The dropout learning algorithm

Dropout is a recently introduced algorithm for training neural networks by randomly dropping units during training to prevent their co-adaptation. A mathematical analysis of some of the static and dynamic properties of dropout is provided using Bernoulli gating variables, general enough to accommoda...

Full description

Saved in:
Bibliographic Details
Published inArtificial intelligence Vol. 210; pp. 78 - 122
Main Authors Baldi, Pierre, Sadowski, Peter
Format Journal Article
LanguageEnglish
Published Oxford Elsevier B.V 01.05.2014
Elsevier
Subjects
Online AccessGet full text
ISSN0004-3702
1872-7921
1872-7921
DOI10.1016/j.artint.2014.02.004

Cover

Abstract Dropout is a recently introduced algorithm for training neural networks by randomly dropping units during training to prevent their co-adaptation. A mathematical analysis of some of the static and dynamic properties of dropout is provided using Bernoulli gating variables, general enough to accommodate dropout on units or connections, and with variable rates. The framework allows a complete analysis of the ensemble averaging properties of dropout in linear networks, which is useful to understand the non-linear case. The ensemble averaging properties of dropout in non-linear logistic networks result from three fundamental equations: (1) the approximation of the expectations of logistic functions by normalized geometric means, for which bounds and estimates are derived; (2) the algebraic equality between normalized geometric means of logistic functions with the logistic of the means, which mathematically characterizes logistic functions; and (3) the linearity of the means with respect to sums, as well as products of independent variables. The results are also extended to other classes of transfer functions, including rectified linear functions. Approximation errors tend to cancel each other and do not accumulate. Dropout can also be connected to stochastic neurons and used to predict firing rates, and to backpropagation by viewing the backward propagation as ensemble averaging in a dropout linear network. Moreover, the convergence properties of dropout can be understood in terms of stochastic gradient descent. Finally, for the regularization properties of dropout, the expectation of the dropout gradient is the gradient of the corresponding approximation ensemble, regularized by an adaptive weight decay term with a propensity for self-consistent variance minimization and sparse representations.
AbstractList Dropout is a recently introduced algorithm for training neural network by randomly dropping units during training to prevent their co-adaptation. A mathematical analysis of some of the static and dynamic properties of dropout is provided using Bernoulli gating variables, general enough to accommodate dropout on units or connections, and with variable rates. The framework allows a complete analysis of the ensemble averaging properties of dropout in linear networks, which is useful to understand the non-linear case. The ensemble averaging properties of dropout in non-linear logistic networks result from three fundamental equations: (1) the approximation of the expectations of logistic functions by normalized geometric means, for which bounds and estimates are derived; (2) the algebraic equality between normalized geometric means of logistic functions with the logistic of the means, which mathematically characterizes logistic functions; and (3) the linearity of the means with respect to sums, as well as products of independent variables. The results are also extended to other classes of transfer functions, including rectified linear functions. Approximation errors tend to cancel each other and do not accumulate. Dropout can also be connected to stochastic neurons and used to predict firing rates, and to backpropagation by viewing the backward propagation as ensemble averaging in a dropout linear network. Moreover, the convergence properties of dropout can be understood in terms of stochastic gradient descent. Finally, for the regularization properties of dropout, the expectation of the dropout gradient is the gradient of the corresponding approximation ensemble, regularized by an adaptive weight decay term with a propensity for self-consistent variance minimization and sparse representations.Dropout is a recently introduced algorithm for training neural network by randomly dropping units during training to prevent their co-adaptation. A mathematical analysis of some of the static and dynamic properties of dropout is provided using Bernoulli gating variables, general enough to accommodate dropout on units or connections, and with variable rates. The framework allows a complete analysis of the ensemble averaging properties of dropout in linear networks, which is useful to understand the non-linear case. The ensemble averaging properties of dropout in non-linear logistic networks result from three fundamental equations: (1) the approximation of the expectations of logistic functions by normalized geometric means, for which bounds and estimates are derived; (2) the algebraic equality between normalized geometric means of logistic functions with the logistic of the means, which mathematically characterizes logistic functions; and (3) the linearity of the means with respect to sums, as well as products of independent variables. The results are also extended to other classes of transfer functions, including rectified linear functions. Approximation errors tend to cancel each other and do not accumulate. Dropout can also be connected to stochastic neurons and used to predict firing rates, and to backpropagation by viewing the backward propagation as ensemble averaging in a dropout linear network. Moreover, the convergence properties of dropout can be understood in terms of stochastic gradient descent. Finally, for the regularization properties of dropout, the expectation of the dropout gradient is the gradient of the corresponding approximation ensemble, regularized by an adaptive weight decay term with a propensity for self-consistent variance minimization and sparse representations.
Dropout is a recently introduced algorithm for training neural networks by randomly dropping units during training to prevent their co-adaptation. A mathematical analysis of some of the static and dynamic properties of dropout is provided using Bernoulli gating variables, general enough to accommodate dropout on units or connections, and with variable rates. The framework allows a complete analysis of the ensemble averaging properties of dropout in linear networks, which is useful to understand the non-linear case. The ensemble averaging properties of dropout in non-linear logistic networks result from three fundamental equations: (1) the approximation of the expectations of logistic functions by normalized geometric means, for which bounds and estimates are derived; (2) the algebraic equality between normalized geometric means of logistic functions with the logistic of the means, which mathematically characterizes logistic functions; and (3) the linearity of the means with respect to sums, as well as products of independent variables. The results are also extended to other classes of transfer functions, including rectified linear functions. Approximation errors tend to cancel each other and do not accumulate. Dropout can also be connected to stochastic neurons and used to predict firing rates, and to backpropagation by viewing the backward propagation as ensemble averaging in a dropout linear network. Moreover, the convergence properties of dropout can be understood in terms of stochastic gradient descent. Finally, for the regularization properties of dropout, the expectation of the dropout gradient is the gradient of the corresponding approximation ensemble, regularized by an adaptive weight decay term with a propensity for self-consistent variance minimization and sparse representations.
Dropout is a recently introduced algorithm for training neural network by randomly dropping units during training to prevent their co-adaptation. A mathematical analysis of some of the static and dynamic properties of dropout is provided using Bernoulli gating variables, general enough to accommodate dropout on units or connections, and with variable rates. The framework allows a complete analysis of the ensemble averaging properties of dropout in linear networks, which is useful to understand the non-linear case. The ensemble averaging properties of dropout in non-linear logistic networks result from three fundamental equations: (1) the approximation of the expectations of logistic functions by normalized geometric means, for which bounds and estimates are derived; (2) the algebraic equality between normalized geometric means of logistic functions with the logistic of the means, which mathematically characterizes logistic functions; and (3) the linearity of the means with respect to sums, as well as products of independent variables. The results are also extended to other classes of transfer functions, including rectified linear functions. Approximation errors tend to cancel each other and do not accumulate. Dropout can also be connected to stochastic neurons and used to predict firing rates, and to backpropagation by viewing the backward propagation as ensemble averaging in a dropout linear network. Moreover, the convergence properties of dropout can be understood in terms of stochastic gradient descent. Finally, for the regularization properties of dropout, the expectation of the dropout gradient is the gradient of the corresponding approximation ensemble, regularized by an adaptive weight decay term with a propensity for self-consistent variance minimization and sparse representations.
Author Sadowski, Peter
Baldi, Pierre
Author_xml – sequence: 1
  givenname: Pierre
  surname: Baldi
  fullname: Baldi, Pierre
  email: pfbaldici@uci.edu
– sequence: 2
  givenname: Peter
  surname: Sadowski
  fullname: Sadowski, Peter
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28376664$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24771879$$D View this record in MEDLINE/PubMed
BookMark eNqVkU9vFCEYxompsdvqNzDNXkx6mREYBgYPJqapf5ImXuqZMPDOLhsWVmDa9NvLZlerHmw8kRd-zwPPwxk6CTEAQq8Jbgkm_O2m1am4UFqKCWsxbTFmz9CCDII2QlJygha4bjWdwPQUneW8qWMnJXmBTikTooJygS5u17C0Ke7iXJYedAourJbar2JyZb19iZ5P2md4dVzP0beP17dXn5ubr5--XH24aUxPeWmkHiaOGVg82GkEw0jPRiyx7KYJS93ROpsRxnHgRFpBMPQWGOWdZWPHLO7OUX_wncNOP9xr79Uuua1OD4pgtc-rNuqQV-3zKkxVDVd17w-63TxuwRoIJelHbdRO_XkS3Fqt4p2qRXBBSDW4PBqk-H2GXNTWZQPe6wBxzooMlPe10p49jXIuh14Qxit68fuzfr3nZ-8VeHMEdDbaT0kH4_IjN3SCc76_892BMynmnGBSxhVdXNyncf6pcthf4v_rFOqH3zlIKhsHwYB1CUxRNrp_G_wAbpjOMg
CODEN AINTBB
CitedBy_id crossref_primary_10_1371_journal_pone_0242301
crossref_primary_10_1007_s10994_022_06169_w
crossref_primary_10_1016_j_measurement_2019_107357
crossref_primary_10_1016_j_neunet_2017_08_008
crossref_primary_10_1061_AOMJAH_AOENG_0043
crossref_primary_10_1016_j_inffus_2024_102355
crossref_primary_10_1088_2053_1591_ab1bb4
crossref_primary_10_1109_TNNLS_2023_3270559
crossref_primary_10_1007_s11063_024_11581_5
crossref_primary_10_1109_TCBB_2016_2598752
crossref_primary_10_1007_s12109_016_9467_2
crossref_primary_10_1371_journal_pone_0232578
crossref_primary_10_1016_j_meegid_2021_105034
crossref_primary_10_1097_eus_0000000000000011
crossref_primary_10_1103_PhysRevD_97_094506
crossref_primary_10_1016_j_jhydrol_2021_126629
crossref_primary_10_1088_1748_0221_11_12_C12004
crossref_primary_10_1109_TNS_2024_3519609
crossref_primary_10_1007_s10489_023_05005_5
crossref_primary_10_1016_j_compbiomed_2017_03_024
crossref_primary_10_1093_bioinformatics_btu407
crossref_primary_10_1155_2021_9923112
crossref_primary_10_1016_j_geoen_2024_213015
crossref_primary_10_1029_2023JD040418
crossref_primary_10_1039_C7ME00107J
crossref_primary_10_1093_bioinformatics_btu352
crossref_primary_10_1162_neco_a_00990
crossref_primary_10_1007_s00500_019_04195_w
crossref_primary_10_1007_s13139_019_00574_1
crossref_primary_10_1016_j_ebiom_2021_103238
crossref_primary_10_1021_acs_energyfuels_3c04548
crossref_primary_10_1109_TPAMI_2024_3398012
crossref_primary_10_1088_1757_899X_1022_1_012020
crossref_primary_10_1016_j_asoc_2017_02_019
crossref_primary_10_1016_j_joes_2022_06_033
crossref_primary_10_1038_s41746_020_0248_0
crossref_primary_10_3390_technologies12100183
crossref_primary_10_1038_ncomms5308
crossref_primary_10_1007_s00506_021_00771_3
crossref_primary_10_1371_journal_pone_0253057
crossref_primary_10_1097_eus_0000000000000029
crossref_primary_10_1186_s12711_018_0439_1
crossref_primary_10_1007_s11356_022_23305_0
crossref_primary_10_1016_j_clinph_2019_06_005
crossref_primary_10_1016_j_earscirev_2019_103076
crossref_primary_10_1109_TPAMI_2021_3121705
crossref_primary_10_1016_j_est_2023_108915
crossref_primary_10_1016_j_patcog_2019_07_006
crossref_primary_10_1162_neco_a_01276
crossref_primary_10_1007_s10766_016_0435_4
crossref_primary_10_1038_s41598_023_34176_x
crossref_primary_10_1016_j_jclepro_2018_10_243
crossref_primary_10_1103_PhysRevD_107_063018
crossref_primary_10_1038_s41746_020_00377_1
crossref_primary_10_1007_s10916_023_01994_5
crossref_primary_10_1103_PhysRevD_103_116028
crossref_primary_10_1007_s11704_018_7314_7
crossref_primary_10_1097_ALN_0000000000002186
crossref_primary_10_1038_s41598_023_43617_6
crossref_primary_10_1007_s11749_016_0482_6
crossref_primary_10_1016_j_gie_2021_03_013
crossref_primary_10_1155_2020_8888811
crossref_primary_10_3390_s21217241
crossref_primary_10_5194_hess_25_2951_2021
crossref_primary_10_1587_transinf_2018EDP7289
crossref_primary_10_1080_24694452_2024_2373787
crossref_primary_10_1007_s42452_020_03910_9
crossref_primary_10_1016_j_csbj_2023_06_014
crossref_primary_10_1016_j_ifacol_2025_01_186
crossref_primary_10_1186_s40168_018_0401_z
crossref_primary_10_1007_s10489_021_02588_9
crossref_primary_10_1109_TNSM_2024_3488568
crossref_primary_10_1007_s10898_018_0701_7
crossref_primary_10_1016_j_measurement_2021_109285
crossref_primary_10_1016_j_neucom_2020_03_119
crossref_primary_10_1007_s42461_023_00768_4
crossref_primary_10_1039_D0QO00544D
crossref_primary_10_1109_ACCESS_2021_3073731
crossref_primary_10_1109_TNNLS_2021_3070895
crossref_primary_10_1002_mp_16838
crossref_primary_10_1016_j_compag_2023_108271
crossref_primary_10_1109_TMI_2017_2655486
crossref_primary_10_3390_electronics12040926
crossref_primary_10_1007_s00348_020_2943_7
crossref_primary_10_1007_s11709_022_0823_3
crossref_primary_10_1016_j_compchemeng_2023_108466
crossref_primary_10_1109_ACCESS_2019_2927396
crossref_primary_10_1016_j_aei_2021_101396
crossref_primary_10_1016_j_compbiolchem_2024_108169
crossref_primary_10_1186_s12859_020_3339_7
crossref_primary_10_1109_TSC_2020_2988760
crossref_primary_10_1016_j_neucom_2017_09_047
crossref_primary_10_1109_TFUZZ_2019_2907497
crossref_primary_10_1016_j_compag_2023_107864
crossref_primary_10_1103_PhysRevD_99_012011
crossref_primary_10_1016_j_mlwa_2021_100040
crossref_primary_10_1109_JSTARS_2016_2621011
crossref_primary_10_1007_s11042_019_07988_1
crossref_primary_10_1016_j_saa_2024_124454
crossref_primary_10_3389_fenvs_2024_1426942
crossref_primary_10_1109_TPAMI_2015_2461544
crossref_primary_10_1002_int_22590
crossref_primary_10_1016_j_artint_2018_03_003
crossref_primary_10_1016_j_seta_2019_100601
crossref_primary_10_1103_PhysRevLett_114_111801
crossref_primary_10_3389_fnbot_2022_1037381
crossref_primary_10_1109_TNNLS_2017_2750679
crossref_primary_10_1007_s10916_018_1001_y
crossref_primary_10_1109_TNNLS_2022_3153039
crossref_primary_10_3389_fncir_2016_00007
crossref_primary_10_1016_j_mri_2019_02_013
crossref_primary_10_1016_j_neunet_2015_07_007
crossref_primary_10_1021_acs_jcim_1c01400
crossref_primary_10_1016_j_neunet_2016_07_006
crossref_primary_10_1109_LGRS_2024_3372513
crossref_primary_10_1016_j_isatra_2021_01_058
crossref_primary_10_1016_j_patcog_2020_107609
crossref_primary_10_3390_jmse11030616
crossref_primary_10_1007_s10596_022_10151_9
crossref_primary_10_1016_j_neucom_2019_09_113
crossref_primary_10_3390_app10175772
crossref_primary_10_1038_s41598_019_52552_4
crossref_primary_10_1016_j_jhydrol_2021_126253
crossref_primary_10_1088_2399_6528_aa83fa
crossref_primary_10_1088_2515_7639_ab1738
crossref_primary_10_4018_IJACI_355192
crossref_primary_10_1016_j_gie_2021_09_017
crossref_primary_10_3390_ijms242115681
crossref_primary_10_1007_JHEP10_2021_200
crossref_primary_10_1016_j_petrol_2021_108975
crossref_primary_10_1109_ACCESS_2024_3501773
crossref_primary_10_1016_j_engappai_2024_109038
crossref_primary_10_1016_j_neucom_2018_08_093
crossref_primary_10_1016_j_neunet_2014_09_003
crossref_primary_10_1016_j_neunet_2018_09_006
crossref_primary_10_3390_ijgi12110467
crossref_primary_10_3390_app10134551
crossref_primary_10_1016_j_neunet_2020_03_016
crossref_primary_10_1016_j_scitotenv_2024_170435
crossref_primary_10_1007_s11042_019_7172_9
crossref_primary_10_1167_tvst_10_4_22
crossref_primary_10_1109_ACCESS_2022_3140289
crossref_primary_10_5715_jnlp_28_573
crossref_primary_10_1016_j_knosys_2022_109567
crossref_primary_10_1016_j_enggeo_2020_105529
crossref_primary_10_1103_PhysRevD_94_112002
crossref_primary_10_3390_biomedinformatics4030095
crossref_primary_10_1016_j_neunet_2016_12_009
crossref_primary_10_1016_j_jclepro_2020_125187
crossref_primary_10_1093_bioinformatics_btae378
crossref_primary_10_1016_j_jbo_2023_100498
crossref_primary_10_1093_bioinformatics_btw243
crossref_primary_10_1007_s11432_015_5470_z
crossref_primary_10_1053_j_gastro_2018_06_037
crossref_primary_10_1007_s10994_018_5696_2
crossref_primary_10_1109_ACCESS_2021_3072731
crossref_primary_10_1121_10_0019632
crossref_primary_10_1109_TMM_2020_2993960
crossref_primary_10_1016_j_asoc_2024_112519
crossref_primary_10_1016_j_knosys_2025_113071
crossref_primary_10_2139_ssrn_4173703
crossref_primary_10_1016_j_compag_2024_109511
crossref_primary_10_3390_s22165956
crossref_primary_10_1109_ACCESS_2019_2904881
crossref_primary_10_1016_j_est_2023_107866
crossref_primary_10_3389_fnins_2022_858126
crossref_primary_10_1016_j_gie_2020_04_071
crossref_primary_10_1016_j_csbj_2020_04_005
crossref_primary_10_1007_s42853_021_00098_7
crossref_primary_10_1016_j_aichem_2024_100062
crossref_primary_10_1109_ACCESS_2024_3453496
crossref_primary_10_2174_1874120701913010001
crossref_primary_10_1590_1984_70332021v21sa15
crossref_primary_10_1016_j_engappai_2023_107487
crossref_primary_10_1055_a_1229_0920
crossref_primary_10_1016_j_transproceed_2019_10_019
crossref_primary_10_1029_2018WR022643
crossref_primary_10_1016_j_gie_2021_11_049
crossref_primary_10_3389_aot_2025_1546386
crossref_primary_10_1007_s11042_022_12242_2
crossref_primary_10_3390_a13060145
crossref_primary_10_1038_s41598_022_09041_y
crossref_primary_10_1016_j_csbj_2024_09_021
crossref_primary_10_3389_fsurg_2022_976536
crossref_primary_10_1016_j_oooo_2023_01_017
crossref_primary_10_1007_s11063_017_9677_4
crossref_primary_10_1109_TNNLS_2017_2776248
crossref_primary_10_1016_j_neucom_2024_128533
crossref_primary_10_1016_j_inffus_2024_102417
crossref_primary_10_1155_2020_1397948
Cites_doi 10.1152/jn.1985.53.1.89
10.1016/0893-6080(89)90014-2
10.1002/net.3230200507
10.1017/S0308210500021326
10.1016/0167-2789(90)90081-Y
10.1109/21.155944
10.1080/095400996116811
10.1162/neco.1995.7.1.108
10.1016/0022-247X(64)90089-7
10.1017/S0004972700034894
10.1162/neco.1996.8.3.643
10.1109/72.392248
10.1109/72.317730
10.1073/pnas.85.21.8311
10.1038/323533a0
10.1523/JNEUROSCI.10-10-03227.1990
10.1090/S0002-9939-1978-0476971-2
10.1016/0893-6080(89)90016-6
10.7153/jmi-03-21
10.1007/BF00058655
ContentType Journal Article
Copyright 2014 The Authors
2015 INIST-CNRS
2014 Elsevier B.V. All rights reserved. 2014
Copyright_xml – notice: 2014 The Authors
– notice: 2015 INIST-CNRS
– notice: 2014 Elsevier B.V. All rights reserved. 2014
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
NPM
7SC
8FD
F28
FR3
JQ2
L7M
L~C
L~D
7X8
5PM
ADTOC
UNPAY
DOI 10.1016/j.artint.2014.02.004
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1872-7921
EndPage 122
ExternalDocumentID oai:escholarship.org:ark:/13030/qt7st7476x
PMC3996711
24771879
28376664
10_1016_j_artint_2014_02_004
S0004370214000216
Genre Journal Article
GrantInformation_xml – fundername: NLM NIH HHS
  grantid: T15 LM007443
– fundername: NLM NIH HHS
  grantid: R01 LM010235
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6I.
6J9
6TJ
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AAKPC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACWUS
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AECPX
AEFWE
AEKER
AENEX
AETEA
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
E3Z
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
IXB
J1W
JJJVA
KOM
KQ8
LG9
LY7
M41
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
TR2
TWZ
UPT
UQL
VQA
WH7
WUQ
XFK
XJE
XJT
XPP
XSW
ZMT
~02
~G-
77I
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
SSH
AFXIZ
AGCQF
AGRNS
NPM
7SC
8FD
F28
FR3
JQ2
L7M
L~C
L~D
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c526t-9a8f604ed08dfbec4154b09093ff09a32154cbebb8619d710e5de4263d4b34d03
IEDL.DBID UNPAY
ISSN 0004-3702
1872-7921
IngestDate Sun Oct 26 04:08:13 EDT 2025
Tue Sep 30 17:07:56 EDT 2025
Wed Oct 01 13:37:57 EDT 2025
Wed Oct 01 12:51:30 EDT 2025
Mon Jul 21 06:00:50 EDT 2025
Wed Apr 02 07:25:05 EDT 2025
Thu Apr 24 23:04:34 EDT 2025
Wed Oct 01 04:37:54 EDT 2025
Fri Feb 23 02:31:59 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Backpropagation
Neural networks
Geometric mean
Variance minimization
Machine learning
Ensemble
Sparse representations
Stochastic gradient descent
Regularization
Stochastic neurons
Ergodic theory
On line
Self consistency
Dynamic properties
Modeling
Adaptive method
Varying speed
Variance
Gradient descent
Backpropagation algorithm
Sparse representation
Transfer function
Learning algorithm
Logistic function
Static properties
Minimization
Neural network
Independent variable
Linearity
Artificial intelligence
Logistics
sparse representations
backpropagation
neural networks
regularization
variance minimization
stochastic neurons
ensemble
machine learning
stochastic gradient descent
geometric mean
Language English
License http://creativecommons.org/licenses/by-nc-nd/3.0
CC BY 4.0
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c526t-9a8f604ed08dfbec4154b09093ff09a32154cbebb8619d710e5de4263d4b34d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://escholarship.org/uc/item/7st7476x
PMID 24771879
PQID 1669857146
PQPubID 23500
PageCount 45
ParticipantIDs unpaywall_primary_10_1016_j_artint_2014_02_004
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3996711
proquest_miscellaneous_1826587254
proquest_miscellaneous_1669857146
pubmed_primary_24771879
pascalfrancis_primary_28376664
crossref_citationtrail_10_1016_j_artint_2014_02_004
crossref_primary_10_1016_j_artint_2014_02_004
elsevier_sciencedirect_doi_10_1016_j_artint_2014_02_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-05-01
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: Netherlands
PublicationTitle Artificial intelligence
PublicationTitleAlternate Artif Intell
PublicationYear 2014
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Mercer (br0310) 2001; 31
Alon, Spencer (br0030) 2004
Raviv, Intrator (br0370) 1996; 8
Spiegelhalter, Lauritzen (br0410) 1990; 20
Gardner (br0240) 1989; 2
Neuman, Sándor (br0350) 2002; 5
Rumelhart, Hintont, Williams (br0400) 1986; 323
Aldaz (br0010) 2009; 3
Duda, Hart, Stork (br0230) 2000
Alzer (br0040) 1997; 27
Alzer (br0050) 1999; 129
Neuman, Sandor (br0360) 2005; 72
Bottou (br0130) 1998
Breiman (br0170) 1996; 24
Matsuoka (br0300) 1992; 22
Rockafellar (br0390) 1997
Cartwright, Field (br0200) 1978
Diaconis (br0220) 1988; vol. 1
Wager, Wang, Liang (br0430) 2013; vol. 26
Baldi, Hornik (br0080) 1988; 2
Carr, Konishi (br0190) 1988; 85
Maaten, Chen, Tyree, Weinberger (br0290) 2013
Bishop (br0120) 1995; 7
Robbins, Siegmund (br0380) 1971
Baldi, Hornik (br0090) 1994; 6
Aldaz (br0020) 2012
Ba, Frey (br0070) 2013; vol. 26
Murray, Edwards (br0340) 1994; 5
Bowling, Khasawneh, Kaewkuekool, Cho (br0150) 2009; 2
Harnischfeger, Neuweiler, Schlegel (br0260) 1985; 53
Vincent, Larochelle, Bengio, Manzagol (br0420) 2008
Hanson (br0250) 1990; 42
Mitzenmacher, Upfal (br0330) 2005
Carr, Konishi (br0180) 1990; 10
An (br0060) 1996; 8
Beckenbach, Bellman (br0110) 1965
Cox (br0210) 1989
Baldi, Sadowski (br0100) 2013; vol. 26
Bottou (br0140) 2004; vol. 3176
Levinson (br0280) 1964; 8
Hinton, Srivastava, Krizhevsky, Sutskever, Salakhutdinov (br0270) 2012
Mercer (br0320) 2003; 33
Boyd, Vandenberghe (br0160) 2004
Hanson (10.1016/j.artint.2014.02.004_br0250) 1990; 42
Breiman (10.1016/j.artint.2014.02.004_br0170) 1996; 24
Neuman (10.1016/j.artint.2014.02.004_br0360) 2005; 72
Baldi (10.1016/j.artint.2014.02.004_br0090) 1994; 6
Mercer (10.1016/j.artint.2014.02.004_br0310) 2001; 31
An (10.1016/j.artint.2014.02.004_br0060) 1996; 8
Cartwright (10.1016/j.artint.2014.02.004_br0200) 1978
Murray (10.1016/j.artint.2014.02.004_br0340) 1994; 5
Cox (10.1016/j.artint.2014.02.004_br0210) 1989
Matsuoka (10.1016/j.artint.2014.02.004_br0300) 1992; 22
Bottou (10.1016/j.artint.2014.02.004_br0140) 2004; vol. 3176
Harnischfeger (10.1016/j.artint.2014.02.004_br0260) 1985; 53
Duda (10.1016/j.artint.2014.02.004_br0230) 2000
Bowling (10.1016/j.artint.2014.02.004_br0150) 2009; 2
Gardner (10.1016/j.artint.2014.02.004_br0240) 1989; 2
Alzer (10.1016/j.artint.2014.02.004_br0040) 1997; 27
Alzer (10.1016/j.artint.2014.02.004_br0050) 1999; 129
Bishop (10.1016/j.artint.2014.02.004_br0120) 1995; 7
Vincent (10.1016/j.artint.2014.02.004_br0420) 2008
Aldaz (10.1016/j.artint.2014.02.004_br0010) 2009; 3
Baldi (10.1016/j.artint.2014.02.004_br0100) 2013; vol. 26
Rockafellar (10.1016/j.artint.2014.02.004_br0390) 1997
Alon (10.1016/j.artint.2014.02.004_br0030) 2004
Levinson (10.1016/j.artint.2014.02.004_br0280) 1964; 8
Wager (10.1016/j.artint.2014.02.004_br0430) 2013; vol. 26
Raviv (10.1016/j.artint.2014.02.004_br0370) 1996; 8
Spiegelhalter (10.1016/j.artint.2014.02.004_br0410) 1990; 20
Boyd (10.1016/j.artint.2014.02.004_br0160) 2004
Mercer (10.1016/j.artint.2014.02.004_br0320) 2003; 33
Maaten (10.1016/j.artint.2014.02.004_br0290) 2013
Mitzenmacher (10.1016/j.artint.2014.02.004_br0330) 2005
Beckenbach (10.1016/j.artint.2014.02.004_br0110) 1965
Carr (10.1016/j.artint.2014.02.004_br0180) 1990; 10
Baldi (10.1016/j.artint.2014.02.004_br0080) 1988; 2
Neuman (10.1016/j.artint.2014.02.004_br0350) 2002; 5
Aldaz (10.1016/j.artint.2014.02.004_br0020)
Ba (10.1016/j.artint.2014.02.004_br0070) 2013; vol. 26
Hinton (10.1016/j.artint.2014.02.004_br0270)
Robbins (10.1016/j.artint.2014.02.004_br0380) 1971
Bottou (10.1016/j.artint.2014.02.004_br0130) 1998
Carr (10.1016/j.artint.2014.02.004_br0190) 1988; 85
Diaconis (10.1016/j.artint.2014.02.004_br0220) 1988; vol. 1
Rumelhart (10.1016/j.artint.2014.02.004_br0400) 1986; 323
18263374 - IEEE Trans Neural Netw. 1995;6(4):837-58
3186725 - Proc Natl Acad Sci U S A. 1988 Nov;85(21):8311-5
2213141 - J Neurosci. 1990 Oct;10(10):3227-46
3973664 - J Neurophysiol. 1985 Jan;53(1):89-109
18267852 - IEEE Trans Neural Netw. 1994;5(5):792-802
References_xml – volume: vol. 26
  start-page: 351
  year: 2013
  end-page: 359
  ident: br0430
  article-title: Dropout training as adaptive regularization
  publication-title: Advances in Neural Information Processing Systems
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: br0170
  article-title: Bagging predictors
  publication-title: Mach. Learn.
– volume: 6
  start-page: 837
  year: 1994
  end-page: 858
  ident: br0090
  article-title: Learning in linear networks: a survey
  publication-title: IEEE Trans. Neural Netw.
– year: 2005
  ident: br0330
  article-title: Probability and Computing: Randomized Algorithms and Probabilistic Analysis
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: br0400
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– year: 2012
  ident: br0270
  article-title: Improving neural networks by preventing co-adaptation of feature detectors
– year: 1997
  ident: br0390
  article-title: Convex Analysis, vol. 28
– volume: 129
  start-page: 221
  year: 1999
  end-page: 228
  ident: br0050
  article-title: Some inequalities for arithmetic and geometric means
  publication-title: Proc. R. Soc. Edinb., Sect. A, Math.
– volume: 5
  start-page: 792
  year: 1994
  end-page: 802
  ident: br0340
  article-title: Enhanced mlp performance and fault tolerance resulting from synaptic weight noise during training
  publication-title: IEEE Trans. Neural Netw.
– volume: vol. 26
  start-page: 3084
  year: 2013
  end-page: 3092
  ident: br0070
  article-title: Adaptive dropout for training deep neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 27
  year: 1997
  ident: br0040
  article-title: A new refinement of the arithmetic mean geometric mean inequality
  publication-title: J. Math.
– start-page: 1096
  year: 2008
  end-page: 1103
  ident: br0420
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: Proceedings of the 25th International Conference on Machine Learning
– volume: 3
  start-page: 213
  year: 2009
  end-page: 216
  ident: br0010
  article-title: Self improvement of the inequality between arithmetic and geometric means
  publication-title: J. Math. Inequal.
– year: 1989
  ident: br0210
  article-title: The Analysis of Binary Data, vol. 32
– start-page: 233
  year: 1971
  end-page: 257
  ident: br0380
  article-title: A convergence theorem for non negative almost supermartingales and some applications
  publication-title: Optimizing Methods in Statistics
– volume: 8
  start-page: 643
  year: 1996
  end-page: 674
  ident: br0060
  article-title: The effects of adding noise during backpropagation training on a generalization performance
  publication-title: Neural Comput.
– volume: vol. 26
  start-page: 2814
  year: 2013
  end-page: 2822
  ident: br0100
  article-title: Understanding dropout
  publication-title: Advances in Neural Information Processing Systems
– year: 2004
  ident: br0030
  article-title: The Probabilistic Method
– year: 1965
  ident: br0110
  article-title: Inequalities
– volume: 31
  year: 2001
  ident: br0310
  article-title: Improved upper and lower bounds for the difference an-gn
  publication-title: J. Math.
– start-page: 36
  year: 1978
  end-page: 38
  ident: br0200
  article-title: A refinement of the arithmetic mean-geometric mean inequality
  publication-title: Proc. Am. Math. Soc.
– year: 1998
  ident: br0130
  article-title: Online algorithms and stochastic approximations
  publication-title: Online Learning and Neural Networks
– volume: 8
  start-page: 355
  year: 1996
  end-page: 372
  ident: br0370
  article-title: Bootstrapping with noise: An effective regularization technique
  publication-title: Connect. Sci.
– volume: 72
  start-page: 87
  year: 2005
  end-page: 108
  ident: br0360
  article-title: On the Ky Fan inequality and related inequalities ii
  publication-title: Bull. Aust. Math. Soc.
– volume: 33
  year: 2003
  ident: br0320
  article-title: Refined arithmetic, geometric and harmonic mean inequalities
  publication-title: J. Math.
– volume: 5
  start-page: 49
  year: 2002
  end-page: 56
  ident: br0350
  article-title: On the Ky Fan inequality and related inequalities i
  publication-title: Math. Inequal. Appl
– volume: 2
  start-page: 114
  year: 2009
  end-page: 127
  ident: br0150
  article-title: A logistic approximation to the cumulative normal distribution
  publication-title: J. Ind. Eng. Manag.
– volume: 10
  start-page: 3227
  year: 1990
  end-page: 3246
  ident: br0180
  article-title: A circuit for detection of interaural time differences in the brain stem of the barn owl
  publication-title: J. Neurosci.
– volume: 85
  start-page: 8311
  year: 1988
  end-page: 8315
  ident: br0190
  article-title: Axonal delay lines for time measurement in the owl's brainstem
  publication-title: Proc. Natl. Acad. Sci.
– volume: vol. 1
  start-page: 163
  year: 1988
  end-page: 175
  ident: br0220
  article-title: Bayesian numerical analysis
  publication-title: Statistical Decision Theory and Related Topics IV
– volume: 42
  start-page: 265
  year: 1990
  end-page: 272
  ident: br0250
  article-title: A stochastic version of the delta rule
  publication-title: Physica D
– volume: 8
  start-page: 133
  year: 1964
  end-page: 134
  ident: br0280
  article-title: Generalization of an inequality of Ky Fan
  publication-title: J. Math. Anal. Appl.
– volume: vol. 3176
  start-page: 146
  year: 2004
  end-page: 168
  ident: br0140
  article-title: Stochastic learning
  publication-title: Advanced Lectures on Machine Learning
– volume: 22
  start-page: 436
  year: 1992
  end-page: 440
  ident: br0300
  article-title: Noise injection into inputs in back-propagation learning
  publication-title: IEEE Trans. Syst. Man Cybern.
– year: 2012
  ident: br0020
  article-title: Sharp bounds for the difference between the arithmetic and geometric means
– year: 2000
  ident: br0230
  article-title: Pattern Classification
– volume: 2
  start-page: 69
  year: 1989
  end-page: 76
  ident: br0240
  article-title: Noise modulation of synaptic weights in a biological neural network
  publication-title: Neural Netw.
– volume: 20
  start-page: 579
  year: 1990
  end-page: 605
  ident: br0410
  article-title: Sequential updating of conditional probabilities on directed graphical structures
  publication-title: Networks
– volume: 2
  start-page: 53
  year: 1988
  end-page: 58
  ident: br0080
  article-title: Neural networks and principal component analysis: Learning from examples without local minima
  publication-title: Neural Netw.
– year: 2004
  ident: br0160
  article-title: Convex Optimization
– start-page: 410
  year: 2013
  end-page: 418
  ident: br0290
  article-title: Learning with marginalized corrupted features
  publication-title: Proceedings of the 30th International Conference on Machine Learning (ICML-13)
– volume: 53
  start-page: 89
  year: 1985
  end-page: 109
  ident: br0260
  article-title: Interaural time and intensity coding in superior olivary complex and inferior colliculus of the echolocating bat molossus ater
  publication-title: J. Neurophysiol.
– volume: 7
  start-page: 108
  year: 1995
  end-page: 116
  ident: br0120
  article-title: Training with noise is equivalent to Tikhonov regularization
  publication-title: Neural Comput.
– volume: 53
  start-page: 89
  issue: 1
  year: 1985
  ident: 10.1016/j.artint.2014.02.004_br0260
  article-title: Interaural time and intensity coding in superior olivary complex and inferior colliculus of the echolocating bat molossus ater
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1985.53.1.89
– volume: 2
  start-page: 53
  issue: 1
  year: 1988
  ident: 10.1016/j.artint.2014.02.004_br0080
  article-title: Neural networks and principal component analysis: Learning from examples without local minima
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90014-2
– volume: 20
  start-page: 579
  issue: 5
  year: 1990
  ident: 10.1016/j.artint.2014.02.004_br0410
  article-title: Sequential updating of conditional probabilities on directed graphical structures
  publication-title: Networks
  doi: 10.1002/net.3230200507
– year: 2004
  ident: 10.1016/j.artint.2014.02.004_br0160
– volume: 129
  start-page: 221
  issue: 02
  year: 1999
  ident: 10.1016/j.artint.2014.02.004_br0050
  article-title: Some inequalities for arithmetic and geometric means
  publication-title: Proc. R. Soc. Edinb., Sect. A, Math.
  doi: 10.1017/S0308210500021326
– year: 1998
  ident: 10.1016/j.artint.2014.02.004_br0130
  article-title: Online algorithms and stochastic approximations
– volume: vol. 26
  start-page: 351
  year: 2013
  ident: 10.1016/j.artint.2014.02.004_br0430
  article-title: Dropout training as adaptive regularization
– volume: 42
  start-page: 265
  issue: 1
  year: 1990
  ident: 10.1016/j.artint.2014.02.004_br0250
  article-title: A stochastic version of the delta rule
  publication-title: Physica D
  doi: 10.1016/0167-2789(90)90081-Y
– start-page: 410
  year: 2013
  ident: 10.1016/j.artint.2014.02.004_br0290
  article-title: Learning with marginalized corrupted features
– year: 1989
  ident: 10.1016/j.artint.2014.02.004_br0210
– year: 2000
  ident: 10.1016/j.artint.2014.02.004_br0230
– volume: 22
  start-page: 436
  issue: 3
  year: 1992
  ident: 10.1016/j.artint.2014.02.004_br0300
  article-title: Noise injection into inputs in back-propagation learning
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.155944
– volume: 5
  start-page: 49
  year: 2002
  ident: 10.1016/j.artint.2014.02.004_br0350
  article-title: On the Ky Fan inequality and related inequalities i
  publication-title: Math. Inequal. Appl
– volume: 8
  start-page: 355
  issue: 3–4
  year: 1996
  ident: 10.1016/j.artint.2014.02.004_br0370
  article-title: Bootstrapping with noise: An effective regularization technique
  publication-title: Connect. Sci.
  doi: 10.1080/095400996116811
– volume: vol. 26
  start-page: 3084
  year: 2013
  ident: 10.1016/j.artint.2014.02.004_br0070
  article-title: Adaptive dropout for training deep neural networks
– volume: 7
  start-page: 108
  issue: 1
  year: 1995
  ident: 10.1016/j.artint.2014.02.004_br0120
  article-title: Training with noise is equivalent to Tikhonov regularization
  publication-title: Neural Comput.
  doi: 10.1162/neco.1995.7.1.108
– year: 1965
  ident: 10.1016/j.artint.2014.02.004_br0110
– volume: 8
  start-page: 133
  issue: 1
  year: 1964
  ident: 10.1016/j.artint.2014.02.004_br0280
  article-title: Generalization of an inequality of Ky Fan
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(64)90089-7
– volume: 27
  issue: 3
  year: 1997
  ident: 10.1016/j.artint.2014.02.004_br0040
  article-title: A new refinement of the arithmetic mean geometric mean inequality
  publication-title: J. Math.
– year: 2005
  ident: 10.1016/j.artint.2014.02.004_br0330
– volume: 72
  start-page: 87
  issue: 1
  year: 2005
  ident: 10.1016/j.artint.2014.02.004_br0360
  article-title: On the Ky Fan inequality and related inequalities ii
  publication-title: Bull. Aust. Math. Soc.
  doi: 10.1017/S0004972700034894
– volume: 33
  issue: 4
  year: 2003
  ident: 10.1016/j.artint.2014.02.004_br0320
  article-title: Refined arithmetic, geometric and harmonic mean inequalities
  publication-title: J. Math.
– volume: 8
  start-page: 643
  issue: 3
  year: 1996
  ident: 10.1016/j.artint.2014.02.004_br0060
  article-title: The effects of adding noise during backpropagation training on a generalization performance
  publication-title: Neural Comput.
  doi: 10.1162/neco.1996.8.3.643
– volume: 6
  start-page: 837
  issue: 4
  year: 1994
  ident: 10.1016/j.artint.2014.02.004_br0090
  article-title: Learning in linear networks: a survey
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.392248
– volume: 5
  start-page: 792
  issue: 5
  year: 1994
  ident: 10.1016/j.artint.2014.02.004_br0340
  article-title: Enhanced mlp performance and fault tolerance resulting from synaptic weight noise during training
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.317730
– volume: vol. 1
  start-page: 163
  year: 1988
  ident: 10.1016/j.artint.2014.02.004_br0220
  article-title: Bayesian numerical analysis
– volume: vol. 26
  start-page: 2814
  year: 2013
  ident: 10.1016/j.artint.2014.02.004_br0100
  article-title: Understanding dropout
– volume: 2
  start-page: 114
  issue: 1
  year: 2009
  ident: 10.1016/j.artint.2014.02.004_br0150
  article-title: A logistic approximation to the cumulative normal distribution
  publication-title: J. Ind. Eng. Manag.
– volume: 85
  start-page: 8311
  issue: 21
  year: 1988
  ident: 10.1016/j.artint.2014.02.004_br0190
  article-title: Axonal delay lines for time measurement in the owl's brainstem
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.85.21.8311
– start-page: 1096
  year: 2008
  ident: 10.1016/j.artint.2014.02.004_br0420
  article-title: Extracting and composing robust features with denoising autoencoders
– volume: 31
  issue: 2
  year: 2001
  ident: 10.1016/j.artint.2014.02.004_br0310
  article-title: Improved upper and lower bounds for the difference an-gn
  publication-title: J. Math.
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: 10.1016/j.artint.2014.02.004_br0400
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– ident: 10.1016/j.artint.2014.02.004_br0270
– ident: 10.1016/j.artint.2014.02.004_br0020
– volume: vol. 3176
  start-page: 146
  year: 2004
  ident: 10.1016/j.artint.2014.02.004_br0140
  article-title: Stochastic learning
– start-page: 233
  year: 1971
  ident: 10.1016/j.artint.2014.02.004_br0380
  article-title: A convergence theorem for non negative almost supermartingales and some applications
– volume: 10
  start-page: 3227
  issue: 10
  year: 1990
  ident: 10.1016/j.artint.2014.02.004_br0180
  article-title: A circuit for detection of interaural time differences in the brain stem of the barn owl
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.10-10-03227.1990
– year: 2004
  ident: 10.1016/j.artint.2014.02.004_br0030
– start-page: 36
  year: 1978
  ident: 10.1016/j.artint.2014.02.004_br0200
  article-title: A refinement of the arithmetic mean-geometric mean inequality
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1978-0476971-2
– volume: 2
  start-page: 69
  issue: 1
  year: 1989
  ident: 10.1016/j.artint.2014.02.004_br0240
  article-title: Noise modulation of synaptic weights in a biological neural network
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90016-6
– year: 1997
  ident: 10.1016/j.artint.2014.02.004_br0390
– volume: 3
  start-page: 213
  issue: 2
  year: 2009
  ident: 10.1016/j.artint.2014.02.004_br0010
  article-title: Self improvement of the inequality between arithmetic and geometric means
  publication-title: J. Math. Inequal.
  doi: 10.7153/jmi-03-21
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 10.1016/j.artint.2014.02.004_br0170
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1007/BF00058655
– reference: 2213141 - J Neurosci. 1990 Oct;10(10):3227-46
– reference: 18263374 - IEEE Trans Neural Netw. 1995;6(4):837-58
– reference: 3973664 - J Neurophysiol. 1985 Jan;53(1):89-109
– reference: 18267852 - IEEE Trans Neural Netw. 1994;5(5):792-802
– reference: 3186725 - Proc Natl Acad Sci U S A. 1988 Nov;85(21):8311-5
SSID ssj0003991
Score 2.574175
Snippet Dropout is a recently introduced algorithm for training neural networks by randomly dropping units during training to prevent their co-adaptation. A...
Dropout is a recently introduced algorithm for training neural network by randomly dropping units during training to prevent their co-adaptation. A...
SourceID unpaywall
pubmedcentral
proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 78
SubjectTerms Applied sciences
Approximation
Artificial intelligence
Backpropagation
Computer science; control theory; systems
Connectionism. Neural networks
Detection, estimation, filtering, equalization, prediction
Dropouts
Ensemble
Exact sciences and technology
Functions (mathematics)
Geometric mean
Information, signal and communications theory
Learning and adaptive systems
Logistics
Machine learning
Mathematical analysis
Networks
Neural networks
Regularization
Signal and communications theory
Signal, noise
Sparse representations
Stochastic gradient descent
Stochastic neurons
Stochasticity
Telecommunications and information theory
Training
Variance minimization
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4mLiAh3o_xmIrENZDStEmPaAIhDpxA2i1KmwSGRjdtnRAXfjt2mw4mnuLY1unDdmJbdb6PkOOEGxOlNqMQPB3lOddUulhQK13KZJ4ixBN2W9wkV3f8uhf3WqTb7IXBtkq_9tdrerVa-zOnXpuno34f9_giLg9ifuG0DhF2m3OBLAYnr-9tHhCAPWsepyjdbJ-reryqnfrYURnyGrmTfxeelkd6AkpzNdvFV-no567KxWkx0i_PejD4ELIu18iKzzWD8_pz1knLFhtkteFxCPy03iQd8JXAIF3CtAw8jcR9oAf3w3G_fHjaIneXF7fdK-p5E2genyUlTbV0CePWMGkc2AhiNM9YytLIOZbqCKI8zzObZRKqJwMpho2NReB2w7OIGxZtk4ViWNhdEghICLR1cCu4onOoz8IccrrYhcwJaUWbRI26VO5BxZHbYqCa7rFHVStZoZIVO1Og5Dahs1GjGlTjF3nRWELNOYeCdf-XkZ05w80eh6A_ULmBwFFjSQUTC_-W6MIOpxMVJkkqYwGR5AcZKM5iKaDIbpOd2vrvT-BCIJU7vPycX8wEENh7_krRf6gAvsFnExGGbXIy86A_6Wnv33raJ0t4VHdyHpCFcjy1h5BtlVmnmk5vJNYn8w
  priority: 102
  providerName: Elsevier
Title The dropout learning algorithm
URI https://dx.doi.org/10.1016/j.artint.2014.02.004
https://www.ncbi.nlm.nih.gov/pubmed/24771879
https://www.proquest.com/docview/1669857146
https://www.proquest.com/docview/1826587254
https://pubmed.ncbi.nlm.nih.gov/PMC3996711
https://escholarship.org/uc/item/7st7476x
UnpaywallVersion submittedVersion
Volume 210
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7921
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003991
  issn: 0004-3702
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Free Content
  customDbUrl:
  eissn: 1872-7921
  dateEnd: 20211105
  omitProxy: true
  ssIdentifier: ssj0003991
  issn: 0004-3702
  databaseCode: IXB
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1872-7921
  dateEnd: 20211105
  omitProxy: true
  ssIdentifier: ssj0003991
  issn: 0004-3702
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-7921
  dateEnd: 20211031
  omitProxy: true
  ssIdentifier: ssj0003991
  issn: 0004-3702
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-7921
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003991
  issn: 0004-3702
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7921
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003991
  issn: 0004-3702
  databaseCode: AKRWK
  dateStart: 19700301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELagPYCEWN6URxQkrilO4-exoF11Qao4UKmcLCe2t11KWm0TITjsb99xnJQtr12OUfxIPOPMN8rnbxB6zYgxmbR5AsHTJaQgOhGO8sQKJ7EopJd48myLKZvMyPs5nbdi0f4sjO1yusVy0_zIr0NNsjd8WwHyZQAX-4wC7O6h_mz6cfw5wFsCGyXwCwUHxChHaXdMruFyNSfyPXMyJUGhk_wtDN3Z6C0sjgtVLf4EO39nT96qy43-_k2vVpdC09FBIHVtG0VDz0j5MqyrfFj8-EXv8VpvfQ_dbQFqPA4edR_dsOUDdNAVf4jbb8FDFIGDxcbXWKiruK09cRLr1cn6bFktvj5Cs6PDT-8mSVtsISnoiFWJ1MIxTKzBwjgwLAR2kmOJZeYcljoDaECK3Oa5gJTLAC6x1Fiv9m5InhGDs8eoV65L-xTFHFCEtg6Ggju6gKQuLQAIUpdix4XlA5R1a6-KVoncF8RYqY5ydqqCxZS3mMIjBRYboGTXaxOUOK5ozzuzqhZNBJSgIFhc0TPa84LddF4pCNI9aPCqcwsFu9H_YtGlXddblTImBeUQfv7RBjI6Cm5KYZwnwZV-zkA49_Xf4eH3nGzXwKuB798pl4tGFRyQJuNpOkDDnTtea52e_W-H5-i2vwqszxeoV53V9iUgsyqP0M3heRqh_vj4w2QKV8fzt1G7Ty8AcUA8ig
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BPYCE-gLK9rGkEleDs3Fi51ihom15nEDiZjmxDYu22RVkhbj0t3cmcZauaEvFNR7nMQ_PjDLzDcBuJqxNclcwdJ6eiVIYpnwqmVM-56rMCeKJqi1Os-G5-H6RXizBQdcLQ2WV4exvz_TmtA5X9gM396ejEfX4Ei4PYX6RWcfZMrwQ6UBSBrb386HOAz1wGJsnGJF3_XNNkVfTqk8llbFooTvF3_zT-tTcItd8O-7iT_Ho47LK1Vk1Nfd3Zjz-zWcdvoaXIdiMvrTf8waWXPUWXnWDHKJg1xvQR2WJLM1LmNVRmCNxGZnx5eRmVF_92ITzw69nB0MWBiewMh1kNcuN8hkXznJlPQoJnbQoeM7zxHuemwTdvCgLVxQK0yeLMYZLrSPkdiuKRFiebMFKNancNkQSIwLjPN4KV0yJCVpcYlCX-ph7qZzsQdKxS5cBVZyGW4x1Vz52rVsma2Ky5gONTO4Bm--atqgaT9DLThJ6QTs0HvxP7OwvCG7-OEL9wdQNCT53ktRoWfS7xFRuMrvVcZblKpXoSv5Bg9lZqiRm2T1410r_4QlCSprlji-_oBdzAkL2XlypRlcNwjfqbCbjuAd7cw36Lz69fzafdmB1eHZyrI-_nR59gDVaacs6P8JKfTNznzD0qot-Y1q_AAnlKxY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9swFLam8jAkBIxx6QZVkHhNcRpfH9E0hHhAe1gl9mQ5sU0LJa1oIgS_fsdx0q2DcXmM4kvic5zzHeXzdxA6YsSYVNoshuDpYpITHQtHeWyFk1jk0ks8ebbFBTsbkvNLetmIRfuzMLbN6UbjWf0jvwo1yY75vATkywAurjAKsLuDVoYXP05-BXhLYKMEfqHggBjlIGmPydVcrvpEvmdOJiQodJL_haG1mZ7D4rhQ1eI52PmUPfmxKmb64V5PJn-FptONQOqa14qGnpFy06_KrJ8__qP3-Ka33kTrDUCNToJHfUIfbLGFNtriD1HzLfiMeuBgkfE1FqoyampPXEV6cjW9G5ej2200PP3-89tZ3BRbiHM6YGUstXAME2uwMA4MC4GdZFhimTqHpU4BGpA8s1kmIOUygEssNdarvRuSpcTgdAd1imlh91DEAUVo62AouKNzSOqSHIAgdQl2XFjeRWm79ipvlMh9QYyJailn1ypYTHmLKTxQYLEuihe9ZkGJ45X2vDWratBEQAkKgsUrPXtLXrCYzisFQboHDQ5bt1CwG_0vFl3YaTVXCWNSUA7h54U2kNFRcFMK4-wGV_ozA-Hc13-Hh19yskUDrwa-fKcYj2pVcECajCdJF_UX7vimdfry3g5f0aq_CqzPfdQp7yp7AMiszHrNnvwN4Ts4-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+dropout+learning+algorithm&rft.jtitle=Artificial+intelligence&rft.au=BALDI%2C+Pierre&rft.au=SADOWSKI%2C+Peter&rft.date=2014-05-01&rft.pub=Elsevier&rft.issn=0004-3702&rft.volume=210&rft.spage=78&rft.epage=122&rft_id=info:doi/10.1016%2Fj.artint.2014.02.004&rft.externalDBID=n%2Fa&rft.externalDocID=28376664
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-3702&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-3702&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-3702&client=summon