Dataflow programming for the analysis of molecular dynamics with AViS, an analysis and visualization software application

The study of molecular dynamics simulations is largely facilitated by analysis and visualization toolsets. However, these toolsets are often designed for specific use cases and those only, while scripting extensions to such toolsets is often exceedingly complicated. To overcome this problem, we desi...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 15; no. 4; p. e0231714
Main Authors Pua, Kai, Yuhara, Daisuke, Ayuba, Sho, Yasuoka, Kenji
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 21.04.2020
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0231714

Cover

More Information
Summary:The study of molecular dynamics simulations is largely facilitated by analysis and visualization toolsets. However, these toolsets are often designed for specific use cases and those only, while scripting extensions to such toolsets is often exceedingly complicated. To overcome this problem, we designed a software application called AViS which focuses on the extensibility of analysis. By utilizing the dataflow programming (DFP) paradigm, algorithms can be defined by execution graphs, and arbitrary data can be transferred between nodes using visual connectors. Extension nodes can be implemented in either Python, C++, and Fortran, and combined in the same algorithm. AViS offers a comprehensive collection of nodes for sophisticated visualization state modifications, thus greatly simplifying the rules for writing extensions. Input files can also be read from the server automatically, and data is fetched automatically to improve memory usage. In addition, the visualization system of AViS uses physically-based rendering techniques, improving the 3D perception of molecular structures for interactive visualization. By performing two case studies on complex molecular systems, we show that the DFP workflow offers a much higher level of flexibility and extensibility when compared to legacy workflows. The software source code and binaries for Windows, MacOS, and Linux are freely available at https://avis-md.github.io/.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Current address: Department of Computer Science, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0231714