A k-mer-based method for the identification of phenotype-associated genomic biomarkers and predicting phenotypes of sequenced bacteria
We have developed an easy-to-use and memory-efficient method called PhenotypeSeeker that (a) identifies phenotype-specific k-mers, (b) generates a k-mer-based statistical model for predicting a given phenotype and (c) predicts the phenotype from the sequencing data of a given bacterial isolate. The...
Saved in:
| Published in | PLoS computational biology Vol. 14; no. 10; p. e1006434 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
01.10.2018
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1553-7358 1553-734X 1553-7358 |
| DOI | 10.1371/journal.pcbi.1006434 |
Cover
| Abstract | We have developed an easy-to-use and memory-efficient method called PhenotypeSeeker that (a) identifies phenotype-specific k-mers, (b) generates a k-mer-based statistical model for predicting a given phenotype and (c) predicts the phenotype from the sequencing data of a given bacterial isolate. The method was validated on 167 Klebsiella pneumoniae isolates (virulence), 200 Pseudomonas aeruginosa isolates (ciprofloxacin resistance) and 459 Clostridium difficile isolates (azithromycin resistance). The phenotype prediction models trained from these datasets obtained the F1-measure of 0.88 on the K. pneumoniae test set, 0.88 on the P. aeruginosa test set and 0.97 on the C. difficile test set. The F1-measures were the same for assembled sequences and raw sequencing data; however, building the model from assembled genomes is significantly faster. On these datasets, the model building on a mid-range Linux server takes approximately 3 to 5 hours per phenotype if assembled genomes are used and 10 hours per phenotype if raw sequencing data are used. The phenotype prediction from assembled genomes takes less than one second per isolate. Thus, PhenotypeSeeker should be well-suited for predicting phenotypes from large sequencing datasets. PhenotypeSeeker is implemented in Python programming language, is open-source software and is available at GitHub (https://github.com/bioinfo-ut/PhenotypeSeeker/). |
|---|---|
| AbstractList | We have developed an easy-to-use and memory-efficient method called PhenotypeSeeker that (a) identifies phenotype-specific k-mers, (b) generates a k-mer-based statistical model for predicting a given phenotype and (c) predicts the phenotype from the sequencing data of a given bacterial isolate. The method was validated on 167 Klebsiella pneumoniae isolates (virulence), 200 Pseudomonas aeruginosa isolates (ciprofloxacin resistance) and 459 Clostridium difficile isolates (azithromycin resistance). The phenotype prediction models trained from these datasets obtained the F1-measure of 0.88 on the K. pneumoniae test set, 0.88 on the P. aeruginosa test set and 0.97 on the C. difficile test set. The F1-measures were the same for assembled sequences and raw sequencing data; however, building the model from assembled genomes is significantly faster. On these datasets, the model building on a mid-range Linux server takes approximately 3 to 5 hours per phenotype if assembled genomes are used and 10 hours per phenotype if raw sequencing data are used. The phenotype prediction from assembled genomes takes less than one second per isolate. Thus, PhenotypeSeeker should be well-suited for predicting phenotypes from large sequencing datasets. PhenotypeSeeker is implemented in Python programming language, is open-source software and is available at GitHub (https://github.com/bioinfo-ut/PhenotypeSeeker/). We have developed an easy-to-use and memory-efficient method called PhenotypeSeeker that (a) identifies phenotype-specific k-mers, (b) generates a k-mer-based statistical model for predicting a given phenotype and (c) predicts the phenotype from the sequencing data of a given bacterial isolate. The method was validated on 167 Klebsiella pneumoniae isolates (virulence), 200 Pseudomonas aeruginosa isolates (ciprofloxacin resistance) and 459 Clostridium difficile isolates (azithromycin resistance). The phenotype prediction models trained from these datasets obtained the F1-measure of 0.88 on the K. pneumoniae test set, 0.88 on the P. aeruginosa test set and 0.97 on the C. difficile test set. The F1-measures were the same for assembled sequences and raw sequencing data; however, building the model from assembled genomes is significantly faster. On these datasets, the model building on a mid-range Linux server takes approximately 3 to 5 hours per phenotype if assembled genomes are used and 10 hours per phenotype if raw sequencing data are used. The phenotype prediction from assembled genomes takes less than one second per isolate. Thus, PhenotypeSeeker should be well-suited for predicting phenotypes from large sequencing datasets. PhenotypeSeeker is implemented in Python programming language, is open-source software and is available at GitHub (https://github.com/bioinfo-ut/PhenotypeSeeker/).We have developed an easy-to-use and memory-efficient method called PhenotypeSeeker that (a) identifies phenotype-specific k-mers, (b) generates a k-mer-based statistical model for predicting a given phenotype and (c) predicts the phenotype from the sequencing data of a given bacterial isolate. The method was validated on 167 Klebsiella pneumoniae isolates (virulence), 200 Pseudomonas aeruginosa isolates (ciprofloxacin resistance) and 459 Clostridium difficile isolates (azithromycin resistance). The phenotype prediction models trained from these datasets obtained the F1-measure of 0.88 on the K. pneumoniae test set, 0.88 on the P. aeruginosa test set and 0.97 on the C. difficile test set. The F1-measures were the same for assembled sequences and raw sequencing data; however, building the model from assembled genomes is significantly faster. On these datasets, the model building on a mid-range Linux server takes approximately 3 to 5 hours per phenotype if assembled genomes are used and 10 hours per phenotype if raw sequencing data are used. The phenotype prediction from assembled genomes takes less than one second per isolate. Thus, PhenotypeSeeker should be well-suited for predicting phenotypes from large sequencing datasets. PhenotypeSeeker is implemented in Python programming language, is open-source software and is available at GitHub (https://github.com/bioinfo-ut/PhenotypeSeeker/). We have developed an easy-to-use and memory-efficient method called PhenotypeSeeker that (a) identifies phenotype-specific k-mers, (b) generates a k-mer-based statistical model for predicting a given phenotype and (c) predicts the phenotype from the sequencing data of a given bacterial isolate. The method was validated on 167 Klebsiella pneumoniae isolates (virulence), 200 Pseudomonas aeruginosa isolates (ciprofloxacin resistance) and 459 Clostridium difficile isolates (azithromycin resistance). The phenotype prediction models trained from these datasets obtained the F1-measure of 0.88 on the K. pneumoniae test set, 0.88 on the P. aeruginosa test set and 0.97 on the C. difficile test set. The F1-measures were the same for assembled sequences and raw sequencing data; however, building the model from assembled genomes is significantly faster. On these datasets, the model building on a mid-range Linux server takes approximately 3 to 5 hours per phenotype if assembled genomes are used and 10 hours per phenotype if raw sequencing data are used. The phenotype prediction from assembled genomes takes less than one second per isolate. Thus, PhenotypeSeeker should be well-suited for predicting phenotypes from large sequencing datasets. PhenotypeSeeker is implemented in Python programming language, is open-source software and is available at GitHub (https://github.com/bioinfo-ut/PhenotypeSeeker/). Predicting phenotypic properties of bacterial isolates from their genomic sequences has numerous potential applications. A good example would be prediction of antimicrobial resistance and virulence phenotypes for use in medical diagnostics. We have developed a method that is able to predict phenotypes of interest from the genomic sequence of the isolate within seconds. The method uses a statistical model that can be trained automatically on isolates with known phenotype. The method is implemented in Python programming language and can be run on low-end Linux server and/or on laptop computers. |
| Author | Tenson, Tanel Brauer, Age Aun, Erki Kisand, Veljo Remm, Maido |
| AuthorAffiliation | 2 Institute of Technology, University of Tartu, Tartu, Estonia CPERI, GREECE 1 Department of Bioinformatics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia |
| AuthorAffiliation_xml | – name: 2 Institute of Technology, University of Tartu, Tartu, Estonia – name: CPERI, GREECE – name: 1 Department of Bioinformatics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia |
| Author_xml | – sequence: 1 givenname: Erki orcidid: 0000-0001-7446-3524 surname: Aun fullname: Aun, Erki – sequence: 2 givenname: Age surname: Brauer fullname: Brauer, Age – sequence: 3 givenname: Veljo surname: Kisand fullname: Kisand, Veljo – sequence: 4 givenname: Tanel surname: Tenson fullname: Tenson, Tanel – sequence: 5 givenname: Maido orcidid: 0000-0003-3966-8422 surname: Remm fullname: Remm, Maido |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30346947$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUstu1DAUjVARfcAfIIjEhk0GP-IkZlGpqnhUqsQG1tbNtTPjaWIH2wPqD_DdeDrT0lYIsbGv7j3n6NzHcXHgvDNF8ZKSBeUtfbf2m-BgXMzY2wUlpKl5_aQ4okLwquWiO7gXHxbHMa4JyaFsnhWHnPC6kXV7VPw6K6-qyYSqh2h0OZm08rocfCjTypRWG5fsYBGS9a70QzmvjPPpejYVxOjRQsqsZc5NFsve-gnClQmxBKfLORhtMVm3_EOLW5Fovm-Mw8zsAZMJFp4XTwcYo3mx_0-Kbx8_fD3_XF1--XRxfnZZoWBNqozocCCMSWLqbuBE8qEhogUCQ9_pWkpshai7DpGTGgUy1vQEOsoYCFmThp8Ur3e68-ij2o8wKsZELua3y4iLHUJ7WKs52NzRtfJg1U3Ch6WCkCyORtGOdEgaoQcia9byDjhI7AlrEVutWdYSO62Nm-H6J4zjnSAlarvFWwtqu0W132Lmne5dbvrJaMxLCDA-MPOw4uxKLf0P1TBK24Zngbd7geDzqGNSk41oxhGc8ZvcL2VSMMnF1uObR9C_T-XVfUd3Vm4PKQPqHQCDjzGY4X87ff-IhjbdHFvuy47_Jv8Gz9D1MQ |
| CitedBy_id | crossref_primary_10_1128_msystems_00550_21 crossref_primary_10_1128_JCM_01260_20 crossref_primary_10_1093_femsre_fuad030 crossref_primary_10_1371_journal_pone_0246287 crossref_primary_10_3389_fmicb_2019_03119 crossref_primary_10_1093_bioinformatics_btad621 crossref_primary_10_1128_mSystems_01185_20 crossref_primary_10_1016_j_csbj_2024_04_050 crossref_primary_10_3389_fcimb_2021_610348 crossref_primary_10_1371_journal_ppat_1011801 crossref_primary_10_1016_j_lwt_2024_117188 crossref_primary_10_1371_journal_pcbi_1010018 crossref_primary_10_1038_s41467_023_44272_1 crossref_primary_10_1002_edn3_438 crossref_primary_10_1016_j_tim_2020_12_002 crossref_primary_10_3389_fmicb_2022_851450 crossref_primary_10_1099_jmm_0_001657 crossref_primary_10_3389_fmicb_2020_01883 crossref_primary_10_1128_msystems_00734_22 crossref_primary_10_3389_fmicb_2019_01107 crossref_primary_10_1186_s42836_023_00195_2 crossref_primary_10_3389_fmicb_2022_708335 crossref_primary_10_3201_eid3001_221927 crossref_primary_10_1371_journal_pcbi_1006258 crossref_primary_10_1016_j_csbj_2024_05_025 crossref_primary_10_1093_bib_bbae206 crossref_primary_10_1109_ACCESS_2021_3109069 crossref_primary_10_1016_j_ijporl_2019_109835 |
| Cites_doi | 10.1128/JB.00031-10 10.2217/fmb.15.149 10.1186/s13742-015-0097-y 10.1186/s13059-016-0997-x 10.1186/gb-2007-8-8-r171 10.1016/S1286-4579(01)01412-5 10.1128/IAI.54.3.603-608.1986 10.1086/430619 10.1186/1471-2164-14-211 10.1111/j.1751-7915.2008.00063.x 10.1016/0022-2836(94)90012-4 10.1371/journal.pgen.1007333 10.1128/IAI.72.7.3783-3792.2004 10.1089/cmb.2012.0021 10.1038/nrmicro.2017.28 10.1093/nar/gkp1142 10.1089/mdr.1998.4.257 10.1046/j.1365-2958.2001.02630.x 10.1186/s12864-016-2889-6 10.1073/pnas.1501049112 10.1046/j.1365-2125.1999.00997.x 10.1016/j.gene.2004.05.008 10.1128/IAI.00522-09 |
| ContentType | Journal Article |
| Copyright | 2018 Aun et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2018 Aun et al 2018 Aun et al |
| Copyright_xml | – notice: 2018 Aun et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2018 Aun et al 2018 Aun et al |
| DBID | AAYXX CITATION NPM 3V. 7QO 7QP 7TK 7TM 7X7 7XB 88E 8AL 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. LK8 M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pcbi.1006434 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection ProQuest Natural Science Collection (Hollins) ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Biological Sciences Computing Database Health & Medical Collection (Alumni Edition) Medical Database ProQuest Biological Science Database (NC LIVE) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals (DOAJ) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| DocumentTitleAlternate | A method to identify phenotype-specific k-mers and predict phenotypes |
| EISSN | 1553-7358 |
| ExternalDocumentID | 2250632258 oai_doaj_org_article_1808c065df0942738a3a9cb027cc7dd2 10.1371/journal.pcbi.1006434 PMC6211763 30346947 10_1371_journal_pcbi_1006434 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Estonia |
| GeographicLocations_xml | – name: Estonia |
| GrantInformation_xml | – fundername: ; grantid: 2014-2020.4.01.15-0013 – fundername: ; grantid: IUT2-22 – fundername: ; grantid: 2014-2020.4.01.15-0012 – fundername: ; grantid: IUT34-11 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M 3V. ALIPV C1A H13 IPNFZ M0N M~E NPM PGMZT RIG WOQ 7QO 7QP 7TK 7TM 7XB 8AL 8FD 8FK FR3 JQ2 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM ADTOC UNPAY - AAPBV ABPTK ACDSR BBAFP UMP |
| ID | FETCH-LOGICAL-c526t-e58cf02290e48f3093f6057a0afb8d499c755488cc304c5c226b0a8122a594063 |
| IEDL.DBID | M48 |
| ISSN | 1553-7358 1553-734X |
| IngestDate | Sun Sep 04 00:10:34 EDT 2022 Fri Oct 03 12:51:55 EDT 2025 Sun Oct 26 04:09:22 EDT 2025 Tue Sep 30 16:45:16 EDT 2025 Fri Sep 05 10:58:05 EDT 2025 Tue Oct 07 06:25:45 EDT 2025 Wed Feb 19 02:32:37 EST 2025 Wed Oct 01 04:00:39 EDT 2025 Thu Apr 24 23:06:14 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c526t-e58cf02290e48f3093f6057a0afb8d499c755488cc304c5c226b0a8122a594063 |
| Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The authors have declared that no competing interests exist. |
| ORCID | 0000-0003-3966-8422 0000-0001-7446-3524 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1006434 |
| PMID | 30346947 |
| PQID | 2250632258 |
| PQPubID | 1436340 |
| ParticipantIDs | plos_journals_2250632258 doaj_primary_oai_doaj_org_article_1808c065df0942738a3a9cb027cc7dd2 unpaywall_primary_10_1371_journal_pcbi_1006434 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6211763 proquest_miscellaneous_2129529352 proquest_journals_2250632258 pubmed_primary_30346947 crossref_primary_10_1371_journal_pcbi_1006434 crossref_citationtrail_10_1371_journal_pcbi_1006434 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-10-01 |
| PublicationDateYYYYMMDD | 2018-10-01 |
| PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PLoS computational biology |
| PublicationTitleAlternate | PLoS Comput Biol |
| PublicationYear | 2018 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | R Lagos (ref22) 2001; 42 M Gerstein (ref13) 1994; 236 M Nguyen (ref7) 2018; 8 V Kisand (ref1) 2013; 14 A Drouin (ref9) 2016; 17 F Pedregosa (ref35) 2011; 12 E Marinier (ref10) 2017 ref33 S Bakour (ref3) 2016; 11 JA Lees (ref6) 2016; 7 E Carniel (ref20) 2001; 3 X Nassif (ref23) 1986; 54 JJ Davis (ref8) 2016; 6 YT Chen (ref21) 2004; 337 TS Crofts (ref2) 2017; 15 A SusceptibilityTesting EC on (ref16) 2015 L Kaplinski (ref11) 2015; 4 L-C Ma (ref28) 2005; 192 HC Chou (ref25) 2004; 72 KF Barker (ref15) 1999; 48 KH Kaminska (ref19) 2009; 38 J Putze (ref24) 2009; 77 Y Li (ref5) 2017; 18 BD Ondov (ref12) 2016; 17 KE Holt (ref31) 2015; 112 Y Lai (ref27) 2003; 185 A Bankevich (ref30) 2012; 19 A Fàbrega (ref17) 2009; 2 F-D Pajuste (ref14) 2017; 7 HY Cheng (ref26) 2010; 192 R Knight (ref32) 2007; 8 NE Wheeler (ref4) 2018; 14 A Josh Pasek (ref34) 2016 YC Lai (ref29) 2003; 218 S Jalal (ref18) 1998; 4 |
| References_xml | – volume: 6 start-page: 1 issue: May year: 2016 ident: ref8 article-title: Antimicrobial Resistance Prediction in PATRIC and RAST publication-title: Sci Rep – volume: 192 start-page: 3144 issue: 12 year: 2010 ident: ref26 article-title: RmpA regulation of capsular polysaccharide biosynthesis in Klebsiella pneumoniae CG43 publication-title: J Bacteriol doi: 10.1128/JB.00031-10 – volume: 11 start-page: 455 issue: 3 year: 2016 ident: ref3 article-title: Identification of virulence factors and antibiotic resistance markers using bacterial genomics publication-title: Future Microbiol doi: 10.2217/fmb.15.149 – volume: 7 start-page: 2537 issue: 1 year: 2017 ident: ref14 article-title: FastGT: an alignment-free method for calling common SNVs directly from raw sequencing reads. Sci Rep publication-title: Internet] – year: 2017 ident: ref10 article-title: Neptune: a bioinformatics tool for rapid discovery of genomic variation in bacterial populations publication-title: Nucleic Acids Res – volume: 7 start-page: 12797 year: 2016 ident: ref6 article-title: Sequence element enrichment analysis to determine the genetic basis of bacterial phenotypes. Nat Commun publication-title: Internet] – volume: 4 start-page: 58 issue: 1 year: 2015 ident: ref11 article-title: GenomeTester4: a toolkit for performing basic set operations—union, intersection and complement on k-mer lists publication-title: Gigascience doi: 10.1186/s13742-015-0097-y – volume: 17 start-page: 132 issue: 1 year: 2016 ident: ref12 article-title: Mash: fast genome and metagenome distance estimation using MinHash publication-title: Genome Biol doi: 10.1186/s13059-016-0997-x – volume: 8 start-page: R171 issue: 8 year: 2007 ident: ref32 article-title: PyCogent: a toolkit for making sense from sequence publication-title: Genome Biol doi: 10.1186/gb-2007-8-8-r171 – volume: 3 start-page: 561 issue: 7 year: 2001 ident: ref20 article-title: The Yersinia high-pathogenicity island: An iron-uptake island publication-title: Microbes Infect doi: 10.1016/S1286-4579(01)01412-5 – volume: 54 start-page: 603 issue: 3 year: 1986 ident: ref23 article-title: Correlation of the virulence of Klebsiella pneumoniae K1 and K2 with the presence of a plasmid encoding aerobactin publication-title: Infect Immun doi: 10.1128/IAI.54.3.603-608.1986 – volume: 192 start-page: 117 issue: 1 year: 2005 ident: ref28 article-title: Genomic heterogeneity in Klebsiella pneumoniae strains is associated with primary pyogenic liver abscess and metastatic infection publication-title: J Infect Dis doi: 10.1086/430619 – volume: 8 start-page: 1 issue: 1 year: 2018 ident: ref7 article-title: Developing an in silico minimum inhibitory concentration panel test for Klebsiella pneumonia publication-title: Sci Rep – volume: 14 start-page: 1 issue: 1 year: 2013 ident: ref1 article-title: Genome sequencing of bacteria: sequencing, de novo assembly and rapid analysis using open source tools publication-title: BMC Genomics doi: 10.1186/1471-2164-14-211 – start-page: 0 year: 2015 ident: ref16 article-title: European Committee on Antimicrobial Susceptibility Testing Breakpoint tables for interpretation of MICs and zone diameters European Committee on Antimicrobial Susceptibility Testing Breakpoint tables for interpretation of MICs and zone diameters – year: 2016 ident: ref34 article-title: Gene Culter by, Schwemmle Maintainer Josh Pasek M. Package “weights” with some assistance from Alex Tahk and some code modified from R- core; Additional contributions – volume: 2 start-page: 40 issue: 1 year: 2009 ident: ref17 article-title: Mechanism of action of and resistance to quinolones publication-title: Microb Biotechnol doi: 10.1111/j.1751-7915.2008.00063.x – volume: 218 start-page: 1216 issue: 1 year: 2003 ident: ref29 article-title: Identification and characterization of KvgAS, a two-component system in Klebsiella pneumoniae CG43 publication-title: FEMS Microbiol Lett – volume: 236 start-page: 1067 issue: 4 year: 1994 ident: ref13 article-title: Volume changes in protein evolution publication-title: J Mol Biol doi: 10.1016/0022-2836(94)90012-4 – volume: 14 start-page: e1007333 issue: 5 year: 2018 ident: ref4 article-title: Machine learning identifies signatures of host adaptation in the bacterial pathogen Salmonella enterica publication-title: PLOS Genet doi: 10.1371/journal.pgen.1007333 – volume: 72 start-page: 3783 issue: 7 year: 2004 ident: ref25 article-title: Isolation of a chromosomal region of Klebsiella pneumoniae associated with allantoin metabolism and liver infection publication-title: Infect Immun doi: 10.1128/IAI.72.7.3783-3792.2004 – volume: 19 start-page: 455 issue: 5 year: 2012 ident: ref30 article-title: SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing publication-title: J Comput Biol doi: 10.1089/cmb.2012.0021 – volume: 15 start-page: 422 issue: 7 year: 2017 ident: ref2 article-title: Next-generation approaches to understand and combat the antibiotic resistome publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro.2017.28 – volume: 18 start-page: 1 issue: 1 year: 2017 ident: ref5 article-title: Validation of β-lactam minimum inhibitory concentration predictions for pneumococcal isolates with newly encountered penicillin binding protein (PBP) sequences publication-title: BMC Genomics – volume: 38 start-page: 1652 issue: 5 year: 2009 ident: ref19 article-title: Insights into the structure, function evolution of the radical-SAM 23S rRNA methyltransferase Cfr that confers antibiotic resistance in bacteria publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp1142 – volume: 185 start-page: 788 issue: 3 year: 2003 ident: ref27 article-title: RmpA2, an Activator of Capsule Biosynthesis in. MBio – volume: 4 start-page: 257 issue: 4 year: 1998 ident: ref18 article-title: Mechanisms of quinolone resistance in clinical strains of Pseudomonas aeruginosa publication-title: Microb Drug Resist doi: 10.1089/mdr.1998.4.257 – volume: 42 start-page: 229 issue: 1 year: 2001 ident: ref22 article-title: Structure, organization and characterization of the gene cluster involved in the production of microcin E492, a channel-forming bacteriocin publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.2001.02630.x – volume: 17 start-page: 754 issue: 1 year: 2016 ident: ref9 article-title: Predictive computational phenotyping and biomarker discovery using reference-free genome comparisons publication-title: BMC Genomics doi: 10.1186/s12864-016-2889-6 – volume: 12 start-page: 2825 year: 2011 ident: ref35 article-title: Scikit-learn: Machine Learning in Python publication-title: J Mach Learn Res – volume: 112 start-page: E3574 issue: 27 year: 2015 ident: ref31 article-title: Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1501049112 – volume: 48 start-page: 109 issue: 2 year: 1999 ident: ref15 article-title: Antibiotic resistance: a current perspective publication-title: Br J Clin Pharmacol doi: 10.1046/j.1365-2125.1999.00997.x – volume: 337 start-page: 189 issue: 1–2 year: 2004 ident: ref21 article-title: Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43 publication-title: Gene doi: 10.1016/j.gene.2004.05.008 – ident: ref33 – volume: 77 start-page: 4696 issue: 11 year: 2009 ident: ref24 article-title: Genetic structure and distribution of the colibactin genomic island among members of the family Enterobacteriaceae publication-title: Infect Immun doi: 10.1128/IAI.00522-09 |
| SSID | ssj0035896 |
| Score | 2.4390607 |
| Snippet | We have developed an easy-to-use and memory-efficient method called PhenotypeSeeker that (a) identifies phenotype-specific k-mers, (b) generates a k-mer-based... |
| SourceID | plos doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e1006434 |
| SubjectTerms | Algorithms Antibiotics Antimicrobial agents Artificial intelligence Azithromycin Bioinformatics Biology Biology and Life Sciences Biomarkers Biosynthesis Ciprofloxacin Datasets Drug resistance Gene sequencing Genes Genomes Genotype & phenotype Internet Klebsiella Klebsiella pneumoniae Machine learning Mathematical models Medicine and Health Sciences Mutation Phenotypes Physical Sciences Prediction models Programming languages Pseudomonas aeruginosa Research and Analysis Methods Software Source code Statistical models Virulence |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlENpLafqKm7So0KsS7Vqy5WMSGkKhPTWwNzOSJbp0Yy_7oOQP9HdnRrLdLA2kh158sCTb0ow031ijbxj7NAFAOwlSVEXQQhkPAqbghAnWAxoICJG--Ou34upafZnp2b1UXxQTluiB08CdTow0Du1kE9ARoXMkkEPlLHpTzpVNE1dfaarBmUprcK5NzMxFSXFEmatZf2guLyenvYxOls7OKUYATbLaMUqRu5-4Thfd-iHc-Xf45NNtu4TbX7BY3LNNly_Y8x5U8rPUmQP2xLcv2X5KM3n7iv0-4z_FjV8JMlkNT0mjOaJVjuiPz5s-YCjKiHeBU9hXR_9mBfTCw1ZE5nozd5zO61NIz2rNoW34ckU7PRQ7_afZmh4yxGg33CZCaHjNri8_f7-4En3-BeH0tNgIr40LkgjhvTKBtkwDOj8lSAjWNOgquRLBiDHO5VI57RDJWYkCnk5BVwgU8jdsr-1af8h4UVVKoyV0qDLK-crKYLy1pkAh6iBlxvJBALXryckpR8aijjtuJTopaShrElvdiy1jYmy1TOQcj9Q_J9mOdYlaO95Ahat7hasfU7iMHZJmDC9Y17giYl_xajJ2PGjLw8Ufx2KcxLQzA63vtlgHUZdG4KXx6W-Tco0fiRhDFZUqM1buqN1OL3ZL2vmPSBReoHeP9iNjJ6OC_tM4vfsf43TEniG4TNzBk2O2t1lt_XsEcBv7Ic7VO5o4RgQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbKVgguiHdTCjISV7fZxE6cA0ItalUhsUKISnuL_IQV2yRkd4X6C_q3mUmclBUVcNlD_NgkM_Z8kxl_Q8ibqVJgJ1XMiswLxqVTTCXKMOm1U2AglO_oiz_OsvML_mEu5jtkNpyFwbTKYU_sNmpbG_xGfgR6B9YUfuW75gfDqlEYXR1KaKhQWsG-7SjG7pDdBJmxJmT35HT26fOwN6dCdhW7sFgOy1M-D4fp0nx6FGR32Bi9wNwBMNV8y1h1nP7IgbqsV7fh0T_TKu9tqkZd_VTL5W826-wheRDAJj3uteMR2XHVY3K3Lz959YRcH9PvlF26lqEts7SvJk0BxlKAhXRhQyZRJzxae4r5YDV-tGUqSBVGIcvr5cJQPMiPuT7tiqrK0qbFEBAmVd8MW-EkQ_K2pbpnilZPycXZ6Zf35ywUZmBGJNmaOSGNj5Ep3nHpMZbqwSvKVay8lhZ8KJMDSpHSmDTmRhiAeDoGySeJEgUgiPQZmVR15fYIzYqCCzCRBnSJG1fo2EuntcwMzOHjOCLpIIHSBNZyLJ6xLLtQXA7eS_8uS5RbGeQWETaOanrWjn_0P0Hhjn2Rc7u7ULdfy7CEy6mMpQHEZj24xHiiSaWqMBr8erhXa5OI7KFqDH-wKm9UNiIHg7rc3vx6bIbVjSEbVbl6A30AjglAZAJmf95r13iTAD54VvA8IvmW3m09xXZLtfjWMYhn4PaDYYnI4aih__We9v_-HC_IfcCTPV3w9IBM1u3GvQTMttavwkL8BdEjRGo priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4tXSG48IYNLMhIiJu7eTlxjgWxWiGx4kClcopsxxbVdpOqD6HlisTvZiZxshQWAQcuVVTbE2cy9XzTGX8GeBEphX5ShbzInOCptIqrWBkunbYKHYRyLX3xu9PsZJq-nYnZHuh-L4zXIMaIi2bdZvLpgsqriZToyKvziEiLuhTqOEryqB82Xho9p8Q_-tn0ZUs7RH-PbWgX0jXYzwTi9RHsT0_fTz62RKoi4XmSzi6vhfT7634ndcd_tTT_RIuKc7wKov5aaXljWy_VxWe1WPzgxo5vw9deAV31ytl4u9Fj8-Unbsj_q6E7cMujYDbppNyFPVvfg-vduZgX9-HbhJ3xc7vi5GMr1p1yzRBeM4SrbF75CqfWqFjjGNWpNXQXrry14Shinz2fG0YEA1SDtFozVVdsuaLUFBV7Xw5bk5C-qLxiumOwVg9gevzmw-sT7g-M4EbE2YZbIY0LicHeptJRjtdhtJarUDktK4ztTI7oSUpjkjA1wiD01CFaZBwrUSCySR7CqG5qewAsK4pUoOs2aOOpsYUOnbRay8ygDBeGASS9GZTGs6nToR6Lsk0R5hhVdaosSeGlV3gAfBi17NhE_tD_FVnY0Je4wNsv8LWX_k2XkQylQSRZOQzVaaeVSlRhdBjnONeqigM4IAvpb7AucQnHZ8VPGcBhb7NXNz8fmnHVoVSSqm2zxT4IEwUiRYHSH3UmPkwSQVGaFWkeQL5j_DtPsdtSzz-1zOZZHEXo8AIYDz-Tv9LT438d8ARuIvLtiI2jQxhtVlv7FNHlRj_zy8N3UjuBdQ priority: 102 providerName: Unpaywall |
| Title | A k-mer-based method for the identification of phenotype-associated genomic biomarkers and predicting phenotypes of sequenced bacteria |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30346947 https://www.proquest.com/docview/2250632258 https://www.proquest.com/docview/2129529352 https://pubmed.ncbi.nlm.nih.gov/PMC6211763 https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006434&type=printable https://doaj.org/article/1808c065df0942738a3a9cb027cc7dd2 http://dx.doi.org/10.1371/journal.pcbi.1006434 |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: KQ8 dateStart: 20050101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: KQ8 dateStart: 20050601 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: ABDBF dateStart: 20050701 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: DIK dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: GX1 dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: RPM dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: BENPR dateStart: 20050601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: 7X7 dateStart: 20050601 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: 8FG dateStart: 20050601 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1553-7358 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: M48 dateStart: 20050601 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7tQwguiPcGlspIXF2leTqHFWphywppqxWiUjlFjmNDRTYpSaulv4C_zUxeUNEVXFIp9jixZ9z5JjOeAXg9khL1pLR5FBife0JLLh2puDCJlqggpKnTF1_Ogou592HhLw6gq9naLmC117SjelLzMhv--L59gxv-rK7aEI46ouFKJUvy-qOS9Q7hGHVVRMUcLr3er-D6IgraA3S3Ue4oqDqPP-U9zYpqHwb9O5Ty7iZfye2NzLI_9NT0AdxvASYbNxLxEA50_gjuNCUnt4_h55h9Y_xal5z0V8qaCtIMoStDKMiWaRs9VDOMFYZRDFhBH2q5bDmJVJTZ9XqpGB3ep_iesmIyT9mqJLcPBVL_JqtokC5gO2VJkx1aPoH59PzT2wveFmPgyneCNde-UMam7PDaE4b8pwYtoVDa0iQiRbtJhYhMhFDKtT3lK4R1iY3cdhzpR4ga3KdwlBe5PgEWRJHno1pUKD-e0lFiG6GTRAQKxzC2bYHbcSBWbaZyKpiRxbX7LUSLpVnLmPgWt3yzgPdUqyZTxz_6T4i5fV_Ks13fKMovcbtt45GwhUKUlho0g-kUk3RlpBK05fFd09Sx4IREo3tAFePfI84Vr8KC005c9je_6ptxR5ObRua62GAfhGA-ojAfR3_WSFf_kgg4vCDyQgvCHbnbmcVuS778WmcND9DUR2ViwbCX0P9ap-e3T_EF3EP82KQHHp3C0brc6JeI0dbJAA7DRYhXMX0_gOPx5N1kir-T89nVx0H93WNQb0y8N59djT__AjYIR1Y |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VItReEO8GChgJjm7zcuIcECqPaksfp1baW3AcG1Zsk3Szq2p_Af-G38hMXmVFBVx62UNie53M55lv4vEMwGtPKbSTyuVJZAUPpVFc-UpzaTOj0EAo26QvPj6JRmfh57EYr8HP_iwMhVX2OrFR1Hmp6Rv5LuIOrSn-ynfVBaeqUbS72pfQaGFxaJaX6LLVbw8-onzf-P7-p9MPI95VFeBa-NGcGyG1dSnNuQmlpY1Ai5Q-Vq6ymczRAdAxmlgptUZPXwuN_CRzcdq-r0SC5i_AcW_B7TBAXYLrJx4PDl4gZFMPjErx8DgIx91RvSD2djtk7FQ6m1BkAhKBcMUUNhUDKMPqtKyvY7t_Bm1uLIpKLS_VdPqbRdy_B3c7Ksv2WuzdhzVTPIA7bXHL5UP4sce-M35uZpwsZc7aWtUMSTJD0skmeRen1ECDlZZRtFlJn4S56jCDvSiH7PlEM0oTQJFEs5qpImfVjDaYKGT7qltNg_Sh4TnL2jzU6hGc3YiAHsN6URZmC1iUJKFAA6wRqaE2SeZaabJMRhrHsK7rQNBLINVdTnQqzTFNm42-GH2j9l2mJLe0k5sDfOhVtTlB_tH-PQl3aEsZvZsL5exr2imI1JOu1MgHc4sON52XUoFKdOb6Mc41z30Htgga_R_U6dWCcGC7h8v1t18Nt1F30IaQKky5wDZI9gTyPYGjP2nRNUwSqU0YJWHsQLyCu5WnWL1TTL41-ckj3_PQbDmwMyD0v97T078_x0vYGJ0eH6VHByeHz2ATmWubmNjbhvX5bGGeIzucZy-aJcngy03rgF_47nih |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIh4XxKs0UMBIcHQ37zgHhApl1VKoOFBpb8F2bFixTcJmV9X-Av4Tv46ZvMqKCrj0kkP8SJz57PkmHs8APPekRD0pXZ7GNuKhMJJLX2ourDISFYS0TfjiD8fxwUn4bhJNNuBnfxaG3Cr7NbFZqPNS0z_yEeIOtSlexch2bhEf98evqu-cMkjRTmufTqOFyJFZnaH5Vr883EdZv_D98dtPbw54l2GA68iPF9xEQluXQp6bUFjaFLRI7xPpSqtEjsaATlDdCqE1Wv060shVlItD8H0ZpagKA-z3ClxNgiAld8JkMhh7QSSa3GCUlocnQTjpju0FiTfqULJbaTUlLwUkBeGaWmyyB1C01VlZX8R8_3TgvLEsKrk6k7PZb9pxfBtudbSW7bU4vAMbprgL19pEl6t78GOPfWP81Mw5ac2ctXmrGRJmhgSUTfPOZ6mBCSstI8-zkn4Pc9nhB1tRPNnTqWYUMoC8iuY1k0XOqjltNpH79nmzmjrp3cRzptqY1PI-nFyKgLZgsygLsw0sTtMwQmWsEbWhNqlyrTBKiVhjH9Z1HQh6CWS6i49OaTpmWbPpl6Cd1H7LjOSWdXJzgA-tqjY-yD_qvybhDnUpundzo5x_ybrFIvOEKzRyw9yi8U1np2QgU61cP8F3zXPfgW2CRv-AOjufHA7s9HC5uPjZUIzrCG0OycKUS6yDxC9C7hdh7w9adA0viTQnjNMwcSBZw93aKNZLiunXJlZ57HseqjAHdgeE_td3evj3cTyF6zj7s_eHx0eP4CaS2DZGsbcDm4v50jxGorhQT5oZyeDzZS8BvwDCwHzk |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4tXSG48IYNLMhIiJu7eTlxjgWxWiGx4kClcopsxxbVdpOqD6HlisTvZiZxshQWAQcuVVTbE2cy9XzTGX8GeBEphX5ShbzInOCptIqrWBkunbYKHYRyLX3xu9PsZJq-nYnZHuh-L4zXIMaIi2bdZvLpgsqriZToyKvziEiLuhTqOEryqB82Xho9p8Q_-tn0ZUs7RH-PbWgX0jXYzwTi9RHsT0_fTz62RKoi4XmSzi6vhfT7634ndcd_tTT_RIuKc7wKov5aaXljWy_VxWe1WPzgxo5vw9deAV31ytl4u9Fj8-Unbsj_q6E7cMujYDbppNyFPVvfg-vduZgX9-HbhJ3xc7vi5GMr1p1yzRBeM4SrbF75CqfWqFjjGNWpNXQXrry14Shinz2fG0YEA1SDtFozVVdsuaLUFBV7Xw5bk5C-qLxiumOwVg9gevzmw-sT7g-M4EbE2YZbIY0LicHeptJRjtdhtJarUDktK4ztTI7oSUpjkjA1wiD01CFaZBwrUSCySR7CqG5qewAsK4pUoOs2aOOpsYUOnbRay8ygDBeGASS9GZTGs6nToR6Lsk0R5hhVdaosSeGlV3gAfBi17NhE_tD_FVnY0Je4wNsv8LWX_k2XkQylQSRZOQzVaaeVSlRhdBjnONeqigM4IAvpb7AucQnHZ8VPGcBhb7NXNz8fmnHVoVSSqm2zxT4IEwUiRYHSH3UmPkwSQVGaFWkeQL5j_DtPsdtSzz-1zOZZHEXo8AIYDz-Tv9LT438d8ARuIvLtiI2jQxhtVlv7FNHlRj_zy8N3UjuBdQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+k+-mer-based+method+for+the+identification+of+phenotype-associated+genomic+biomarkers+and+predicting+phenotypes+of+sequenced+bacteria&rft.jtitle=PLoS+computational+biology&rft.au=Aun%2C+Erki&rft.au=Brauer%2C+Age&rft.au=Kisand%2C+Veljo&rft.au=Tanel+Tenson&rft.date=2018-10-01&rft.pub=Public+Library+of+Science&rft.eissn=1553-7358&rft.volume=14&rft.issue=10&rft_id=info:doi/10.1371%2Fjournal.pcbi.1006434&rft.externalDocID=2250632258 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |