A k-mer-based method for the identification of phenotype-associated genomic biomarkers and predicting phenotypes of sequenced bacteria

We have developed an easy-to-use and memory-efficient method called PhenotypeSeeker that (a) identifies phenotype-specific k-mers, (b) generates a k-mer-based statistical model for predicting a given phenotype and (c) predicts the phenotype from the sequencing data of a given bacterial isolate. The...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 14; no. 10; p. e1006434
Main Authors Aun, Erki, Brauer, Age, Kisand, Veljo, Tenson, Tanel, Remm, Maido
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.10.2018
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1553-7358
1553-734X
1553-7358
DOI10.1371/journal.pcbi.1006434

Cover

Abstract We have developed an easy-to-use and memory-efficient method called PhenotypeSeeker that (a) identifies phenotype-specific k-mers, (b) generates a k-mer-based statistical model for predicting a given phenotype and (c) predicts the phenotype from the sequencing data of a given bacterial isolate. The method was validated on 167 Klebsiella pneumoniae isolates (virulence), 200 Pseudomonas aeruginosa isolates (ciprofloxacin resistance) and 459 Clostridium difficile isolates (azithromycin resistance). The phenotype prediction models trained from these datasets obtained the F1-measure of 0.88 on the K. pneumoniae test set, 0.88 on the P. aeruginosa test set and 0.97 on the C. difficile test set. The F1-measures were the same for assembled sequences and raw sequencing data; however, building the model from assembled genomes is significantly faster. On these datasets, the model building on a mid-range Linux server takes approximately 3 to 5 hours per phenotype if assembled genomes are used and 10 hours per phenotype if raw sequencing data are used. The phenotype prediction from assembled genomes takes less than one second per isolate. Thus, PhenotypeSeeker should be well-suited for predicting phenotypes from large sequencing datasets. PhenotypeSeeker is implemented in Python programming language, is open-source software and is available at GitHub (https://github.com/bioinfo-ut/PhenotypeSeeker/).
AbstractList We have developed an easy-to-use and memory-efficient method called PhenotypeSeeker that (a) identifies phenotype-specific k-mers, (b) generates a k-mer-based statistical model for predicting a given phenotype and (c) predicts the phenotype from the sequencing data of a given bacterial isolate. The method was validated on 167 Klebsiella pneumoniae isolates (virulence), 200 Pseudomonas aeruginosa isolates (ciprofloxacin resistance) and 459 Clostridium difficile isolates (azithromycin resistance). The phenotype prediction models trained from these datasets obtained the F1-measure of 0.88 on the K. pneumoniae test set, 0.88 on the P. aeruginosa test set and 0.97 on the C. difficile test set. The F1-measures were the same for assembled sequences and raw sequencing data; however, building the model from assembled genomes is significantly faster. On these datasets, the model building on a mid-range Linux server takes approximately 3 to 5 hours per phenotype if assembled genomes are used and 10 hours per phenotype if raw sequencing data are used. The phenotype prediction from assembled genomes takes less than one second per isolate. Thus, PhenotypeSeeker should be well-suited for predicting phenotypes from large sequencing datasets. PhenotypeSeeker is implemented in Python programming language, is open-source software and is available at GitHub (https://github.com/bioinfo-ut/PhenotypeSeeker/).
We have developed an easy-to-use and memory-efficient method called PhenotypeSeeker that (a) identifies phenotype-specific k-mers, (b) generates a k-mer-based statistical model for predicting a given phenotype and (c) predicts the phenotype from the sequencing data of a given bacterial isolate. The method was validated on 167 Klebsiella pneumoniae isolates (virulence), 200 Pseudomonas aeruginosa isolates (ciprofloxacin resistance) and 459 Clostridium difficile isolates (azithromycin resistance). The phenotype prediction models trained from these datasets obtained the F1-measure of 0.88 on the K. pneumoniae test set, 0.88 on the P. aeruginosa test set and 0.97 on the C. difficile test set. The F1-measures were the same for assembled sequences and raw sequencing data; however, building the model from assembled genomes is significantly faster. On these datasets, the model building on a mid-range Linux server takes approximately 3 to 5 hours per phenotype if assembled genomes are used and 10 hours per phenotype if raw sequencing data are used. The phenotype prediction from assembled genomes takes less than one second per isolate. Thus, PhenotypeSeeker should be well-suited for predicting phenotypes from large sequencing datasets. PhenotypeSeeker is implemented in Python programming language, is open-source software and is available at GitHub (https://github.com/bioinfo-ut/PhenotypeSeeker/).We have developed an easy-to-use and memory-efficient method called PhenotypeSeeker that (a) identifies phenotype-specific k-mers, (b) generates a k-mer-based statistical model for predicting a given phenotype and (c) predicts the phenotype from the sequencing data of a given bacterial isolate. The method was validated on 167 Klebsiella pneumoniae isolates (virulence), 200 Pseudomonas aeruginosa isolates (ciprofloxacin resistance) and 459 Clostridium difficile isolates (azithromycin resistance). The phenotype prediction models trained from these datasets obtained the F1-measure of 0.88 on the K. pneumoniae test set, 0.88 on the P. aeruginosa test set and 0.97 on the C. difficile test set. The F1-measures were the same for assembled sequences and raw sequencing data; however, building the model from assembled genomes is significantly faster. On these datasets, the model building on a mid-range Linux server takes approximately 3 to 5 hours per phenotype if assembled genomes are used and 10 hours per phenotype if raw sequencing data are used. The phenotype prediction from assembled genomes takes less than one second per isolate. Thus, PhenotypeSeeker should be well-suited for predicting phenotypes from large sequencing datasets. PhenotypeSeeker is implemented in Python programming language, is open-source software and is available at GitHub (https://github.com/bioinfo-ut/PhenotypeSeeker/).
We have developed an easy-to-use and memory-efficient method called PhenotypeSeeker that (a) identifies phenotype-specific k-mers, (b) generates a k-mer-based statistical model for predicting a given phenotype and (c) predicts the phenotype from the sequencing data of a given bacterial isolate. The method was validated on 167 Klebsiella pneumoniae isolates (virulence), 200 Pseudomonas aeruginosa isolates (ciprofloxacin resistance) and 459 Clostridium difficile isolates (azithromycin resistance). The phenotype prediction models trained from these datasets obtained the F1-measure of 0.88 on the K. pneumoniae test set, 0.88 on the P. aeruginosa test set and 0.97 on the C. difficile test set. The F1-measures were the same for assembled sequences and raw sequencing data; however, building the model from assembled genomes is significantly faster. On these datasets, the model building on a mid-range Linux server takes approximately 3 to 5 hours per phenotype if assembled genomes are used and 10 hours per phenotype if raw sequencing data are used. The phenotype prediction from assembled genomes takes less than one second per isolate. Thus, PhenotypeSeeker should be well-suited for predicting phenotypes from large sequencing datasets. PhenotypeSeeker is implemented in Python programming language, is open-source software and is available at GitHub (https://github.com/bioinfo-ut/PhenotypeSeeker/). Predicting phenotypic properties of bacterial isolates from their genomic sequences has numerous potential applications. A good example would be prediction of antimicrobial resistance and virulence phenotypes for use in medical diagnostics. We have developed a method that is able to predict phenotypes of interest from the genomic sequence of the isolate within seconds. The method uses a statistical model that can be trained automatically on isolates with known phenotype. The method is implemented in Python programming language and can be run on low-end Linux server and/or on laptop computers.
Author Tenson, Tanel
Brauer, Age
Aun, Erki
Kisand, Veljo
Remm, Maido
AuthorAffiliation 2 Institute of Technology, University of Tartu, Tartu, Estonia
CPERI, GREECE
1 Department of Bioinformatics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
AuthorAffiliation_xml – name: 2 Institute of Technology, University of Tartu, Tartu, Estonia
– name: CPERI, GREECE
– name: 1 Department of Bioinformatics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
Author_xml – sequence: 1
  givenname: Erki
  orcidid: 0000-0001-7446-3524
  surname: Aun
  fullname: Aun, Erki
– sequence: 2
  givenname: Age
  surname: Brauer
  fullname: Brauer, Age
– sequence: 3
  givenname: Veljo
  surname: Kisand
  fullname: Kisand, Veljo
– sequence: 4
  givenname: Tanel
  surname: Tenson
  fullname: Tenson, Tanel
– sequence: 5
  givenname: Maido
  orcidid: 0000-0003-3966-8422
  surname: Remm
  fullname: Remm, Maido
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30346947$$D View this record in MEDLINE/PubMed
BookMark eNqNUstu1DAUjVARfcAfIIjEhk0GP-IkZlGpqnhUqsQG1tbNtTPjaWIH2wPqD_DdeDrT0lYIsbGv7j3n6NzHcXHgvDNF8ZKSBeUtfbf2m-BgXMzY2wUlpKl5_aQ4okLwquWiO7gXHxbHMa4JyaFsnhWHnPC6kXV7VPw6K6-qyYSqh2h0OZm08rocfCjTypRWG5fsYBGS9a70QzmvjPPpejYVxOjRQsqsZc5NFsve-gnClQmxBKfLORhtMVm3_EOLW5Fovm-Mw8zsAZMJFp4XTwcYo3mx_0-Kbx8_fD3_XF1--XRxfnZZoWBNqozocCCMSWLqbuBE8qEhogUCQ9_pWkpshai7DpGTGgUy1vQEOsoYCFmThp8Ur3e68-ij2o8wKsZELua3y4iLHUJ7WKs52NzRtfJg1U3Ch6WCkCyORtGOdEgaoQcia9byDjhI7AlrEVutWdYSO62Nm-H6J4zjnSAlarvFWwtqu0W132Lmne5dbvrJaMxLCDA-MPOw4uxKLf0P1TBK24Zngbd7geDzqGNSk41oxhGc8ZvcL2VSMMnF1uObR9C_T-XVfUd3Vm4PKQPqHQCDjzGY4X87ff-IhjbdHFvuy47_Jv8Gz9D1MQ
CitedBy_id crossref_primary_10_1128_msystems_00550_21
crossref_primary_10_1128_JCM_01260_20
crossref_primary_10_1093_femsre_fuad030
crossref_primary_10_1371_journal_pone_0246287
crossref_primary_10_3389_fmicb_2019_03119
crossref_primary_10_1093_bioinformatics_btad621
crossref_primary_10_1128_mSystems_01185_20
crossref_primary_10_1016_j_csbj_2024_04_050
crossref_primary_10_3389_fcimb_2021_610348
crossref_primary_10_1371_journal_ppat_1011801
crossref_primary_10_1016_j_lwt_2024_117188
crossref_primary_10_1371_journal_pcbi_1010018
crossref_primary_10_1038_s41467_023_44272_1
crossref_primary_10_1002_edn3_438
crossref_primary_10_1016_j_tim_2020_12_002
crossref_primary_10_3389_fmicb_2022_851450
crossref_primary_10_1099_jmm_0_001657
crossref_primary_10_3389_fmicb_2020_01883
crossref_primary_10_1128_msystems_00734_22
crossref_primary_10_3389_fmicb_2019_01107
crossref_primary_10_1186_s42836_023_00195_2
crossref_primary_10_3389_fmicb_2022_708335
crossref_primary_10_3201_eid3001_221927
crossref_primary_10_1371_journal_pcbi_1006258
crossref_primary_10_1016_j_csbj_2024_05_025
crossref_primary_10_1093_bib_bbae206
crossref_primary_10_1109_ACCESS_2021_3109069
crossref_primary_10_1016_j_ijporl_2019_109835
Cites_doi 10.1128/JB.00031-10
10.2217/fmb.15.149
10.1186/s13742-015-0097-y
10.1186/s13059-016-0997-x
10.1186/gb-2007-8-8-r171
10.1016/S1286-4579(01)01412-5
10.1128/IAI.54.3.603-608.1986
10.1086/430619
10.1186/1471-2164-14-211
10.1111/j.1751-7915.2008.00063.x
10.1016/0022-2836(94)90012-4
10.1371/journal.pgen.1007333
10.1128/IAI.72.7.3783-3792.2004
10.1089/cmb.2012.0021
10.1038/nrmicro.2017.28
10.1093/nar/gkp1142
10.1089/mdr.1998.4.257
10.1046/j.1365-2958.2001.02630.x
10.1186/s12864-016-2889-6
10.1073/pnas.1501049112
10.1046/j.1365-2125.1999.00997.x
10.1016/j.gene.2004.05.008
10.1128/IAI.00522-09
ContentType Journal Article
Copyright 2018 Aun et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018 Aun et al 2018 Aun et al
Copyright_xml – notice: 2018 Aun et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018 Aun et al 2018 Aun et al
DBID AAYXX
CITATION
NPM
3V.
7QO
7QP
7TK
7TM
7X7
7XB
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pcbi.1006434
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
ProQuest Natural Science Collection (Hollins)
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Biological Science Database (NC LIVE)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
PubMed
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate A method to identify phenotype-specific k-mers and predict phenotypes
EISSN 1553-7358
ExternalDocumentID 2250632258
oai_doaj_org_article_1808c065df0942738a3a9cb027cc7dd2
10.1371/journal.pcbi.1006434
PMC6211763
30346947
10_1371_journal_pcbi_1006434
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Estonia
GeographicLocations_xml – name: Estonia
GrantInformation_xml – fundername: ;
  grantid: 2014-2020.4.01.15-0013
– fundername: ;
  grantid: IUT2-22
– fundername: ;
  grantid: 2014-2020.4.01.15-0012
– fundername: ;
  grantid: IUT34-11
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
3V.
ALIPV
C1A
H13
IPNFZ
M0N
M~E
NPM
PGMZT
RIG
WOQ
7QO
7QP
7TK
7TM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ADTOC
UNPAY
-
AAPBV
ABPTK
ACDSR
BBAFP
UMP
ID FETCH-LOGICAL-c526t-e58cf02290e48f3093f6057a0afb8d499c755488cc304c5c226b0a8122a594063
IEDL.DBID M48
ISSN 1553-7358
1553-734X
IngestDate Sun Sep 04 00:10:34 EDT 2022
Fri Oct 03 12:51:55 EDT 2025
Sun Oct 26 04:09:22 EDT 2025
Tue Sep 30 16:45:16 EDT 2025
Fri Sep 05 10:58:05 EDT 2025
Tue Oct 07 06:25:45 EDT 2025
Wed Feb 19 02:32:37 EST 2025
Wed Oct 01 04:00:39 EDT 2025
Thu Apr 24 23:06:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c526t-e58cf02290e48f3093f6057a0afb8d499c755488cc304c5c226b0a8122a594063
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors have declared that no competing interests exist.
ORCID 0000-0003-3966-8422
0000-0001-7446-3524
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1006434
PMID 30346947
PQID 2250632258
PQPubID 1436340
ParticipantIDs plos_journals_2250632258
doaj_primary_oai_doaj_org_article_1808c065df0942738a3a9cb027cc7dd2
unpaywall_primary_10_1371_journal_pcbi_1006434
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6211763
proquest_miscellaneous_2129529352
proquest_journals_2250632258
pubmed_primary_30346947
crossref_primary_10_1371_journal_pcbi_1006434
crossref_citationtrail_10_1371_journal_pcbi_1006434
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2018
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References R Lagos (ref22) 2001; 42
M Gerstein (ref13) 1994; 236
M Nguyen (ref7) 2018; 8
V Kisand (ref1) 2013; 14
A Drouin (ref9) 2016; 17
F Pedregosa (ref35) 2011; 12
E Marinier (ref10) 2017
ref33
S Bakour (ref3) 2016; 11
JA Lees (ref6) 2016; 7
E Carniel (ref20) 2001; 3
X Nassif (ref23) 1986; 54
JJ Davis (ref8) 2016; 6
YT Chen (ref21) 2004; 337
TS Crofts (ref2) 2017; 15
A SusceptibilityTesting EC on (ref16) 2015
L Kaplinski (ref11) 2015; 4
L-C Ma (ref28) 2005; 192
HC Chou (ref25) 2004; 72
KF Barker (ref15) 1999; 48
KH Kaminska (ref19) 2009; 38
J Putze (ref24) 2009; 77
Y Li (ref5) 2017; 18
BD Ondov (ref12) 2016; 17
KE Holt (ref31) 2015; 112
Y Lai (ref27) 2003; 185
A Bankevich (ref30) 2012; 19
A Fàbrega (ref17) 2009; 2
F-D Pajuste (ref14) 2017; 7
HY Cheng (ref26) 2010; 192
R Knight (ref32) 2007; 8
NE Wheeler (ref4) 2018; 14
A Josh Pasek (ref34) 2016
YC Lai (ref29) 2003; 218
S Jalal (ref18) 1998; 4
References_xml – volume: 6
  start-page: 1
  issue: May
  year: 2016
  ident: ref8
  article-title: Antimicrobial Resistance Prediction in PATRIC and RAST
  publication-title: Sci Rep
– volume: 192
  start-page: 3144
  issue: 12
  year: 2010
  ident: ref26
  article-title: RmpA regulation of capsular polysaccharide biosynthesis in Klebsiella pneumoniae CG43
  publication-title: J Bacteriol
  doi: 10.1128/JB.00031-10
– volume: 11
  start-page: 455
  issue: 3
  year: 2016
  ident: ref3
  article-title: Identification of virulence factors and antibiotic resistance markers using bacterial genomics
  publication-title: Future Microbiol
  doi: 10.2217/fmb.15.149
– volume: 7
  start-page: 2537
  issue: 1
  year: 2017
  ident: ref14
  article-title: FastGT: an alignment-free method for calling common SNVs directly from raw sequencing reads. Sci Rep
  publication-title: Internet]
– year: 2017
  ident: ref10
  article-title: Neptune: a bioinformatics tool for rapid discovery of genomic variation in bacterial populations
  publication-title: Nucleic Acids Res
– volume: 7
  start-page: 12797
  year: 2016
  ident: ref6
  article-title: Sequence element enrichment analysis to determine the genetic basis of bacterial phenotypes. Nat Commun
  publication-title: Internet]
– volume: 4
  start-page: 58
  issue: 1
  year: 2015
  ident: ref11
  article-title: GenomeTester4: a toolkit for performing basic set operations—union, intersection and complement on k-mer lists
  publication-title: Gigascience
  doi: 10.1186/s13742-015-0097-y
– volume: 17
  start-page: 132
  issue: 1
  year: 2016
  ident: ref12
  article-title: Mash: fast genome and metagenome distance estimation using MinHash
  publication-title: Genome Biol
  doi: 10.1186/s13059-016-0997-x
– volume: 8
  start-page: R171
  issue: 8
  year: 2007
  ident: ref32
  article-title: PyCogent: a toolkit for making sense from sequence
  publication-title: Genome Biol
  doi: 10.1186/gb-2007-8-8-r171
– volume: 3
  start-page: 561
  issue: 7
  year: 2001
  ident: ref20
  article-title: The Yersinia high-pathogenicity island: An iron-uptake island
  publication-title: Microbes Infect
  doi: 10.1016/S1286-4579(01)01412-5
– volume: 54
  start-page: 603
  issue: 3
  year: 1986
  ident: ref23
  article-title: Correlation of the virulence of Klebsiella pneumoniae K1 and K2 with the presence of a plasmid encoding aerobactin
  publication-title: Infect Immun
  doi: 10.1128/IAI.54.3.603-608.1986
– volume: 192
  start-page: 117
  issue: 1
  year: 2005
  ident: ref28
  article-title: Genomic heterogeneity in Klebsiella pneumoniae strains is associated with primary pyogenic liver abscess and metastatic infection
  publication-title: J Infect Dis
  doi: 10.1086/430619
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: ref7
  article-title: Developing an in silico minimum inhibitory concentration panel test for Klebsiella pneumonia
  publication-title: Sci Rep
– volume: 14
  start-page: 1
  issue: 1
  year: 2013
  ident: ref1
  article-title: Genome sequencing of bacteria: sequencing, de novo assembly and rapid analysis using open source tools
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-14-211
– start-page: 0
  year: 2015
  ident: ref16
  article-title: European Committee on Antimicrobial Susceptibility Testing Breakpoint tables for interpretation of MICs and zone diameters European Committee on Antimicrobial Susceptibility Testing Breakpoint tables for interpretation of MICs and zone diameters
– year: 2016
  ident: ref34
  article-title: Gene Culter by, Schwemmle Maintainer Josh Pasek M. Package “weights” with some assistance from Alex Tahk and some code modified from R- core; Additional contributions
– volume: 2
  start-page: 40
  issue: 1
  year: 2009
  ident: ref17
  article-title: Mechanism of action of and resistance to quinolones
  publication-title: Microb Biotechnol
  doi: 10.1111/j.1751-7915.2008.00063.x
– volume: 218
  start-page: 1216
  issue: 1
  year: 2003
  ident: ref29
  article-title: Identification and characterization of KvgAS, a two-component system in Klebsiella pneumoniae CG43
  publication-title: FEMS Microbiol Lett
– volume: 236
  start-page: 1067
  issue: 4
  year: 1994
  ident: ref13
  article-title: Volume changes in protein evolution
  publication-title: J Mol Biol
  doi: 10.1016/0022-2836(94)90012-4
– volume: 14
  start-page: e1007333
  issue: 5
  year: 2018
  ident: ref4
  article-title: Machine learning identifies signatures of host adaptation in the bacterial pathogen Salmonella enterica
  publication-title: PLOS Genet
  doi: 10.1371/journal.pgen.1007333
– volume: 72
  start-page: 3783
  issue: 7
  year: 2004
  ident: ref25
  article-title: Isolation of a chromosomal region of Klebsiella pneumoniae associated with allantoin metabolism and liver infection
  publication-title: Infect Immun
  doi: 10.1128/IAI.72.7.3783-3792.2004
– volume: 19
  start-page: 455
  issue: 5
  year: 2012
  ident: ref30
  article-title: SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2012.0021
– volume: 15
  start-page: 422
  issue: 7
  year: 2017
  ident: ref2
  article-title: Next-generation approaches to understand and combat the antibiotic resistome
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro.2017.28
– volume: 18
  start-page: 1
  issue: 1
  year: 2017
  ident: ref5
  article-title: Validation of β-lactam minimum inhibitory concentration predictions for pneumococcal isolates with newly encountered penicillin binding protein (PBP) sequences
  publication-title: BMC Genomics
– volume: 38
  start-page: 1652
  issue: 5
  year: 2009
  ident: ref19
  article-title: Insights into the structure, function evolution of the radical-SAM 23S rRNA methyltransferase Cfr that confers antibiotic resistance in bacteria
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp1142
– volume: 185
  start-page: 788
  issue: 3
  year: 2003
  ident: ref27
  article-title: RmpA2, an Activator of Capsule Biosynthesis in. MBio
– volume: 4
  start-page: 257
  issue: 4
  year: 1998
  ident: ref18
  article-title: Mechanisms of quinolone resistance in clinical strains of Pseudomonas aeruginosa
  publication-title: Microb Drug Resist
  doi: 10.1089/mdr.1998.4.257
– volume: 42
  start-page: 229
  issue: 1
  year: 2001
  ident: ref22
  article-title: Structure, organization and characterization of the gene cluster involved in the production of microcin E492, a channel-forming bacteriocin
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2001.02630.x
– volume: 17
  start-page: 754
  issue: 1
  year: 2016
  ident: ref9
  article-title: Predictive computational phenotyping and biomarker discovery using reference-free genome comparisons
  publication-title: BMC Genomics
  doi: 10.1186/s12864-016-2889-6
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref35
  article-title: Scikit-learn: Machine Learning in Python
  publication-title: J Mach Learn Res
– volume: 112
  start-page: E3574
  issue: 27
  year: 2015
  ident: ref31
  article-title: Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1501049112
– volume: 48
  start-page: 109
  issue: 2
  year: 1999
  ident: ref15
  article-title: Antibiotic resistance: a current perspective
  publication-title: Br J Clin Pharmacol
  doi: 10.1046/j.1365-2125.1999.00997.x
– volume: 337
  start-page: 189
  issue: 1–2
  year: 2004
  ident: ref21
  article-title: Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43
  publication-title: Gene
  doi: 10.1016/j.gene.2004.05.008
– ident: ref33
– volume: 77
  start-page: 4696
  issue: 11
  year: 2009
  ident: ref24
  article-title: Genetic structure and distribution of the colibactin genomic island among members of the family Enterobacteriaceae
  publication-title: Infect Immun
  doi: 10.1128/IAI.00522-09
SSID ssj0035896
Score 2.4390607
Snippet We have developed an easy-to-use and memory-efficient method called PhenotypeSeeker that (a) identifies phenotype-specific k-mers, (b) generates a k-mer-based...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1006434
SubjectTerms Algorithms
Antibiotics
Antimicrobial agents
Artificial intelligence
Azithromycin
Bioinformatics
Biology
Biology and Life Sciences
Biomarkers
Biosynthesis
Ciprofloxacin
Datasets
Drug resistance
Gene sequencing
Genes
Genomes
Genotype & phenotype
Internet
Klebsiella
Klebsiella pneumoniae
Machine learning
Mathematical models
Medicine and Health Sciences
Mutation
Phenotypes
Physical Sciences
Prediction models
Programming languages
Pseudomonas aeruginosa
Research and Analysis Methods
Software
Source code
Statistical models
Virulence
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlENpLafqKm7So0KsS7Vqy5WMSGkKhPTWwNzOSJbp0Yy_7oOQP9HdnRrLdLA2kh158sCTb0ow031ijbxj7NAFAOwlSVEXQQhkPAqbghAnWAxoICJG--Ou34upafZnp2b1UXxQTluiB08CdTow0Du1kE9ARoXMkkEPlLHpTzpVNE1dfaarBmUprcK5NzMxFSXFEmatZf2guLyenvYxOls7OKUYATbLaMUqRu5-4Thfd-iHc-Xf45NNtu4TbX7BY3LNNly_Y8x5U8rPUmQP2xLcv2X5KM3n7iv0-4z_FjV8JMlkNT0mjOaJVjuiPz5s-YCjKiHeBU9hXR_9mBfTCw1ZE5nozd5zO61NIz2rNoW34ckU7PRQ7_afZmh4yxGg33CZCaHjNri8_f7-4En3-BeH0tNgIr40LkgjhvTKBtkwDOj8lSAjWNOgquRLBiDHO5VI57RDJWYkCnk5BVwgU8jdsr-1af8h4UVVKoyV0qDLK-crKYLy1pkAh6iBlxvJBALXryckpR8aijjtuJTopaShrElvdiy1jYmy1TOQcj9Q_J9mOdYlaO95Ahat7hasfU7iMHZJmDC9Y17giYl_xajJ2PGjLw8Ufx2KcxLQzA63vtlgHUZdG4KXx6W-Tco0fiRhDFZUqM1buqN1OL3ZL2vmPSBReoHeP9iNjJ6OC_tM4vfsf43TEniG4TNzBk2O2t1lt_XsEcBv7Ic7VO5o4RgQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbKVgguiHdTCjISV7fZxE6cA0ItalUhsUKISnuL_IQV2yRkd4X6C_q3mUmclBUVcNlD_NgkM_Z8kxl_Q8ibqVJgJ1XMiswLxqVTTCXKMOm1U2AglO_oiz_OsvML_mEu5jtkNpyFwbTKYU_sNmpbG_xGfgR6B9YUfuW75gfDqlEYXR1KaKhQWsG-7SjG7pDdBJmxJmT35HT26fOwN6dCdhW7sFgOy1M-D4fp0nx6FGR32Bi9wNwBMNV8y1h1nP7IgbqsV7fh0T_TKu9tqkZd_VTL5W826-wheRDAJj3uteMR2XHVY3K3Lz959YRcH9PvlF26lqEts7SvJk0BxlKAhXRhQyZRJzxae4r5YDV-tGUqSBVGIcvr5cJQPMiPuT7tiqrK0qbFEBAmVd8MW-EkQ_K2pbpnilZPycXZ6Zf35ywUZmBGJNmaOSGNj5Ep3nHpMZbqwSvKVay8lhZ8KJMDSpHSmDTmRhiAeDoGySeJEgUgiPQZmVR15fYIzYqCCzCRBnSJG1fo2EuntcwMzOHjOCLpIIHSBNZyLJ6xLLtQXA7eS_8uS5RbGeQWETaOanrWjn_0P0Hhjn2Rc7u7ULdfy7CEy6mMpQHEZj24xHiiSaWqMBr8erhXa5OI7KFqDH-wKm9UNiIHg7rc3vx6bIbVjSEbVbl6A30AjglAZAJmf95r13iTAD54VvA8IvmW3m09xXZLtfjWMYhn4PaDYYnI4aih__We9v_-HC_IfcCTPV3w9IBM1u3GvQTMttavwkL8BdEjRGo
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4tXSG48IYNLMhIiJu7eTlxjgWxWiGx4kClcopsxxbVdpOqD6HlisTvZiZxshQWAQcuVVTbE2cy9XzTGX8GeBEphX5ShbzInOCptIqrWBkunbYKHYRyLX3xu9PsZJq-nYnZHuh-L4zXIMaIi2bdZvLpgsqriZToyKvziEiLuhTqOEryqB82Xho9p8Q_-tn0ZUs7RH-PbWgX0jXYzwTi9RHsT0_fTz62RKoi4XmSzi6vhfT7634ndcd_tTT_RIuKc7wKov5aaXljWy_VxWe1WPzgxo5vw9deAV31ytl4u9Fj8-Unbsj_q6E7cMujYDbppNyFPVvfg-vduZgX9-HbhJ3xc7vi5GMr1p1yzRBeM4SrbF75CqfWqFjjGNWpNXQXrry14Shinz2fG0YEA1SDtFozVVdsuaLUFBV7Xw5bk5C-qLxiumOwVg9gevzmw-sT7g-M4EbE2YZbIY0LicHeptJRjtdhtJarUDktK4ztTI7oSUpjkjA1wiD01CFaZBwrUSCySR7CqG5qewAsK4pUoOs2aOOpsYUOnbRay8ygDBeGASS9GZTGs6nToR6Lsk0R5hhVdaosSeGlV3gAfBi17NhE_tD_FVnY0Je4wNsv8LWX_k2XkQylQSRZOQzVaaeVSlRhdBjnONeqigM4IAvpb7AucQnHZ8VPGcBhb7NXNz8fmnHVoVSSqm2zxT4IEwUiRYHSH3UmPkwSQVGaFWkeQL5j_DtPsdtSzz-1zOZZHEXo8AIYDz-Tv9LT438d8ARuIvLtiI2jQxhtVlv7FNHlRj_zy8N3UjuBdQ
  priority: 102
  providerName: Unpaywall
Title A k-mer-based method for the identification of phenotype-associated genomic biomarkers and predicting phenotypes of sequenced bacteria
URI https://www.ncbi.nlm.nih.gov/pubmed/30346947
https://www.proquest.com/docview/2250632258
https://www.proquest.com/docview/2129529352
https://pubmed.ncbi.nlm.nih.gov/PMC6211763
https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006434&type=printable
https://doaj.org/article/1808c065df0942738a3a9cb027cc7dd2
http://dx.doi.org/10.1371/journal.pcbi.1006434
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: KQ8
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: KQ8
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: ABDBF
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DIK
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: GX1
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: RPM
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: BENPR
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 7X7
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 8FG
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: M48
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7tQwguiPcGlspIXF2leTqHFWphywppqxWiUjlFjmNDRTYpSaulv4C_zUxeUNEVXFIp9jixZ9z5JjOeAXg9khL1pLR5FBife0JLLh2puDCJlqggpKnTF1_Ogou592HhLw6gq9naLmC117SjelLzMhv--L59gxv-rK7aEI46ouFKJUvy-qOS9Q7hGHVVRMUcLr3er-D6IgraA3S3Ue4oqDqPP-U9zYpqHwb9O5Ty7iZfye2NzLI_9NT0AdxvASYbNxLxEA50_gjuNCUnt4_h55h9Y_xal5z0V8qaCtIMoStDKMiWaRs9VDOMFYZRDFhBH2q5bDmJVJTZ9XqpGB3ep_iesmIyT9mqJLcPBVL_JqtokC5gO2VJkx1aPoH59PzT2wveFmPgyneCNde-UMam7PDaE4b8pwYtoVDa0iQiRbtJhYhMhFDKtT3lK4R1iY3cdhzpR4ga3KdwlBe5PgEWRJHno1pUKD-e0lFiG6GTRAQKxzC2bYHbcSBWbaZyKpiRxbX7LUSLpVnLmPgWt3yzgPdUqyZTxz_6T4i5fV_Ks13fKMovcbtt45GwhUKUlho0g-kUk3RlpBK05fFd09Sx4IREo3tAFePfI84Vr8KC005c9je_6ptxR5ObRua62GAfhGA-ojAfR3_WSFf_kgg4vCDyQgvCHbnbmcVuS778WmcND9DUR2ViwbCX0P9ap-e3T_EF3EP82KQHHp3C0brc6JeI0dbJAA7DRYhXMX0_gOPx5N1kir-T89nVx0H93WNQb0y8N59djT__AjYIR1Y
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VItReEO8GChgJjm7zcuIcECqPaksfp1baW3AcG1Zsk3Szq2p_Af-G38hMXmVFBVx62UNie53M55lv4vEMwGtPKbSTyuVJZAUPpVFc-UpzaTOj0EAo26QvPj6JRmfh57EYr8HP_iwMhVX2OrFR1Hmp6Rv5LuIOrSn-ynfVBaeqUbS72pfQaGFxaJaX6LLVbw8-onzf-P7-p9MPI95VFeBa-NGcGyG1dSnNuQmlpY1Ai5Q-Vq6ymczRAdAxmlgptUZPXwuN_CRzcdq-r0SC5i_AcW_B7TBAXYLrJx4PDl4gZFMPjErx8DgIx91RvSD2djtk7FQ6m1BkAhKBcMUUNhUDKMPqtKyvY7t_Bm1uLIpKLS_VdPqbRdy_B3c7Ksv2WuzdhzVTPIA7bXHL5UP4sce-M35uZpwsZc7aWtUMSTJD0skmeRen1ECDlZZRtFlJn4S56jCDvSiH7PlEM0oTQJFEs5qpImfVjDaYKGT7qltNg_Sh4TnL2jzU6hGc3YiAHsN6URZmC1iUJKFAA6wRqaE2SeZaabJMRhrHsK7rQNBLINVdTnQqzTFNm42-GH2j9l2mJLe0k5sDfOhVtTlB_tH-PQl3aEsZvZsL5exr2imI1JOu1MgHc4sON52XUoFKdOb6Mc41z30Htgga_R_U6dWCcGC7h8v1t18Nt1F30IaQKky5wDZI9gTyPYGjP2nRNUwSqU0YJWHsQLyCu5WnWL1TTL41-ckj3_PQbDmwMyD0v97T078_x0vYGJ0eH6VHByeHz2ATmWubmNjbhvX5bGGeIzucZy-aJcngy03rgF_47nih
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIh4XxKs0UMBIcHQ37zgHhApl1VKoOFBpb8F2bFixTcJmV9X-Av4Tv46ZvMqKCrj0kkP8SJz57PkmHs8APPekRD0pXZ7GNuKhMJJLX2ourDISFYS0TfjiD8fxwUn4bhJNNuBnfxaG3Cr7NbFZqPNS0z_yEeIOtSlexch2bhEf98evqu-cMkjRTmufTqOFyJFZnaH5Vr883EdZv_D98dtPbw54l2GA68iPF9xEQluXQp6bUFjaFLRI7xPpSqtEjsaATlDdCqE1Wv060shVlItD8H0ZpagKA-z3ClxNgiAld8JkMhh7QSSa3GCUlocnQTjpju0FiTfqULJbaTUlLwUkBeGaWmyyB1C01VlZX8R8_3TgvLEsKrk6k7PZb9pxfBtudbSW7bU4vAMbprgL19pEl6t78GOPfWP81Mw5ac2ctXmrGRJmhgSUTfPOZ6mBCSstI8-zkn4Pc9nhB1tRPNnTqWYUMoC8iuY1k0XOqjltNpH79nmzmjrp3cRzptqY1PI-nFyKgLZgsygLsw0sTtMwQmWsEbWhNqlyrTBKiVhjH9Z1HQh6CWS6i49OaTpmWbPpl6Cd1H7LjOSWdXJzgA-tqjY-yD_qvybhDnUpundzo5x_ybrFIvOEKzRyw9yi8U1np2QgU61cP8F3zXPfgW2CRv-AOjufHA7s9HC5uPjZUIzrCG0OycKUS6yDxC9C7hdh7w9adA0viTQnjNMwcSBZw93aKNZLiunXJlZ57HseqjAHdgeE_td3evj3cTyF6zj7s_eHx0eP4CaS2DZGsbcDm4v50jxGorhQT5oZyeDzZS8BvwDCwHzk
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4tXSG48IYNLMhIiJu7eTlxjgWxWiGx4kClcopsxxbVdpOqD6HlisTvZiZxshQWAQcuVVTbE2cy9XzTGX8GeBEphX5ShbzInOCptIqrWBkunbYKHYRyLX3xu9PsZJq-nYnZHuh-L4zXIMaIi2bdZvLpgsqriZToyKvziEiLuhTqOEryqB82Xho9p8Q_-tn0ZUs7RH-PbWgX0jXYzwTi9RHsT0_fTz62RKoi4XmSzi6vhfT7634ndcd_tTT_RIuKc7wKov5aaXljWy_VxWe1WPzgxo5vw9deAV31ytl4u9Fj8-Unbsj_q6E7cMujYDbppNyFPVvfg-vduZgX9-HbhJ3xc7vi5GMr1p1yzRBeM4SrbF75CqfWqFjjGNWpNXQXrry14Shinz2fG0YEA1SDtFozVVdsuaLUFBV7Xw5bk5C-qLxiumOwVg9gevzmw-sT7g-M4EbE2YZbIY0LicHeptJRjtdhtJarUDktK4ztTI7oSUpjkjA1wiD01CFaZBwrUSCySR7CqG5qewAsK4pUoOs2aOOpsYUOnbRay8ygDBeGASS9GZTGs6nToR6Lsk0R5hhVdaosSeGlV3gAfBi17NhE_tD_FVnY0Je4wNsv8LWX_k2XkQylQSRZOQzVaaeVSlRhdBjnONeqigM4IAvpb7AucQnHZ8VPGcBhb7NXNz8fmnHVoVSSqm2zxT4IEwUiRYHSH3UmPkwSQVGaFWkeQL5j_DtPsdtSzz-1zOZZHEXo8AIYDz-Tv9LT438d8ARuIvLtiI2jQxhtVlv7FNHlRj_zy8N3UjuBdQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+k+-mer-based+method+for+the+identification+of+phenotype-associated+genomic+biomarkers+and+predicting+phenotypes+of+sequenced+bacteria&rft.jtitle=PLoS+computational+biology&rft.au=Aun%2C+Erki&rft.au=Brauer%2C+Age&rft.au=Kisand%2C+Veljo&rft.au=Tanel+Tenson&rft.date=2018-10-01&rft.pub=Public+Library+of+Science&rft.eissn=1553-7358&rft.volume=14&rft.issue=10&rft_id=info:doi/10.1371%2Fjournal.pcbi.1006434&rft.externalDocID=2250632258
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon