Significant correlation between a set of genetic polymorphisms and a functional brain network revealed by feature selection and sparse Partial Least Squares
Brain imaging is increasingly recognised as an intermediate phenotype to understand the complex path between genetics and behavioural or clinical phenotypes. In this context, a first goal is to propose methods to identify the part of genetic variability that explains some neuroimaging variability. C...
        Saved in:
      
    
          | Published in | NeuroImage (Orlando, Fla.) Vol. 63; no. 1; pp. 11 - 24 | 
|---|---|
| Main Authors | , , , , , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Elsevier Inc
    
        15.10.2012
     Elsevier Limited Elsevier  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1053-8119 1095-9572 1095-9572  | 
| DOI | 10.1016/j.neuroimage.2012.06.061 | 
Cover
| Abstract | Brain imaging is increasingly recognised as an intermediate phenotype to understand the complex path between genetics and behavioural or clinical phenotypes. In this context, a first goal is to propose methods to identify the part of genetic variability that explains some neuroimaging variability. Classical univariate approaches often ignore the potential joint effects that may exist between genes or the potential covariations between brain regions. In this paper, we propose instead to investigate an exploratory multivariate method in order to identify a set of Single Nucleotide Polymorphisms (SNPs) covarying with a set of neuroimaging phenotypes derived from functional Magnetic Resonance Imaging (fMRI). Recently, Partial Least Squares (PLS) regression or Canonical Correlation Analysis (CCA) have been proposed to analyse DNA and transcriptomics. Here, we propose to transpose this idea to the DNA vs. imaging context. However, in very high-dimensional settings like in imaging genetics studies, such multivariate methods may encounter overfitting issues. Thus we investigate the use of different strategies of regularisation and dimension reduction techniques combined with PLS or CCA to face the very high dimensionality of imaging genetics studies. We propose a comparison study of the different strategies on a simulated dataset first and then on a real dataset composed of 94 subjects, around 600,000 SNPs and 34 functional MRI lateralisation indexes computed from reading and speech comprehension contrast maps. We estimate the generalisability of the multivariate association with a cross-validation scheme and demonstrate the significance of this link, using a permutation procedure. Univariate selection appears to be necessary to reduce the dimensionality. However, the significant association uncovered by this two-step approach combining univariate filtering and L1-regularised PLS suggests that discovering meaningful genetic associations calls for a multivariate approach. | 
    
|---|---|
| AbstractList | Brain imaging is increasingly recognised as an intermediate phenotype to understand the complex path between genetics and behavioural or clinical phenotypes. In this context, a first goal is to propose methods to identify the part of genetic variability that explains some neuroimaging variability. Classical univariate approaches often ignore the potential joint effects that may exist between genes or the potential covariations between brain regions. In this paper, we propose instead to investigate an exploratory multivariate method in order to identify a set of Single Nucleotide Polymorphisms (SNPs) covarying with a set of neuroimaging phenotypes derived from functional Magnetic Resonance Imaging (fMRI). Recently, Partial Least Squares (PLS) regression or Canonical Correlation Analysis (CCA) have been proposed to analyse DNA and transcriptomics. Here, we propose to transpose this idea to the DNA vs. imaging context. However, in very high-dimensional settings like in imaging genetics studies, such multivariate methods may encounter overfitting issues. Thus we investigate the use of different strategies of regularisation and dimension reduction techniques combined with PLS or CCA to face the very high dimensionality of imaging genetics studies. We propose a comparison study of the different strategies on a simulated dataset first and then on a real dataset composed of 94 subjects, around 600,000 SNPs and 34 functional MRI lateralisation indexes computed from reading and speech comprehension contrast maps. We estimate the generalisability of the multivariate association with a cross-validation scheme and demonstrate the significance of this link, using a permutation procedure. Univariate selection appears to be necessary to reduce the dimensionality. However, the significant association uncovered by this two-step approach combining univariate filtering and L1-regularised PLS suggests that discovering meaningful genetic associations calls for a multivariate approach. Brain imaging is increasingly recognised as an intermediate phenotype to understand the complex path between genetics and behavioural or clinical phenotypes. In this context, a first goal is to propose methods to identify the part of genetic variability that explains some neuroimaging variability. Classical univariate approaches often ignore the potential joint effects that may exist between genes or the potential covariations between brain regions. In this paper, we propose instead to investigate an exploratory multivariate method in order to identify a set of Single Nucleotide Polymorphisms (SNPs) covarying with a set of neuroimaging phenotypes derived from functional Magnetic Resonance Imaging (fMRI). Recently, Partial Least Squares (PLS) regression or Canonical Correlation Analysis (CCA) have been proposed to analyse DNA and transcriptomics. Here, we propose to transpose this idea to the DNA vs. imaging context. However, in very high-dimensional settings like in imaging genetics studies, such multivariate methods may encounter overfitting issues. Thus we investigate the use of different strategies of regularisation and dimension reduction techniques combined with PLS or CCA to face the very high dimensionality of imaging genetics studies. We propose a comparison study of the different strategies on a simulated dataset first and then on a real dataset composed of 94 subjects, around 600,000 SNPs and 34 functional MRI lateralisation indexes computed from reading and speech comprehension contrast maps. We estimate the generalisability of the multivariate association with a cross-validation scheme and demonstrate the significance of this link, using a permutation procedure. Univariate selection appears to be necessary to reduce the dimensionality. However, the significant association uncovered by this two-step approach combining univariate filtering and L1-regularised PLS suggests that discovering meaningful genetic associations calls for a multivariate approach.Brain imaging is increasingly recognised as an intermediate phenotype to understand the complex path between genetics and behavioural or clinical phenotypes. In this context, a first goal is to propose methods to identify the part of genetic variability that explains some neuroimaging variability. Classical univariate approaches often ignore the potential joint effects that may exist between genes or the potential covariations between brain regions. In this paper, we propose instead to investigate an exploratory multivariate method in order to identify a set of Single Nucleotide Polymorphisms (SNPs) covarying with a set of neuroimaging phenotypes derived from functional Magnetic Resonance Imaging (fMRI). Recently, Partial Least Squares (PLS) regression or Canonical Correlation Analysis (CCA) have been proposed to analyse DNA and transcriptomics. Here, we propose to transpose this idea to the DNA vs. imaging context. However, in very high-dimensional settings like in imaging genetics studies, such multivariate methods may encounter overfitting issues. Thus we investigate the use of different strategies of regularisation and dimension reduction techniques combined with PLS or CCA to face the very high dimensionality of imaging genetics studies. We propose a comparison study of the different strategies on a simulated dataset first and then on a real dataset composed of 94 subjects, around 600,000 SNPs and 34 functional MRI lateralisation indexes computed from reading and speech comprehension contrast maps. We estimate the generalisability of the multivariate association with a cross-validation scheme and demonstrate the significance of this link, using a permutation procedure. Univariate selection appears to be necessary to reduce the dimensionality. However, the significant association uncovered by this two-step approach combining univariate filtering and L1-regularised PLS suggests that discovering meaningful genetic associations calls for a multivariate approach.  | 
    
| Author | Dehaene, Stanislas Poline, Jean-Baptiste Zilbovicius, Monica Pinel, Philippe Le Floch, Édith Trinchera, Laura Frouin, Vincent Tenenhaus, Arthur Thirion, Bertrand Lalanne, Christophe Guillemot, Vincent Bourgeron, Thomas Moreno, Antonio Duchesnay, Édouard  | 
    
| Author_xml | – sequence: 1 givenname: Édith surname: Le Floch fullname: Le Floch, Édith email: edith.lefloch@gmail.com organization: Laboratoire de Neuroimagerie Assistée par Ordinateur, Neurospin Center, I2BM, DSV, CEA, Gif-sur-Yvette, France – sequence: 2 givenname: Vincent surname: Guillemot fullname: Guillemot, Vincent organization: Laboratoire de Neuroimagerie Assistée par Ordinateur, Neurospin Center, I2BM, DSV, CEA, Gif-sur-Yvette, France – sequence: 3 givenname: Vincent surname: Frouin fullname: Frouin, Vincent organization: Laboratoire de Neuroimagerie Assistée par Ordinateur, Neurospin Center, I2BM, DSV, CEA, Gif-sur-Yvette, France – sequence: 4 givenname: Philippe surname: Pinel fullname: Pinel, Philippe organization: Cognitive Neuroimaging Unit U992, INSERM-CEA, Neurospin Center, Gif-sur-Yvette, France – sequence: 5 givenname: Christophe surname: Lalanne fullname: Lalanne, Christophe organization: INSERM U669, PSIGIAM, Paris, France – sequence: 6 givenname: Laura surname: Trinchera fullname: Trinchera, Laura organization: AgroParisTech, UMR518 MIA, Paris, France – sequence: 7 givenname: Arthur surname: Tenenhaus fullname: Tenenhaus, Arthur organization: Supélec, Department of Signal Processing and Electronic Systems, Gif-sur-Yvette, France – sequence: 8 givenname: Antonio surname: Moreno fullname: Moreno, Antonio organization: Cognitive Neuroimaging Unit U992, INSERM-CEA, Neurospin Center, Gif-sur-Yvette, France – sequence: 9 givenname: Monica surname: Zilbovicius fullname: Zilbovicius, Monica organization: Université Paris-Sud, IFR49, Institut d'Imagerie Neurofonctionnelle, Paris, France – sequence: 10 givenname: Thomas surname: Bourgeron fullname: Bourgeron, Thomas organization: Institut Pasteur, Laboratoire de Génétique Humaine et Fonctions Cognitives, Paris, France – sequence: 11 givenname: Stanislas surname: Dehaene fullname: Dehaene, Stanislas organization: Cognitive Neuroimaging Unit U992, INSERM-CEA, Neurospin Center, Gif-sur-Yvette, France – sequence: 12 givenname: Bertrand surname: Thirion fullname: Thirion, Bertrand organization: Laboratoire de Neuroimagerie Assistée par Ordinateur, Neurospin Center, I2BM, DSV, CEA, Gif-sur-Yvette, France – sequence: 13 givenname: Jean-Baptiste surname: Poline fullname: Poline, Jean-Baptiste organization: Laboratoire de Neuroimagerie Assistée par Ordinateur, Neurospin Center, I2BM, DSV, CEA, Gif-sur-Yvette, France – sequence: 14 givenname: Édouard surname: Duchesnay fullname: Duchesnay, Édouard organization: Laboratoire de Neuroimagerie Assistée par Ordinateur, Neurospin Center, I2BM, DSV, CEA, Gif-sur-Yvette, France  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22781162$$D View this record in MEDLINE/PubMed https://centralesupelec.hal.science/hal-00750902$$DView record in HAL  | 
    
| BookMark | eNqNksFqGzEQhpeS0iRuX6EIemkPdiWtpZUupUlom4KhhbRnodXOOnJkyZG0CX6XPmy1dpqCT4YBieGbH2n-_7w68cFDVSGCZwQT_nE18zDEYNd6CTOKCZ1hXoq8qM4IlmwqWUNPxjurp4IQeVqdp7TCGEsyF6-qU0qb0ub0rPpzY5fe9tZon5EJMYLT2QaPWsiPAB5plCCj0KMleMjWoE1w23WIm1ub1glp3xWkH7wZp7RDbdTWo4I-hniHIjyAdtChdot60HmIUPQc7OjdcNromAD91DHbMr4AnTK6uR90hPS6etlrl-DN0zmpfn_98uvqerr48e371cViahjleQqC17LTnDeGtaZv51q0fTenkpLadILhvgHNcK1r4JJQwYAT0VHTAaO007KeVB_2urfaqU0sa41bFbRV1xcLNfYwbhiWmD6Qwr7fs5sY7gdIWa1tMuCc9hCGpAiuBZNS1vIYlItGNKQu6LsDdBWGWPZZKIYbOmeieDmp3j5RQ7uG7vmp_-wsgNgDJoaUIvTPCMFqTI5aqf_JUWNyFOalxn99Ohg1Nu-ikIuj7hiBy70AFKceLESVjAVvoLOx-K26YI8R-XwgYpz1JZ3uDrbHSfwFCj39-w | 
    
| CitedBy_id | crossref_primary_10_1016_j_neuroimage_2014_12_025 crossref_primary_10_1109_TCBB_2019_2950904 crossref_primary_10_1177_13872877241299785 crossref_primary_10_3390_brainsci11111531 crossref_primary_10_1016_j_bpsc_2022_07_012 crossref_primary_10_1016_j_jneumeth_2014_09_001 crossref_primary_10_1007_s10519_024_10177_y crossref_primary_10_1016_j_csda_2013_11_006 crossref_primary_10_1371_journal_pone_0247592 crossref_primary_10_3389_fninf_2014_00029 crossref_primary_10_1016_j_neuroimage_2013_09_048 crossref_primary_10_7554_eLife_68623 crossref_primary_10_1016_j_neuroimage_2017_06_072 crossref_primary_10_1073_pnas_1706100115 crossref_primary_10_1016_j_neuroimage_2013_11_012 crossref_primary_10_1016_j_dsp_2019_04_010 crossref_primary_10_1016_j_neuroimage_2020_117065 crossref_primary_10_1002_hbm_26799 crossref_primary_10_1002_hbm_25627 crossref_primary_10_1016_j_biopsych_2019_12_001 crossref_primary_10_1016_j_jbi_2023_104569 crossref_primary_10_1016_j_neuroimage_2023_119892 crossref_primary_10_1002_hbm_24454 crossref_primary_10_1109_JPROC_2019_2913145 crossref_primary_10_1002_sim_10101 crossref_primary_10_1016_j_neubiorev_2018_06_013 crossref_primary_10_1186_s13073_017_0496_z crossref_primary_10_1007_s11682_013_9269_5 crossref_primary_10_1093_biostatistics_kxu001 crossref_primary_10_3389_fnins_2015_00366 crossref_primary_10_1007_s11633_022_1361_0 crossref_primary_10_1016_j_neuron_2021_06_001 crossref_primary_10_1016_j_neuron_2017_12_018 crossref_primary_10_3389_fnins_2022_1019572 crossref_primary_10_1016_j_bpsc_2015_12_005 crossref_primary_10_1371_journal_pone_0211463 crossref_primary_10_3389_fnins_2019_00642 crossref_primary_10_1109_TMI_2016_2527784 crossref_primary_10_3390_nu16152556 crossref_primary_10_1093_ajcn_nqab064 crossref_primary_10_1002_mnfr_202200580 crossref_primary_10_1016_j_neuroimage_2013_05_013 crossref_primary_10_3389_fgene_2016_00102 crossref_primary_10_1109_TMI_2017_2681966 crossref_primary_10_1016_j_nicl_2022_103182 crossref_primary_10_1109_TMI_2017_2721301 crossref_primary_10_1038_s41598_017_06511_6 crossref_primary_10_1093_schbul_sby010 crossref_primary_10_1016_j_neuroimage_2016_08_027 crossref_primary_10_1038_s42003_024_05869_4 crossref_primary_10_1016_j_jneumeth_2016_06_011 crossref_primary_10_1590_1678_992x_2020_0397 crossref_primary_10_1515_lingvan_2016_0007 crossref_primary_10_1002_hbm_26456 crossref_primary_10_1007_s40484_013_0023_1 crossref_primary_10_1016_j_nicl_2019_101796 crossref_primary_10_1214_16_AOAS948 crossref_primary_10_1039_D4FO03087G crossref_primary_10_1097_j_pain_0000000000000196 crossref_primary_10_1016_j_bspc_2021_102698 crossref_primary_10_1016_j_neuroimage_2020_116745 crossref_primary_10_1016_j_pscychresns_2018_04_005 crossref_primary_10_3389_fgene_2015_00276 crossref_primary_10_1016_j_jad_2023_02_118 crossref_primary_10_1016_j_biopsych_2016_12_030 crossref_primary_10_1109_JPROC_2019_2947272  | 
    
| Cites_doi | 10.1002/hbm.20401 10.1126/science.1057179 10.1198/106186006X113430 10.1089/neu.2006.23.1450 10.1006/nimg.1996.0016 10.1016/j.neuroimage.2011.03.077 10.1007/s11336-011-9206-8 10.2202/1544-6115.1470 10.1038/ng1669 10.1016/j.neuroimage.2010.02.032 10.1038/ng.74 10.2202/1544-6115.1406 10.1111/j.1467-9868.2009.00723.x 10.1186/1753-6561-1-s1-s119 10.1016/S0893-6080(03)00103-5 10.1080/10673220600642945 10.1016/j.neuroimage.2010.07.002 10.2202/1544-6115.1390 10.1111/j.2517-6161.1996.tb02080.x 10.1093/biomet/28.3-4.321 10.1016/j.neuroimage.2008.10.057 10.1159/000101422 10.1007/BF02289009 10.2202/1544-6115.1329 10.1038/ng.76  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2012 Elsevier Inc. Copyright © 2012 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Oct 15, 2012 Distributed under a Creative Commons Attribution 4.0 International License  | 
    
| Copyright_xml | – notice: 2012 Elsevier Inc. – notice: Copyright © 2012 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Oct 15, 2012 – notice: Distributed under a Creative Commons Attribution 4.0 International License  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO 1XC  | 
    
| DOI | 10.1016/j.neuroimage.2012.06.061 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database ProQuest Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts Hyper Article en Ligne (HAL)  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts  | 
    
| DatabaseTitleList | Genetics Abstracts MEDLINE ProQuest One Psychology MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Statistics  | 
    
| EISSN | 1095-9572 | 
    
| EndPage | 24 | 
    
| ExternalDocumentID | oai:HAL:hal-00750902v1 3246197321 22781162 10_1016_j_neuroimage_2012_06_061 S1053811912006775  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study  | 
    
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- ~HD 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABMZM ADFGL ADVLN ADXHL AFPKN AGHFR AGQPQ AIGII AKRLJ APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF OK1 PUEGO R2- SEW WUQ XPP ZMT 0SF ALIPV CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO 1XC  | 
    
| ID | FETCH-LOGICAL-c526t-e8639da667c5bcfb4a8bfd429213cd850f7ea503a3e691285e618d2cde522da93 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 1053-8119 1095-9572  | 
    
| IngestDate | Tue Oct 14 20:42:53 EDT 2025 Tue Oct 07 09:43:39 EDT 2025 Mon Sep 29 05:51:00 EDT 2025 Tue Oct 07 06:38:00 EDT 2025 Wed Feb 19 01:51:55 EST 2025 Wed Oct 01 02:58:10 EDT 2025 Thu Apr 24 23:00:59 EDT 2025 Fri Feb 23 02:36:05 EST 2024 Tue Oct 14 19:34:57 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Feature selection Regularisation Partial Least Squares regression Multivariate genetic analysis Canonical Correlation Analysis Partial least squares regression Canonical correlation analysis  | 
    
| Language | English | 
    
| License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2012 Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c526t-e8639da667c5bcfb4a8bfd429213cd850f7ea503a3e691285e618d2cde522da93 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23  | 
    
| ORCID | 0000-0002-7418-8275 0000-0001-9360-6623 0000-0001-8164-9220 0000-0001-5018-7895 0000-0003-3459-1518 0000-0002-7421-0655 0000-0003-1915-2824  | 
    
| PMID | 22781162 | 
    
| PQID | 1507245805 | 
    
| PQPubID | 2031077 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | hal_primary_oai_HAL_hal_00750902v1 proquest_miscellaneous_1038599939 proquest_miscellaneous_1036878713 proquest_journals_1507245805 pubmed_primary_22781162 crossref_primary_10_1016_j_neuroimage_2012_06_061 crossref_citationtrail_10_1016_j_neuroimage_2012_06_061 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2012_06_061 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2012_06_061  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2012-10-15 | 
    
| PublicationDateYYYYMMDD | 2012-10-15 | 
    
| PublicationDate_xml | – month: 10 year: 2012 text: 2012-10-15 day: 15  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Amsterdam  | 
    
| PublicationTitle | NeuroImage (Orlando, Fla.) | 
    
| PublicationTitleAlternate | Neuroimage | 
    
| PublicationYear | 2012 | 
    
| Publisher | Elsevier Inc Elsevier Limited Elsevier  | 
    
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier  | 
    
| References | Furlanello, Serafini, Merler, Jurman (bb0030) 2003; 16 R Development Core Team (bb0105) 2009 McAllister, Flashman, McDonald, Saykin (bb0070) 2006; 23 Vounou, Nichols, Montana (bb0150) 2010; 53 Parkhomenko, Tritchler, Beyene (bb0085) 2009; 8 Lê Cao, Rossouw, Robert-Granié, Besse (bb0055) 2008; 7 Soneson, Lilljebjörn, Fioretos, Fontes (bb0125) 2010; 11 Wold, Martens, Wold (bb0180) 1983 Witten, Tibshirani (bb0170) 2009; 8 Glahn, Thompson, Blangero (bb0035) 2007; 28 Lê Cao, Martin, Robert-Granié, Besse (bb0060) 2009; 10 Hibar, Stein, Kohannim, Jahanshad, Saykin, Shen, Kim, Pankratz, Foroud, Huentelman, Potkin, Jack, Weiner, Toga, Thompson, the Alzheimer's Disease Neuroimaging Initiative (bb0045) 2011; 56 Díaz-Uriarte, Alvarez de Andrés (bb0025) 2006; 7 (bb0160) 1993 Reinsel, Velu (bb0110) 1998 Calhoun, Liu, Adali (bb0005) 2009; 45 Pinel, Thirion, Meriaux, Jobert, Serres, Le Bihan, Poline, Dehaene (bb0100) 2007; 8 Willer, Sanna, Jackson, Scuteri, Bonnycastle, Clarke, Heath, Timpson, Najjar, Stringham, Strait, Duren, Maschio, Busonero, Mulas, Albai, Swift, Morken, Narisu, Bennett, Parish, Shen, Galan, Meneton, Hercberg, Zelenika, Chen, Li, Scott, Scheet, Sundvall, Watanabe, Nagaraja, Ebrahim, Lawlor, Ben-Shlomo, Davey-Smith, Shuldiner, Collins, Bergman, Uda, Tuomilehto, Cao, Collins, Lakatta, Lathrop, Boehnke, Schlessinger, Mohlke, Abecasis (bb0165) 2008; 40 Wold (bb0175) 1966 (bb0040) 2006 Pinel, Dehaene (bb0095) 2009 Tenenhaus, Tenenhaus (bb0135) 2011; 76 de Bakker, Yelensky, Peer, Gabriel, Daly, Altshuler (bb0020) 2005; 37 Waaijenborg, Verselewel de Witt Hamer, Zwinderman (bb0155) 2008; 7 Paulesu, Demonet, Fazio, McCrory, Chanoine, Brunswick, Cappa, Cossu, Habib, Frith, Frith (bb0090) 2001; 291 Roffman, Weiss, Goff, Rauch, Weinberger (bb0115) 2006; 14 Zou, Hastie, Tibshirani (bb0185) 2006; 15 Li, Chen (bb0065) 2008; 9 Hotelling (bb0050) 1936; 28 Parkhomenko, Tritchler, Beyene (bb0080) 2007; 1 Chun, Keleş (bb0010) 2010; 72 Tucker (bb0145) 1958; 23 Tibshirani (bb0140) 1996; 58 Sanna, Jackson, Nagaraja, Willer, Chen, Bonnycastle, Shen, Timpson, Lettre, Usala, Chines, Stringham, Scott, Dei, Lai, Albai, Crisponi, Naitza, Doheny, Pugh, Ben-Shlomo, Ebrahim, Lawlor, Bergman, Watanabe, Uda, Tuomilehto, Coresh, Hirschhorn, Shuldiner, Schlessinger, Collins, Davey Smith, Boerwinkle, Cao, Boehnke, Abecasis, Mohlke (bb0120) 2008; 40 Clayton, Cheung (bb0015) 2007; 64 McIntosh, Bookstein, Haxby, Grady (bb0075) 1996; 3 Stein, Hua, Lee, Ho, Leow, Toga, Saykin, Shen, Foroud, Pankratz, Huentelman, Craig, Gerber, Allen, Corneveaux, DeChairo, Potkin, Weiner, Thompson (bb0130) 2010; 53 Hotelling (10.1016/j.neuroimage.2012.06.061_bb0050) 1936; 28 Calhoun (10.1016/j.neuroimage.2012.06.061_bb0005) 2009; 45 Li (10.1016/j.neuroimage.2012.06.061_bb0065) 2008; 9 Pinel (10.1016/j.neuroimage.2012.06.061_bb0095) 2009 Witten (10.1016/j.neuroimage.2012.06.061_bb0170) 2009; 8 Roffman (10.1016/j.neuroimage.2012.06.061_bb0115) 2006; 14 Sanna (10.1016/j.neuroimage.2012.06.061_bb0120) 2008; 40 McIntosh (10.1016/j.neuroimage.2012.06.061_bb0075) 1996; 3 Pinel (10.1016/j.neuroimage.2012.06.061_bb0100) 2007; 8 Stein (10.1016/j.neuroimage.2012.06.061_bb0130) 2010; 53 Zou (10.1016/j.neuroimage.2012.06.061_bb0185) 2006; 15 R Development Core Team (10.1016/j.neuroimage.2012.06.061_bb0105) Tibshirani (10.1016/j.neuroimage.2012.06.061_bb0140) 1996; 58 Furlanello (10.1016/j.neuroimage.2012.06.061_bb0030) 2003; 16 Tucker (10.1016/j.neuroimage.2012.06.061_bb0145) 1958; 23 Waaijenborg (10.1016/j.neuroimage.2012.06.061_bb0155) 2008; 7 Wold (10.1016/j.neuroimage.2012.06.061_bb0175) 1966 Clayton (10.1016/j.neuroimage.2012.06.061_bb0015) 2007; 64 de Bakker (10.1016/j.neuroimage.2012.06.061_bb0020) 2005; 37 (10.1016/j.neuroimage.2012.06.061_bb0040) 2006 Parkhomenko (10.1016/j.neuroimage.2012.06.061_bb0080) 2007; 1 Wold (10.1016/j.neuroimage.2012.06.061_bb0180) 1983 Glahn (10.1016/j.neuroimage.2012.06.061_bb0035) 2007; 28 (10.1016/j.neuroimage.2012.06.061_bb0160) 1993 Chun (10.1016/j.neuroimage.2012.06.061_bb0010) 2010; 72 Díaz-Uriarte (10.1016/j.neuroimage.2012.06.061_bb0025) 2006; 7 Tenenhaus (10.1016/j.neuroimage.2012.06.061_bb0135) 2011; 76 Lê Cao (10.1016/j.neuroimage.2012.06.061_bb0060) 2009; 10 Willer (10.1016/j.neuroimage.2012.06.061_bb0165) 2008; 40 McAllister (10.1016/j.neuroimage.2012.06.061_bb0070) 2006; 23 Reinsel (10.1016/j.neuroimage.2012.06.061_bb0110) 1998 Lê Cao (10.1016/j.neuroimage.2012.06.061_bb0055) 2008; 7 Parkhomenko (10.1016/j.neuroimage.2012.06.061_bb0085) 2009; 8 Paulesu (10.1016/j.neuroimage.2012.06.061_bb0090) 2001; 291 Vounou (10.1016/j.neuroimage.2012.06.061_bb0150) 2010; 53 Hibar (10.1016/j.neuroimage.2012.06.061_bb0045) 2011; 56 Soneson (10.1016/j.neuroimage.2012.06.061_bb0125) 2010; 11  | 
    
| References_xml | – volume: 64 start-page: 45 year: 2007 end-page: 51 ident: bb0015 article-title: An R package for analysis of whole-genome association studies publication-title: Hum. Hered. – volume: 23 start-page: 111 year: 1958 end-page: 136 ident: bb0145 article-title: An inter-battery method of factor analysis publication-title: Psychometrika – volume: 53 start-page: 1147 year: 2010 end-page: 1159 ident: bb0150 article-title: Discovering genetic associations with high-dimensional neuroimaging phenotypes: a sparse reduced-rank approach publication-title: NeuroImage – volume: 11 year: 2010 ident: bb0125 article-title: Integrative analysis of gene expression and copy number alterations using canonical correlation analysis publication-title: BMC Bioinforma. – volume: 291 start-page: 2165 year: 2001 end-page: 2167 ident: bb0090 article-title: Dyslexia: cultural diversity and biological unity publication-title: Science – volume: 72 start-page: 3 year: 2010 end-page: 25 ident: bb0010 article-title: Sparse partial least squares regression for simultaneous dimension reduction and variable selection publication-title: J. R. Stat. Soc. B – volume: 7 year: 2006 ident: bb0025 article-title: Gene selection and classification of microarray data using random forest publication-title: BMC Bioinforma. – volume: 16 start-page: 641 year: 2003 end-page: 648 ident: bb0030 article-title: An accelerated procedure for recursive feature ranking on microarray data publication-title: Neural Netw. – year: 2009 ident: bb0095 article-title: Beyond hemispheric dominance: brain regions underlying the joint lateralization of language and arithmetic to the left hemisphere publication-title: J. Cogn. Neurosci. – volume: 53 start-page: 1160 year: 2010 end-page: 1174 ident: bb0130 article-title: Voxelwise genome-wide association study (vGWAS) publication-title: NeuroImage – volume: 9 year: 2008 ident: bb0065 article-title: Generating samples for association studies based on hapmap data publication-title: BMC Bioinforma. – volume: 23 start-page: 1450 year: 2006 end-page: 1467 ident: bb0070 article-title: Mechanisms of cognitive dysfunction after mild and moderate TBI (MTBI): evidence from functional MRI and neurogenetics publication-title: J. Neurotrauma – year: 2006 ident: bb0040 article-title: Feature Extraction: Foundations and Applications – volume: 8 year: 2009 ident: bb0085 article-title: Sparse canonical correlation analysis with application to genomic data integration publication-title: Stat. Appl. Genet. Mol. Biol. – year: 1993 ident: bb0160 publication-title: Resampling-Based Multiple Testing – volume: 40 start-page: 198 year: 2008 end-page: 203 ident: bb0120 article-title: Common variants in the GDF5-UQCC region are associated with variation in human height publication-title: Nat. Genet. – volume: 3 start-page: 143 year: 1996 end-page: 157 ident: bb0075 article-title: Spatial pattern analysis of functional brain images using partial least squares publication-title: NeuroImage – volume: 1 start-page: S119 year: 2007 ident: bb0080 article-title: Genome-wide sparse canonical correlation of gene expression with genotypes publication-title: BMC Proc. – volume: 8 year: 2007 ident: bb0100 article-title: Fast reproducible identification and large-scale databasing of individual functional cognitive networks publication-title: BMC Neurosci. – volume: 8 year: 2009 ident: bb0170 article-title: Extensions of sparse canonical correlation analysis, with applications to genomic data publication-title: Stat. Appl. Genet. Mol. Biol. – volume: 28 start-page: 488 year: 2007 end-page: 501 ident: bb0035 article-title: Neuroimaging endophenotypes: strategies for finding genes influencing brain structure and function publication-title: Hum. Brain Mapp. – year: 2009 ident: bb0105 article-title: R: A language and environment for statistical computing – volume: 28 start-page: 321 year: 1936 end-page: 377 ident: bb0050 article-title: Relations between two sets of variates publication-title: Biometrika – start-page: 286 year: 1983 end-page: 293 ident: bb0180 article-title: The multivariate calibration problem in chemistry solved by the PLS method publication-title: Proceedings Conference Matrix Pencils – year: 1998 ident: bb0110 article-title: Multivariate Reduced-Rank Regression, Theory and Applications – volume: 10 year: 2009 ident: bb0060 article-title: Sparse canonical methods for biological data integration: application to a cross-platform study publication-title: BMC Bioinforma. – volume: 76 start-page: 257 year: 2011 end-page: 284 ident: bb0135 article-title: Regularized generalized canonical correlation analysis publication-title: Psychometrika – volume: 14 start-page: 78 year: 2006 end-page: 91 ident: bb0115 article-title: Neuroimaging-genetic paradigms: a new approach to investigate the pathophysiology and treatment of cognitive deficits in schizophrenia publication-title: Harv. Rev. Psychiatry – volume: 40 start-page: 161 year: 2008 end-page: 169 ident: bb0165 article-title: Newly identified loci that influence lipid concentrations and risk of coronary artery disease publication-title: Nat. Genet. – volume: 7 year: 2008 ident: bb0155 article-title: Quantifying the association between gene expressions and DNA-markers by penalized canonical correlation analysis publication-title: Stat. Appl. Genet. Mol. Biol. – volume: 15 start-page: 265 year: 2006 end-page: 286 ident: bb0185 article-title: Sparse principal component analysis publication-title: J. Comput. Graph. Stat. – volume: 56 start-page: 1875 year: 2011 end-page: 1891 ident: bb0045 article-title: Voxelwise gene-wide association study (vgenewas): multivariate gene-based association testing in 731 elderly subjects publication-title: NeuroImage – volume: 7 year: 2008 ident: bb0055 article-title: A sparse PLS for variable selection when integrating omics data publication-title: Stat. Appl. Genet. Mol. Biol. – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: bb0140 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. B – volume: 37 start-page: 1217 year: 2005 end-page: 1223 ident: bb0020 article-title: Efficiency and power in genetic association studies publication-title: Nat. Genet. – volume: 45 start-page: S163 year: 2009 end-page: S172 ident: bb0005 article-title: A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data publication-title: NeuroImage – start-page: 391 year: 1966 end-page: 420 ident: bb0175 article-title: Multivariate Analysis publication-title: Estimation of Principal Components and Related Models by Iterative Least Squares – volume: 28 start-page: 488 year: 2007 ident: 10.1016/j.neuroimage.2012.06.061_bb0035 article-title: Neuroimaging endophenotypes: strategies for finding genes influencing brain structure and function publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20401 – year: 1993 ident: 10.1016/j.neuroimage.2012.06.061_bb0160 – volume: 291 start-page: 2165 year: 2001 ident: 10.1016/j.neuroimage.2012.06.061_bb0090 article-title: Dyslexia: cultural diversity and biological unity publication-title: Science doi: 10.1126/science.1057179 – volume: 15 start-page: 265 issue: 2 year: 2006 ident: 10.1016/j.neuroimage.2012.06.061_bb0185 article-title: Sparse principal component analysis publication-title: J. Comput. Graph. Stat. doi: 10.1198/106186006X113430 – volume: 23 start-page: 1450 issue: 10 year: 2006 ident: 10.1016/j.neuroimage.2012.06.061_bb0070 article-title: Mechanisms of cognitive dysfunction after mild and moderate TBI (MTBI): evidence from functional MRI and neurogenetics publication-title: J. Neurotrauma doi: 10.1089/neu.2006.23.1450 – volume: 3 start-page: 143 year: 1996 ident: 10.1016/j.neuroimage.2012.06.061_bb0075 article-title: Spatial pattern analysis of functional brain images using partial least squares publication-title: NeuroImage doi: 10.1006/nimg.1996.0016 – ident: 10.1016/j.neuroimage.2012.06.061_bb0105 – volume: 7 issue: 3 year: 2006 ident: 10.1016/j.neuroimage.2012.06.061_bb0025 article-title: Gene selection and classification of microarray data using random forest publication-title: BMC Bioinforma. – volume: 56 start-page: 1875 year: 2011 ident: 10.1016/j.neuroimage.2012.06.061_bb0045 article-title: Voxelwise gene-wide association study (vgenewas): multivariate gene-based association testing in 731 elderly subjects publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.03.077 – volume: 76 start-page: 257 issue: 2 year: 2011 ident: 10.1016/j.neuroimage.2012.06.061_bb0135 article-title: Regularized generalized canonical correlation analysis publication-title: Psychometrika doi: 10.1007/s11336-011-9206-8 – volume: 8 issue: 1 year: 2009 ident: 10.1016/j.neuroimage.2012.06.061_bb0170 article-title: Extensions of sparse canonical correlation analysis, with applications to genomic data publication-title: Stat. Appl. Genet. Mol. Biol. doi: 10.2202/1544-6115.1470 – volume: 37 start-page: 1217 issue: 11 year: 2005 ident: 10.1016/j.neuroimage.2012.06.061_bb0020 article-title: Efficiency and power in genetic association studies publication-title: Nat. Genet. doi: 10.1038/ng1669 – volume: 53 start-page: 1160 year: 2010 ident: 10.1016/j.neuroimage.2012.06.061_bb0130 article-title: Voxelwise genome-wide association study (vGWAS) publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.02.032 – volume: 40 start-page: 198 year: 2008 ident: 10.1016/j.neuroimage.2012.06.061_bb0120 article-title: Common variants in the GDF5-UQCC region are associated with variation in human height publication-title: Nat. Genet. doi: 10.1038/ng.74 – start-page: 391 year: 1966 ident: 10.1016/j.neuroimage.2012.06.061_bb0175 article-title: Multivariate Analysis – year: 1998 ident: 10.1016/j.neuroimage.2012.06.061_bb0110 – volume: 8 issue: 1 year: 2009 ident: 10.1016/j.neuroimage.2012.06.061_bb0085 article-title: Sparse canonical correlation analysis with application to genomic data integration publication-title: Stat. Appl. Genet. Mol. Biol. doi: 10.2202/1544-6115.1406 – volume: 72 start-page: 3 issue: 1 year: 2010 ident: 10.1016/j.neuroimage.2012.06.061_bb0010 article-title: Sparse partial least squares regression for simultaneous dimension reduction and variable selection publication-title: J. R. Stat. Soc. B doi: 10.1111/j.1467-9868.2009.00723.x – volume: 1 start-page: S119 issue: Suppl. 1 year: 2007 ident: 10.1016/j.neuroimage.2012.06.061_bb0080 article-title: Genome-wide sparse canonical correlation of gene expression with genotypes publication-title: BMC Proc. doi: 10.1186/1753-6561-1-s1-s119 – volume: 16 start-page: 641 year: 2003 ident: 10.1016/j.neuroimage.2012.06.061_bb0030 article-title: An accelerated procedure for recursive feature ranking on microarray data publication-title: Neural Netw. doi: 10.1016/S0893-6080(03)00103-5 – volume: 14 start-page: 78 issue: 2 year: 2006 ident: 10.1016/j.neuroimage.2012.06.061_bb0115 article-title: Neuroimaging-genetic paradigms: a new approach to investigate the pathophysiology and treatment of cognitive deficits in schizophrenia publication-title: Harv. Rev. Psychiatry doi: 10.1080/10673220600642945 – volume: 53 start-page: 1147 year: 2010 ident: 10.1016/j.neuroimage.2012.06.061_bb0150 article-title: Discovering genetic associations with high-dimensional neuroimaging phenotypes: a sparse reduced-rank approach publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.07.002 – year: 2006 ident: 10.1016/j.neuroimage.2012.06.061_bb0040 article-title: Feature Extraction: Foundations and Applications – volume: 7 issue: 1 year: 2008 ident: 10.1016/j.neuroimage.2012.06.061_bb0055 article-title: A sparse PLS for variable selection when integrating omics data publication-title: Stat. Appl. Genet. Mol. Biol. doi: 10.2202/1544-6115.1390 – volume: 58 start-page: 267 issue: 1 year: 1996 ident: 10.1016/j.neuroimage.2012.06.061_bb0140 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 28 start-page: 321 year: 1936 ident: 10.1016/j.neuroimage.2012.06.061_bb0050 article-title: Relations between two sets of variates publication-title: Biometrika doi: 10.1093/biomet/28.3-4.321 – year: 2009 ident: 10.1016/j.neuroimage.2012.06.061_bb0095 article-title: Beyond hemispheric dominance: brain regions underlying the joint lateralization of language and arithmetic to the left hemisphere publication-title: J. Cogn. Neurosci. – volume: 45 start-page: S163 issue: Suppl. 1 year: 2009 ident: 10.1016/j.neuroimage.2012.06.061_bb0005 article-title: A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.10.057 – volume: 10 issue: 34 year: 2009 ident: 10.1016/j.neuroimage.2012.06.061_bb0060 article-title: Sparse canonical methods for biological data integration: application to a cross-platform study publication-title: BMC Bioinforma. – volume: 9 issue: 44 year: 2008 ident: 10.1016/j.neuroimage.2012.06.061_bb0065 article-title: Generating samples for association studies based on hapmap data publication-title: BMC Bioinforma. – volume: 64 start-page: 45 year: 2007 ident: 10.1016/j.neuroimage.2012.06.061_bb0015 article-title: An R package for analysis of whole-genome association studies publication-title: Hum. Hered. doi: 10.1159/000101422 – volume: 23 start-page: 111 issue: 2 year: 1958 ident: 10.1016/j.neuroimage.2012.06.061_bb0145 article-title: An inter-battery method of factor analysis publication-title: Psychometrika doi: 10.1007/BF02289009 – volume: 8 issue: 91 year: 2007 ident: 10.1016/j.neuroimage.2012.06.061_bb0100 article-title: Fast reproducible identification and large-scale databasing of individual functional cognitive networks publication-title: BMC Neurosci. – volume: 11 issue: 191 year: 2010 ident: 10.1016/j.neuroimage.2012.06.061_bb0125 article-title: Integrative analysis of gene expression and copy number alterations using canonical correlation analysis publication-title: BMC Bioinforma. – start-page: 286 year: 1983 ident: 10.1016/j.neuroimage.2012.06.061_bb0180 article-title: The multivariate calibration problem in chemistry solved by the PLS method – volume: 7 issue: 1 year: 2008 ident: 10.1016/j.neuroimage.2012.06.061_bb0155 article-title: Quantifying the association between gene expressions and DNA-markers by penalized canonical correlation analysis publication-title: Stat. Appl. Genet. Mol. Biol. doi: 10.2202/1544-6115.1329 – volume: 40 start-page: 161 year: 2008 ident: 10.1016/j.neuroimage.2012.06.061_bb0165 article-title: Newly identified loci that influence lipid concentrations and risk of coronary artery disease publication-title: Nat. Genet. doi: 10.1038/ng.76  | 
    
| SSID | ssj0009148 | 
    
| Score | 2.3869138 | 
    
| Snippet | Brain imaging is increasingly recognised as an intermediate phenotype to understand the complex path between genetics and behavioural or clinical phenotypes.... | 
    
| SourceID | hal proquest pubmed crossref elsevier  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 11 | 
    
| SubjectTerms | Adult Applications Ataxia Brain - physiology Brain mapping Brain Mapping - methods Canonical Correlation Analysis Cognition - physiology Data Interpretation, Statistical DNA damage Enzymes Feature selection Female Gene expression Genetics Genomes Humans Kinases Least-Squares Analysis Magnetic Resonance Imaging - methods Male Methods Multivariate genetic analysis Nerve Net - physiology Partial Least Squares regression Pattern Recognition, Automated - methods Polymorphism, Single Nucleotide - genetics Proteins Regularisation Reproducibility of Results Sensitivity and Specificity Statistics Studies Variables Young Adult  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swEBZtCmMvY7-XrRva2KuZZVmKzBijGy1htKGsK_RNyPrRZTR2WieD_i_7Y3dny85TS14THVas091F-u77CPkYPJel4CGBZBSSXIYsMYVyiU9l6o0qVGnwQP9kJqfn-Y8LcbFDZn0vDMIq-5jYBmpXWzwj_4SFS5YLlYqvy-sEVaPwdrWX0DBRWsF9aSnGdslehsxYI7L37XB2-nNDw8vyrjlO8EQxVkRsT4f4ahkk5wvYxwj5ylpeT8nuSli7vxE5eVdZ2qano8fkUawr6UHnCE_Ijq-ekgcn8eb8Gfl3Nr-sEBYEb5JalOToQHA0ArWooY1f0TpQ8ChsbKTL-up2UcMyzJtFQ03lYAhmwe7wkJaoLUGrDkVOkQgKUo2j5S0NviULpU0rsYPPQGOIXDeNp6foqmB-jJpB9Ox6jf1Pz8n50eGv79MkKjMkVmRylXgFhY0zUk6sKG0oc6PK4FD5inHrlEjDxBuRcsO9LCADCi-Zcpl1Hso9Zwr-goyquvKvCJVZya0Bm-AnuZG25IFbwYucKWWUc2My6V-_tpG2HNUzrnSPT_ujNwunceE0QvUkGxM2WC476o4tbIp-hXXfmgrBVEN-2cL282Aby5euLNnS-gM41DBRZP2eHhxr_Kwr69LsLwza7_1Nx1jT6M3OGJP3w9cQJfDqx1S-XsMYKFQUxGbG7x2jBPxf4MWYvOx8eZgONkwzJrPX90_gDXmIPwlzOxP7ZLS6Wfu3ULStyndxJ_4H-EJEyA priority: 102 providerName: ProQuest  | 
    
| Title | Significant correlation between a set of genetic polymorphisms and a functional brain network revealed by feature selection and sparse Partial Least Squares | 
    
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811912006775 https://dx.doi.org/10.1016/j.neuroimage.2012.06.061 https://www.ncbi.nlm.nih.gov/pubmed/22781162 https://www.proquest.com/docview/1507245805 https://www.proquest.com/docview/1036878713 https://www.proquest.com/docview/1038599939 https://centralesupelec.hal.science/hal-00750902  | 
    
| Volume | 63 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-9572 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AKRWK dateStart: 19920801 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20250902 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1095-9572 dateEnd: 20250902 omitProxy: true ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfGkBAviG86xmQQr6FxHDuOeCrVpgJdVa1M6lvkxPYIWpNuaZH2wl_CH8tdviYehirxkijJneKcL3fn5Hd3hLx3lstUcOeBM3JeKF3g6VgZz_rSt1rFKtX4Qf90Jifn4ZelWO6RcZcLg7DK1vY3Nr221u2ZYSvN4TrPhwuIDMDdwHoDV8VRhInmYRhhF4MPv25hHjELm3Q4wT2kbtE8DcarrhmZr-DNRZBXUFfylOwuF3XvO2Il7wpEa4d08pg8aiNJOmoG-4Ts2eIpeXDa_it_Rn4v8osCgUAgO5phE44G9kZbaBbVtLIbWjoKOoSpjHRdXt6sShB8Xq0qqgsDJOj3ms-FNMVuErRocOMUSz-BczE0vaHO1uVBaVU31cF7IDPYquvK0jmKE9in2CWILq62mPH0nJyfHH8bT7y2F4OXiUBuPKsglDFayigTaebSUKvUGex1xXhmlPBdZLXwueZWwowoYSVTJsiMhQDP6Ji_IPtFWdhXhMog5ZkGHmejUMss5Y5ngschU0orYwYk6sSfZG2hcuyXcZl0iLQfye3EJThxCYLzJBsQ1nOum2IdO_DE3QwnXTIqmM8EPMoOvB973r-Udkfud6BQ_UCxzvdkNE3wXBPI-cFPIDrs9C1prUuVYBAfhEL5YkDe9pfBLuDPHl3Ycgs0EJoosMaM_5NGCVgh8HhAXja63A8HU6QZk8HBfz3ja_IQj9DZM3FI9jfXW_sGorhNelS_prCNltERuT8an03nuP_8dTKD_afj2fzsD9veT0s | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfGJgEviP8UBhgEjxFxHLuO0IQGbOpYW01sk_aWObbDOq1Jt7Sgfhc-C5-Nu8Rpnzb1Za-pT3Vy57uz_bvfEfIhd1xmgucBBKM8iGUeBTpRNnChDJ1Wico0HugPhrJ3HP84ESdr5F9bC4OwytYn1o7algbPyD9h4hLFQoXiy-QywK5ReLvattDQvrWC3aopxnxhx76b_4EtXLW19x30_TGKdneOvvUC32UgMCKS08ApCNJWS9k1IjN5FmuV5Ra7ODFurBJh3nVahFxzJxPw5sJJpmxkrIPUxWokY4IQsBHzOIHN38bXneHBzyXtL4ubYjzBA8VY4rFEDcKsZqwcjcFvIMQsqnlEJbsuQN45Q6TmdWlwHQ53H5IHPo-l243hPSJrrnhM7g78Tf0T8vdw9KtAGBJojhpsAdKA7qgHhlFNKzelZU7BgrGQkk7Ki_m4BLWPqnFFdWFhCEbd5rCSZtjLghYNap0i8RSENkuzOc1dTU5Kq7qlD_4HCoOnvKocPcClAeJ97FFEDy9nWG_1lBzfio6ekfWiLNwLQmWUcaNBJnfdWEuT8ZwbwZOYKaWVtR3SbT9_ajxNOnbruEhbPNx5ulRciopLERooWYewheSkoQpZQSZpNZy2pbDgvFOIZyvIfl7I-nSpSYNWlH4PBrWYKLKM97b7KT5r0sgw-g2DNlt7S71vq9LlSuyQd4ufwSvhVZMuXDmDMZAYKYgFjN84RgnYn_CkQ543tryYDhZoMyajlzdP4C251zsa9NP-3nD_FbmPr4d5BRObZH16NXOvIWGcZm_8qqTk9LYdwX9ZVIJa | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSouiHe3LWAQHKPGcew4QghVlNWWbqtKpdLeguMHLOom22YXtP-FX8KvYyaP3VOrvfSaeBQnM575Yn8zQ8g777jMBfcBBCMfxNJHgU6VDVwoQ6dVqnKNG_onp3JwEX8didEG-dflwiCtsvOJtaO2pcE98n0ELlEsVCj2fUuLODvsf5peBdhBCk9au3YajYkcu8Uf-H2rPh4dgq7fR1H_y7fPg6DtMBAYEclZ4BQEaKulTIzIjc9jrXJvsYMT48YqEfrEaRFyzZ1MwZMLJ5mykbEOYIvVWIgJ3P_9hPMU6YTJKFkV_GVxk4YneKAYS1sWUcMtq2tVjifgMZBcFtUVRCW7KTTe-4kczZsAcB0I-4_IwxbB0oPG5B6TDVc8IVsn7Rn9U_L3fPyjQAIS6IwabP7R0O1oSwmjmlZuRktPwXYxhZJOy8vFpASFj6tJRXVhYQjG22abkubYxYIWDV-dYskpCGqW5gvqXV2WlFZ1Mx98BgqDj7yuHD3DRQHiQ-xORM-v5php9Yxc3ImGnpPNoizcNqEyyrnRIONdEmtpcu65ETyNmVJaWdsjSff5M9MWSMc-HZdZx4T7la0Ul6HiMiQFStYjbCk5bYqErCGTdhrOuiRYcNsZRLI1ZD8sZVug1ACgNaXfgkEtJ4r1xQcHwwyvNQAyjH7DoL3O3rLWq1XZag32yJvlbfBHeMikC1fOYQxAIgVRgPFbxygBfyY87ZEXjS0vp4Op2YzJaOf2CbwmW7D8s-HR6fEueYBvh4CCiT2yObueu5eAFGf5q3pJUvL9rn3Af9axf_Q | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Significant+correlation+between+a+set+of+genetic+polymorphisms+and+a+functional+brain+network+revealed+by+feature+selection+and+sparse+Partial+Least+Squares&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Le+Floch%2C+%C3%89dith&rft.au=Guillemot%2C+Vincent&rft.au=Frouin%2C+Vincent&rft.au=Pinel%2C+Philippe&rft.date=2012-10-15&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=63&rft.issue=1&rft.spage=11&rft.epage=24&rft_id=info:doi/10.1016%2Fj.neuroimage.2012.06.061&rft.externalDocID=S1053811912006775 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |