Prediction of Epstein-Barr Virus Status in Gastric Cancer Biopsy Specimens Using a Deep Learning Algorithm
Importance Epstein-Barr virus (EBV)–associated gastric cancer (EBV-GC) is 1 of 4 molecular subtypes of GC and is confirmed by an expensive molecular test, EBV-encoded small RNA in situ hybridization. EBV-GC has 2 histologic characteristics, lymphoid stroma and lace-like tumor pattern, but projecting...
Saved in:
| Published in | JAMA Network Open Vol. 5; no. 10; p. e2236408 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Chicago
American Medical Association (AMA)
07.10.2022
American Medical Association |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2574-3805 2574-3805 |
| DOI | 10.1001/jamanetworkopen.2022.36408 |
Cover
| Abstract | Importance Epstein-Barr virus (EBV)–associated gastric cancer (EBV-GC) is 1 of 4 molecular subtypes of GC and is confirmed by an expensive molecular test, EBV-encoded small RNA in situ hybridization. EBV-GC has 2 histologic characteristics, lymphoid stroma and lace-like tumor pattern, but projecting EBV-GC at biopsy is difficult even for experienced pathologists. Objective To develop and validate a deep learning algorithm to predict EBV status from pathology images of GC biopsy. Design, Setting, and Participants This diagnostic study developed a deep learning classifier to predict EBV-GC using image patches of tissue microarray (TMA) and whole slide images (WSIs) of GC and applied it to GC biopsy specimens from GCs diagnosed at Kangbuk Samsung Hospital between 2011 and 2020. For a quantitative evaluation and EBV-GC prediction on biopsy specimens, the area of each class and the fraction in total tissue or tumor area were calculated. Data were analyzed from March 5, 2021, to February 10, 2022. Main Outcomes and Measures Evaluation metrics of predictive model performance were assessed on accuracy, recall, precision, F1 score, area under the receiver operating characteristic curve (AUC), and κ coefficient. Results This study included 137 184 image patches from 16 TMAs (708 tissue cores), 24 WSIs, and 286 biopsy images of GC. The classifier was able to classify EBV-GC image patches from TMAs and WSIs with 94.70% accuracy, 0.936 recall, 0.938 precision, 0.937 F1 score, and 0.909 κ coefficient. The classifier was used for predicting and measuring the area and fraction of EBV-GC on biopsy tissue specimens. A 10% cutoff value for the predicted fraction of EBV-GC to tissue (EBV-GC/tissue area) produced the best prediction results in EBV-GC biopsy specimens and showed the highest AUC value (0.8723; 95% CI, 0.7560-0.9501). That cutoff also obtained high sensitivity (0.895) and moderate specificity (0.745) compared with experienced pathologist sensitivity (0.842) and specificity (0.854) when using the presence of lymphoid stroma and a lace-like pattern as diagnostic criteria. On prediction maps, EBV-GCs with lace-like pattern and lymphoid stroma showed the same prediction results as EBV-GC, but cases lacking these histologic features revealed heterogeneous prediction results of EBV-GC and non–EBV-GC areas. Conclusions and Relevance This study showed the feasibility of EBV-GC prediction using a deep learning algorithm, even in biopsy samples. Use of such an image-based classifier before a confirmatory molecular test will reduce costs and tissue waste. |
|---|---|
| AbstractList | This diagnostic study develops and validates a deep learning algorithm to predict Epstein-Barr virus status from pathology images of gastric cancer. Epstein-Barr virus (EBV)-associated gastric cancer (EBV-GC) is 1 of 4 molecular subtypes of GC and is confirmed by an expensive molecular test, EBV-encoded small RNA in situ hybridization. EBV-GC has 2 histologic characteristics, lymphoid stroma and lace-like tumor pattern, but projecting EBV-GC at biopsy is difficult even for experienced pathologists.ImportanceEpstein-Barr virus (EBV)-associated gastric cancer (EBV-GC) is 1 of 4 molecular subtypes of GC and is confirmed by an expensive molecular test, EBV-encoded small RNA in situ hybridization. EBV-GC has 2 histologic characteristics, lymphoid stroma and lace-like tumor pattern, but projecting EBV-GC at biopsy is difficult even for experienced pathologists.To develop and validate a deep learning algorithm to predict EBV status from pathology images of GC biopsy.ObjectiveTo develop and validate a deep learning algorithm to predict EBV status from pathology images of GC biopsy.This diagnostic study developed a deep learning classifier to predict EBV-GC using image patches of tissue microarray (TMA) and whole slide images (WSIs) of GC and applied it to GC biopsy specimens from GCs diagnosed at Kangbuk Samsung Hospital between 2011 and 2020. For a quantitative evaluation and EBV-GC prediction on biopsy specimens, the area of each class and the fraction in total tissue or tumor area were calculated. Data were analyzed from March 5, 2021, to February 10, 2022.Design, Setting, and ParticipantsThis diagnostic study developed a deep learning classifier to predict EBV-GC using image patches of tissue microarray (TMA) and whole slide images (WSIs) of GC and applied it to GC biopsy specimens from GCs diagnosed at Kangbuk Samsung Hospital between 2011 and 2020. For a quantitative evaluation and EBV-GC prediction on biopsy specimens, the area of each class and the fraction in total tissue or tumor area were calculated. Data were analyzed from March 5, 2021, to February 10, 2022.Evaluation metrics of predictive model performance were assessed on accuracy, recall, precision, F1 score, area under the receiver operating characteristic curve (AUC), and κ coefficient.Main Outcomes and MeasuresEvaluation metrics of predictive model performance were assessed on accuracy, recall, precision, F1 score, area under the receiver operating characteristic curve (AUC), and κ coefficient.This study included 137 184 image patches from 16 TMAs (708 tissue cores), 24 WSIs, and 286 biopsy images of GC. The classifier was able to classify EBV-GC image patches from TMAs and WSIs with 94.70% accuracy, 0.936 recall, 0.938 precision, 0.937 F1 score, and 0.909 κ coefficient. The classifier was used for predicting and measuring the area and fraction of EBV-GC on biopsy tissue specimens. A 10% cutoff value for the predicted fraction of EBV-GC to tissue (EBV-GC/tissue area) produced the best prediction results in EBV-GC biopsy specimens and showed the highest AUC value (0.8723; 95% CI, 0.7560-0.9501). That cutoff also obtained high sensitivity (0.895) and moderate specificity (0.745) compared with experienced pathologist sensitivity (0.842) and specificity (0.854) when using the presence of lymphoid stroma and a lace-like pattern as diagnostic criteria. On prediction maps, EBV-GCs with lace-like pattern and lymphoid stroma showed the same prediction results as EBV-GC, but cases lacking these histologic features revealed heterogeneous prediction results of EBV-GC and non-EBV-GC areas.ResultsThis study included 137 184 image patches from 16 TMAs (708 tissue cores), 24 WSIs, and 286 biopsy images of GC. The classifier was able to classify EBV-GC image patches from TMAs and WSIs with 94.70% accuracy, 0.936 recall, 0.938 precision, 0.937 F1 score, and 0.909 κ coefficient. The classifier was used for predicting and measuring the area and fraction of EBV-GC on biopsy tissue specimens. A 10% cutoff value for the predicted fraction of EBV-GC to tissue (EBV-GC/tissue area) produced the best prediction results in EBV-GC biopsy specimens and showed the highest AUC value (0.8723; 95% CI, 0.7560-0.9501). That cutoff also obtained high sensitivity (0.895) and moderate specificity (0.745) compared with experienced pathologist sensitivity (0.842) and specificity (0.854) when using the presence of lymphoid stroma and a lace-like pattern as diagnostic criteria. On prediction maps, EBV-GCs with lace-like pattern and lymphoid stroma showed the same prediction results as EBV-GC, but cases lacking these histologic features revealed heterogeneous prediction results of EBV-GC and non-EBV-GC areas.This study showed the feasibility of EBV-GC prediction using a deep learning algorithm, even in biopsy samples. Use of such an image-based classifier before a confirmatory molecular test will reduce costs and tissue waste.Conclusions and RelevanceThis study showed the feasibility of EBV-GC prediction using a deep learning algorithm, even in biopsy samples. Use of such an image-based classifier before a confirmatory molecular test will reduce costs and tissue waste. Importance Epstein-Barr virus (EBV)–associated gastric cancer (EBV-GC) is 1 of 4 molecular subtypes of GC and is confirmed by an expensive molecular test, EBV-encoded small RNA in situ hybridization. EBV-GC has 2 histologic characteristics, lymphoid stroma and lace-like tumor pattern, but projecting EBV-GC at biopsy is difficult even for experienced pathologists. Objective To develop and validate a deep learning algorithm to predict EBV status from pathology images of GC biopsy. Design, Setting, and Participants This diagnostic study developed a deep learning classifier to predict EBV-GC using image patches of tissue microarray (TMA) and whole slide images (WSIs) of GC and applied it to GC biopsy specimens from GCs diagnosed at Kangbuk Samsung Hospital between 2011 and 2020. For a quantitative evaluation and EBV-GC prediction on biopsy specimens, the area of each class and the fraction in total tissue or tumor area were calculated. Data were analyzed from March 5, 2021, to February 10, 2022. Main Outcomes and Measures Evaluation metrics of predictive model performance were assessed on accuracy, recall, precision, F1 score, area under the receiver operating characteristic curve (AUC), and κ coefficient. Results This study included 137 184 image patches from 16 TMAs (708 tissue cores), 24 WSIs, and 286 biopsy images of GC. The classifier was able to classify EBV-GC image patches from TMAs and WSIs with 94.70% accuracy, 0.936 recall, 0.938 precision, 0.937 F1 score, and 0.909 κ coefficient. The classifier was used for predicting and measuring the area and fraction of EBV-GC on biopsy tissue specimens. A 10% cutoff value for the predicted fraction of EBV-GC to tissue (EBV-GC/tissue area) produced the best prediction results in EBV-GC biopsy specimens and showed the highest AUC value (0.8723; 95% CI, 0.7560-0.9501). That cutoff also obtained high sensitivity (0.895) and moderate specificity (0.745) compared with experienced pathologist sensitivity (0.842) and specificity (0.854) when using the presence of lymphoid stroma and a lace-like pattern as diagnostic criteria. On prediction maps, EBV-GCs with lace-like pattern and lymphoid stroma showed the same prediction results as EBV-GC, but cases lacking these histologic features revealed heterogeneous prediction results of EBV-GC and non–EBV-GC areas. Conclusions and Relevance This study showed the feasibility of EBV-GC prediction using a deep learning algorithm, even in biopsy samples. Use of such an image-based classifier before a confirmatory molecular test will reduce costs and tissue waste. |
| Author | Kwak, Jin T. Song, Boram Vuong, Trinh Thi Le Kim, Kyungeun |
| AuthorAffiliation | 2 Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea 1 School of Electrical Engineering, Korea University, Seoul, Republic of Korea |
| AuthorAffiliation_xml | – name: 2 Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea – name: 1 School of Electrical Engineering, Korea University, Seoul, Republic of Korea |
| Author_xml | – sequence: 1 orcidid: 0000-0002-0775-2884 fullname: Vuong, Trinh Thi Le – sequence: 2 orcidid: 0000-0003-1598-8552 fullname: Song, Boram – sequence: 3 fullname: Kwak, Jin T. – sequence: 4 fullname: Kim, Kyungeun |
| BackLink | https://cir.nii.ac.jp/crid/1870021790864957056$$DView record in CiNii |
| BookMark | eNqVks1uEzEUhS1UREvpO1jAgk2C_8cDEqJNS0GKBFIpW8v13EkdZuzBnqHK29chlYCsYONry-eeI3_XT9FBiAEQek7JnBJCX69tbwOMdzF9jwOEOSOMzbkSRD9CR0xWYsY1kQd_7A_RSc5rQggjlNdKPkGHXDEi65ofofWXBI13o48BxxZfDHkEH2ZnNiX8zacp46vRjqX4gC9tHpN3eGGDg4TPfBzyBl8N4HwPIePr7MMKW3wOMOAl2BS259NuFZMfb_tn6HFruwwnD_UYXX-4-Lr4OFt-vvy0OF3OnGRqnDltiWqBtgwclw1rnSCthRq4UA3jWrSOV0I40JrqhipopFBU3bRUaO5axo_R253vFAa7ubNdZ4bke5s2hhKzhWj2IJotRPMLYul-t-seppseGgdhTPa3Q7Te_H0T_K1ZxZ-mlqLiTBSDVw8GKf6YII-m99lB15XEOGXDKsZp0SpZpC_2pOs4pVDgFBVXWnNSkaJ6v1O5FHNO0Brny0zKxEq-7_7tUW_2LP6LyMtdc_C-RG9XqqvynWhVE61ELSsiFb8HvVbRSg |
| CitedBy_id | crossref_primary_10_1186_s12935_025_03756_4 crossref_primary_10_1016_j_media_2024_103421 crossref_primary_10_1186_s12885_024_13260_z crossref_primary_10_1186_s12967_024_06034_5 crossref_primary_10_1016_j_compbiomed_2024_109465 crossref_primary_10_1038_s41698_023_00450_4 crossref_primary_10_1016_j_labinv_2024_102043 crossref_primary_10_3389_fonc_2024_1437252 crossref_primary_10_1111_his_15153 |
| Cites_doi | 10.1158/1078-0432.CCR-0670-3 10.1109/CVPR.2018.00474 10.1111/jgh.2009.24.issue-3 10.1016/S2589-7500(21)00133-3 10.1016/j.cgh.2015.04.015 10.1038/s41598-021-02168-4 10.1038/s41598-020-58467-9 10.1038/s41467-020-18147-8 10.1016/j.compmedimag.2017.06.001 10.1109/CVPR.2016.90 10.1038/s41598-018-30535-1 10.1016/j.media.2018.09.005 10.1007/s10120-021-01215-3 10.3748/wjg.v20.i28.9621 10.3390/cancers13236002 10.1111/den.v32.3 10.1001/jama.2013.281053 10.1097/MD.0000000000000792 10.1007/s10120-015-0565-1 10.1038/s41598-020-64156-4 10.1007/s00464-015-4534-x 10.1186/s12885-020-07013-x 10.1007/s10120-019-00963-7 10.3748/wjg.v27.i44.7687 10.1038/nature13480 10.1007/s00535-019-01562-0 10.1038/srep45938 10.1186/s13058-020-1248-3 10.1038/s41591-019-0462-y 10.1111/den.2018.30.issue-5 10.3892/ijo.2015.2856 |
| ContentType | Journal Article |
| Copyright | 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright 2022 Vuong TTL et al. . |
| Copyright_xml | – notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright 2022 Vuong TTL et al. . |
| DBID | RYH AAYXX CITATION 3V. 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY |
| DOI | 10.1001/jamanetworkopen.2022.36408 |
| DatabaseName | CiNii Complete CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest One Health & Nursing ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete ProQuest Health & Medical Research Collection Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| DocumentTitleAlternate | Prediction of Epstein-Barr Virus Status in Gastric Cancer Biopsy Specimens |
| EISSN | 2574-3805 |
| ExternalDocumentID | 10.1001/jamanetworkopen.2022.36408 PMC9547324 10_1001_jamanetworkopen_2022_36408 |
| GroupedDBID | 0R~ 53G 7X7 8FI 8FJ ABUWG ADBBV ADPDF AFKRA ALIPV ALMA_UNASSIGNED_HOLDINGS AMJDE BCNDV BENPR CCPQU EBS EMOBN FYUFA GROUPED_DOAJ H13 HMCUK M~E OK1 OVD OVEED PHGZM PHGZT PIMPY RAJ RYH TEORI UKHRP W2D AAYXX CITATION PUEGO 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC EJD UNPAY |
| ID | FETCH-LOGICAL-c526t-c8a06fe1f2ec35d2fc40fae9e346d2384fc3744ce8818d16ed54616bf1483cf23 |
| IEDL.DBID | UNPAY |
| ISSN | 2574-3805 |
| IngestDate | Sun Oct 26 04:11:51 EDT 2025 Tue Sep 30 17:18:17 EDT 2025 Fri Sep 05 10:29:03 EDT 2025 Tue Oct 07 07:08:38 EDT 2025 Wed Oct 01 05:02:16 EDT 2025 Thu Apr 24 23:08:08 EDT 2025 Thu Jun 26 23:11:34 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | This is an open access article distributed under the terms of the CC-BY License. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c526t-c8a06fe1f2ec35d2fc40fae9e346d2384fc3744ce8818d16ed54616bf1483cf23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1598-8552 0000-0002-0775-2884 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://jamanetwork.com/journals/jamanetworkopen/articlepdf/2797176/vuong_2022_oi_221033_1664506598.33829.pdf |
| PMID | 36205993 |
| PQID | 2736883070 |
| PQPubID | 5319538 |
| ParticipantIDs | unpaywall_primary_10_1001_jamanetworkopen_2022_36408 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9547324 proquest_miscellaneous_2723154765 proquest_journals_2736883070 crossref_citationtrail_10_1001_jamanetworkopen_2022_36408 crossref_primary_10_1001_jamanetworkopen_2022_36408 nii_cinii_1870021790864957056 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-07 |
| PublicationDateYYYYMMDD | 2022-10-07 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationPlace | Chicago |
| PublicationPlace_xml | – name: Chicago |
| PublicationTitle | JAMA Network Open |
| PublicationYear | 2022 |
| Publisher | American Medical Association (AMA) American Medical Association |
| Publisher_xml | – name: American Medical Association (AMA) – name: American Medical Association |
| References | Lim (zoi221033r15) 2015; 13 Kather (zoi221033r19) 2019; 25 Qiao (zoi221033r7) 2019; 24 Murai (zoi221033r11) 2018; 30 Arvaniti (zoi221033r28) 2018; 8 zoi221033r34 Xu (zoi221033r35) 2016; 30 Cancer Genome Atlas Research Network (zoi221033r2) 2014; 513 Tokunaga (zoi221033r8) 1998; 7 Muti (zoi221033r26) 2021; 3 Thompson (zoi221033r1) 2004; 10 Hur (zoi221033r36) 2014; 20 Park (zoi221033r10) 2016; 19 Nir (zoi221033r29) 2018; 50 Osumi (zoi221033r3) 2020; 32 Hinata (zoi221033r24) 2021; 11 Osumi (zoi221033r14) 2019; 54 Rawat (zoi221033r16) 2020; 10 Lee (zoi221033r4) 2009; 24 Vandenberghe (zoi221033r17) 2017; 7 Song (zoi221033r20) 2020; 11 Tavakoli (zoi221033r5) 2020; 20 Saito (zoi221033r12) 2021; 24 World Medical Association (zoi221033r27) 2013; 310 zoi221033r33 zoi221033r32 zoi221033r31 Shinozaki-Ushiku (zoi221033r6) 2015; 46 zoi221033r30 Sharma (zoi221033r21) 2017; 61 Osumi (zoi221033r9) 2019; 22 Iizuka (zoi221033r22) 2020; 10 Jaber (zoi221033r18) 2020; 22 Jang (zoi221033r23) 2021; 27 Zhang (zoi221033r25) 2021; 13 Chen (zoi221033r13) 2015; 94 |
| References_xml | – volume: 10 start-page: 803 issue: 3 year: 2004 ident: zoi221033r1 article-title: Epstein-Barr virus and cancer. publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-0670-3 – ident: zoi221033r31 doi: 10.1109/CVPR.2018.00474 – volume: 24 start-page: 354 issue: 3 year: 2009 ident: zoi221033r4 article-title: Clinicopathological and molecular characteristics of Epstein-Barr virus-associated gastric carcinoma: a meta-analysis. publication-title: J Gastroenterol Hepatol doi: 10.1111/jgh.2009.24.issue-3 – volume: 3 start-page: e654 issue: 10 year: 2021 ident: zoi221033r26 article-title: Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study. publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(21)00133-3 – volume: 13 start-page: 1738 issue: 10 year: 2015 ident: zoi221033r15 article-title: Features of gastric carcinoma with lymphoid stroma associated with Epstein-Barr virus. publication-title: Clin Gastroenterol Hepatol doi: 10.1016/j.cgh.2015.04.015 – volume: 11 start-page: 22636 issue: 1 year: 2021 ident: zoi221033r24 article-title: Detecting immunotherapy-sensitive subtype in gastric cancer using histologic image-based deep learning. publication-title: Sci Rep doi: 10.1038/s41598-021-02168-4 – volume: 10 start-page: 1504 issue: 1 year: 2020 ident: zoi221033r22 article-title: Deep learning models for histopathological classification of gastric and colonic epithelial tumours. publication-title: Sci Rep doi: 10.1038/s41598-020-58467-9 – volume: 11 start-page: 4294 issue: 1 year: 2020 ident: zoi221033r20 article-title: Clinically applicable histopathological diagnosis system for gastric cancer detection using deep learning. publication-title: Nat Commun doi: 10.1038/s41467-020-18147-8 – ident: zoi221033r33 – volume: 61 start-page: 2 year: 2017 ident: zoi221033r21 article-title: Deep convolutional neural networks for automatic classification of gastric carcinoma using whole slide images in digital histopathology. publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2017.06.001 – ident: zoi221033r30 doi: 10.1109/CVPR.2016.90 – volume: 8 start-page: 12054 issue: 1 year: 2018 ident: zoi221033r28 article-title: Automated Gleason grading of prostate cancer tissue microarrays via deep learning. publication-title: Sci Rep doi: 10.1038/s41598-018-30535-1 – volume: 50 start-page: 167 year: 2018 ident: zoi221033r29 article-title: Automatic grading of prostate cancer in digitized histopathology images: Learning from multiple experts. publication-title: Med Image Anal doi: 10.1016/j.media.2018.09.005 – volume: 24 start-page: 983 issue: 5 year: 2021 ident: zoi221033r12 article-title: Landscape of EBV-positive gastric cancer. publication-title: Gastric Cancer doi: 10.1007/s10120-021-01215-3 – volume: 20 start-page: 9621 issue: 28 year: 2014 ident: zoi221033r36 article-title: Undiagnosed Borrmann type II gastric cancer due to necrosis and regenerative epithelium. publication-title: World J Gastroenterol doi: 10.3748/wjg.v20.i28.9621 – volume: 13 start-page: 6002 issue: 23 year: 2021 ident: zoi221033r25 article-title: Deep learning predicts EBV status in gastric cancer based on spatial patterns of lymphocyte infiltration. publication-title: Cancers (Basel) doi: 10.3390/cancers13236002 – volume: 32 start-page: 316 issue: 3 year: 2020 ident: zoi221033r3 article-title: Clinical impact of Epstein-Barr virus status on the incidence of lymph node metastasis in early gastric cancer. publication-title: Dig Endosc doi: 10.1111/den.v32.3 – volume: 310 start-page: 2191 issue: 20 year: 2013 ident: zoi221033r27 article-title: World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. publication-title: JAMA doi: 10.1001/jama.2013.281053 – volume: 94 issue: 20 year: 2015 ident: zoi221033r13 article-title: Epstein-Barr virus infection and gastric cancer: a systematic review. publication-title: Medicine (Baltimore) doi: 10.1097/MD.0000000000000792 – volume: 24 start-page: 1092 issue: 3 year: 2019 ident: zoi221033r7 article-title: Clinicopathological features of Epstein-Barr virus-associated gastric carcinoma: a systematic review and meta-analysis. publication-title: J BUON – ident: zoi221033r34 – volume: 19 start-page: 1041 issue: 4 year: 2016 ident: zoi221033r10 article-title: Epstein-Barr virus positivity, not mismatch repair-deficiency, is a favorable risk factor for lymph node metastasis in submucosa-invasive early gastric cancer. publication-title: Gastric Cancer doi: 10.1007/s10120-015-0565-1 – ident: zoi221033r32 – volume: 10 start-page: 7275 issue: 1 year: 2020 ident: zoi221033r16 article-title: Deep learned tissue “fingerprints” classify breast cancers by ER/PR/HER2 status from H&E images. publication-title: Sci Rep doi: 10.1038/s41598-020-64156-4 – volume: 30 start-page: 2716 issue: 7 year: 2016 ident: zoi221033r35 article-title: Risk factors for under-diagnosis of gastric intraepithelial neoplasia and early gastric carcinoma in endoscopic forceps biopsy in comparison with endoscopic submucosal dissection in Chinese patients. publication-title: Surg Endosc doi: 10.1007/s00464-015-4534-x – volume: 20 start-page: 493 issue: 1 year: 2020 ident: zoi221033r5 article-title: Association between Epstein-Barr virus infection and gastric cancer: a systematic review and meta-analysis. publication-title: BMC Cancer doi: 10.1186/s12885-020-07013-x – volume: 22 start-page: 1176 issue: 6 year: 2019 ident: zoi221033r9 article-title: Risk stratification for lymph node metastasis using Epstein-Barr virus status in submucosal invasive (pT1) gastric cancer without lymphovascular invasion: a multicenter observational study. publication-title: Gastric Cancer doi: 10.1007/s10120-019-00963-7 – volume: 27 start-page: 7687 issue: 44 year: 2021 ident: zoi221033r23 article-title: Prediction of genetic alterations from gastric cancer histopathology images using a fully automated deep learning approach. publication-title: World J Gastroenterol doi: 10.3748/wjg.v27.i44.7687 – volume: 513 start-page: 202 issue: 7517 year: 2014 ident: zoi221033r2 article-title: Comprehensive molecular characterization of gastric adenocarcinoma. publication-title: Nature doi: 10.1038/nature13480 – volume: 54 start-page: 774 issue: 9 year: 2019 ident: zoi221033r14 article-title: Epstein-Barr virus status is a promising biomarker for endoscopic resection in early gastric cancer: proposal of a novel therapeutic strategy. publication-title: J Gastroenterol doi: 10.1007/s00535-019-01562-0 – volume: 7 start-page: 45938 year: 2017 ident: zoi221033r17 article-title: Relevance of deep learning to facilitate the diagnosis of HER2 status in breast cancer. publication-title: Sci Rep doi: 10.1038/srep45938 – volume: 22 start-page: 12 issue: 1 year: 2020 ident: zoi221033r18 article-title: A deep learning image-based intrinsic molecular subtype classifier of breast tumors reveals tumor heterogeneity that may affect survival. publication-title: Breast Cancer Res doi: 10.1186/s13058-020-1248-3 – volume: 7 start-page: 449 issue: 5 year: 1998 ident: zoi221033r8 article-title: Epstein-Barr virus involvement in gastric cancer: biomarker for lymph node metastasis. publication-title: Cancer Epidemiol Biomarkers Prev – volume: 25 start-page: 1054 issue: 7 year: 2019 ident: zoi221033r19 article-title: Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. publication-title: Nat Med doi: 10.1038/s41591-019-0462-y – volume: 30 start-page: 667 issue: 5 year: 2018 ident: zoi221033r11 article-title: Epstein-Barr virus positivity among surgically resected intramucosal gastric cancer. publication-title: Dig Endosc doi: 10.1111/den.2018.30.issue-5 – volume: 46 start-page: 1421 issue: 4 year: 2015 ident: zoi221033r6 article-title: Update on Epstein-Barr virus and gastric cancer (review). publication-title: Int J Oncol doi: 10.3892/ijo.2015.2856 |
| SSID | ssj0002013965 |
| Score | 2.2831528 |
| Snippet | Importance Epstein-Barr virus (EBV)–associated gastric cancer (EBV-GC) is 1 of 4 molecular subtypes of GC and is confirmed by an expensive molecular test,... Epstein-Barr virus (EBV)-associated gastric cancer (EBV-GC) is 1 of 4 molecular subtypes of GC and is confirmed by an expensive molecular test, EBV-encoded... This diagnostic study develops and validates a deep learning algorithm to predict Epstein-Barr virus status from pathology images of gastric cancer. |
| SourceID | unpaywall pubmedcentral proquest crossref nii |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | e2236408 |
| SubjectTerms | Algorithms Biopsy Deep Learning Epstein-Barr virus Epstein-Barr Virus Infections Gastric cancer Herpesvirus 4, Human Humans Online Only Original Investigation Pathology and Laboratory Medicine RNA Stomach Neoplasms |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb5RAFH5ptwe9GI0a0daMiVd0GWYGOBjTrVsbEzeNsaY3MsyPFrMFZHdj-t_7HrDY9WCUAxwGAsx7M-99zOP7AF4XTmQFtoTKKxmKyNgwVWaKmMfzyE0LaTpJls8LdXYhPl3Kyz1YbP-FobLK7ZzYTdS2NvSN_C2GWZWm5KHvmx8hqUbR6upWQkMP0gr2XUcxtg8HnJixJnAwmy_Ov4xfXThlPEqO7KM9_VDVV1yTXhUiRs7fxEqQ3uSdSLVfleVOEvpnCeW9TdXo2596ubwTn04fwoMhsWTHvSc8gj1XPYbv5y0txFDns9qzebMicctwptuWfSvbzYpRsomHsmIfNUl4GHZCftCyWVk3q1vW6dPfINZlXXEB0-yDcw0baFmv2PHyCntpfX3zBC5O519PzsJBXSE0kqt1aFI9Vd5FnjsTS8u9EVOvXeZioSwGcuFNnAhhXIox3UbKWSlUpAqPACo2nsdPYVLVlXsGLLO4FTqxnGtho6yQsXOIK1Odae2MCiDb9mRuBupxUsBY5j1pMkKQXSvkZIW8s0IA8Xht0xNw_NNVR2gwvBntI5yTCHplCN8QDyaY8wVwuDVlPgzaVf7bxQJ4NTbjcKM1FLxRvaFzMCGWIlEygGTHBcanI8Lu3ZaqvO6IuzMSeuYiADE6y3-80_O_P_MLuE_ndoWGySFM1u3GHWHCtC5eDqPgF5TwGqs priority: 102 providerName: ProQuest |
| Title | Prediction of Epstein-Barr Virus Status in Gastric Cancer Biopsy Specimens Using a Deep Learning Algorithm |
| URI | https://cir.nii.ac.jp/crid/1870021790864957056 https://www.proquest.com/docview/2736883070 https://www.proquest.com/docview/2723154765 https://pubmed.ncbi.nlm.nih.gov/PMC9547324 https://jamanetwork.com/journals/jamanetworkopen/articlepdf/2797176/vuong_2022_oi_221033_1664506598.33829.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 5 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2574-3805 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002013965 issn: 2574-3805 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 2574-3805 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002013965 issn: 2574-3805 databaseCode: OVEED dateStart: 20180601 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 2574-3805 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002013965 issn: 2574-3805 databaseCode: 7X7 dateStart: 20180101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2574-3805 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002013965 issn: 2574-3805 databaseCode: BENPR dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV3Pj9JAGJ0scNCLP6LG6i4ZE68t7XRm2h5hZd2YSIiKwVMznc6wVbZtCtWsf4R_s9-0hQAn9SAHCAzTab9-TN_rfLyH0OtE0SiBFptrzmzqydQOuXSB82jiKTdhsrFkeT_j1wv6bsmWZ-h2918YowaUtwXQzTzdRXRz2GB8pUZdYMtUj0gQASnho-91ka9iYPMkLrKYAJnx_djjnDKzeBg6wMZI5ECPHhrAB9zto8FiNh9_MQZ0LKC2H7psL0zqnQ7pmC07PqfGivLgItbLs-wIn55WV96r81Lc_RDr9cGl6-oh-rU76LZi5ZtTbxNH_jzRg_xvUXmEHnQgGI_bzTxGZyp_gr7OK7NoZBIFFxpPy40x4rQnoqrw56yqN9gAY3jJcvxWGLsRiS9NzlZ4khXl5g5_LJU0ZgUb3BRCYIHfKFXiTkJ2hcfrVVFl25vbp2hxNf10eW13ThC2ZIRvbRkKl2vlaaKkz1KiJXW1UJHyKU8BdFAt_YBSqULAH6nHVcoo93iigez5UhP_GernRa6eIxyl8EhEkBIiaOpFCfOVAg4cikgIJbmFot2pjWUnk27cOtZxK_AMdOk45m1om7SwkL_vW7ZiIX_U6wIyCAYzzx7Mn4YmRkA1gbsGgE8tdL7LrXh34mNAnTwMzYRtoVf7ZpgazHoPDFTU5jsA3hkNOLNQcJST-70z4uLHLXl204iMR8aUmlAL0X32_sUxvfi3bi_RffOmKZYMzlF_W9XqAkDfNhmiXrAMhmgwmc7mH4bNrZNh9_P9DespX8k |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKeygXBAJESgtGgmNg49hOcqhQt92ype2qghb1FhzbaYOWJCS7qvbP8duYSbKhywHBoTkkB8fKx4w98-LJe4S8TiyPEmhxZSqFyz1t3FDqAWCelHl2kAjdSLKcTuT4gn-8FJdr5OfyXxgsq1zOic1EbQqN38jfQZiVYYge-r784aJqFK6uLiU0VCetYHYbirHux45ju7gBCFfvHh2Avd8wdjg63x-7ncqAqwWTM1eHaiBT66XMal8Ylmo-SJWNrM-lgYDGU-0HnGsbQmwznrRGcOnJJAUg4esUiQ8gBGxwn0cA_jaGo8nZp_4rD8MMS4qe7bSlO8rbCm_UxwKEythbX3LUt7wVGe_lWbaS9P5Zsrk5z0u1uFHT6a14ePiQPOgSWbrXet4jsmbzx-TbWYULP2hsWqR0VNYopukOVVXRL1k1rykmt3DIcvpBoWSIpvvodxUdZkVZL-jn0moUHKhpU8xAFT2wtqQdDewV3ZtegVVm19-fkIs7ec9PyXpe5PYZoZGBLVGBYUxx40WJ8K0FHBuqSCmrpUOi5ZuMdUd1joob07glaQbIs2qFGK0QN1ZwiN_3LVvCj3_qtQMGg4vh3oM5EKFeBHAR8GcAOaZDtpemjLtJoo5_u7RDXvXNMLxxzQYuVMzxHEjABQ-kcEiw4gL93SFB-GpLnl03ROERCksz7hDeO8t_PNPW3-_5Jdkcn5-exCdHk-Pn5D72a4ocg22yPqvmdgeStVnyohsRlHy960H4Cxs-WD0 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV3Pb9MwFLa27gAXfggQYRsyEtekiWM7ybEbGxMS0yQoGqfIcewu0CVR2gyNP4K_mfeStGp7Ag700KpxHScvL873ya_fR8jbzPAkgxZXWilcHujcjaX2gfNYFhg_E7qzZPl4KS-m_MO1uN4jt6v_wqAaUNkXQHfz9BDRxWYD-kqNh8DWuR2zKAFSIsd3bVXOUmDzLK2KlAGZCcM0kJILXDyMPWBjLPGgxz45gA3SH5GD6eXV5Csa0ImIu2Hsi7UwabA7pId79kLJ0Ypy4yG2XxbFFj7dra580Ja1uv-h5vONR9f5Y_JrddJ9xcp3r11mnv65owf536LyhDwaQDCd9Lt5SvZM-Yx8u2pw0QgThVaWntULNOJ0T1TT0C9F0y4oAmP4KEr6XqHdiKanmLMNPSmqenFPP9VGo1nBgnaFEFTRd8bUdJCQndHJfFY1xfLm9jmZnp99Pr1wBycIVwsml66OlS-tCSwzOhQ5s5r7VpnEhFzmADq41WHEuTYx4I88kCYXXAYys0D2Qm1Z-IKMyqo0LwlNcnhlKsoZUzwPkkyExgAHjlWilNHSIcnq0qZ6kElHt4552gs8A13ajnkf2i4tHBKu-9a9WMgf9TqGDILB8D2A-RNpYgJUE7hrBPjUIUer3EpXFz4F1CnjGCdsh7xZN8PUgOs9MFDV4m8AvAseSeGQaCsn10eH4uLbLWVx04mMJ2hKzbhD-Dp7_-KcXv1bt0PyEL90xZLRERktm9YcA-hbZq-HW_U3mhdcUw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Epstein-Barr+Virus+Status+in+Gastric+Cancer+Biopsy+Specimens+Using+a+Deep+Learning+Algorithm&rft.jtitle=JAMA+network+open&rft.au=Vuong%2C+Trinh+Thi+Le&rft.au=Song%2C+Boram&rft.au=Kwak%2C+Jin+T&rft.au=Kim%2C+Kyungeun&rft.date=2022-10-07&rft.issn=2574-3805&rft.eissn=2574-3805&rft.volume=5&rft.issue=10&rft.spage=e2236408&rft_id=info:doi/10.1001%2Fjamanetworkopen.2022.36408&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2574-3805&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2574-3805&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2574-3805&client=summon |