Prediction of Epstein-Barr Virus Status in Gastric Cancer Biopsy Specimens Using a Deep Learning Algorithm

Importance Epstein-Barr virus (EBV)–associated gastric cancer (EBV-GC) is 1 of 4 molecular subtypes of GC and is confirmed by an expensive molecular test, EBV-encoded small RNA in situ hybridization. EBV-GC has 2 histologic characteristics, lymphoid stroma and lace-like tumor pattern, but projecting...

Full description

Saved in:
Bibliographic Details
Published inJAMA Network Open Vol. 5; no. 10; p. e2236408
Main Authors Vuong, Trinh Thi Le, Song, Boram, Kwak, Jin T., Kim, Kyungeun
Format Journal Article
LanguageEnglish
Published Chicago American Medical Association (AMA) 07.10.2022
American Medical Association
Subjects
Online AccessGet full text
ISSN2574-3805
2574-3805
DOI10.1001/jamanetworkopen.2022.36408

Cover

Abstract Importance Epstein-Barr virus (EBV)–associated gastric cancer (EBV-GC) is 1 of 4 molecular subtypes of GC and is confirmed by an expensive molecular test, EBV-encoded small RNA in situ hybridization. EBV-GC has 2 histologic characteristics, lymphoid stroma and lace-like tumor pattern, but projecting EBV-GC at biopsy is difficult even for experienced pathologists. Objective To develop and validate a deep learning algorithm to predict EBV status from pathology images of GC biopsy. Design, Setting, and Participants This diagnostic study developed a deep learning classifier to predict EBV-GC using image patches of tissue microarray (TMA) and whole slide images (WSIs) of GC and applied it to GC biopsy specimens from GCs diagnosed at Kangbuk Samsung Hospital between 2011 and 2020. For a quantitative evaluation and EBV-GC prediction on biopsy specimens, the area of each class and the fraction in total tissue or tumor area were calculated. Data were analyzed from March 5, 2021, to February 10, 2022. Main Outcomes and Measures Evaluation metrics of predictive model performance were assessed on accuracy, recall, precision, F1 score, area under the receiver operating characteristic curve (AUC), and κ coefficient. Results This study included 137 184 image patches from 16 TMAs (708 tissue cores), 24 WSIs, and 286 biopsy images of GC. The classifier was able to classify EBV-GC image patches from TMAs and WSIs with 94.70% accuracy, 0.936 recall, 0.938 precision, 0.937 F1 score, and 0.909 κ coefficient. The classifier was used for predicting and measuring the area and fraction of EBV-GC on biopsy tissue specimens. A 10% cutoff value for the predicted fraction of EBV-GC to tissue (EBV-GC/tissue area) produced the best prediction results in EBV-GC biopsy specimens and showed the highest AUC value (0.8723; 95% CI, 0.7560-0.9501). That cutoff also obtained high sensitivity (0.895) and moderate specificity (0.745) compared with experienced pathologist sensitivity (0.842) and specificity (0.854) when using the presence of lymphoid stroma and a lace-like pattern as diagnostic criteria. On prediction maps, EBV-GCs with lace-like pattern and lymphoid stroma showed the same prediction results as EBV-GC, but cases lacking these histologic features revealed heterogeneous prediction results of EBV-GC and non–EBV-GC areas. Conclusions and Relevance This study showed the feasibility of EBV-GC prediction using a deep learning algorithm, even in biopsy samples. Use of such an image-based classifier before a confirmatory molecular test will reduce costs and tissue waste.
AbstractList This diagnostic study develops and validates a deep learning algorithm to predict Epstein-Barr virus status from pathology images of gastric cancer.
Epstein-Barr virus (EBV)-associated gastric cancer (EBV-GC) is 1 of 4 molecular subtypes of GC and is confirmed by an expensive molecular test, EBV-encoded small RNA in situ hybridization. EBV-GC has 2 histologic characteristics, lymphoid stroma and lace-like tumor pattern, but projecting EBV-GC at biopsy is difficult even for experienced pathologists.ImportanceEpstein-Barr virus (EBV)-associated gastric cancer (EBV-GC) is 1 of 4 molecular subtypes of GC and is confirmed by an expensive molecular test, EBV-encoded small RNA in situ hybridization. EBV-GC has 2 histologic characteristics, lymphoid stroma and lace-like tumor pattern, but projecting EBV-GC at biopsy is difficult even for experienced pathologists.To develop and validate a deep learning algorithm to predict EBV status from pathology images of GC biopsy.ObjectiveTo develop and validate a deep learning algorithm to predict EBV status from pathology images of GC biopsy.This diagnostic study developed a deep learning classifier to predict EBV-GC using image patches of tissue microarray (TMA) and whole slide images (WSIs) of GC and applied it to GC biopsy specimens from GCs diagnosed at Kangbuk Samsung Hospital between 2011 and 2020. For a quantitative evaluation and EBV-GC prediction on biopsy specimens, the area of each class and the fraction in total tissue or tumor area were calculated. Data were analyzed from March 5, 2021, to February 10, 2022.Design, Setting, and ParticipantsThis diagnostic study developed a deep learning classifier to predict EBV-GC using image patches of tissue microarray (TMA) and whole slide images (WSIs) of GC and applied it to GC biopsy specimens from GCs diagnosed at Kangbuk Samsung Hospital between 2011 and 2020. For a quantitative evaluation and EBV-GC prediction on biopsy specimens, the area of each class and the fraction in total tissue or tumor area were calculated. Data were analyzed from March 5, 2021, to February 10, 2022.Evaluation metrics of predictive model performance were assessed on accuracy, recall, precision, F1 score, area under the receiver operating characteristic curve (AUC), and κ coefficient.Main Outcomes and MeasuresEvaluation metrics of predictive model performance were assessed on accuracy, recall, precision, F1 score, area under the receiver operating characteristic curve (AUC), and κ coefficient.This study included 137 184 image patches from 16 TMAs (708 tissue cores), 24 WSIs, and 286 biopsy images of GC. The classifier was able to classify EBV-GC image patches from TMAs and WSIs with 94.70% accuracy, 0.936 recall, 0.938 precision, 0.937 F1 score, and 0.909 κ coefficient. The classifier was used for predicting and measuring the area and fraction of EBV-GC on biopsy tissue specimens. A 10% cutoff value for the predicted fraction of EBV-GC to tissue (EBV-GC/tissue area) produced the best prediction results in EBV-GC biopsy specimens and showed the highest AUC value (0.8723; 95% CI, 0.7560-0.9501). That cutoff also obtained high sensitivity (0.895) and moderate specificity (0.745) compared with experienced pathologist sensitivity (0.842) and specificity (0.854) when using the presence of lymphoid stroma and a lace-like pattern as diagnostic criteria. On prediction maps, EBV-GCs with lace-like pattern and lymphoid stroma showed the same prediction results as EBV-GC, but cases lacking these histologic features revealed heterogeneous prediction results of EBV-GC and non-EBV-GC areas.ResultsThis study included 137 184 image patches from 16 TMAs (708 tissue cores), 24 WSIs, and 286 biopsy images of GC. The classifier was able to classify EBV-GC image patches from TMAs and WSIs with 94.70% accuracy, 0.936 recall, 0.938 precision, 0.937 F1 score, and 0.909 κ coefficient. The classifier was used for predicting and measuring the area and fraction of EBV-GC on biopsy tissue specimens. A 10% cutoff value for the predicted fraction of EBV-GC to tissue (EBV-GC/tissue area) produced the best prediction results in EBV-GC biopsy specimens and showed the highest AUC value (0.8723; 95% CI, 0.7560-0.9501). That cutoff also obtained high sensitivity (0.895) and moderate specificity (0.745) compared with experienced pathologist sensitivity (0.842) and specificity (0.854) when using the presence of lymphoid stroma and a lace-like pattern as diagnostic criteria. On prediction maps, EBV-GCs with lace-like pattern and lymphoid stroma showed the same prediction results as EBV-GC, but cases lacking these histologic features revealed heterogeneous prediction results of EBV-GC and non-EBV-GC areas.This study showed the feasibility of EBV-GC prediction using a deep learning algorithm, even in biopsy samples. Use of such an image-based classifier before a confirmatory molecular test will reduce costs and tissue waste.Conclusions and RelevanceThis study showed the feasibility of EBV-GC prediction using a deep learning algorithm, even in biopsy samples. Use of such an image-based classifier before a confirmatory molecular test will reduce costs and tissue waste.
Importance Epstein-Barr virus (EBV)–associated gastric cancer (EBV-GC) is 1 of 4 molecular subtypes of GC and is confirmed by an expensive molecular test, EBV-encoded small RNA in situ hybridization. EBV-GC has 2 histologic characteristics, lymphoid stroma and lace-like tumor pattern, but projecting EBV-GC at biopsy is difficult even for experienced pathologists. Objective To develop and validate a deep learning algorithm to predict EBV status from pathology images of GC biopsy. Design, Setting, and Participants This diagnostic study developed a deep learning classifier to predict EBV-GC using image patches of tissue microarray (TMA) and whole slide images (WSIs) of GC and applied it to GC biopsy specimens from GCs diagnosed at Kangbuk Samsung Hospital between 2011 and 2020. For a quantitative evaluation and EBV-GC prediction on biopsy specimens, the area of each class and the fraction in total tissue or tumor area were calculated. Data were analyzed from March 5, 2021, to February 10, 2022. Main Outcomes and Measures Evaluation metrics of predictive model performance were assessed on accuracy, recall, precision, F1 score, area under the receiver operating characteristic curve (AUC), and κ coefficient. Results This study included 137 184 image patches from 16 TMAs (708 tissue cores), 24 WSIs, and 286 biopsy images of GC. The classifier was able to classify EBV-GC image patches from TMAs and WSIs with 94.70% accuracy, 0.936 recall, 0.938 precision, 0.937 F1 score, and 0.909 κ coefficient. The classifier was used for predicting and measuring the area and fraction of EBV-GC on biopsy tissue specimens. A 10% cutoff value for the predicted fraction of EBV-GC to tissue (EBV-GC/tissue area) produced the best prediction results in EBV-GC biopsy specimens and showed the highest AUC value (0.8723; 95% CI, 0.7560-0.9501). That cutoff also obtained high sensitivity (0.895) and moderate specificity (0.745) compared with experienced pathologist sensitivity (0.842) and specificity (0.854) when using the presence of lymphoid stroma and a lace-like pattern as diagnostic criteria. On prediction maps, EBV-GCs with lace-like pattern and lymphoid stroma showed the same prediction results as EBV-GC, but cases lacking these histologic features revealed heterogeneous prediction results of EBV-GC and non–EBV-GC areas. Conclusions and Relevance This study showed the feasibility of EBV-GC prediction using a deep learning algorithm, even in biopsy samples. Use of such an image-based classifier before a confirmatory molecular test will reduce costs and tissue waste.
Author Kwak, Jin T.
Song, Boram
Vuong, Trinh Thi Le
Kim, Kyungeun
AuthorAffiliation 2 Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
1 School of Electrical Engineering, Korea University, Seoul, Republic of Korea
AuthorAffiliation_xml – name: 2 Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
– name: 1 School of Electrical Engineering, Korea University, Seoul, Republic of Korea
Author_xml – sequence: 1
  orcidid: 0000-0002-0775-2884
  fullname: Vuong, Trinh Thi Le
– sequence: 2
  orcidid: 0000-0003-1598-8552
  fullname: Song, Boram
– sequence: 3
  fullname: Kwak, Jin T.
– sequence: 4
  fullname: Kim, Kyungeun
BackLink https://cir.nii.ac.jp/crid/1870021790864957056$$DView record in CiNii
BookMark eNqVks1uEzEUhS1UREvpO1jAgk2C_8cDEqJNS0GKBFIpW8v13EkdZuzBnqHK29chlYCsYONry-eeI3_XT9FBiAEQek7JnBJCX69tbwOMdzF9jwOEOSOMzbkSRD9CR0xWYsY1kQd_7A_RSc5rQggjlNdKPkGHXDEi65ofofWXBI13o48BxxZfDHkEH2ZnNiX8zacp46vRjqX4gC9tHpN3eGGDg4TPfBzyBl8N4HwPIePr7MMKW3wOMOAl2BS259NuFZMfb_tn6HFruwwnD_UYXX-4-Lr4OFt-vvy0OF3OnGRqnDltiWqBtgwclw1rnSCthRq4UA3jWrSOV0I40JrqhipopFBU3bRUaO5axo_R253vFAa7ubNdZ4bke5s2hhKzhWj2IJotRPMLYul-t-seppseGgdhTPa3Q7Te_H0T_K1ZxZ-mlqLiTBSDVw8GKf6YII-m99lB15XEOGXDKsZp0SpZpC_2pOs4pVDgFBVXWnNSkaJ6v1O5FHNO0Brny0zKxEq-7_7tUW_2LP6LyMtdc_C-RG9XqqvynWhVE61ELSsiFb8HvVbRSg
CitedBy_id crossref_primary_10_1186_s12935_025_03756_4
crossref_primary_10_1016_j_media_2024_103421
crossref_primary_10_1186_s12885_024_13260_z
crossref_primary_10_1186_s12967_024_06034_5
crossref_primary_10_1016_j_compbiomed_2024_109465
crossref_primary_10_1038_s41698_023_00450_4
crossref_primary_10_1016_j_labinv_2024_102043
crossref_primary_10_3389_fonc_2024_1437252
crossref_primary_10_1111_his_15153
Cites_doi 10.1158/1078-0432.CCR-0670-3
10.1109/CVPR.2018.00474
10.1111/jgh.2009.24.issue-3
10.1016/S2589-7500(21)00133-3
10.1016/j.cgh.2015.04.015
10.1038/s41598-021-02168-4
10.1038/s41598-020-58467-9
10.1038/s41467-020-18147-8
10.1016/j.compmedimag.2017.06.001
10.1109/CVPR.2016.90
10.1038/s41598-018-30535-1
10.1016/j.media.2018.09.005
10.1007/s10120-021-01215-3
10.3748/wjg.v20.i28.9621
10.3390/cancers13236002
10.1111/den.v32.3
10.1001/jama.2013.281053
10.1097/MD.0000000000000792
10.1007/s10120-015-0565-1
10.1038/s41598-020-64156-4
10.1007/s00464-015-4534-x
10.1186/s12885-020-07013-x
10.1007/s10120-019-00963-7
10.3748/wjg.v27.i44.7687
10.1038/nature13480
10.1007/s00535-019-01562-0
10.1038/srep45938
10.1186/s13058-020-1248-3
10.1038/s41591-019-0462-y
10.1111/den.2018.30.issue-5
10.3892/ijo.2015.2856
ContentType Journal Article
Copyright 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright 2022 Vuong TTL et al. .
Copyright_xml – notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright 2022 Vuong TTL et al. .
DBID RYH
AAYXX
CITATION
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOI 10.1001/jamanetworkopen.2022.36408
DatabaseName CiNii Complete
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
ProQuest Health & Medical Research Collection
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Prediction of Epstein-Barr Virus Status in Gastric Cancer Biopsy Specimens
EISSN 2574-3805
ExternalDocumentID 10.1001/jamanetworkopen.2022.36408
PMC9547324
10_1001_jamanetworkopen_2022_36408
GroupedDBID 0R~
53G
7X7
8FI
8FJ
ABUWG
ADBBV
ADPDF
AFKRA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMJDE
BCNDV
BENPR
CCPQU
EBS
EMOBN
FYUFA
GROUPED_DOAJ
H13
HMCUK
M~E
OK1
OVD
OVEED
PHGZM
PHGZT
PIMPY
RAJ
RYH
TEORI
UKHRP
W2D
AAYXX
CITATION
PUEGO
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
EJD
UNPAY
ID FETCH-LOGICAL-c526t-c8a06fe1f2ec35d2fc40fae9e346d2384fc3744ce8818d16ed54616bf1483cf23
IEDL.DBID UNPAY
ISSN 2574-3805
IngestDate Sun Oct 26 04:11:51 EDT 2025
Tue Sep 30 17:18:17 EDT 2025
Fri Sep 05 10:29:03 EDT 2025
Tue Oct 07 07:08:38 EDT 2025
Wed Oct 01 05:02:16 EDT 2025
Thu Apr 24 23:08:08 EDT 2025
Thu Jun 26 23:11:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License This is an open access article distributed under the terms of the CC-BY License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c526t-c8a06fe1f2ec35d2fc40fae9e346d2384fc3744ce8818d16ed54616bf1483cf23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1598-8552
0000-0002-0775-2884
OpenAccessLink https://proxy.k.utb.cz/login?url=https://jamanetwork.com/journals/jamanetworkopen/articlepdf/2797176/vuong_2022_oi_221033_1664506598.33829.pdf
PMID 36205993
PQID 2736883070
PQPubID 5319538
ParticipantIDs unpaywall_primary_10_1001_jamanetworkopen_2022_36408
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9547324
proquest_miscellaneous_2723154765
proquest_journals_2736883070
crossref_citationtrail_10_1001_jamanetworkopen_2022_36408
crossref_primary_10_1001_jamanetworkopen_2022_36408
nii_cinii_1870021790864957056
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-07
PublicationDateYYYYMMDD 2022-10-07
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-07
  day: 07
PublicationDecade 2020
PublicationPlace Chicago
PublicationPlace_xml – name: Chicago
PublicationTitle JAMA Network Open
PublicationYear 2022
Publisher American Medical Association (AMA)
American Medical Association
Publisher_xml – name: American Medical Association (AMA)
– name: American Medical Association
References Lim (zoi221033r15) 2015; 13
Kather (zoi221033r19) 2019; 25
Qiao (zoi221033r7) 2019; 24
Murai (zoi221033r11) 2018; 30
Arvaniti (zoi221033r28) 2018; 8
zoi221033r34
Xu (zoi221033r35) 2016; 30
Cancer Genome Atlas Research Network (zoi221033r2) 2014; 513
Tokunaga (zoi221033r8) 1998; 7
Muti (zoi221033r26) 2021; 3
Thompson (zoi221033r1) 2004; 10
Hur (zoi221033r36) 2014; 20
Park (zoi221033r10) 2016; 19
Nir (zoi221033r29) 2018; 50
Osumi (zoi221033r3) 2020; 32
Hinata (zoi221033r24) 2021; 11
Osumi (zoi221033r14) 2019; 54
Rawat (zoi221033r16) 2020; 10
Lee (zoi221033r4) 2009; 24
Vandenberghe (zoi221033r17) 2017; 7
Song (zoi221033r20) 2020; 11
Tavakoli (zoi221033r5) 2020; 20
Saito (zoi221033r12) 2021; 24
World Medical Association (zoi221033r27) 2013; 310
zoi221033r33
zoi221033r32
zoi221033r31
Shinozaki-Ushiku (zoi221033r6) 2015; 46
zoi221033r30
Sharma (zoi221033r21) 2017; 61
Osumi (zoi221033r9) 2019; 22
Iizuka (zoi221033r22) 2020; 10
Jaber (zoi221033r18) 2020; 22
Jang (zoi221033r23) 2021; 27
Zhang (zoi221033r25) 2021; 13
Chen (zoi221033r13) 2015; 94
References_xml – volume: 10
  start-page: 803
  issue: 3
  year: 2004
  ident: zoi221033r1
  article-title: Epstein-Barr virus and cancer.
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-0670-3
– ident: zoi221033r31
  doi: 10.1109/CVPR.2018.00474
– volume: 24
  start-page: 354
  issue: 3
  year: 2009
  ident: zoi221033r4
  article-title: Clinicopathological and molecular characteristics of Epstein-Barr virus-associated gastric carcinoma: a meta-analysis.
  publication-title: J Gastroenterol Hepatol
  doi: 10.1111/jgh.2009.24.issue-3
– volume: 3
  start-page: e654
  issue: 10
  year: 2021
  ident: zoi221033r26
  article-title: Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study.
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(21)00133-3
– volume: 13
  start-page: 1738
  issue: 10
  year: 2015
  ident: zoi221033r15
  article-title: Features of gastric carcinoma with lymphoid stroma associated with Epstein-Barr virus.
  publication-title: Clin Gastroenterol Hepatol
  doi: 10.1016/j.cgh.2015.04.015
– volume: 11
  start-page: 22636
  issue: 1
  year: 2021
  ident: zoi221033r24
  article-title: Detecting immunotherapy-sensitive subtype in gastric cancer using histologic image-based deep learning.
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-02168-4
– volume: 10
  start-page: 1504
  issue: 1
  year: 2020
  ident: zoi221033r22
  article-title: Deep learning models for histopathological classification of gastric and colonic epithelial tumours.
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-58467-9
– volume: 11
  start-page: 4294
  issue: 1
  year: 2020
  ident: zoi221033r20
  article-title: Clinically applicable histopathological diagnosis system for gastric cancer detection using deep learning.
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-18147-8
– ident: zoi221033r33
– volume: 61
  start-page: 2
  year: 2017
  ident: zoi221033r21
  article-title: Deep convolutional neural networks for automatic classification of gastric carcinoma using whole slide images in digital histopathology.
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2017.06.001
– ident: zoi221033r30
  doi: 10.1109/CVPR.2016.90
– volume: 8
  start-page: 12054
  issue: 1
  year: 2018
  ident: zoi221033r28
  article-title: Automated Gleason grading of prostate cancer tissue microarrays via deep learning.
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-30535-1
– volume: 50
  start-page: 167
  year: 2018
  ident: zoi221033r29
  article-title: Automatic grading of prostate cancer in digitized histopathology images: Learning from multiple experts.
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2018.09.005
– volume: 24
  start-page: 983
  issue: 5
  year: 2021
  ident: zoi221033r12
  article-title: Landscape of EBV-positive gastric cancer.
  publication-title: Gastric Cancer
  doi: 10.1007/s10120-021-01215-3
– volume: 20
  start-page: 9621
  issue: 28
  year: 2014
  ident: zoi221033r36
  article-title: Undiagnosed Borrmann type II gastric cancer due to necrosis and regenerative epithelium.
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v20.i28.9621
– volume: 13
  start-page: 6002
  issue: 23
  year: 2021
  ident: zoi221033r25
  article-title: Deep learning predicts EBV status in gastric cancer based on spatial patterns of lymphocyte infiltration.
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers13236002
– volume: 32
  start-page: 316
  issue: 3
  year: 2020
  ident: zoi221033r3
  article-title: Clinical impact of Epstein-Barr virus status on the incidence of lymph node metastasis in early gastric cancer.
  publication-title: Dig Endosc
  doi: 10.1111/den.v32.3
– volume: 310
  start-page: 2191
  issue: 20
  year: 2013
  ident: zoi221033r27
  article-title: World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects.
  publication-title: JAMA
  doi: 10.1001/jama.2013.281053
– volume: 94
  issue: 20
  year: 2015
  ident: zoi221033r13
  article-title: Epstein-Barr virus infection and gastric cancer: a systematic review.
  publication-title: Medicine (Baltimore)
  doi: 10.1097/MD.0000000000000792
– volume: 24
  start-page: 1092
  issue: 3
  year: 2019
  ident: zoi221033r7
  article-title: Clinicopathological features of Epstein-Barr virus-associated gastric carcinoma: a systematic review and meta-analysis.
  publication-title: J BUON
– ident: zoi221033r34
– volume: 19
  start-page: 1041
  issue: 4
  year: 2016
  ident: zoi221033r10
  article-title: Epstein-Barr virus positivity, not mismatch repair-deficiency, is a favorable risk factor for lymph node metastasis in submucosa-invasive early gastric cancer.
  publication-title: Gastric Cancer
  doi: 10.1007/s10120-015-0565-1
– ident: zoi221033r32
– volume: 10
  start-page: 7275
  issue: 1
  year: 2020
  ident: zoi221033r16
  article-title: Deep learned tissue “fingerprints” classify breast cancers by ER/PR/HER2 status from H&E images.
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-64156-4
– volume: 30
  start-page: 2716
  issue: 7
  year: 2016
  ident: zoi221033r35
  article-title: Risk factors for under-diagnosis of gastric intraepithelial neoplasia and early gastric carcinoma in endoscopic forceps biopsy in comparison with endoscopic submucosal dissection in Chinese patients.
  publication-title: Surg Endosc
  doi: 10.1007/s00464-015-4534-x
– volume: 20
  start-page: 493
  issue: 1
  year: 2020
  ident: zoi221033r5
  article-title: Association between Epstein-Barr virus infection and gastric cancer: a systematic review and meta-analysis.
  publication-title: BMC Cancer
  doi: 10.1186/s12885-020-07013-x
– volume: 22
  start-page: 1176
  issue: 6
  year: 2019
  ident: zoi221033r9
  article-title: Risk stratification for lymph node metastasis using Epstein-Barr virus status in submucosal invasive (pT1) gastric cancer without lymphovascular invasion: a multicenter observational study.
  publication-title: Gastric Cancer
  doi: 10.1007/s10120-019-00963-7
– volume: 27
  start-page: 7687
  issue: 44
  year: 2021
  ident: zoi221033r23
  article-title: Prediction of genetic alterations from gastric cancer histopathology images using a fully automated deep learning approach.
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v27.i44.7687
– volume: 513
  start-page: 202
  issue: 7517
  year: 2014
  ident: zoi221033r2
  article-title: Comprehensive molecular characterization of gastric adenocarcinoma.
  publication-title: Nature
  doi: 10.1038/nature13480
– volume: 54
  start-page: 774
  issue: 9
  year: 2019
  ident: zoi221033r14
  article-title: Epstein-Barr virus status is a promising biomarker for endoscopic resection in early gastric cancer: proposal of a novel therapeutic strategy.
  publication-title: J Gastroenterol
  doi: 10.1007/s00535-019-01562-0
– volume: 7
  start-page: 45938
  year: 2017
  ident: zoi221033r17
  article-title: Relevance of deep learning to facilitate the diagnosis of HER2 status in breast cancer.
  publication-title: Sci Rep
  doi: 10.1038/srep45938
– volume: 22
  start-page: 12
  issue: 1
  year: 2020
  ident: zoi221033r18
  article-title: A deep learning image-based intrinsic molecular subtype classifier of breast tumors reveals tumor heterogeneity that may affect survival.
  publication-title: Breast Cancer Res
  doi: 10.1186/s13058-020-1248-3
– volume: 7
  start-page: 449
  issue: 5
  year: 1998
  ident: zoi221033r8
  article-title: Epstein-Barr virus involvement in gastric cancer: biomarker for lymph node metastasis.
  publication-title: Cancer Epidemiol Biomarkers Prev
– volume: 25
  start-page: 1054
  issue: 7
  year: 2019
  ident: zoi221033r19
  article-title: Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer.
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0462-y
– volume: 30
  start-page: 667
  issue: 5
  year: 2018
  ident: zoi221033r11
  article-title: Epstein-Barr virus positivity among surgically resected intramucosal gastric cancer.
  publication-title: Dig Endosc
  doi: 10.1111/den.2018.30.issue-5
– volume: 46
  start-page: 1421
  issue: 4
  year: 2015
  ident: zoi221033r6
  article-title: Update on Epstein-Barr virus and gastric cancer (review).
  publication-title: Int J Oncol
  doi: 10.3892/ijo.2015.2856
SSID ssj0002013965
Score 2.2831528
Snippet Importance Epstein-Barr virus (EBV)–associated gastric cancer (EBV-GC) is 1 of 4 molecular subtypes of GC and is confirmed by an expensive molecular test,...
Epstein-Barr virus (EBV)-associated gastric cancer (EBV-GC) is 1 of 4 molecular subtypes of GC and is confirmed by an expensive molecular test, EBV-encoded...
This diagnostic study develops and validates a deep learning algorithm to predict Epstein-Barr virus status from pathology images of gastric cancer.
SourceID unpaywall
pubmedcentral
proquest
crossref
nii
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2236408
SubjectTerms Algorithms
Biopsy
Deep Learning
Epstein-Barr virus
Epstein-Barr Virus Infections
Gastric cancer
Herpesvirus 4, Human
Humans
Online Only
Original Investigation
Pathology and Laboratory Medicine
RNA
Stomach Neoplasms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb5RAFH5ptwe9GI0a0daMiVd0GWYGOBjTrVsbEzeNsaY3MsyPFrMFZHdj-t_7HrDY9WCUAxwGAsx7M-99zOP7AF4XTmQFtoTKKxmKyNgwVWaKmMfzyE0LaTpJls8LdXYhPl3Kyz1YbP-FobLK7ZzYTdS2NvSN_C2GWZWm5KHvmx8hqUbR6upWQkMP0gr2XUcxtg8HnJixJnAwmy_Ov4xfXThlPEqO7KM9_VDVV1yTXhUiRs7fxEqQ3uSdSLVfleVOEvpnCeW9TdXo2596ubwTn04fwoMhsWTHvSc8gj1XPYbv5y0txFDns9qzebMicctwptuWfSvbzYpRsomHsmIfNUl4GHZCftCyWVk3q1vW6dPfINZlXXEB0-yDcw0baFmv2PHyCntpfX3zBC5O519PzsJBXSE0kqt1aFI9Vd5FnjsTS8u9EVOvXeZioSwGcuFNnAhhXIox3UbKWSlUpAqPACo2nsdPYVLVlXsGLLO4FTqxnGtho6yQsXOIK1Odae2MCiDb9mRuBupxUsBY5j1pMkKQXSvkZIW8s0IA8Xht0xNw_NNVR2gwvBntI5yTCHplCN8QDyaY8wVwuDVlPgzaVf7bxQJ4NTbjcKM1FLxRvaFzMCGWIlEygGTHBcanI8Lu3ZaqvO6IuzMSeuYiADE6y3-80_O_P_MLuE_ndoWGySFM1u3GHWHCtC5eDqPgF5TwGqs
  priority: 102
  providerName: ProQuest
Title Prediction of Epstein-Barr Virus Status in Gastric Cancer Biopsy Specimens Using a Deep Learning Algorithm
URI https://cir.nii.ac.jp/crid/1870021790864957056
https://www.proquest.com/docview/2736883070
https://www.proquest.com/docview/2723154765
https://pubmed.ncbi.nlm.nih.gov/PMC9547324
https://jamanetwork.com/journals/jamanetworkopen/articlepdf/2797176/vuong_2022_oi_221033_1664506598.33829.pdf
UnpaywallVersion publishedVersion
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2574-3805
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002013965
  issn: 2574-3805
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 2574-3805
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002013965
  issn: 2574-3805
  databaseCode: OVEED
  dateStart: 20180601
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 2574-3805
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002013965
  issn: 2574-3805
  databaseCode: 7X7
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2574-3805
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002013965
  issn: 2574-3805
  databaseCode: BENPR
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV3Pj9JAGJ0scNCLP6LG6i4ZE68t7XRm2h5hZd2YSIiKwVMznc6wVbZtCtWsf4R_s9-0hQAn9SAHCAzTab9-TN_rfLyH0OtE0SiBFptrzmzqydQOuXSB82jiKTdhsrFkeT_j1wv6bsmWZ-h2918YowaUtwXQzTzdRXRz2GB8pUZdYMtUj0gQASnho-91ka9iYPMkLrKYAJnx_djjnDKzeBg6wMZI5ECPHhrAB9zto8FiNh9_MQZ0LKC2H7psL0zqnQ7pmC07PqfGivLgItbLs-wIn55WV96r81Lc_RDr9cGl6-oh-rU76LZi5ZtTbxNH_jzRg_xvUXmEHnQgGI_bzTxGZyp_gr7OK7NoZBIFFxpPy40x4rQnoqrw56yqN9gAY3jJcvxWGLsRiS9NzlZ4khXl5g5_LJU0ZgUb3BRCYIHfKFXiTkJ2hcfrVVFl25vbp2hxNf10eW13ThC2ZIRvbRkKl2vlaaKkz1KiJXW1UJHyKU8BdFAt_YBSqULAH6nHVcoo93iigez5UhP_GernRa6eIxyl8EhEkBIiaOpFCfOVAg4cikgIJbmFot2pjWUnk27cOtZxK_AMdOk45m1om7SwkL_vW7ZiIX_U6wIyCAYzzx7Mn4YmRkA1gbsGgE8tdL7LrXh34mNAnTwMzYRtoVf7ZpgazHoPDFTU5jsA3hkNOLNQcJST-70z4uLHLXl204iMR8aUmlAL0X32_sUxvfi3bi_RffOmKZYMzlF_W9XqAkDfNhmiXrAMhmgwmc7mH4bNrZNh9_P9DespX8k
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKeygXBAJESgtGgmNg49hOcqhQt92ype2qghb1FhzbaYOWJCS7qvbP8duYSbKhywHBoTkkB8fKx4w98-LJe4S8TiyPEmhxZSqFyz1t3FDqAWCelHl2kAjdSLKcTuT4gn-8FJdr5OfyXxgsq1zOic1EbQqN38jfQZiVYYge-r784aJqFK6uLiU0VCetYHYbirHux45ju7gBCFfvHh2Avd8wdjg63x-7ncqAqwWTM1eHaiBT66XMal8Ylmo-SJWNrM-lgYDGU-0HnGsbQmwznrRGcOnJJAUg4esUiQ8gBGxwn0cA_jaGo8nZp_4rD8MMS4qe7bSlO8rbCm_UxwKEythbX3LUt7wVGe_lWbaS9P5Zsrk5z0u1uFHT6a14ePiQPOgSWbrXet4jsmbzx-TbWYULP2hsWqR0VNYopukOVVXRL1k1rykmt3DIcvpBoWSIpvvodxUdZkVZL-jn0moUHKhpU8xAFT2wtqQdDewV3ZtegVVm19-fkIs7ec9PyXpe5PYZoZGBLVGBYUxx40WJ8K0FHBuqSCmrpUOi5ZuMdUd1joob07glaQbIs2qFGK0QN1ZwiN_3LVvCj3_qtQMGg4vh3oM5EKFeBHAR8GcAOaZDtpemjLtJoo5_u7RDXvXNMLxxzQYuVMzxHEjABQ-kcEiw4gL93SFB-GpLnl03ROERCksz7hDeO8t_PNPW3-_5Jdkcn5-exCdHk-Pn5D72a4ocg22yPqvmdgeStVnyohsRlHy960H4Cxs-WD0
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV3Pb9MwFLa27gAXfggQYRsyEtekiWM7ybEbGxMS0yQoGqfIcewu0CVR2gyNP4K_mfeStGp7Ag700KpxHScvL873ya_fR8jbzPAkgxZXWilcHujcjaX2gfNYFhg_E7qzZPl4KS-m_MO1uN4jt6v_wqAaUNkXQHfz9BDRxWYD-kqNh8DWuR2zKAFSIsd3bVXOUmDzLK2KlAGZCcM0kJILXDyMPWBjLPGgxz45gA3SH5GD6eXV5Csa0ImIu2Hsi7UwabA7pId79kLJ0Ypy4yG2XxbFFj7dra580Ja1uv-h5vONR9f5Y_JrddJ9xcp3r11mnv65owf536LyhDwaQDCd9Lt5SvZM-Yx8u2pw0QgThVaWntULNOJ0T1TT0C9F0y4oAmP4KEr6XqHdiKanmLMNPSmqenFPP9VGo1nBgnaFEFTRd8bUdJCQndHJfFY1xfLm9jmZnp99Pr1wBycIVwsml66OlS-tCSwzOhQ5s5r7VpnEhFzmADq41WHEuTYx4I88kCYXXAYys0D2Qm1Z-IKMyqo0LwlNcnhlKsoZUzwPkkyExgAHjlWilNHSIcnq0qZ6kElHt4552gs8A13ajnkf2i4tHBKu-9a9WMgf9TqGDILB8D2A-RNpYgJUE7hrBPjUIUer3EpXFz4F1CnjGCdsh7xZN8PUgOs9MFDV4m8AvAseSeGQaCsn10eH4uLbLWVx04mMJ2hKzbhD-Dp7_-KcXv1bt0PyEL90xZLRERktm9YcA-hbZq-HW_U3mhdcUw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Epstein-Barr+Virus+Status+in+Gastric+Cancer+Biopsy+Specimens+Using+a+Deep+Learning+Algorithm&rft.jtitle=JAMA+network+open&rft.au=Vuong%2C+Trinh+Thi+Le&rft.au=Song%2C+Boram&rft.au=Kwak%2C+Jin+T&rft.au=Kim%2C+Kyungeun&rft.date=2022-10-07&rft.issn=2574-3805&rft.eissn=2574-3805&rft.volume=5&rft.issue=10&rft.spage=e2236408&rft_id=info:doi/10.1001%2Fjamanetworkopen.2022.36408&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2574-3805&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2574-3805&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2574-3805&client=summon