LogLoss-BERAF: An ensemble-based machine learning model for constructing highly accurate diagnostic sets of methylation sites accounting for heterogeneity in prostate cancer
Although modern methods of whole genome DNA methylation analysis have a wide range of applications, they are not suitable for clinical diagnostics due to their high cost and complexity and due to the large amount of sample DNA required for the analysis. Therefore, it is crucial to be able to identif...
Saved in:
| Published in | PloS one Vol. 13; no. 11; p. e0204371 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
02.11.2018
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0204371 |
Cover
| Abstract | Although modern methods of whole genome DNA methylation analysis have a wide range of applications, they are not suitable for clinical diagnostics due to their high cost and complexity and due to the large amount of sample DNA required for the analysis. Therefore, it is crucial to be able to identify a relatively small number of methylation sites that provide high precision and sensitivity for the diagnosis of pathological states. We propose an algorithm for constructing limited subsamples from high-dimensional data to form diagnostic panels. We have developed a tool that utilizes different methods of selection to find an optimal, minimum necessary combination of factors using cross-entropy loss metrics (LogLoss) to identify a subset of methylation sites. We show that the algorithm can work effectively with different genome methylation patterns using ensemble-based machine learning methods. Algorithm efficiency, precision and robustness were evaluated using five genome-wide DNA methylation datasets (totaling 626 samples), and each dataset was classified into tumor and non-tumor samples. The algorithm produced an AUC of 0.97 (95% CI: 0.94-0.99, 9 sites) for prostate adenocarcinoma and an AUC of 1.0 (from 2 to 6 sites) for urothelial bladder carcinoma, two types of kidney carcinoma and colorectal carcinoma. For prostate adenocarcinoma we showed that identified differential variability methylation patterns distinguish cluster of samples with higher recurrence rate (hazard ratio for recurrence = 0.48, 95% CI: 0.05-0.92; log-rank test, p-value < 0.03). We also identified several clusters of correlated interchangeable methylation sites that can be used for the elaboration of biological interpretation of the resulting models and for further selection of the sites most suitable for designing diagnostic panels. LogLoss-BERAF is implemented as a standalone python code and open-source code is freely available from https://github.com/bioinformatics-IBCH/logloss-beraf along with the models described in this article. |
|---|---|
| AbstractList | Although modern methods of whole genome DNA methylation analysis have a wide range of applications, they are not suitable for clinical diagnostics due to their high cost and complexity and due to the large amount of sample DNA required for the analysis. Therefore, it is crucial to be able to identify a relatively small number of methylation sites that provide high precision and sensitivity for the diagnosis of pathological states. We propose an algorithm for constructing limited subsamples from high-dimensional data to form diagnostic panels. We have developed a tool that utilizes different methods of selection to find an optimal, minimum necessary combination of factors using cross-entropy loss metrics (LogLoss) to identify a subset of methylation sites. We show that the algorithm can work effectively with different genome methylation patterns using ensemble-based machine learning methods. Algorithm efficiency, precision and robustness were evaluated using five genome-wide DNA methylation datasets (totaling 626 samples), and each dataset was classified into tumor and non-tumor samples. The algorithm produced an AUC of 0.97 (95% CI: 0.94-0.99, 9 sites) for prostate adenocarcinoma and an AUC of 1.0 (from 2 to 6 sites) for urothelial bladder carcinoma, two types of kidney carcinoma and colorectal carcinoma. For prostate adenocarcinoma we showed that identified differential variability methylation patterns distinguish cluster of samples with higher recurrence rate (hazard ratio for recurrence = 0.48, 95% CI: 0.05-0.92; log-rank test, p-value < 0.03). We also identified several clusters of correlated interchangeable methylation sites that can be used for the elaboration of biological interpretation of the resulting models and for further selection of the sites most suitable for designing diagnostic panels. LogLoss-BERAF is implemented as a standalone python code and open-source code is freely available from https://github.com/bioinformatics-IBCH/logloss-beraf along with the models described in this article.Although modern methods of whole genome DNA methylation analysis have a wide range of applications, they are not suitable for clinical diagnostics due to their high cost and complexity and due to the large amount of sample DNA required for the analysis. Therefore, it is crucial to be able to identify a relatively small number of methylation sites that provide high precision and sensitivity for the diagnosis of pathological states. We propose an algorithm for constructing limited subsamples from high-dimensional data to form diagnostic panels. We have developed a tool that utilizes different methods of selection to find an optimal, minimum necessary combination of factors using cross-entropy loss metrics (LogLoss) to identify a subset of methylation sites. We show that the algorithm can work effectively with different genome methylation patterns using ensemble-based machine learning methods. Algorithm efficiency, precision and robustness were evaluated using five genome-wide DNA methylation datasets (totaling 626 samples), and each dataset was classified into tumor and non-tumor samples. The algorithm produced an AUC of 0.97 (95% CI: 0.94-0.99, 9 sites) for prostate adenocarcinoma and an AUC of 1.0 (from 2 to 6 sites) for urothelial bladder carcinoma, two types of kidney carcinoma and colorectal carcinoma. For prostate adenocarcinoma we showed that identified differential variability methylation patterns distinguish cluster of samples with higher recurrence rate (hazard ratio for recurrence = 0.48, 95% CI: 0.05-0.92; log-rank test, p-value < 0.03). We also identified several clusters of correlated interchangeable methylation sites that can be used for the elaboration of biological interpretation of the resulting models and for further selection of the sites most suitable for designing diagnostic panels. LogLoss-BERAF is implemented as a standalone python code and open-source code is freely available from https://github.com/bioinformatics-IBCH/logloss-beraf along with the models described in this article. Although modern methods of whole genome DNA methylation analysis have a wide range of applications, they are not suitable for clinical diagnostics due to their high cost and complexity and due to the large amount of sample DNA required for the analysis. Therefore, it is crucial to be able to identify a relatively small number of methylation sites that provide high precision and sensitivity for the diagnosis of pathological states. We propose an algorithm for constructing limited subsamples from high-dimensional data to form diagnostic panels. We have developed a tool that utilizes different methods of selection to find an optimal, minimum necessary combination of factors using cross-entropy loss metrics (LogLoss) to identify a subset of methylation sites. We show that the algorithm can work effectively with different genome methylation patterns using ensemble-based machine learning methods. Algorithm efficiency, precision and robustness were evaluated using five genome-wide DNA methylation datasets (totaling 626 samples), and each dataset was classified into tumor and non-tumor samples. The algorithm produced an AUC of 0.97 (95% CI: 0.94–0.99, 9 sites) for prostate adenocarcinoma and an AUC of 1.0 (from 2 to 6 sites) for urothelial bladder carcinoma, two types of kidney carcinoma and colorectal carcinoma. For prostate adenocarcinoma we showed that identified differential variability methylation patterns distinguish cluster of samples with higher recurrence rate (hazard ratio for recurrence = 0.48, 95% CI: 0.05–0.92; log-rank test, p-value < 0.03). We also identified several clusters of correlated interchangeable methylation sites that can be used for the elaboration of biological interpretation of the resulting models and for further selection of the sites most suitable for designing diagnostic panels. LogLoss-BERAF is implemented as a standalone python code and open-source code is freely available from https://github.com/bioinformatics-IBCH/logloss-beraf along with the models described in this article. |
| Author | Generozov, E. Kanygina, A. Govorun, V. Babalyan, K. Sultanov, R. Sharova, E. Larin, A. Kostryukova, E. Arapidi, G. |
| AuthorAffiliation | 2 Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russian Federation 1 Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian Federation 3 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation Stockholm University, SWEDEN |
| AuthorAffiliation_xml | – name: Stockholm University, SWEDEN – name: 2 Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russian Federation – name: 3 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation – name: 1 Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian Federation |
| Author_xml | – sequence: 1 givenname: K. orcidid: 0000-0001-7136-3894 surname: Babalyan fullname: Babalyan, K. – sequence: 2 givenname: R. surname: Sultanov fullname: Sultanov, R. – sequence: 3 givenname: E. orcidid: 0000-0002-6314-4883 surname: Generozov fullname: Generozov, E. – sequence: 4 givenname: E. orcidid: 0000-0003-3208-9719 surname: Sharova fullname: Sharova, E. – sequence: 5 givenname: E. surname: Kostryukova fullname: Kostryukova, E. – sequence: 6 givenname: A. surname: Larin fullname: Larin, A. – sequence: 7 givenname: A. orcidid: 0000-0003-4993-9492 surname: Kanygina fullname: Kanygina, A. – sequence: 8 givenname: V. surname: Govorun fullname: Govorun, V. – sequence: 9 givenname: G. orcidid: 0000-0003-2323-1859 surname: Arapidi fullname: Arapidi, G. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30388122$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUl1v1DAQjFAR_YB_gMASL7zc4diJL-lDpVK1UOkkJATP1sbZ5Hxy7MN2QPej-I84d9eqrZDgydZ4djy7s6fZkXUWs-x1Tuc5X-Qf1m70Fsx8k-A5ZbRI4LPsJK85mwlG-dGD-3F2GsKa0pJXQrzIjjnlVZUzdpL9Xrp-6UKYfbz-enlzTi4tQRtwaAzOGgjYkgHUSlskBsFbbXsyuBYN6ZwnytkQ_ajiBK90vzJbAkqNHiKSVkNvXYhakYAxENeRAeNqayBqZ0nQEcPEdqPd1U-CK4zoXY8WddwSbcnGJ4VJTYFV6F9mzzswAV8dzrPs-831t6vPs-WXT7dXl8uZKpmIM942Hc-7CqFVRcNpuygByzYHWtNGUFU3ooBc1W1XdXlbV13JFFAGwFXdqbLlZ9nbve7GuCAPkw6S5awqOa9rkRi3e0brYC03Xg_gt9KBljvA-V6CT70blKwSLC-xWrRCFSXWkAtgDYpasHKxENNv5V5rtBvY_gJj7gVzKqew7yzIKWx5CDvVXRxcjs2ArUIbPZhHZh6_WL2Svfspk5-iqMsk8P4g4N2PEUOUgw4KjQGLbtz1m1gVT-tylr17Qv37VN48dHRv5W7fEuF8T1Ap2OCxk0rH3UIkg9r8q9_iSfF_jekPaO0GBg |
| CitedBy_id | crossref_primary_10_1186_s13072_024_00529_7 crossref_primary_10_2174_1568026619666191016155543 crossref_primary_10_3390_su14031734 |
| Cites_doi | 10.2217/epi.09.14 10.1016/S0004-3702(97)00063-5 10.18632/oncotarget.7359 10.1016/j.ygeno.2011.07.007 10.1016/S0002-9440(10)65260-1 10.1158/1078-0432.CCR-10-3021 10.1159/000330778 10.1016/j.ejca.2005.02.020 10.1186/1471-2105-15-312 10.1593/neo.122146 10.1111/jcmm.12394 10.1093/bioinformatics/bts170 10.1038/nbt.3605 10.1109/TCBB.2012.33 10.1016/j.devcel.2010.10.005 10.1016/j.juro.2007.09.073 10.1002/jcb.10740 10.1142/S0219720005001004 10.1016/j.patcog.2012.09.007 10.1186/s40364-014-0025-9 10.1093/bioinformatics/btw430 10.1016/j.compbiolchem.2007.09.005 10.1038/bjc.2012.162 10.1016/j.cell.2015.10.025 10.1007/s13277-014-2703-5 10.1186/s12894-016-0171-5 10.1142/S0219720013500054 10.18632/oncotarget.16437 10.3109/07420528.2014.944266 10.1002/ijc.29210 10.7150/jca.12145 10.1007/s40291-017-0271-2 10.1038/nmeth.3115 10.1016/j.ctrv.2017.02.001 10.1186/s12885-017-3252-2 10.1038/aja.2013.6 10.4161/epi.25577 10.1186/1471-2407-13-275 10.1002/ijc.25951 10.1371/annotation/2548989f-1f13-4ea5-8af8-62420b0a590e 10.1371/journal.pone.0127702 10.3892/or.2015.3993 10.1093/bioinformatics/bth469 10.1023/A:1010933404324 10.1134/S199075081702007X 10.1053/j.gastro.2006.06.006 10.1038/onc.2010.488 |
| ContentType | Journal Article |
| Copyright | 2018 Babalyan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2018 Babalyan et al 2018 Babalyan et al |
| Copyright_xml | – notice: 2018 Babalyan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2018 Babalyan et al 2018 Babalyan et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0204371 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts ProQuest Agricultural Science Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database (Proquest) Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database (Proquest) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest: Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Agricultural Science Database MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Medicine Chemistry Physics |
| DocumentTitleAlternate | Diagnostic model accounting for heterogeneity in prostate cancer |
| EISSN | 1932-6203 |
| ExternalDocumentID | 2128533996 oai_doaj_org_article_286215e87d6c45e9a16a2be69625776d 10.1371/journal.pone.0204371 PMC6214495 30388122 10_1371_journal_pone_0204371 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Russia |
| GeographicLocations_xml | – name: Russia |
| GrantInformation_xml | – fundername: ; grantid: 14.607.21.0068, Sep 23, 2014, unique ID RFMEFI60714X0068 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ALIPV BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI RC3 7X8 5PM ADTOC UNPAY AAPBV ABPTK |
| ID | FETCH-LOGICAL-c526t-3dbf31f8eadc4b30d75ae5d1a090b60c9b64a1c9df8f1d98f52ca02aa3c9fc5d3 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Sun Nov 05 00:20:55 EDT 2023 Fri Oct 03 12:53:37 EDT 2025 Sun Oct 26 04:16:04 EDT 2025 Tue Sep 30 17:00:06 EDT 2025 Sun Sep 28 11:59:48 EDT 2025 Tue Oct 07 07:47:51 EDT 2025 Wed Feb 19 02:36:04 EST 2025 Wed Oct 01 02:52:18 EDT 2025 Thu Apr 24 23:06:46 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c526t-3dbf31f8eadc4b30d75ae5d1a090b60c9b64a1c9df8f1d98f52ca02aa3c9fc5d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
| ORCID | 0000-0002-6314-4883 0000-0003-4993-9492 0000-0001-7136-3894 0000-0003-2323-1859 0000-0003-3208-9719 |
| OpenAccessLink | https://doaj.org/article/286215e87d6c45e9a16a2be69625776d |
| PMID | 30388122 |
| PQID | 2128533996 |
| PQPubID | 1436336 |
| ParticipantIDs | plos_journals_2128533996 doaj_primary_oai_doaj_org_article_286215e87d6c45e9a16a2be69625776d unpaywall_primary_10_1371_journal_pone_0204371 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6214495 proquest_miscellaneous_2129538330 proquest_journals_2128533996 pubmed_primary_30388122 crossref_citationtrail_10_1371_journal_pone_0204371 crossref_primary_10_1371_journal_pone_0204371 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-11-02 |
| PublicationDateYYYYMMDD | 2018-11-02 |
| PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-02 day: 02 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2018 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | M Bibikova (ref25) 2009; 1 S Aslibekyan (ref56) 2014; 31 L a Henry (ref69) 2011; 30 LC Li (ref4) 2007 P Cairns (ref40) 2001; 7 S Sertkaya (ref59) 2015; 36 N Puthiyedth (ref17) 2015; 10 M Radovic (ref18) 2017 DK Vanaja (ref58) 2009; 27 C Lazar (ref16) 2012; 9 CJ Labuzzetta (ref20) 2016; 32 Y Chihara (ref26) 2013; 13 T Kok-Sin (ref63) 2015; 34 M Berdasco (ref5) 2010; 19 AE Teschendorff (ref31) 2013; 29 ML Calle (ref21) 2011; 72 M Almeida (ref57) 2014; 18 D Hessels (ref8) 2013; 15 SS Ma (ref10) 2006 F Pedregosa (ref34) 2011; 12 W Chung (ref42) 2008; 3 SB Cho (ref46) 2006; 26 F Chen (ref66) 2016; 16 MK Kirby (ref43) 2017; 17 C Bock (ref51) 2016; 34 M Nakayama (ref39) 2004; 91 DJ Weisenberger (ref30) 2013; 41 R Dammann (ref67) 2005; 41 Y Assenov (ref28) 2014 KJ O'Reilly (ref38) 2008; 179 J Liu (ref32) 2016 GD Stewart (ref41) 2013; 189 A Abeshouse (ref48) 2015; 163 Y Tang (ref44) 2017 LI Kuncheva (ref47) 2007 JD Rodríguez (ref36) 2013; 46 A. Wilin (ref19) 2009 L-Y Chuang (ref14) 2008; 32 P Cornford (ref52) 1999; 154 L Zou (ref55) 2013; 2013 C Ciccarese (ref2) 2017; 54 L Giacinti (ref6) 2008; 15 R. Tibshirani (ref13) 1997; 16 C Ding (ref15) 2005; 3 JT Leek (ref29) 2012; 28 S Yao (ref53) 2012; 107 J Ferlay (ref1) 2015; 136 I V. Bijnsdorp (ref3) 2017; 21 HA Adeola (ref54) 2016; 7 AE Teschendorff (ref11) 2012; 28 A Alkuhlani (ref23) 2016 Y Mori (ref68) 2006; 131 AL Blum (ref12) 1997; 97 W Dai (ref62) 2011; 17 T Pisanic (ref9) 2016 VA Naumov (ref65) 2013; 8 P-C Lin (ref60) 2013; 15 EL De Maturana (ref22) 2013 CM Bishop (ref37) 2006; 209 W Majer (ref27) 2015; 6 I Brikun (ref61) 2014; 2 L. Breiman (ref35) 2001; 45 M Bose (ref49) 2014; 15 M Bibikova (ref7) 2011; 98 Z MA (ref24) 2013; 11 N. Meinshausen (ref33) 2009 L Skorodumova (ref50) 2017; 11 B Øster (ref64) 2011; 129 L Ein-Dor (ref45) 2005; 21 |
| References_xml | – start-page: 390 year: 2007 ident: ref47 article-title: A stability index for feature selection publication-title: Int Multi-conference Artif Intell Appl – volume: 16 start-page: 385 year: 1997 ident: ref13 article-title: Lasso Method for Variable Selection in the Cox Model – volume: 1 start-page: 177 year: 2009 ident: ref25 article-title: Genome-wide DNA methylation profiling using Infinium assay publication-title: Epigenomics doi: 10.2217/epi.09.14 – volume: 97 start-page: 245 year: 1997 ident: ref12 article-title: Selection of relevant features and examples in machine learning publication-title: Artif Intell doi: 10.1016/S0004-3702(97)00063-5 – volume: 7 year: 2016 ident: ref54 article-title: Novel potential serological prostate cancer biomarkers using CT100+ cancer antigen microarray platform in a multi-cultural South African cohort publication-title: Oncotarget doi: 10.18632/oncotarget.7359 – volume: 98 start-page: 288 year: 2011 ident: ref7 article-title: High density DNA methylation array with single CpG site resolution publication-title: Genomics doi: 10.1016/j.ygeno.2011.07.007 – volume: 154 start-page: 137 year: 1999 ident: ref52 article-title: Protein kinase C isoenzyme patterns characteristically modulated in early prostate cancer publication-title: Am J Pathol doi: 10.1016/S0002-9440(10)65260-1 – volume: 17 start-page: 4052 year: 2011 ident: ref62 article-title: Systematic CpG islands methylation profiling of genes in the wnt pathway in epithelial ovarian cancer identifies biomarkers of progression-free survival publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-10-3021 – volume: 72 start-page: 121 year: 2011 ident: ref21 article-title: AUC-RF: A new strategy for genomic profiling with random forest publication-title: Hum Hered doi: 10.1159/000330778 – volume: 41 start-page: 1223 year: 2005 ident: ref67 article-title: CpG island methylation and expression of tumour-associated genes in lung carcinoma publication-title: Eur J Cancer doi: 10.1016/j.ejca.2005.02.020 – volume: 12 start-page: 2825 year: 2011 ident: ref34 article-title: Scikit-learn: Machine Learning in Python – volume: 209 year: 2006 ident: ref37 – volume: 15 start-page: 312 year: 2014 ident: ref49 article-title: Evaluation of microarray-based DNA methylation measurement using technical replicates: the Atherosclerosis Risk In Communities (ARIC) Study publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-15-312 – volume: 15 start-page: 373 year: 2013 ident: ref60 article-title: Epigenomic Alterations in Localized and Advanced Prostate Cancer publication-title: Neoplasia doi: 10.1593/neo.122146 – volume: 18 start-page: 2287 year: 2014 ident: ref57 article-title: Epigenetic regulation of EFEMP1 in prostate cancer: Biological relevance and clinical potential publication-title: J Cell Mol Med doi: 10.1111/jcmm.12394 – volume: 41 start-page: 1 year: 2013 ident: ref30 article-title: Low-level processing of Illumina Infinium DNA Methylation BeadArrays – start-page: 82 year: 2006 ident: ref10 article-title: Integrative analysis of cancer genomic data – volume: 28 start-page: 1487 year: 2012 ident: ref11 article-title: Differential variability improves the identification of cancer risk markers in DNA methylation studies profiling precursor cancer lesions publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts170 – volume: 34 start-page: 726 year: 2016 ident: ref51 article-title: Quantitative comparison of DNA methylation assays for biomarker development and clinical applications publication-title: Nat Biotechnol doi: 10.1038/nbt.3605 – volume: 9 start-page: 1106 year: 2012 ident: ref16 article-title: A survey on filter techniques for feature selection in gene expression microarray analysis publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2012.33 – volume: 189 start-page: 1110 year: 2013 ident: ref41 article-title: Clinical utility of an epigenetic assay to detect occult prostate cancer in histopathologically negative biopsies: Results of the MATLOC study publication-title: J Urol. Elsevier Inc. – volume: 19 start-page: 698 year: 2010 ident: ref5 article-title: Aberrant Epigenetic Landscape in Cancer: How Cellular Identity Goes Awry publication-title: Dev Cell doi: 10.1016/j.devcel.2010.10.005 – volume: 179 start-page: 508 year: 2008 ident: ref38 article-title: The usefulness of the detection of GSTP1 methylation in urine as a biomarker in the diagnosis of prostate cancer publication-title: J Urol doi: 10.1016/j.juro.2007.09.073 – volume: 29 start-page: 189 year: 2013 ident: ref31 article-title: Gene expression A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data – volume: 91 start-page: 540 year: 2004 ident: ref39 article-title: GSTP1 CpG island hypermethylation as a molecular biomarker for prostate cancer publication-title: J Cell Biochem doi: 10.1002/jcb.10740 – volume: 3 start-page: 185 year: 2005 ident: ref15 article-title: Minimum redundancy feature selection from microarray gene expression data publication-title: J Bioinforma Comput doi: 10.1142/S0219720005001004 – volume: 46 start-page: 855 year: 2013 ident: ref36 article-title: A general framework for the statistical analysis of the sources of variance for classification error estimators publication-title: Pattern Recognit doi: 10.1016/j.patcog.2012.09.007 – volume: 2 start-page: 25 year: 2014 ident: ref61 article-title: A panel of DNA methylation markers reveals extensive methylation in histologically benign prostate biopsy cores from cancer patients publication-title: Biomark Res doi: 10.1186/s40364-014-0025-9 – year: 2016 ident: ref9 article-title: Defining, distinguishing and detecting the contribution of heterogeneous methylation to cancer heterogeneity publication-title: Semin Cell Dev Biol – volume: 32 start-page: i421 year: 2016 ident: ref20 article-title: Complementary feature selection from alternative splicing events and gene expression for phenotype prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw430 – volume: 32 start-page: 29 year: 2008 ident: ref14 article-title: Improved binary PSO for feature selection using gene expression data publication-title: Comput Biol Chem doi: 10.1016/j.compbiolchem.2007.09.005 – volume: 26 start-page: 243 year: 2006 ident: ref46 article-title: Cancer classification using ensemble of neural networks with multiple significant gene subsets publication-title: Appl Intell – volume: 107 start-page: 388 year: 2012 ident: ref53 article-title: Splice variant PRKC-ζ-PrC is a novel biomarker of human prostate cancer publication-title: Br J Cancer doi: 10.1038/bjc.2012.162 – volume: 163 start-page: 1011 year: 2015 ident: ref48 article-title: The Molecular Taxonomy of Primary Prostate Cancer publication-title: Cell doi: 10.1016/j.cell.2015.10.025 – volume: 36 start-page: 799 year: 2015 ident: ref59 article-title: Decreased expression of EFS is correlated with the advanced prostate cancer publication-title: Tumor Biol doi: 10.1007/s13277-014-2703-5 – volume: 28 start-page: 882 year: 2012 ident: ref29 article-title: The sva package for removing batch effects and other unwanted variation in high-throughput experiments – volume: 16 start-page: 52 year: 2016 ident: ref66 article-title: Clinical significance of CDH13 promoter methylation as a biomarker for bladder cancer: a meta-analysis publication-title: BMC Urol doi: 10.1186/s12894-016-0171-5 – volume: 15 start-page: 347 year: 2008 ident: ref6 article-title: Epigenome: a new target in cancer therapy publication-title: Clin Ter – volume: 2013 start-page: 721493 year: 2013 ident: ref55 article-title: Hypermethylation of the PRKCZ Gene in Type 2 Diabetes Mellitus publication-title: J Diabetes Res – volume: 27 start-page: 549 year: 2009 ident: ref58 article-title: Hypermethylation of Genes for Diagnosis and Risk Stratification of Prostate Cancer – start-page: 389 year: 2009 ident: ref19 article-title: Gene selection for cancer classification – start-page: 8 year: 2013 ident: ref22 article-title: Application of multi-SNP approaches Bayesian LASSO and AUC-RF to detect main effects of inflammatory-gene variants associated with bladder cancer risk publication-title: PLoS One – volume: 11 start-page: 1350005 year: 2013 ident: ref24 article-title: a Variational Bayes Beta Mixture Model for Feature Selection in Dna Methylation Studies publication-title: J Bioinform Comput Biol doi: 10.1142/S0219720013500054 – start-page: 12 year: 2007 ident: ref4 article-title: Epigenetics of prostate cancer publication-title: Front Biosci – year: 2017 ident: ref44 article-title: Promoter DNA methylation analysis reveals a combined diagnosis of CpG-based biomarker for prostate cancer doi: 10.18632/oncotarget.16437 – volume: 31 start-page: 1034 year: 2014 ident: ref56 article-title: PRKCZ methylation is associated with sunlight exposure in a North American but not a Mediterranean population publication-title: Chronobiol Int doi: 10.3109/07420528.2014.944266 – year: 2016 ident: ref23 article-title: Multistage feature selection approach for high-dimensional cancer data publication-title: Soft Comput – volume: 136 start-page: E359 year: 2015 ident: ref1 article-title: Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012 publication-title: Int J Cancer doi: 10.1002/ijc.29210 – volume: 6 start-page: 1105 year: 2015 ident: ref27 article-title: Potential approaches and recent advances in biomarker discovery in clear-cell Renal Cell Carcinoma publication-title: J Cancer doi: 10.7150/jca.12145 – volume: 7 start-page: 2727 year: 2001 ident: ref40 article-title: Molecular Detection of Prostate Cancer in Urine by GSTP1 Hypermethylation Molecular Detection of Prostate Cancer in Urine by GSTP1 – volume: 21 start-page: 385 year: 2017 ident: ref3 article-title: The Non-Coding Transcriptome of Prostate Cancer: Implications for Clinical Practice publication-title: Mol Diagn Ther doi: 10.1007/s40291-017-0271-2 – year: 2014 ident: ref28 article-title: Comprehensive analysis of DNA methylation data with RnBeads doi: 10.1038/nmeth.3115 – volume: 54 start-page: 68 year: 2017 ident: ref2 article-title: Prostate cancer heterogeneity: Discovering novel molecular targets for therapy publication-title: Cancer Treat Rev. Elsevier Ltd doi: 10.1016/j.ctrv.2017.02.001 – volume: 17 start-page: 273 year: 2017 ident: ref43 article-title: Genome-wide DNA methylation measurements in prostate tissues uncovers novel prostate cancer diagnostic biomarkers and transcription factor binding patterns. BMC Cancer publication-title: BMC Cancer doi: 10.1186/s12885-017-3252-2 – volume: 15 start-page: 333 year: 2013 ident: ref8 article-title: Urinary biomarkers for prostate cancer: a review publication-title: Asian J Androl doi: 10.1038/aja.2013.6 – volume: 8 start-page: 921 year: 2013 ident: ref65 article-title: Genome-scale analysis of DNA methylation in colorectal cancer using Infinium HumanMethylation450 BeadChips publication-title: Epigenetics doi: 10.4161/epi.25577 – start-page: 1 year: 2009 ident: ref33 article-title: Stability selection – volume: 13 start-page: 275 year: 2013 ident: ref26 article-title: Diagnostic markers of urothelial cancer based on DNA methylation analysis publication-title: BMC Cancer doi: 10.1186/1471-2407-13-275 – start-page: 1 year: 2016 ident: ref32 article-title: An evaluation of processing methods for HumanMethylation450 BeadChip data publication-title: BMC Genomics – volume: 129 start-page: 2855 year: 2011 ident: ref64 article-title: Identification and validation of highly frequent CpG island hypermethylation in colorectal adenomas and carcinomas publication-title: Int J Cancer doi: 10.1002/ijc.25951 – volume: 3 year: 2008 ident: ref42 article-title: Identification of novel tumor markers in prostate, colon and breast cancer by unbiased methylation profiling publication-title: PLoS One doi: 10.1371/annotation/2548989f-1f13-4ea5-8af8-62420b0a590e – volume: 10 start-page: e0127702 year: 2015 ident: ref17 article-title: A New Combinatorial Optimization Approach for Integrated Feature Selection Using Different Datasets: A Prostate Cancer Transcriptomic Study publication-title: PLoS One doi: 10.1371/journal.pone.0127702 – volume: 34 start-page: 22 year: 2015 ident: ref63 article-title: Identification of diagnostic markers in colorectal cancer via integrative epigenomics and genomics data publication-title: Oncol Rep doi: 10.3892/or.2015.3993 – volume: 21 start-page: 171 year: 2005 ident: ref45 article-title: Outcome signature genes in breast cancer: Is there a unique set? publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth469 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: ref35 article-title: Random Forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – start-page: 1 year: 2017 ident: ref18 article-title: Minimum redundancy maximum relevance feature selection approach for temporal gene expression data publication-title: BMC Bioinformatics. BMC Bioinformatics – volume: 11 start-page: 194 year: 2017 ident: ref50 article-title: The methylation status of GSTP1, APC, and RASSF1 genes in human prostate cancer samples: Comparative analysis of diagnostic informativeness of MS-HRM and hybridization on the Illumina Infinium HumanMethylation450 BeadChip publication-title: Biochem Moscow Suppl Ser. doi: 10.1134/S199075081702007X – volume: 131 start-page: 797 year: 2006 ident: ref68 article-title: A Genome-Wide Search Identifies Epigenetic Silencing of Somatostatin, Tachykinin-1, and 5 Other Genes in Colon Cancer publication-title: Gastroenterology doi: 10.1053/j.gastro.2006.06.006 – volume: 30 start-page: 1046 year: 2011 ident: ref69 article-title: Endoglin expression in breast tumor cells suppresses invasion and metastasis and correlates with improved clinical outcome publication-title: Oncogene doi: 10.1038/onc.2010.488 |
| SSID | ssj0053866 |
| Score | 2.3116515 |
| Snippet | Although modern methods of whole genome DNA methylation analysis have a wide range of applications, they are not suitable for clinical diagnostics due to their... |
| SourceID | plos doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e0204371 |
| SubjectTerms | Adenocarcinoma Algorithms Bioinformatics Biology and life sciences Bladder Bladder cancer Chemistry Colorectal cancer Colorectal carcinoma CpG Islands Deoxyribonucleic acid Diabetes Diagnostic software Diagnostic systems DNA DNA Methylation Entropy (Information theory) Epigenetics Gene Expression Regulation, Neoplastic Genomes Genomics Heterogeneity Humans Kidney cancer Kidneys Learning algorithms Machine Learning Male Medical diagnosis Medicine Medicine and Health Sciences Models, Genetic Neoplasms - diagnosis Neoplasms - genetics Panels Pathogenesis Physical Sciences Physics Prostate cancer Prostatic Neoplasms - diagnosis Prostatic Neoplasms - genetics Rank tests Source code Tumors |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQL3BBlK8GCjISBzhkG8eJE3Pboq4qVDggKvUW-bOtlCYrsiu0P4r_yIzjrLqiUjlwi2InsT3P8bM884aQ98wWvHbMpD7PfVpoKVNtap5yD5fe8VJ5jB3--k2cnhdfLsqLW6m-0CdslAceB-4oB8rNSldXVpiidFIxoXLthATiXlXC4t83q-W0mRr_wTCLhYiBcrxiR9Eus2XfuVkIB63YzkIU9PpR37Tth7u45t8ukw_X3VJtfqm2vbUeLZ6Qx5FI0vnYgX3ywHVPyX6cqgP9EPWkPz4jv8_6yzNoQnp88n2--ETnHYW9q7vRrUtxEbP0JnhUOhpTSFzSkB-HAp-lpp8kZuE2ahu3G6qMWaPCBLWjnx60gA5uNdDeU8xIvRn96ygeTA9YO-ajCC-8Qv-bHmDrgP_T644uMe4E32YQgD-fk_PFyY_Pp2nM0pCaMherlFvtOfM1QNIUmme2KpUrLVOZzLTIjNSiUMxI62vPrKx9mRuV5UpxI70pLX9B9jqwywGhGuiFBsqkhPGFY0xVvrC1yGpVMcMLmRA-mawxUcIcM2m0TTiXq2ArMw5-g4ZuoqETkm6fWo4SHvfUP0Y0bOuiAHe4AbBsIiyb-2CZkAPE0vSBoQGKAMwI6KBIyOGEr7uL322LYarj-Y3qXL8OdSQgm_MsIS9HOG4byVHVh-V5QqodoO70Yreku74KcuICVfNkmZDZFtL_NE6v_sc4vSaPgILWIbozPyR7gGj3BmjeSr8NM_oPvMZXZw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZGJxgviJXLAgMZiQd4SBfHiZMgIdROrSa0VWhi0t4ix5duUpaUpRXqj-I_cuw4gYoJeItiN3Hsz-dSn_MdhN4SGdFUEeHrMNR-VGSZX4iU-lTDpVY05trkDp_N2clF9PkyvtxB8y4XxoRVdjLRCmpZC_Mf-RGIWNAsoE7Zp-U331SNMqerXQkN7koryI-WYuwe2g0NM9YA7U6m8y_nnWyG3c2YS6CjCTly6zVa1pUa2TTRhGwpKMvjb3hPy7q5ywb9M5Ryb10t-eY7L8vf9NTsMXrkDEw8bhGxj3ZUNUR7x11dtyF6cOaO04fovo3_FM0Q7bs93uB3joj6_RP047RenMIY_cn0fDz7gMcVBqdX3RSl8o32k_jGhmIq7GpPLLAtrIPBEMai7rhp4bYhRS43GOZvbagpsGwD_GCIuFGrBtcam1LWmzYwD5s5bzDvC1nYB16ZwJ0a8K7AccDXFV6ahBXzNGGQe_sUXcymX49PfFfewRdxyFY-lYWmRKeAZREVNJBJzFUsCQ-yoGCByAoWcSIyqVNNZJbqOBQ8CDmnItMilvQZGlSwcAcIF2CXFGBrcSZ0pAjhiY5kyoKUJ0TQKPMQ7dY0F4773JTgKHN7oJeAD9SuTm6QkDskeMjvf7VsuT_-0X9i4NL3Nczd9kZ9u8idIMhDcCFJrNJEMhHFKuOE8bBQLANHNEmY9NCBAVv3gib_BXwPHXYAvLv5Td8MkDIHP7xS9dr2yQD6lAYeet7itR8kNXRAJAw9lGwheesrtluq6yvLQ84M3V4We2jUY_6_5unF37_jJXoIVmlqEz7DQzQArKpXYPmtitduO_8EDbBgXg priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKMhICMEhaWwnTsxti7qqUKkQolI5oMjxo63YJiuyK7Qc-Ef8R8aOs2KhCDhwi-JHnMmMPZOZ-QahJ0RnrDRExZZSG2e1EHGtShYzC5fWsFxalzv8-ogfHGevTvKTDfRhyIUJFAQbcdp23pPvLtrG7AZK7jq8ot57mhBWkGFEMoNOiU_1LMhTjzjk_ozNXQLSFbTJc1DVR2jz-OjN-H3vaaYxpykL6XS_m2ntuPKo_g4FFZZ0mUb6a2Dl1UUzk8vPcjr94dSa3EBfh_ftg1U-Jot5nagvP0FB_jeC3ETXg76Lx_0sW2jDNLfQVthROvwswF4_v42-Hbanh0CDeG__7XjyAo8bDCa2uYCJYnfWanzhAz8NDpUuTrEv44NB7caqHZBw4baDYJ4usVRq4YAwsO7DCWEFuDPzDrcWu8LZyz4MEDv_eed6h7IZfsIzFybUgnQZMFPweYNnLj3GzaacnHy6g44n--9eHsShmESscsrnMdO1ZcSWIDkqq1mqi1yaXBOZirTmqRI1zyRRQtvSEi1Km1MlUyolU8KqXLO7aNQARbcRrkELqkGzk1zZzBAiC5vpkqelLIhimYgQG3imUgFp3RX8mFbefViAxdUTv3KfqAqfKELxatSsRxr5Q_89x46rvg4n3N8AHqkCb1QUDFaSm7LQXGW5EZJwSWvDBZi9RcF1hLYdOw0P6CrQZECBA62VR2hnYPDLmx-vmmFHcm4m2Zh24fsIOEYZSyN0r5eH1SKZAx8ilEaoWJOUtbdYb2nOzzzqOXfgfiKPULKSqb-i0_1_HfAAXQOtuPQJp3QHjYB7zUPQPOf1o7B_fAcnD49n priority: 102 providerName: Unpaywall |
| Title | LogLoss-BERAF: An ensemble-based machine learning model for constructing highly accurate diagnostic sets of methylation sites accounting for heterogeneity in prostate cancer |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30388122 https://www.proquest.com/docview/2128533996 https://www.proquest.com/docview/2129538330 https://pubmed.ncbi.nlm.nih.gov/PMC6214495 https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0204371&type=printable https://doaj.org/article/286215e87d6c45e9a16a2be69625776d http://dx.doi.org/10.1371/journal.pone.0204371 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCO Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Medical Journals Open Access customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Health & Medical Collection (via ProQuest) customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1da9swFBX9eNhexrqveuuCBmNsDw6RZcv2YIykJCujDaUskD0ZWZbSgmunccKWH7X_uHtlOywsY30xwZIVRffIujdXOoeQtyzzeaSZco3nGddP49hNVcRdbuCj0TyQBs8OX4zF2cT_Og2me6RNtDcDWO0M7VBParLIuz_v1p9hwn-yqg0hax_qzstCd-1hz5C9m9-5KC2FKdhGZ2OfHMLyFaO-w4W_STXAhLcJTXRkXOH1eHO-7l8Nb61fluYfaVHzstrlov690_LBqpjL9Q-Z538sY6PH5FHjf9J-DZgjsqeLJ-SomeEVfd_QUH94Sn6dl7Nz6II7GF71Rx9pv6AQ8urbNNcurn0ZvbUbMTVtlCdm1MrqUHCDqSpbZlq4jZTI-ZpKpVZITEGzensf9IBWelnR0lAUsl7X2_IoDmaFtRsZC9vgNW7bKQHtGsIGelPQOR5XwdYU4nbxjExGw2-nZ24j7uCqwBNLl2ep4cxEgGTlp7yXhYHUQcYkWCgVPRWnwpdMxZmJDMviyASekj1PSq5io4KMPycHBdjlmNAUzJqCpyWFMr5mTIbGzyLRi2TIFPdjh_DWZIlqmM9RgCNPbDovhAioHvwEDZ00hnaIu3lqXjN__Kf-ANGwqYu83fZGuZglzWsg8SCAZIGOwkwoP9CxZEJ6qRYxhKFhKDKHHCOW2i-oEvAswKECL1I45KTF1-7iN5tieENg2kcWulzZOjGgnPOeQ17UcNx0kiMZEPM8h4RbQN36Fdslxc21ZSEXSLYXBw7pbiB9r3F6eY-OviIPwTGN7JlP74QcAGD1a3D-lmmH7IfTEK7RKcPr6EuHHA6G48urjv07pWMnN9ybjC_7338Dcj5nyA |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NISgviJWPBQYYCSR4yBbHiZMgIdSNTRvr9oA2aW_B8Uc3qUvKsmrqHwV_I2cnKVRMwMveoth1nNzP57v67ncAr6mKWKqp9E0YGj8qsswvZMp8ZvDSaBYLY3OHDw757nH0-SQ-WYIfXS6MDavsdKJT1KqS9j_yDVSxuLPgdso_Tr75tmqUPV3tSmg0sNjXsyt02eoPe59Qvm_CcGf7aGvXb6sK-DIO-aXPVGEYNSl-QhkVLFBJLHSsqAiyoOCBzAoeCSozZVJDVZaaOJQiCIVgMjMyVgzHvQW3I4a6BNdPcjJ38FB3cN6m57GEbrRoWJ9UpV53SagJXdj-XJUAy6o6rurrLNw_AzV703IiZldiPP5tF9x5APdb85UMGrytwJIu-9Db6qrG9eHuQXtY34c7LrpU1n1YaTVITd62NNfvHsL3YTUa4hz9ze0vg533ZFASdKn1eTHWvt1bFTl3gZ6atJUtRsSV7SFoZhNZdcy3eNtSLo9nREg5tcQXRDXhgzhFUuvLmlSG2ELZsybsj1iJ1rZ3WybDDXhqw4IqXE0a3RJyVpKJTYexo0m7Li4ewfGNiPkxLJcouFUgBVo9BVpygksTaUpFYiKV8iAVCZUsyjxgnUxz2TKr2wIf49wdFyboYTXSyS0S8hYJHvjzX00aZpF_9N-0cJn3tbzg7kZ1McpbNZOH6KDSWKeJ4jKKdSYoF2GheYZubpJw5cGqBVv3gDr_taw8WOsAeH3zq3kzQsoeK4lSV1PXJ0PoMxZ48KTB63ySzJIN0TD0IFlA8sJbLLaUZ6eO5ZxbMr8s9mB9jvn_-k5P__4eL6G3e3QwzId7h_vP4B7av6lLLQ3XYBlxq5-jjXlZvHALm8DXm9YkPwHIFJlR |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEBsviJXLAgOMBBI8pI3jxEmQEOou1cYuQohJfQuOL92kLilLq6k_ij_Ar-PYcQoVE_Cytyh2HSfn8_E59TnfQegVkRFNFRG-DkPtR0WW-YVIqU81XGpFY65N7vDxCds_jT4O4-EK-tHmwpiwylYnWkUtK2H-I--BioWdBbZT1tMuLOLT7uDD5JtvKkiZk9a2nEYDkUM1vwL3rX5_sAuyfh2Gg70vO_u-qzDgizhkU5_KQlOiU_icIipoIJOYq1gSHmRBwQKRFSziRGRSp5rILNVxKHgQck5FpkUsKYx7C91OYF4mnDAZLpw90COMuVQ9mpCeQ0Z3UpWqaxNSE7K0FdqKAYZhdVzV11m7fwZtrs_KCZ9f8fH4tx1xcB_dc6Ys7jfY20Arquyg9Z22glwHrR27g_sOumMjTUXdQRtOm9T4jaO8fvsAfT-qRkcwR39773N_8A73Swzutbooxso3-6zEFzboU2FX5WKEbQkfDCY3FlXLggu3Df3yeI65EDNDgoFlE0oIU8S1mta40tgUzZ43IYDYSLQ2vV3JDDvgmQkRqmBlKXBR8HmJJyY1xowmzBq5fIhOb0TMj9BqCYLbRLgAC6gAq44zoSNFCE90JFMWpDwhgkaZh2gr01w4lnVT7GOc26PDBLytRjq5QULukOAhf_GrScMy8o_-2wYui76GI9zeqC5HuVM5eQjOKolVmkgmolhlnDAeFopl4PImCZMe2jRgax9Q57-WmIe2WgBe3_xy0QyQMkdMvFTVzPbJAPqUBh563OB1MUlqiIdIGHooWULy0lsst5TnZ5bxnBlivyz2UHeB-f_6Tk_-_h4v0BrokPzo4OTwKboLpnBqs0zDLbQKsFXPwNycFs_tusbo600rkp-4552U |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKMhICMEhaWwnTsxti7qqUKkQolI5oMjxo63YJiuyK7Qc-Ef8R8aOs2KhCDhwi-JHnMmMPZOZ-QahJ0RnrDRExZZSG2e1EHGtShYzC5fWsFxalzv8-ogfHGevTvKTDfRhyIUJFAQbcdp23pPvLtrG7AZK7jq8ot57mhBWkGFEMoNOiU_1LMhTjzjk_ozNXQLSFbTJc1DVR2jz-OjN-H3vaaYxpykL6XS_m2ntuPKo_g4FFZZ0mUb6a2Dl1UUzk8vPcjr94dSa3EBfh_ftg1U-Jot5nagvP0FB_jeC3ETXg76Lx_0sW2jDNLfQVthROvwswF4_v42-Hbanh0CDeG__7XjyAo8bDCa2uYCJYnfWanzhAz8NDpUuTrEv44NB7caqHZBw4baDYJ4usVRq4YAwsO7DCWEFuDPzDrcWu8LZyz4MEDv_eed6h7IZfsIzFybUgnQZMFPweYNnLj3GzaacnHy6g44n--9eHsShmESscsrnMdO1ZcSWIDkqq1mqi1yaXBOZirTmqRI1zyRRQtvSEi1Km1MlUyolU8KqXLO7aNQARbcRrkELqkGzk1zZzBAiC5vpkqelLIhimYgQG3imUgFp3RX8mFbefViAxdUTv3KfqAqfKELxatSsRxr5Q_89x46rvg4n3N8AHqkCb1QUDFaSm7LQXGW5EZJwSWvDBZi9RcF1hLYdOw0P6CrQZECBA62VR2hnYPDLmx-vmmFHcm4m2Zh24fsIOEYZSyN0r5eH1SKZAx8ilEaoWJOUtbdYb2nOzzzqOXfgfiKPULKSqb-i0_1_HfAAXQOtuPQJp3QHjYB7zUPQPOf1o7B_fAcnD49n |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LogLoss-BERAF%3A+An+ensemble-based+machine+learning+model+for+constructing+highly+accurate+diagnostic+sets+of+methylation+sites+accounting+for+heterogeneity+in+prostate+cancer&rft.jtitle=PloS+one&rft.au=Babalyan%2C+K&rft.au=Sultanov%2C+R&rft.au=Generozov%2C+E&rft.au=Sharova%2C+E&rft.date=2018-11-02&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=13&rft.issue=11&rft.spage=e0204371&rft_id=info:doi/10.1371%2Fjournal.pone.0204371&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |