Quantifying trabecular bone material anisotropy and orientation using low resolution clinical CT images: A feasibility study

•Quantified fabric using grey-level structure tensor in upsized micro-CT images.•Derived anisotropic stiffness entries and main orientation using micro finite element.•Fabric explained 94% of the variance in anisotropic stiffness entries.•Fabric predicted main orientation with 4.8° mean error.•It is...

Full description

Saved in:
Bibliographic Details
Published inMedical engineering & physics Vol. 38; no. 9; pp. 978 - 987
Main Authors Nazemi, S. Majid, Cooper, David M.L., Johnston, James D.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.09.2016
Elsevier
Subjects
Online AccessGet full text
ISSN1350-4533
1873-4030
1873-4030
DOI10.1016/j.medengphy.2016.06.011

Cover

Abstract •Quantified fabric using grey-level structure tensor in upsized micro-CT images.•Derived anisotropic stiffness entries and main orientation using micro finite element.•Fabric explained 94% of the variance in anisotropic stiffness entries.•Fabric predicted main orientation with 4.8° mean error.•It is possible to estimate anisotropy in clinical CT images. Accounting for spatial variation of trabecular material anisotropy and orientation can improve the accuracy of quantitative computed tomography-based finite element (FE) modeling of bone. The objective of this study was to investigate the feasibility of quantifying trabecular material anisotropy and orientation using clinical computed tomography (CT). Forty four cubic volumes of interest were obtained from micro-CT images of the human radius. Micro-FE modeling was performed on the samples to obtain orthotropic stiffness entries as well as trabecular orientation. Simulated computed tomography images (0.32, 0.37, and 0.5mm isotropic voxel sizes) were created by resampling micro-CT images with added image noise. The gray-level structure tensor was used to derive fabric eigenvalues and eigenvectors in simulated CT images. For ‘best case’ comparison purposes, Mean Intercept Length was used to define fabric from micro-CT images. Regression was used in combination with eigenvalues, imaged density and FE to inversely derive the constants used in Cowin and Zysset–Curnier fabric-elasticity equations, and for comparing image derived fabric-elasticity stiffness entries to those obtained using micro-FE. Image derived eigenvectors (which indicated trabecular orientation) were then compared to orientation derived using micro-FE. When using clinically available voxel sizes, gray-level structure tensor derived fabric combined with Cowin's equations was able to explain 94–97% of the variance in orthotropic stiffness entries while Zysset–Curnier equations explained 82–88% of the variance in stiffness. Image derived orientation deviated by 4.4–10.8° from micro-FE derived orientation. Our results indicate potential to account for spatial variation of trabecular material anisotropy and orientation in subject-specific finite element modeling of bone using clinically available CT.
AbstractList Accounting for spatial variation of trabecular material anisotropy and orientation can improve the accuracy of quantitative computed tomography-based finite element (FE) modeling of bone. The objective of this study was to investigate the feasibility of quantifying trabecular material anisotropy and orientation using clinical computed tomography (CT). Forty four cubic volumes of interest were obtained from micro-CT images of the human radius. Micro-FE modeling was performed on the samples to obtain orthotropic stiffness entries as well as trabecular orientation. Simulated computed tomography images (0.32, 0.37, and 0.5mm isotropic voxel sizes) were created by resampling micro-CT images with added image noise. The gray-level structure tensor was used to derive fabric eigenvalues and eigenvectors in simulated CT images. For 'best case' comparison purposes, Mean Intercept Length was used to define fabric from micro-CT images. Regression was used in combination with eigenvalues, imaged density and FE to inversely derive the constants used in Cowin and Zysset-Curnier fabric-elasticity equations, and for comparing image derived fabric-elasticity stiffness entries to those obtained using micro-FE. Image derived eigenvectors (which indicated trabecular orientation) were then compared to orientation derived using micro-FE. When using clinically available voxel sizes, gray-level structure tensor derived fabric combined with Cowin's equations was able to explain 94-97% of the variance in orthotropic stiffness entries while Zysset-Curnier equations explained 82-88% of the variance in stiffness. Image derived orientation deviated by 4.4-10.8° from micro-FE derived orientation. Our results indicate potential to account for spatial variation of trabecular material anisotropy and orientation in subject-specific finite element modeling of bone using clinically available CT.Accounting for spatial variation of trabecular material anisotropy and orientation can improve the accuracy of quantitative computed tomography-based finite element (FE) modeling of bone. The objective of this study was to investigate the feasibility of quantifying trabecular material anisotropy and orientation using clinical computed tomography (CT). Forty four cubic volumes of interest were obtained from micro-CT images of the human radius. Micro-FE modeling was performed on the samples to obtain orthotropic stiffness entries as well as trabecular orientation. Simulated computed tomography images (0.32, 0.37, and 0.5mm isotropic voxel sizes) were created by resampling micro-CT images with added image noise. The gray-level structure tensor was used to derive fabric eigenvalues and eigenvectors in simulated CT images. For 'best case' comparison purposes, Mean Intercept Length was used to define fabric from micro-CT images. Regression was used in combination with eigenvalues, imaged density and FE to inversely derive the constants used in Cowin and Zysset-Curnier fabric-elasticity equations, and for comparing image derived fabric-elasticity stiffness entries to those obtained using micro-FE. Image derived eigenvectors (which indicated trabecular orientation) were then compared to orientation derived using micro-FE. When using clinically available voxel sizes, gray-level structure tensor derived fabric combined with Cowin's equations was able to explain 94-97% of the variance in orthotropic stiffness entries while Zysset-Curnier equations explained 82-88% of the variance in stiffness. Image derived orientation deviated by 4.4-10.8° from micro-FE derived orientation. Our results indicate potential to account for spatial variation of trabecular material anisotropy and orientation in subject-specific finite element modeling of bone using clinically available CT.
Accounting for spatial variation of trabecular material anisotropy and orientation can improve the accuracy of quantitative computed tomography-based finite element (FE) modeling of bone. The objective of this study was to investigate the feasibility of quantifying trabecular material anisotropy and orientation using clinical computed tomography (CT). Forty four cubic volumes of interest were obtained from micro-CT images of the human radius. Micro-FE modeling was performed on the samples to obtain orthotropic stiffness entries as well as trabecular orientation. Simulated computed tomography images (0.32, 0.37, and 0.5mm isotropic voxel sizes) were created by resampling micro-CT images with added image noise. The gray-level structure tensor was used to derive fabric eigenvalues and eigenvectors in simulated CT images. For 'best case' comparison purposes, Mean Intercept Length was used to define fabric from micro-CT images. Regression was used in combination with eigenvalues, imaged density and FE to inversely derive the constants used in Cowin and Zysset-Curnier fabric-elasticity equations, and for comparing image derived fabric-elasticity stiffness entries to those obtained using micro-FE. Image derived eigenvectors (which indicated trabecular orientation) were then compared to orientation derived using micro-FE. When using clinically available voxel sizes, gray-level structure tensor derived fabric combined with Cowin's equations was able to explain 94-97% of the variance in orthotropic stiffness entries while Zysset-Curnier equations explained 82-88% of the variance in stiffness. Image derived orientation deviated by 4.4-10.8° from micro-FE derived orientation. Our results indicate potential to account for spatial variation of trabecular material anisotropy and orientation in subject-specific finite element modeling of bone using clinically available CT.
•Quantified fabric using grey-level structure tensor in upsized micro-CT images.•Derived anisotropic stiffness entries and main orientation using micro finite element.•Fabric explained 94% of the variance in anisotropic stiffness entries.•Fabric predicted main orientation with 4.8° mean error.•It is possible to estimate anisotropy in clinical CT images. Accounting for spatial variation of trabecular material anisotropy and orientation can improve the accuracy of quantitative computed tomography-based finite element (FE) modeling of bone. The objective of this study was to investigate the feasibility of quantifying trabecular material anisotropy and orientation using clinical computed tomography (CT). Forty four cubic volumes of interest were obtained from micro-CT images of the human radius. Micro-FE modeling was performed on the samples to obtain orthotropic stiffness entries as well as trabecular orientation. Simulated computed tomography images (0.32, 0.37, and 0.5mm isotropic voxel sizes) were created by resampling micro-CT images with added image noise. The gray-level structure tensor was used to derive fabric eigenvalues and eigenvectors in simulated CT images. For ‘best case’ comparison purposes, Mean Intercept Length was used to define fabric from micro-CT images. Regression was used in combination with eigenvalues, imaged density and FE to inversely derive the constants used in Cowin and Zysset–Curnier fabric-elasticity equations, and for comparing image derived fabric-elasticity stiffness entries to those obtained using micro-FE. Image derived eigenvectors (which indicated trabecular orientation) were then compared to orientation derived using micro-FE. When using clinically available voxel sizes, gray-level structure tensor derived fabric combined with Cowin's equations was able to explain 94–97% of the variance in orthotropic stiffness entries while Zysset–Curnier equations explained 82–88% of the variance in stiffness. Image derived orientation deviated by 4.4–10.8° from micro-FE derived orientation. Our results indicate potential to account for spatial variation of trabecular material anisotropy and orientation in subject-specific finite element modeling of bone using clinically available CT.
Highlights • Quantified fabric using grey-level structure tensor in upsized micro-CT images. • Derived anisotropic stiffness entries and main orientation using micro finite element. • Fabric explained 94% of the variance in anisotropic stiffness entries. • Fabric predicted main orientation with 4.8° mean error. • It is possible to estimate anisotropy in clinical CT images.
Author Johnston, James D.
Cooper, David M.L.
Nazemi, S. Majid
Author_xml – sequence: 1
  givenname: S. Majid
  surname: Nazemi
  fullname: Nazemi, S. Majid
  email: majid.nazemi@gmail.com
  organization: Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
– sequence: 2
  givenname: David M.L.
  surname: Cooper
  fullname: Cooper, David M.L.
  organization: Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, 107 Wiggins Rd, SK S7N 5E5, Canada
– sequence: 3
  givenname: James D.
  surname: Johnston
  fullname: Johnston, James D.
  email: jd.johnston@usask.ca
  organization: Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27372175$$D View this record in MEDLINE/PubMed
BookMark eNqNUl2L1DAULbLifuhf0Dz60jEfTdsRVIbBVWFBxPU5pMltzZhJxiRdKfjjN7W7-7AgDFySm8s5J8k997w4cd5BUbwieEUwqd_sVnvQ4IbDz2lFc2GFcxDypDgjbcPKCjN8knPGcVlxxk6L8xh3GOOqqtmz4pQ2rKGk4WfF32-jdMn0k3EDSkF2oEYrA-ryfWgvEwQjLZLORJ-CP0w51cgHAy7JZLxDY5yZ1v9BAaK347-issYZlYnba2T2coD4Fm1QDzKazliTJhTTqKfnxdNe2ggv7vaL4sflx-vt5_Lq66cv281VqTitUwltX2vW1u1arhWXvKka1vMOc66rNc0Hvuacg251hnPZyVrTDoC0qtW9qiW7KNiiaw0MIHzojLihwkuz5KMdhFSiA0Fp3ealwW2VWa8X1iH43yPEJPYmKrBWOvBjFKQlFakoYThDX95Bxy4bIw4h_zpM4r7PGdAsABV8jAH6BwjBYnZU7MSDo2J2VOAchGTmu0dMZZbWZ7eMPYK_WfiQG3xjIIiosnsKtAmgktDeHKHx_pHGvcG_YIK482Nw2T9BRKQCi-_z3M1jR2qGCeVzKz_8X-CoJ9wCZjPuzQ
CitedBy_id crossref_primary_10_1016_j_bone_2017_07_012
crossref_primary_10_1016_j_clinbiomech_2016_10_012
crossref_primary_10_1080_10255842_2019_1699542
crossref_primary_10_2140_memocs_2018_6_353
crossref_primary_10_1016_j_medengphy_2016_10_003
crossref_primary_10_2140_memocs_2023_11_541
crossref_primary_10_1016_j_bone_2017_01_016
crossref_primary_10_2140_memocs_2021_9_33
crossref_primary_10_1186_s41747_020_00180_3
crossref_primary_10_1007_s11517_024_03162_4
crossref_primary_10_1016_j_jbiomech_2017_05_018
crossref_primary_10_1007_s11012_021_01452_x
crossref_primary_10_3390_ijms23105593
Cites_doi 10.1016/S0021-9290(98)00108-0
10.1016/j.medengphy.2007.12.009
10.1016/j.jbiomech.2013.07.047
10.1115/1.2800865
10.1016/0021-9290(91)90308-A
10.1016/j.bone.2006.10.022
10.1016/j.clinbiomech.2007.08.024
10.1016/0021-9290(89)90073-0
10.1016/j.jbiomech.2015.10.012
10.1359/jbmr.081201
10.1016/j.joca.2005.09.008
10.1016/j.clinbiomech.2008.11.003
10.1016/0167-6636(95)00018-6
10.1016/j.jbiomech.2008.05.017
10.1115/1.4025179
10.1115/1.2913335
10.1016/0167-6636(85)90012-2
10.1007/s10237-012-0443-2
10.1016/j.medengphy.2012.03.003
10.1016/j.medengphy.2007.04.008
10.1016/S8756-3282(02)00736-6
10.1016/j.bone.2011.10.002
10.1007/s10237-007-0109-7
10.1002/jbmr.2437
10.1016/j.jbiomech.2009.04.042
10.1016/S8756-3282(03)00210-2
10.1016/S0021-9290(96)80021-2
10.1115/1.2834756
10.1118/1.3582946
10.1016/j.medengphy.2005.06.003
10.3109/03008207.2015.1013627
10.1016/j.jbiomech.2013.07.042
10.1007/s10237-010-0245-3
10.1016/j.jbiomech.2013.04.016
10.1016/j.medengphy.2011.09.006
10.1007/s10439-014-0983-y
10.1016/j.clinbiomech.2009.03.009
10.1359/jbmr.061011
10.1002/jbm.820281111
10.1016/0021-9290(94)90056-6
10.1016/S0041-624X(96)00078-9
10.1016/S8756-3282(99)00190-8
10.1016/j.medengphy.2011.07.016
10.1016/j.bone.2009.09.032
10.1002/jor.1100090315
10.1016/S0021-9290(03)00071-X
10.1016/j.jbiomech.2014.08.020
ContentType Journal Article
Copyright 2016 IPEM
IPEM
Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2016 IPEM
– notice: IPEM
– notice: Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
Q33
DOI 10.1016/j.medengphy.2016.06.011
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Université de Liège - Open Repository and Bibliography (ORBI)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Chemistry
EISSN 1873-4030
EndPage 987
ExternalDocumentID oai_orbi_ulg_ac_be_2268_227084
27372175
10_1016_j_medengphy_2016_06_011
S1350453316301254
1_s2_0_S1350453316301254
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
9M8
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEE
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M28
M31
M41
MO0
N9A
O-L
O9-
OAUVE
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSZ
T5K
TN5
WUQ
YNT
YQT
Z5R
ZGI
ZY4
~G-
~HD
AACTN
AAXKI
ABTAH
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
LCYCR
AAYXX
CITATION
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
Q33
ID FETCH-LOGICAL-c526t-e8f6d38689a9c5a57473f5b055d49247359555ed8d5265aba6d2bee18c8dfc6a3
IEDL.DBID .~1
ISSN 1350-4533
1873-4030
IngestDate Sat Oct 18 19:06:08 EDT 2025
Sun Sep 28 02:38:19 EDT 2025
Mon Jul 21 05:56:18 EDT 2025
Wed Oct 01 05:03:27 EDT 2025
Thu Apr 24 22:52:57 EDT 2025
Fri Feb 23 02:29:18 EST 2024
Tue Feb 25 20:06:43 EST 2025
Tue Oct 14 19:35:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Trabecular bone anisotropic elastic properties
Fabric-elasticity equations
Trabecular bone main orientation
Clinical CT images
Language English
License Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c526t-e8f6d38689a9c5a57473f5b055d49247359555ed8d5265aba6d2bee18c8dfc6a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
scopus-id:2-s2.0-84978371872
PMID 27372175
PQID 1814142130
PQPubID 23479
PageCount 10
ParticipantIDs liege_orbi_v2_oai_orbi_ulg_ac_be_2268_227084
proquest_miscellaneous_1814142130
pubmed_primary_27372175
crossref_primary_10_1016_j_medengphy_2016_06_011
crossref_citationtrail_10_1016_j_medengphy_2016_06_011
elsevier_sciencedirect_doi_10_1016_j_medengphy_2016_06_011
elsevier_clinicalkeyesjournals_1_s2_0_S1350453316301254
elsevier_clinicalkey_doi_10_1016_j_medengphy_2016_06_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-09-01
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Medical engineering & physics
PublicationTitleAlternate Med Eng Phys
PublicationYear 2016
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Tabor, Petryniak, Latała, Konopka (bib0026) 2013; 35
Gross, Pahr, Zysset (bib0024) 2013; 12
Hollister, Fyhrie, Jepsen, Goldstein (bib0033) 1991; 24
Pettersen, Wik, Skallerud (bib0001) 2009; 24
Enns-Bray, Owoc, Nishiyama, Boyd (bib0015) 2014; 47
Morgan, Bayraktar, Keaveny (bib0044) 2003; 36
Unnikrishnan, Barest, Berry, Hussein, Morgan (bib0016) 2013; 135
Baca, Horak, Mikulenka, Dzupa (bib0046) 2008; 30
Hazrati Marangalou, Ito, Cataldi, Taddei, van Rietbergen (bib0041) 2013; 46
Snyder, Schneider (bib0052) 1991; 9
Chevalier, Quek, Borah, Gross, Stewart, Lang (bib0008) 2010; 46
Crawford, Cann, Keaveny (bib0011) 2003; 33
Orwoll, Marshall, Nielson, Cummings, Lapidus, Cauley (bib0004) 2009; 24
Rho (bib0050) 1996; 34
Maquer, Musy, Wandel, Gross, Zysset (bib0023) 2015; 30
Duchemin, Bousson, Raossanaly, Bergot, Laredo, Skalli (bib0047) 2008; 30
Chappard, Peyrin, Bonnassie, Lemineur, Brunet-Imbault, Lespessailles (bib0014) 2006; 14
Gray, Taddei, Zavatsky, Cristofolini, Gill (bib0013) 2008; 130
Zysset, Curnier (bib0022) 1995; 21
Rohrbach, Grimal, Varga, Peyrin, Langer, Laugier (bib0053) 2015; 56
Chandran, Zysset, Reyes (bib0035) 2015
Keaveny, McClung, Wan, Kopperdahl, Mitlak, Krohn (bib0007) 2012; 50
Pistoia, van Rietbergen, Lochmüller, Lill, Eckstein, Rüegsegger (bib0031) 2002; 30
Dall'Ara, Varga, Pahr, Zysset (bib0036) 2011; 38
Tabor, Rokita (bib0038) 2007; 40
Cowin (bib0021) 1985; 4
Edwards, Schnitzer, Troy (bib0012) 2013; 46
Schileo, Dall'Ara, Taddei, Malandrino, Schotkamp, Baleani (bib0048) 2008; 41
Pahr, Zysset (bib0032) 2007; 7
Ladd, Kinney (bib0029) 1998; 31
Helgason, Perilli, Schileo, Taddei, Brynjólfsson, Viceconti (bib0009) 2008; 23
Varga, Dall'Ara, Pahr, Pretterklieber, Zysset (bib0043) 2011; 10
Larsson, Luisier, Kersh, Dall'Ara, Zysset, Pandy (bib0028) 2014; 42
Tabor (bib0039) 2012; 34
Pettersen, Wik, Skallerud (bib0002) 2009; 24
Ashman, Rho, Turner (bib0010) 1989; 22
Edwards, Troy (bib0005) 2012; 34
Niebur, Yuen, Hsia, Keaveny (bib0030) 1999; 121
Peng, Bai, Zeng, Zhou (bib0045) 2006; 28
Kersh, Zysset, Pahr, Wolfram, Larsson, Pandy (bib0027) 2013; 46
Van Rietbergen, Odgaard, Kabel, Huiskes (bib0034) 1996; 29
Lenaerts, Wirth, van Lenthe (bib0037) 2014; 2
Mirzaei, Zeinali, Razmjoo, Nazemi (bib0003) 2009; 42
Zysset, Goulet, Hollister (bib0042) 1998; 120
Keller (bib0051) 1994; 27
Synek, Chevalier, Baumbach, Pahr (bib0017) 2015; 48
Kabel, van Rietbergen, Odgaard, Huiskes (bib0025) 1999; 25
Keaveny, Donley, Hoffmann, Mitlak, Glass, San Martin (bib0006) 2007; 22
Keyak, Lee, Skinner (bib0049) 1994; 28
Hazrati Marangalou (10.1016/j.medengphy.2016.06.011_bib0041) 2013; 46
Rho (10.1016/j.medengphy.2016.06.011_bib0050) 1996; 34
Varga (10.1016/j.medengphy.2016.06.011_bib0043) 2011; 10
Helgason (10.1016/j.medengphy.2016.06.011_bib0009) 2008; 23
Keaveny (10.1016/j.medengphy.2016.06.011_bib0006) 2007; 22
Tabor (10.1016/j.medengphy.2016.06.011_bib0026) 2013; 35
Larsson (10.1016/j.medengphy.2016.06.011_bib0028) 2014; 42
Baca (10.1016/j.medengphy.2016.06.011_bib0046) 2008; 30
Crawford (10.1016/j.medengphy.2016.06.011_bib0011) 2003; 33
Orwoll (10.1016/j.medengphy.2016.06.011_bib0004) 2009; 24
Chandran (10.1016/j.medengphy.2016.06.011_bib0035) 2015
Pahr (10.1016/j.medengphy.2016.06.011_bib0032) 2007; 7
Hollister (10.1016/j.medengphy.2016.06.011_bib0033) 1991; 24
Tabor (10.1016/j.medengphy.2016.06.011_bib0039) 2012; 34
Zysset (10.1016/j.medengphy.2016.06.011_bib0042) 1998; 120
Pettersen (10.1016/j.medengphy.2016.06.011_bib0002) 2009; 24
Chevalier (10.1016/j.medengphy.2016.06.011_bib0008) 2010; 46
Keyak (10.1016/j.medengphy.2016.06.011_bib0049) 1994; 28
Keaveny (10.1016/j.medengphy.2016.06.011_bib0007) 2012; 50
Enns-Bray (10.1016/j.medengphy.2016.06.011_bib0015) 2014; 47
Kabel (10.1016/j.medengphy.2016.06.011_bib0025) 1999; 25
Edwards (10.1016/j.medengphy.2016.06.011_bib0005) 2012; 34
Tabor (10.1016/j.medengphy.2016.06.011_bib0038) 2007; 40
Ladd (10.1016/j.medengphy.2016.06.011_bib0029) 1998; 31
Peng (10.1016/j.medengphy.2016.06.011_bib0045) 2006; 28
Pistoia (10.1016/j.medengphy.2016.06.011_bib0031) 2002; 30
Maquer (10.1016/j.medengphy.2016.06.011_bib0023) 2015; 30
Unnikrishnan (10.1016/j.medengphy.2016.06.011_bib0016) 2013; 135
Gross (10.1016/j.medengphy.2016.06.011_bib0024) 2013; 12
Niebur (10.1016/j.medengphy.2016.06.011_bib0030) 1999; 121
Mirzaei (10.1016/j.medengphy.2016.06.011_bib0003) 2009; 42
Pettersen (10.1016/j.medengphy.2016.06.011_bib0001) 2009; 24
Snyder (10.1016/j.medengphy.2016.06.011_bib0052) 1991; 9
Cowin (10.1016/j.medengphy.2016.06.011_bib0021) 1985; 4
Schileo (10.1016/j.medengphy.2016.06.011_bib0048) 2008; 41
Rohrbach (10.1016/j.medengphy.2016.06.011_bib0053) 2015; 56
Duchemin (10.1016/j.medengphy.2016.06.011_bib0047) 2008; 30
Zysset (10.1016/j.medengphy.2016.06.011_bib0022) 1995; 21
Van Rietbergen (10.1016/j.medengphy.2016.06.011_bib0034) 1996; 29
Kersh (10.1016/j.medengphy.2016.06.011_bib0027) 2013; 46
Morgan (10.1016/j.medengphy.2016.06.011_bib0044) 2003; 36
Gray (10.1016/j.medengphy.2016.06.011_bib0013) 2008; 130
Chappard (10.1016/j.medengphy.2016.06.011_bib0014) 2006; 14
Ashman (10.1016/j.medengphy.2016.06.011_bib0010) 1989; 22
Keller (10.1016/j.medengphy.2016.06.011_bib0051) 1994; 27
Lenaerts (10.1016/j.medengphy.2016.06.011_bib0037) 2014; 2
Dall'Ara (10.1016/j.medengphy.2016.06.011_bib0036) 2011; 38
Edwards (10.1016/j.medengphy.2016.06.011_bib0012) 2013; 46
Synek (10.1016/j.medengphy.2016.06.011_bib0017) 2015; 48
References_xml – volume: 4
  start-page: 137
  year: 1985
  end-page: 147
  ident: bib0021
  article-title: The relationship between the elasticity tensor and the fabric tensor
  publication-title: Mech Mater
– volume: 42
  start-page: 1584
  year: 2009
  end-page: 1591
  ident: bib0003
  article-title: On prediction of the strength levels and failure patterns of human vertebrae using quantitative computed tomography (QCT)-based finite element method
  publication-title: J Biomech
– volume: 34
  start-page: 290
  year: 2012
  end-page: 298
  ident: bib0005
  article-title: Finite element prediction of surface strain and fracture strength at the distal radius
  publication-title: Med Eng Phys
– volume: 30
  start-page: 842
  year: 2002
  end-page: 848
  ident: bib0031
  article-title: Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images
  publication-title: Bone
– volume: 28
  start-page: 1329
  year: 1994
  end-page: 1336
  ident: bib0049
  article-title: Correlations between orthogonal mechanical properties and density of trabecular bone: use of different densitometric measures
  publication-title: J Biomed Mater Res
– volume: 24
  start-page: 480
  year: 2009
  end-page: 487
  ident: bib0002
  article-title: Subject specific finite element analysis of implant stability for a cementless femoral stem
  publication-title: Clin Biomech
– volume: 22
  start-page: 149
  year: 2007
  end-page: 157
  ident: bib0006
  article-title: Effects of teriparatide and alendronate on vertebral strength as assessed by finite element modeling of qct scans in women with osteoporosis
  publication-title: J Bone Miner Res
– volume: 46
  start-page: 2659
  year: 2013
  end-page: 2666
  ident: bib0027
  article-title: Measurement of structural anisotropy in femoral trabecular bone using clinical-resolution CT images
  publication-title: J Biomech
– volume: 46
  start-page: 1655
  year: 2013
  end-page: 1662
  ident: bib0012
  article-title: Torsional stiffness and strength of the proximal tibia are better predicted by finite element models than DXA or QCT
  publication-title: J Biomech
– volume: 56
  start-page: 120
  year: 2015
  end-page: 132
  ident: bib0053
  article-title: Distribution of mesoscale elastic properties and mass density in the human femoral shaft
  publication-title: Connect Tissue Res
– volume: 48
  start-page: 4116
  year: 2015
  end-page: 4123
  ident: bib0017
  article-title: The influence of bone density and anisotropy in finite element models of distal radius fracture osteosynthesis: evaluations and comparison to experiments
  publication-title: J Biomech
– volume: 29
  start-page: 1653
  year: 1996
  end-page: 1657
  ident: bib0034
  article-title: Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture
  publication-title: J Biomech
– volume: 22
  start-page: 895
  year: 1989
  end-page: 900
  ident: bib0010
  article-title: Anatomical variation of orthotropic elastic moduli of the proximal human tibia
  publication-title: J Biomech
– volume: 121
  start-page: 629
  year: 1999
  end-page: 635
  ident: bib0030
  article-title: Convergence behavior of high-resolution finite element models of trabecular bone
  publication-title: J Biomech Eng
– volume: 23
  start-page: 135
  year: 2008
  end-page: 146
  ident: bib0009
  article-title: Mathematical relationships between bone density and mechanical properties: a literature review
  publication-title: Clin Biomech
– volume: 31
  start-page: 941
  year: 1998
  end-page: 945
  ident: bib0029
  article-title: Numerical errors and uncertainties in finite-element modeling of trabecular bone
  publication-title: J Biomech
– volume: 27
  start-page: 1159
  year: 1994
  end-page: 1168
  ident: bib0051
  article-title: Predicting the compressive mechanical behavior of bone
  publication-title: J Biomech
– volume: 10
  start-page: 431
  year: 2011
  end-page: 444
  ident: bib0043
  article-title: Validation of an HR-pQCT-based homogenized finite element approach using mechanical testing of ultra-distal radius sections
  publication-title: Biomech Model Mechanobiol
– volume: 30
  start-page: 1000
  year: 2015
  end-page: 1008
  ident: bib0023
  article-title: Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables
  publication-title: J Bone Miner Res
– volume: 36
  start-page: 897
  year: 2003
  end-page: 904
  ident: bib0044
  article-title: Trabecular bone modulus–density relationships depend on anatomic site
  publication-title: J Biomech
– volume: 9
  start-page: 422
  year: 1991
  end-page: 431
  ident: bib0052
  article-title: Estimation of mechanical properties of cortical bone by computed tomography
  publication-title: J Orthop Res
– volume: 30
  start-page: 321
  year: 2008
  end-page: 328
  ident: bib0047
  article-title: Prediction of mechanical properties of cortical bone by quantitative computed tomography
  publication-title: Med Eng Phys
– volume: 46
  start-page: 41
  year: 2010
  end-page: 48
  ident: bib0008
  article-title: Biomechanical effects of teriparatide in women with osteoporosis treated previously with alendronate and risedronate: Results from quantitative computed tomography-based finite element analysis of the vertebral body
  publication-title: Bone
– volume: 25
  start-page: 481
  year: 1999
  end-page: 486
  ident: bib0025
  article-title: Constitutive relationships of fabric, density, and elastic properties in cancellous bone architecture
  publication-title: Bone
– volume: 2
  start-page: 1
  year: 2014
  end-page: 8
  ident: bib0037
  article-title: Quantification of trabecular spatial orientation from low-resolution images
  publication-title: Comput Methods Biomech Biomed Eng
– volume: 24
  start-page: 475
  year: 2009
  end-page: 483
  ident: bib0004
  article-title: Finite element analysis of the proximal femur and hip fracture risk in older men
  publication-title: J Bone Miner Res
– volume: 38
  start-page: 2602
  year: 2011
  end-page: 2608
  ident: bib0036
  article-title: A calibration methodology of QCT BMD for human vertebral body with registered micro-CT images
  publication-title: Med Phys
– volume: 21
  start-page: 243
  year: 1995
  end-page: 250
  ident: bib0022
  article-title: An alternative model for anisotropic elasticity based on fabric tensors
  publication-title: Mech Mater
– volume: 34
  start-page: 777
  year: 1996
  end-page: 783
  ident: bib0050
  article-title: An ultrasonic method for measuring the elastic properties of human tibial cortical and cancellous bone
  publication-title: Ultrasonics
– start-page: 621
  year: 2015
  end-page: 628
  ident: bib0035
  article-title: Prediction of trabecular bone anisotropy from quantitative computed tomography using supervised learning and a novel morphometric feature descriptor
  publication-title: Medical image computing and computer-assisted intervention – MICCAI 2015
– volume: 50
  start-page: 165
  year: 2012
  end-page: 170
  ident: bib0007
  article-title: Femoral strength in osteoporotic women treated with teriparatide or alendronate
  publication-title: Bone
– volume: 14
  start-page: 215
  year: 2006
  end-page: 223
  ident: bib0014
  article-title: Subchondral bone micro-architectural alterations in osteoarthritis: a synchrotron micro-computed tomography study
  publication-title: Osteoarthr Cartil
– volume: 47
  start-page: 3272
  year: 2014
  end-page: 3278
  ident: bib0015
  article-title: Mapping anisotropy of the proximal femur for enhanced image based finite element analysis
  publication-title: J Biomech
– volume: 40
  start-page: 966
  year: 2007
  end-page: 972
  ident: bib0038
  article-title: Quantifying anisotropy of trabecular bone from gray-level images
  publication-title: Bone
– volume: 24
  start-page: 196
  year: 2009
  end-page: 202
  ident: bib0001
  article-title: Subject specific finite element analysis of stress shielding around a cementless femoral stem
  publication-title: Clin Biomech
– volume: 30
  start-page: 924
  year: 2008
  end-page: 930
  ident: bib0046
  article-title: Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses
  publication-title: Med Eng Phys
– volume: 35
  start-page: 7
  year: 2013
  end-page: 15
  ident: bib0026
  article-title: The potential of multi-slice computed tomography based quantification of the structural anisotropy of vertebral trabecular bone
  publication-title: Med Eng Phys
– volume: 28
  start-page: 227
  year: 2006
  end-page: 233
  ident: bib0045
  article-title: Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions
  publication-title: Med Eng Phys
– volume: 34
  start-page: 598
  year: 2012
  end-page: 604
  ident: bib0039
  article-title: Equivalence of mean intercept length and gradient fabric tensors – 3d study
  publication-title: Med Eng Phys
– volume: 46
  start-page: 2356
  year: 2013
  end-page: 2362
  ident: bib0041
  article-title: A novel approach to estimate trabecular bone anisotropy using a database approach
  publication-title: J Biomech
– volume: 130
  year: 2008
  ident: bib0013
  article-title: Experimental validation of a finite element model of a human cadaveric tibia
  publication-title: J Biomech Eng
– volume: 42
  start-page: 950
  year: 2014
  end-page: 959
  ident: bib0028
  article-title: Assessment of transverse isotropy in clinical-level ct images of trabecular bone using the gradient structure tensor
  publication-title: Ann Biomed Eng
– volume: 7
  start-page: 463
  year: 2007
  end-page: 476
  ident: bib0032
  article-title: Influence of boundary conditions on computed apparent elastic properties of cancellous bone
  publication-title: Biomech Model Mechanobiol
– volume: 24
  start-page: 825
  year: 1991
  end-page: 839
  ident: bib0033
  article-title: Application of homogenization theory to the study of trabecular bone mechanics
  publication-title: J Biomech
– volume: 41
  start-page: 2483
  year: 2008
  end-page: 2491
  ident: bib0048
  article-title: An accurate estimation of bone density improves the accuracy of subject-specific finite element models
  publication-title: J Biomech
– volume: 33
  start-page: 744
  year: 2003
  end-page: 750
  ident: bib0011
  article-title: Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography
  publication-title: Bone
– volume: 12
  start-page: 793
  year: 2013
  end-page: 800
  ident: bib0024
  article-title: Morphology–elasticity relationships using decreasing fabric information of human trabecular bone from three major anatomical locations
  publication-title: Biomech Model Mechanobiol
– volume: 135
  year: 2013
  ident: bib0016
  article-title: Effect of specimen-specific anisotropic material properties in quantitative computed tomography-based finite element analysis of the vertebra
  publication-title: J Biomech Eng
– volume: 120
  start-page: 640
  year: 1998
  end-page: 646
  ident: bib0042
  article-title: A global relationship between trabecular bone morphology and homogenized elastic properties
  publication-title: J Biomech Eng
– volume: 31
  start-page: 941
  year: 1998
  ident: 10.1016/j.medengphy.2016.06.011_bib0029
  article-title: Numerical errors and uncertainties in finite-element modeling of trabecular bone
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(98)00108-0
– volume: 30
  start-page: 924
  year: 2008
  ident: 10.1016/j.medengphy.2016.06.011_bib0046
  article-title: Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2007.12.009
– volume: 46
  start-page: 2659
  year: 2013
  ident: 10.1016/j.medengphy.2016.06.011_bib0027
  article-title: Measurement of structural anisotropy in femoral trabecular bone using clinical-resolution CT images
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2013.07.047
– volume: 121
  start-page: 629
  year: 1999
  ident: 10.1016/j.medengphy.2016.06.011_bib0030
  article-title: Convergence behavior of high-resolution finite element models of trabecular bone
  publication-title: J Biomech Eng
  doi: 10.1115/1.2800865
– volume: 24
  start-page: 825
  year: 1991
  ident: 10.1016/j.medengphy.2016.06.011_bib0033
  article-title: Application of homogenization theory to the study of trabecular bone mechanics
  publication-title: J Biomech
  doi: 10.1016/0021-9290(91)90308-A
– volume: 40
  start-page: 966
  year: 2007
  ident: 10.1016/j.medengphy.2016.06.011_bib0038
  article-title: Quantifying anisotropy of trabecular bone from gray-level images
  publication-title: Bone
  doi: 10.1016/j.bone.2006.10.022
– volume: 23
  start-page: 135
  year: 2008
  ident: 10.1016/j.medengphy.2016.06.011_bib0009
  article-title: Mathematical relationships between bone density and mechanical properties: a literature review
  publication-title: Clin Biomech
  doi: 10.1016/j.clinbiomech.2007.08.024
– volume: 22
  start-page: 895
  year: 1989
  ident: 10.1016/j.medengphy.2016.06.011_bib0010
  article-title: Anatomical variation of orthotropic elastic moduli of the proximal human tibia
  publication-title: J Biomech
  doi: 10.1016/0021-9290(89)90073-0
– start-page: 621
  year: 2015
  ident: 10.1016/j.medengphy.2016.06.011_bib0035
  article-title: Prediction of trabecular bone anisotropy from quantitative computed tomography using supervised learning and a novel morphometric feature descriptor
– volume: 48
  start-page: 4116
  issue: 15
  year: 2015
  ident: 10.1016/j.medengphy.2016.06.011_bib0017
  article-title: The influence of bone density and anisotropy in finite element models of distal radius fracture osteosynthesis: evaluations and comparison to experiments
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2015.10.012
– volume: 24
  start-page: 475
  issue: 3
  year: 2009
  ident: 10.1016/j.medengphy.2016.06.011_bib0004
  article-title: Finite element analysis of the proximal femur and hip fracture risk in older men
  publication-title: J Bone Miner Res
  doi: 10.1359/jbmr.081201
– volume: 14
  start-page: 215
  year: 2006
  ident: 10.1016/j.medengphy.2016.06.011_bib0014
  article-title: Subchondral bone micro-architectural alterations in osteoarthritis: a synchrotron micro-computed tomography study
  publication-title: Osteoarthr Cartil
  doi: 10.1016/j.joca.2005.09.008
– volume: 24
  start-page: 196
  year: 2009
  ident: 10.1016/j.medengphy.2016.06.011_bib0001
  article-title: Subject specific finite element analysis of stress shielding around a cementless femoral stem
  publication-title: Clin Biomech
  doi: 10.1016/j.clinbiomech.2008.11.003
– volume: 21
  start-page: 243
  year: 1995
  ident: 10.1016/j.medengphy.2016.06.011_bib0022
  article-title: An alternative model for anisotropic elasticity based on fabric tensors
  publication-title: Mech Mater
  doi: 10.1016/0167-6636(95)00018-6
– volume: 41
  start-page: 2483
  year: 2008
  ident: 10.1016/j.medengphy.2016.06.011_bib0048
  article-title: An accurate estimation of bone density improves the accuracy of subject-specific finite element models
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2008.05.017
– volume: 135
  year: 2013
  ident: 10.1016/j.medengphy.2016.06.011_bib0016
  article-title: Effect of specimen-specific anisotropic material properties in quantitative computed tomography-based finite element analysis of the vertebra
  publication-title: J Biomech Eng
  doi: 10.1115/1.4025179
– volume: 130
  year: 2008
  ident: 10.1016/j.medengphy.2016.06.011_bib0013
  article-title: Experimental validation of a finite element model of a human cadaveric tibia
  publication-title: J Biomech Eng
  doi: 10.1115/1.2913335
– volume: 4
  start-page: 137
  year: 1985
  ident: 10.1016/j.medengphy.2016.06.011_bib0021
  article-title: The relationship between the elasticity tensor and the fabric tensor
  publication-title: Mech Mater
  doi: 10.1016/0167-6636(85)90012-2
– volume: 12
  start-page: 793
  year: 2013
  ident: 10.1016/j.medengphy.2016.06.011_bib0024
  article-title: Morphology–elasticity relationships using decreasing fabric information of human trabecular bone from three major anatomical locations
  publication-title: Biomech Model Mechanobiol
  doi: 10.1007/s10237-012-0443-2
– volume: 2
  start-page: 1
  year: 2014
  ident: 10.1016/j.medengphy.2016.06.011_bib0037
  article-title: Quantification of trabecular spatial orientation from low-resolution images
  publication-title: Comput Methods Biomech Biomed Eng
– volume: 35
  start-page: 7
  year: 2013
  ident: 10.1016/j.medengphy.2016.06.011_bib0026
  article-title: The potential of multi-slice computed tomography based quantification of the structural anisotropy of vertebral trabecular bone
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2012.03.003
– volume: 30
  start-page: 321
  year: 2008
  ident: 10.1016/j.medengphy.2016.06.011_bib0047
  article-title: Prediction of mechanical properties of cortical bone by quantitative computed tomography
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2007.04.008
– volume: 30
  start-page: 842
  year: 2002
  ident: 10.1016/j.medengphy.2016.06.011_bib0031
  article-title: Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images
  publication-title: Bone
  doi: 10.1016/S8756-3282(02)00736-6
– volume: 50
  start-page: 165
  year: 2012
  ident: 10.1016/j.medengphy.2016.06.011_bib0007
  article-title: Femoral strength in osteoporotic women treated with teriparatide or alendronate
  publication-title: Bone
  doi: 10.1016/j.bone.2011.10.002
– volume: 7
  start-page: 463
  year: 2007
  ident: 10.1016/j.medengphy.2016.06.011_bib0032
  article-title: Influence of boundary conditions on computed apparent elastic properties of cancellous bone
  publication-title: Biomech Model Mechanobiol
  doi: 10.1007/s10237-007-0109-7
– volume: 30
  start-page: 1000
  year: 2015
  ident: 10.1016/j.medengphy.2016.06.011_bib0023
  article-title: Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.2437
– volume: 42
  start-page: 1584
  year: 2009
  ident: 10.1016/j.medengphy.2016.06.011_bib0003
  article-title: On prediction of the strength levels and failure patterns of human vertebrae using quantitative computed tomography (QCT)-based finite element method
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2009.04.042
– volume: 33
  start-page: 744
  year: 2003
  ident: 10.1016/j.medengphy.2016.06.011_bib0011
  article-title: Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography
  publication-title: Bone
  doi: 10.1016/S8756-3282(03)00210-2
– volume: 29
  start-page: 1653
  year: 1996
  ident: 10.1016/j.medengphy.2016.06.011_bib0034
  article-title: Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(96)80021-2
– volume: 120
  start-page: 640
  year: 1998
  ident: 10.1016/j.medengphy.2016.06.011_bib0042
  article-title: A global relationship between trabecular bone morphology and homogenized elastic properties
  publication-title: J Biomech Eng
  doi: 10.1115/1.2834756
– volume: 38
  start-page: 2602
  year: 2011
  ident: 10.1016/j.medengphy.2016.06.011_bib0036
  article-title: A calibration methodology of QCT BMD for human vertebral body with registered micro-CT images
  publication-title: Med Phys
  doi: 10.1118/1.3582946
– volume: 28
  start-page: 227
  year: 2006
  ident: 10.1016/j.medengphy.2016.06.011_bib0045
  article-title: Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2005.06.003
– volume: 56
  start-page: 120
  year: 2015
  ident: 10.1016/j.medengphy.2016.06.011_bib0053
  article-title: Distribution of mesoscale elastic properties and mass density in the human femoral shaft
  publication-title: Connect Tissue Res
  doi: 10.3109/03008207.2015.1013627
– volume: 46
  start-page: 2356
  year: 2013
  ident: 10.1016/j.medengphy.2016.06.011_bib0041
  article-title: A novel approach to estimate trabecular bone anisotropy using a database approach
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2013.07.042
– volume: 10
  start-page: 431
  year: 2011
  ident: 10.1016/j.medengphy.2016.06.011_bib0043
  article-title: Validation of an HR-pQCT-based homogenized finite element approach using mechanical testing of ultra-distal radius sections
  publication-title: Biomech Model Mechanobiol
  doi: 10.1007/s10237-010-0245-3
– volume: 46
  start-page: 1655
  year: 2013
  ident: 10.1016/j.medengphy.2016.06.011_bib0012
  article-title: Torsional stiffness and strength of the proximal tibia are better predicted by finite element models than DXA or QCT
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2013.04.016
– volume: 34
  start-page: 598
  year: 2012
  ident: 10.1016/j.medengphy.2016.06.011_bib0039
  article-title: Equivalence of mean intercept length and gradient fabric tensors – 3d study
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2011.09.006
– volume: 42
  start-page: 950
  year: 2014
  ident: 10.1016/j.medengphy.2016.06.011_bib0028
  article-title: Assessment of transverse isotropy in clinical-level ct images of trabecular bone using the gradient structure tensor
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-014-0983-y
– volume: 24
  start-page: 480
  year: 2009
  ident: 10.1016/j.medengphy.2016.06.011_bib0002
  article-title: Subject specific finite element analysis of implant stability for a cementless femoral stem
  publication-title: Clin Biomech
  doi: 10.1016/j.clinbiomech.2009.03.009
– volume: 22
  start-page: 149
  issue: 1
  year: 2007
  ident: 10.1016/j.medengphy.2016.06.011_bib0006
  article-title: Effects of teriparatide and alendronate on vertebral strength as assessed by finite element modeling of qct scans in women with osteoporosis
  publication-title: J Bone Miner Res
  doi: 10.1359/jbmr.061011
– volume: 28
  start-page: 1329
  year: 1994
  ident: 10.1016/j.medengphy.2016.06.011_bib0049
  article-title: Correlations between orthogonal mechanical properties and density of trabecular bone: use of different densitometric measures
  publication-title: J Biomed Mater Res
  doi: 10.1002/jbm.820281111
– volume: 27
  start-page: 1159
  year: 1994
  ident: 10.1016/j.medengphy.2016.06.011_bib0051
  article-title: Predicting the compressive mechanical behavior of bone
  publication-title: J Biomech
  doi: 10.1016/0021-9290(94)90056-6
– volume: 34
  start-page: 777
  year: 1996
  ident: 10.1016/j.medengphy.2016.06.011_bib0050
  article-title: An ultrasonic method for measuring the elastic properties of human tibial cortical and cancellous bone
  publication-title: Ultrasonics
  doi: 10.1016/S0041-624X(96)00078-9
– volume: 25
  start-page: 481
  year: 1999
  ident: 10.1016/j.medengphy.2016.06.011_bib0025
  article-title: Constitutive relationships of fabric, density, and elastic properties in cancellous bone architecture
  publication-title: Bone
  doi: 10.1016/S8756-3282(99)00190-8
– volume: 34
  start-page: 290
  year: 2012
  ident: 10.1016/j.medengphy.2016.06.011_bib0005
  article-title: Finite element prediction of surface strain and fracture strength at the distal radius
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2011.07.016
– volume: 46
  start-page: 41
  year: 2010
  ident: 10.1016/j.medengphy.2016.06.011_bib0008
  article-title: Biomechanical effects of teriparatide in women with osteoporosis treated previously with alendronate and risedronate: Results from quantitative computed tomography-based finite element analysis of the vertebral body
  publication-title: Bone
  doi: 10.1016/j.bone.2009.09.032
– volume: 9
  start-page: 422
  year: 1991
  ident: 10.1016/j.medengphy.2016.06.011_bib0052
  article-title: Estimation of mechanical properties of cortical bone by computed tomography
  publication-title: J Orthop Res
  doi: 10.1002/jor.1100090315
– volume: 36
  start-page: 897
  year: 2003
  ident: 10.1016/j.medengphy.2016.06.011_bib0044
  article-title: Trabecular bone modulus–density relationships depend on anatomic site
  publication-title: J Biomech
  doi: 10.1016/S0021-9290(03)00071-X
– volume: 47
  start-page: 3272
  year: 2014
  ident: 10.1016/j.medengphy.2016.06.011_bib0015
  article-title: Mapping anisotropy of the proximal femur for enhanced image based finite element analysis
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2014.08.020
SSID ssj0004463
Score 2.248351
Snippet •Quantified fabric using grey-level structure tensor in upsized micro-CT images.•Derived anisotropic stiffness entries and main orientation using micro finite...
Highlights • Quantified fabric using grey-level structure tensor in upsized micro-CT images. • Derived anisotropic stiffness entries and main orientation using...
Accounting for spatial variation of trabecular material anisotropy and orientation can improve the accuracy of quantitative computed tomography-based finite...
SourceID liege
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 978
SubjectTerms Anisotropy
Cancellous Bone - diagnostic imaging
Clinical CT images
Engineering, computing & technology
Fabric-elasticity equations
Feasibility Studies
Finite Element Analysis
Humans
Image Processing, Computer-Assisted
Ingénierie, informatique & technologie
Radiology
Signal-To-Noise Ratio
Trabecular bone anisotropic elastic properties
Trabecular bone main orientation
X-Ray Microtomography
Title Quantifying trabecular bone material anisotropy and orientation using low resolution clinical CT images: A feasibility study
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1350453316301254
https://www.clinicalkey.es/playcontent/1-s2.0-S1350453316301254
https://dx.doi.org/10.1016/j.medengphy.2016.06.011
https://www.ncbi.nlm.nih.gov/pubmed/27372175
https://www.proquest.com/docview/1814142130
http://orbi.ulg.ac.be/handle/2268/227084
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-4030
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004463
  issn: 1350-4533
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Freedom Collection
  customDbUrl:
  eissn: 1873-4030
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004463
  issn: 1350-4533
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1873-4030
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004463
  issn: 1350-4533
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-4030
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004463
  issn: 1350-4533
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-4030
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004463
  issn: 1350-4533
  databaseCode: AKRWK
  dateStart: 19940101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBelhX08jC37yj6KBnucF8u2ZKVvIaxkGy2MtdA3IVlycMnsYDsthbG_fXe2nK1spYO9GNv4kCyd7n5Cv7sj5C1CeqxFGWhrwgDwfxJowXQQ6WlohRYylxiNfHQsFqfJpzN-tkPmQywM0iq97e9temet_ZuJH83JuigmX1nMAY_EMSAKsLIcc4ImSYpVDN7_-EXzgO1OR7KHjwP8-hrHCxyOK5fwP8jxEl0iT8Zu8lB7KzzGvhmJdh7p8CF54KEknfW9fUR2XDkid-dDBbcRuf9bssERuXPkj9Efk-9fNhpJQhjiRNtam75CLjVV6ShA2E4rqS6Lpmrran0Ft5ZWdeHjlEqKbPklXVWXFHbrXnnpEGRJ5ye0-AZ2qjmgM5o77Rm4V7TLZfuEnB5-OJkvAl-GIch4JNrAyVzYWAo51dOMaw4bkDjnJuTcJjDVKYb2cu6stJhqXxstbGScYzKTNs-Ejp-S3RL6_5xQl4aJjUJwiCDLJdMCvKG1eeQAJxoXj4kYhl5lPkc5lspYqYGMdq62c6ZwzhTS8hgbk3AruO7TdNwuIoe5VcMAgd1U4EpuF03_Juoav_4bxVQTqVD9oaNjcrCVvKbm_9bsu04FVVWbQl1EClODd_eb1VLpTBmnAE1LuKShhLbeDJqqQPHwIEiXrtpA7yRLWBIBfBmTZ70Kb0ctwrpFgClf_E9PX5J7-NRz8V6R3bbeuNcA3lqz363OfbI3-_h5cfwTB0JFJg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6NTWLwgKAwKD-NxCOhcRI77t6miqnAOgnRSXuz7NipgkpSpSloEuJv55w4hQmmIfESWYlPcezL3Wf5uzuAVw7Su1qUgTI6DBD_J4HiVAWRGoeGKy5y4aKRZ6d8epa8P2fnOzDpY2EcrdLb_s6mt9ba3xn52RytimL0icYM8UgcI6JAK8uSG7CXsCh1O7A3P37xPHC_07LssXfgul8ieaHHseUCP8iRvHibyZPSq1zU3tKdY18NRVuXdHwX7ngsSY664d6DHVsOYH_Sl3AbwO3fsg0O4ObMn6Pfh-8fN8qxhFyME2lqpbsSuURXpSWIYVu1JKos1lVTV6sLbBpS1YUPVCqJo8svyLL6RnC77rWX9FGWZDInxRc0VOtDckRyqzwF94K0yWwfwNnx2_lkGvg6DEHGIt4EVuTcxIKLsRpnTDHcgcQ50yFjJsG1Tl1sL2PWCONy7SutuIm0tVRkwuQZV_EB7JY4_kdAbBomJgrRI6IsE1RxdIfG5JFFoKhtPATeT73MfJJyVytjKXs22me5XTPp1kw6Xh6lQwi3gqsuT8f1IqJfW9lPEBpOib7ketH0b6J27Q3AWlK5jmQo_1DSIRxuJS_p-b-99nWrgrKqdSG_RtLlBm_bm-VCqkxqKxFOC7ykocB3vew1VaLiuZMgVdpqg6MTNKFJhPhlCA87Fd7OWuQKFyGofPw_I30B-9P57ESevDv98ARuuScdMe8p7Db1xj5DJNfo5-2f-hMnIUa7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+trabecular+bone+material+anisotropy+and+orientation+using+low+resolution+clinical+CT+images%3A+A+feasibility+study&rft.jtitle=Medical+engineering+%26+physics&rft.au=Nazemi%2C+S+Majid&rft.au=Cooper%2C+David+M+L&rft.au=Johnston%2C+James+D&rft.date=2016-09-01&rft.issn=1873-4030&rft.eissn=1873-4030&rft.volume=38&rft.issue=9&rft.spage=978&rft_id=info:doi/10.1016%2Fj.medengphy.2016.06.011&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13504533%2FS1350453316X00100%2Fcov150h.gif