident: 10.1016/j.medengphy.2016.06.011_bib0016 article-title: Effect of specimen-specific anisotropic material properties in quantitative computed tomography-based finite element analysis of the vertebra publication-title: J Biomech Eng doi: 10.1115/1.4025179 – volume: 130 year: 2008 ident: 10.1016/j.medengphy.2016.06.011_bib0013 article-title: Experimental validation of a finite element model of a human cadaveric tibia publication-title: J Biomech Eng doi: 10.1115/1.2913335 – volume: 4 start-page: 137 year: 1985 ident: 10.1016/j.medengphy.2016.06.011_bib0021 article-title: The relationship between the elasticity tensor and the fabric tensor publication-title: Mech Mater doi: 10.1016/0167-6636(85)90012-2 – volume: 12 start-page: 793 year: 2013 ident: 10.1016/j.medengphy.2016.06.011_bib0024 article-title: Morphology–elasticity relationships using decreasing fabric information of human trabecular bone from three major anatomical locations publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-012-0443-2 – volume: 2 start-page: 1 year: 2014 ident: 10.1016/j.medengphy.2016.06.011_bib0037 article-title: Quantification of trabecular spatial orientation from low-resolution images publication-title: Comput Methods Biomech Biomed Eng – volume: 35 start-page: 7 year: 2013 ident: 10.1016/j.medengphy.2016.06.011_bib0026 article-title: The potential of multi-slice computed tomography based quantification of the structural anisotropy of vertebral trabecular bone publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2012.03.003 – volume: 30 start-page: 321 year: 2008 ident: 10.1016/j.medengphy.2016.06.011_bib0047 article-title: Prediction of mechanical properties of cortical bone by quantitative computed tomography publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2007.04.008 – volume: 30 start-page: 842 year: 2002 ident: 10.1016/j.medengphy.2016.06.011_bib0031 article-title: Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images publication-title: Bone doi: 10.1016/S8756-3282(02)00736-6 – volume: 50 start-page: 165 year: 2012 ident: 10.1016/j.medengphy.2016.06.011_bib0007 article-title: Femoral strength in osteoporotic women treated with teriparatide or alendronate publication-title: Bone doi: 10.1016/j.bone.2011.10.002 – volume: 7 start-page: 463 year: 2007 ident: 10.1016/j.medengphy.2016.06.011_bib0032 article-title: Influence of boundary conditions on computed apparent elastic properties of cancellous bone publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-007-0109-7 – volume: 30 start-page: 1000 year: 2015 ident: 10.1016/j.medengphy.2016.06.011_bib0023 article-title: Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables publication-title: J Bone Miner Res doi: 10.1002/jbmr.2437 – volume: 42 start-page: 1584 year: 2009 ident: 10.1016/j.medengphy.2016.06.011_bib0003 article-title: On prediction of the strength levels and failure patterns of human vertebrae using quantitative computed tomography (QCT)-based finite element method publication-title: J Biomech doi: 10.1016/j.jbiomech.2009.04.042 – volume: 33 start-page: 744 year: 2003 ident: 10.1016/j.medengphy.2016.06.011_bib0011 article-title: Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography publication-title: Bone doi: 10.1016/S8756-3282(03)00210-2 – volume: 29 start-page: 1653 year: 1996 ident: 10.1016/j.medengphy.2016.06.011_bib0034 article-title: Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture publication-title: J Biomech doi: 10.1016/S0021-9290(96)80021-2 – volume: 120 start-page: 640 year: 1998 ident: 10.1016/j.medengphy.2016.06.011_bib0042 article-title: A global relationship between trabecular bone morphology and homogenized elastic properties publication-title: J Biomech Eng doi: 10.1115/1.2834756 – volume: 38 start-page: 2602 year: 2011 ident: 10.1016/j.medengphy.2016.06.011_bib0036 article-title: A calibration methodology of QCT BMD for human vertebral body with registered micro-CT images publication-title: Med Phys doi: 10.1118/1.3582946 – volume: 28 start-page: 227 year: 2006 ident: 10.1016/j.medengphy.2016.06.011_bib0045 article-title: Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2005.06.003 – volume: 56 start-page: 120 year: 2015 ident: 10.1016/j.medengphy.2016.06.011_bib0053 article-title: Distribution of mesoscale elastic properties and mass density in the human femoral shaft publication-title: Connect Tissue Res doi: 10.3109/03008207.2015.1013627 – volume: 46 start-page: 2356 year: 2013 ident: 10.1016/j.medengphy.2016.06.011_bib0041 article-title: A novel approach to estimate trabecular bone anisotropy using a database approach publication-title: J Biomech doi: 10.1016/j.jbiomech.2013.07.042 – volume: 10 start-page: 431 year: 2011 ident: 10.1016/j.medengphy.2016.06.011_bib0043 article-title: Validation of an HR-pQCT-based homogenized finite element approach using mechanical testing of ultra-distal radius sections publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-010-0245-3 – volume: 46 start-page: 1655 year: 2013 ident: 10.1016/j.medengphy.2016.06.011_bib0012 article-title: Torsional stiffness and strength of the proximal tibia are better predicted by finite element models than DXA or QCT publication-title: J Biomech doi: 10.1016/j.jbiomech.2013.04.016 – volume: 34 start-page: 598 year: 2012 ident: 10.1016/j.medengphy.2016.06.011_bib0039 article-title: Equivalence of mean intercept length and gradient fabric tensors – 3d study publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2011.09.006 – volume: 42 start-page: 950 year: 2014 ident: 10.1016/j.medengphy.2016.06.011_bib0028 article-title: Assessment of transverse isotropy in clinical-level ct images of trabecular bone using the gradient structure tensor publication-title: Ann Biomed Eng doi: 10.1007/s10439-014-0983-y – volume: 24 start-page: 480 year: 2009 ident: 10.1016/j.medengphy.2016.06.011_bib0002 article-title: Subject specific finite element analysis of implant stability for a cementless femoral stem publication-title: Clin Biomech doi: 10.1016/j.clinbiomech.2009.03.009 – volume: 22 start-page: 149 issue: 1 year: 2007 ident: 10.1016/j.medengphy.2016.06.011_bib0006 article-title: Effects of teriparatide and alendronate on vertebral strength as assessed by finite element modeling of qct scans in women with osteoporosis publication-title: J Bone Miner Res doi: 10.1359/jbmr.061011 – volume: 28 start-page: 1329 year: 1994 ident: 10.1016/j.medengphy.2016.06.011_bib0049 article-title: Correlations between orthogonal mechanical properties and density of trabecular bone: use of different densitometric measures publication-title: J Biomed Mater Res doi: 10.1002/jbm.820281111 – volume: 27 start-page: 1159 year: 1994 ident: 10.1016/j.medengphy.2016.06.011_bib0051 article-title: Predicting the compressive mechanical behavior of bone publication-title: J Biomech doi: 10.1016/0021-9290(94)90056-6 – volume: 34 start-page: 777 year: 1996 ident: 10.1016/j.medengphy.2016.06.011_bib0050 article-title: An ultrasonic method for measuring the elastic properties of human tibial cortical and cancellous bone publication-title: Ultrasonics doi: 10.1016/S0041-624X(96)00078-9 – volume: 25 start-page: 481 year: 1999 ident: 10.1016/j.medengphy.2016.06.011_bib0025 article-title: Constitutive relationships of fabric, density, and elastic properties in cancellous bone architecture publication-title: Bone doi: 10.1016/S8756-3282(99)00190-8 – volume: 34 start-page: 290 year: 2012 ident: 10.1016/j.medengphy.2016.06.011_bib0005 article-title: Finite element prediction of surface strain and fracture strength at the distal radius publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2011.07.016 – volume: 46 start-page: 41 year: 2010 ident: 10.1016/j.medengphy.2016.06.011_bib0008 article-title: Biomechanical effects of teriparatide in women with osteoporosis treated previously with alendronate and risedronate: Results from quantitative computed tomography-based finite element analysis of the vertebral body publication-title: Bone doi: 10.1016/j.bone.2009.09.032 – volume: 9 start-page: 422 year: 1991 ident: 10.1016/j.medengphy.2016.06.011_bib0052 article-title: Estimation of mechanical properties of cortical bone by computed tomography publication-title: J Orthop Res doi: 10.1002/jor.1100090315 – volume: 36 start-page: 897 year: 2003 ident: 10.1016/j.medengphy.2016.06.011_bib0044 article-title: Trabecular bone modulus–density relationships depend on anatomic site publication-title: J Biomech doi: 10.1016/S0021-9290(03)00071-X – volume: 47 start-page: 3272 year: 2014 ident: 10.1016/j.medengphy.2016.06.011_bib0015 article-title: Mapping anisotropy of the proximal femur for enhanced image based finite element analysis publication-title: J Biomech doi: 10.1016/j.jbiomech.2014.08.020 |
| SSID | ssj0004463 |
| Score | 2.248351 |
| Snippet | •Quantified fabric using grey-level structure tensor in upsized micro-CT images.•Derived anisotropic stiffness entries and main orientation using micro finite... Highlights • Quantified fabric using grey-level structure tensor in upsized micro-CT images. • Derived anisotropic stiffness entries and main orientation using... Accounting for spatial variation of trabecular material anisotropy and orientation can improve the accuracy of quantitative computed tomography-based finite... |
| SourceID | liege proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 978 |
| SubjectTerms | Anisotropy Cancellous Bone - diagnostic imaging Clinical CT images Engineering, computing & technology Fabric-elasticity equations Feasibility Studies Finite Element Analysis Humans Image Processing, Computer-Assisted Ingénierie, informatique & technologie Radiology Signal-To-Noise Ratio Trabecular bone anisotropic elastic properties Trabecular bone main orientation X-Ray Microtomography |
| Title | Quantifying trabecular bone material anisotropy and orientation using low resolution clinical CT images: A feasibility study |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1350453316301254 https://www.clinicalkey.es/playcontent/1-s2.0-S1350453316301254 https://dx.doi.org/10.1016/j.medengphy.2016.06.011 https://www.ncbi.nlm.nih.gov/pubmed/27372175 https://www.proquest.com/docview/1814142130 http://orbi.ulg.ac.be/handle/2268/227084 |
| Volume | 38 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-4030 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004463 issn: 1350-4533 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Freedom Collection customDbUrl: eissn: 1873-4030 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004463 issn: 1350-4533 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1873-4030 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004463 issn: 1350-4533 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-4030 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004463 issn: 1350-4533 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-4030 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004463 issn: 1350-4533 databaseCode: AKRWK dateStart: 19940101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBelhX08jC37yj6KBnucF8u2ZKVvIaxkGy2MtdA3IVlycMnsYDsthbG_fXe2nK1spYO9GNv4kCyd7n5Cv7sj5C1CeqxFGWhrwgDwfxJowXQQ6WlohRYylxiNfHQsFqfJpzN-tkPmQywM0iq97e9temet_ZuJH83JuigmX1nMAY_EMSAKsLIcc4ImSYpVDN7_-EXzgO1OR7KHjwP8-hrHCxyOK5fwP8jxEl0iT8Zu8lB7KzzGvhmJdh7p8CF54KEknfW9fUR2XDkid-dDBbcRuf9bssERuXPkj9Efk-9fNhpJQhjiRNtam75CLjVV6ShA2E4rqS6Lpmrran0Ft5ZWdeHjlEqKbPklXVWXFHbrXnnpEGRJ5ye0-AZ2qjmgM5o77Rm4V7TLZfuEnB5-OJkvAl-GIch4JNrAyVzYWAo51dOMaw4bkDjnJuTcJjDVKYb2cu6stJhqXxstbGScYzKTNs-Ejp-S3RL6_5xQl4aJjUJwiCDLJdMCvKG1eeQAJxoXj4kYhl5lPkc5lspYqYGMdq62c6ZwzhTS8hgbk3AruO7TdNwuIoe5VcMAgd1U4EpuF03_Juoav_4bxVQTqVD9oaNjcrCVvKbm_9bsu04FVVWbQl1EClODd_eb1VLpTBmnAE1LuKShhLbeDJqqQPHwIEiXrtpA7yRLWBIBfBmTZ70Kb0ctwrpFgClf_E9PX5J7-NRz8V6R3bbeuNcA3lqz363OfbI3-_h5cfwTB0JFJg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6NTWLwgKAwKD-NxCOhcRI77t6miqnAOgnRSXuz7NipgkpSpSloEuJv55w4hQmmIfESWYlPcezL3Wf5uzuAVw7Su1qUgTI6DBD_J4HiVAWRGoeGKy5y4aKRZ6d8epa8P2fnOzDpY2EcrdLb_s6mt9ba3xn52RytimL0icYM8UgcI6JAK8uSG7CXsCh1O7A3P37xPHC_07LssXfgul8ieaHHseUCP8iRvHibyZPSq1zU3tKdY18NRVuXdHwX7ngsSY664d6DHVsOYH_Sl3AbwO3fsg0O4ObMn6Pfh-8fN8qxhFyME2lqpbsSuURXpSWIYVu1JKos1lVTV6sLbBpS1YUPVCqJo8svyLL6RnC77rWX9FGWZDInxRc0VOtDckRyqzwF94K0yWwfwNnx2_lkGvg6DEHGIt4EVuTcxIKLsRpnTDHcgcQ50yFjJsG1Tl1sL2PWCONy7SutuIm0tVRkwuQZV_EB7JY4_kdAbBomJgrRI6IsE1RxdIfG5JFFoKhtPATeT73MfJJyVytjKXs22me5XTPp1kw6Xh6lQwi3gqsuT8f1IqJfW9lPEBpOib7ketH0b6J27Q3AWlK5jmQo_1DSIRxuJS_p-b-99nWrgrKqdSG_RtLlBm_bm-VCqkxqKxFOC7ykocB3vew1VaLiuZMgVdpqg6MTNKFJhPhlCA87Fd7OWuQKFyGofPw_I30B-9P57ESevDv98ARuuScdMe8p7Db1xj5DJNfo5-2f-hMnIUa7 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+trabecular+bone+material+anisotropy+and+orientation+using+low+resolution+clinical+CT+images%3A+A+feasibility+study&rft.jtitle=Medical+engineering+%26+physics&rft.au=Nazemi%2C+S+Majid&rft.au=Cooper%2C+David+M+L&rft.au=Johnston%2C+James+D&rft.date=2016-09-01&rft.issn=1873-4030&rft.eissn=1873-4030&rft.volume=38&rft.issue=9&rft.spage=978&rft_id=info:doi/10.1016%2Fj.medengphy.2016.06.011&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13504533%2FS1350453316X00100%2Fcov150h.gif |