LogLoss-BERAF: An ensemble-based machine learning model for constructing highly accurate diagnostic sets of methylation sites accounting for heterogeneity in prostate cancer

Although modern methods of whole genome DNA methylation analysis have a wide range of applications, they are not suitable for clinical diagnostics due to their high cost and complexity and due to the large amount of sample DNA required for the analysis. Therefore, it is crucial to be able to identif...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 13; no. 11; p. e0204371
Main Authors Babalyan, K., Sultanov, R., Generozov, E., Sharova, E., Kostryukova, E., Larin, A., Kanygina, A., Govorun, V., Arapidi, G.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 02.11.2018
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0204371

Cover

Abstract Although modern methods of whole genome DNA methylation analysis have a wide range of applications, they are not suitable for clinical diagnostics due to their high cost and complexity and due to the large amount of sample DNA required for the analysis. Therefore, it is crucial to be able to identify a relatively small number of methylation sites that provide high precision and sensitivity for the diagnosis of pathological states. We propose an algorithm for constructing limited subsamples from high-dimensional data to form diagnostic panels. We have developed a tool that utilizes different methods of selection to find an optimal, minimum necessary combination of factors using cross-entropy loss metrics (LogLoss) to identify a subset of methylation sites. We show that the algorithm can work effectively with different genome methylation patterns using ensemble-based machine learning methods. Algorithm efficiency, precision and robustness were evaluated using five genome-wide DNA methylation datasets (totaling 626 samples), and each dataset was classified into tumor and non-tumor samples. The algorithm produced an AUC of 0.97 (95% CI: 0.94-0.99, 9 sites) for prostate adenocarcinoma and an AUC of 1.0 (from 2 to 6 sites) for urothelial bladder carcinoma, two types of kidney carcinoma and colorectal carcinoma. For prostate adenocarcinoma we showed that identified differential variability methylation patterns distinguish cluster of samples with higher recurrence rate (hazard ratio for recurrence = 0.48, 95% CI: 0.05-0.92; log-rank test, p-value < 0.03). We also identified several clusters of correlated interchangeable methylation sites that can be used for the elaboration of biological interpretation of the resulting models and for further selection of the sites most suitable for designing diagnostic panels. LogLoss-BERAF is implemented as a standalone python code and open-source code is freely available from https://github.com/bioinformatics-IBCH/logloss-beraf along with the models described in this article.
AbstractList Although modern methods of whole genome DNA methylation analysis have a wide range of applications, they are not suitable for clinical diagnostics due to their high cost and complexity and due to the large amount of sample DNA required for the analysis. Therefore, it is crucial to be able to identify a relatively small number of methylation sites that provide high precision and sensitivity for the diagnosis of pathological states. We propose an algorithm for constructing limited subsamples from high-dimensional data to form diagnostic panels. We have developed a tool that utilizes different methods of selection to find an optimal, minimum necessary combination of factors using cross-entropy loss metrics (LogLoss) to identify a subset of methylation sites. We show that the algorithm can work effectively with different genome methylation patterns using ensemble-based machine learning methods. Algorithm efficiency, precision and robustness were evaluated using five genome-wide DNA methylation datasets (totaling 626 samples), and each dataset was classified into tumor and non-tumor samples. The algorithm produced an AUC of 0.97 (95% CI: 0.94-0.99, 9 sites) for prostate adenocarcinoma and an AUC of 1.0 (from 2 to 6 sites) for urothelial bladder carcinoma, two types of kidney carcinoma and colorectal carcinoma. For prostate adenocarcinoma we showed that identified differential variability methylation patterns distinguish cluster of samples with higher recurrence rate (hazard ratio for recurrence = 0.48, 95% CI: 0.05-0.92; log-rank test, p-value < 0.03). We also identified several clusters of correlated interchangeable methylation sites that can be used for the elaboration of biological interpretation of the resulting models and for further selection of the sites most suitable for designing diagnostic panels. LogLoss-BERAF is implemented as a standalone python code and open-source code is freely available from https://github.com/bioinformatics-IBCH/logloss-beraf along with the models described in this article.Although modern methods of whole genome DNA methylation analysis have a wide range of applications, they are not suitable for clinical diagnostics due to their high cost and complexity and due to the large amount of sample DNA required for the analysis. Therefore, it is crucial to be able to identify a relatively small number of methylation sites that provide high precision and sensitivity for the diagnosis of pathological states. We propose an algorithm for constructing limited subsamples from high-dimensional data to form diagnostic panels. We have developed a tool that utilizes different methods of selection to find an optimal, minimum necessary combination of factors using cross-entropy loss metrics (LogLoss) to identify a subset of methylation sites. We show that the algorithm can work effectively with different genome methylation patterns using ensemble-based machine learning methods. Algorithm efficiency, precision and robustness were evaluated using five genome-wide DNA methylation datasets (totaling 626 samples), and each dataset was classified into tumor and non-tumor samples. The algorithm produced an AUC of 0.97 (95% CI: 0.94-0.99, 9 sites) for prostate adenocarcinoma and an AUC of 1.0 (from 2 to 6 sites) for urothelial bladder carcinoma, two types of kidney carcinoma and colorectal carcinoma. For prostate adenocarcinoma we showed that identified differential variability methylation patterns distinguish cluster of samples with higher recurrence rate (hazard ratio for recurrence = 0.48, 95% CI: 0.05-0.92; log-rank test, p-value < 0.03). We also identified several clusters of correlated interchangeable methylation sites that can be used for the elaboration of biological interpretation of the resulting models and for further selection of the sites most suitable for designing diagnostic panels. LogLoss-BERAF is implemented as a standalone python code and open-source code is freely available from https://github.com/bioinformatics-IBCH/logloss-beraf along with the models described in this article.
Although modern methods of whole genome DNA methylation analysis have a wide range of applications, they are not suitable for clinical diagnostics due to their high cost and complexity and due to the large amount of sample DNA required for the analysis. Therefore, it is crucial to be able to identify a relatively small number of methylation sites that provide high precision and sensitivity for the diagnosis of pathological states. We propose an algorithm for constructing limited subsamples from high-dimensional data to form diagnostic panels. We have developed a tool that utilizes different methods of selection to find an optimal, minimum necessary combination of factors using cross-entropy loss metrics (LogLoss) to identify a subset of methylation sites. We show that the algorithm can work effectively with different genome methylation patterns using ensemble-based machine learning methods. Algorithm efficiency, precision and robustness were evaluated using five genome-wide DNA methylation datasets (totaling 626 samples), and each dataset was classified into tumor and non-tumor samples. The algorithm produced an AUC of 0.97 (95% CI: 0.94–0.99, 9 sites) for prostate adenocarcinoma and an AUC of 1.0 (from 2 to 6 sites) for urothelial bladder carcinoma, two types of kidney carcinoma and colorectal carcinoma. For prostate adenocarcinoma we showed that identified differential variability methylation patterns distinguish cluster of samples with higher recurrence rate (hazard ratio for recurrence = 0.48, 95% CI: 0.05–0.92; log-rank test, p-value < 0.03). We also identified several clusters of correlated interchangeable methylation sites that can be used for the elaboration of biological interpretation of the resulting models and for further selection of the sites most suitable for designing diagnostic panels. LogLoss-BERAF is implemented as a standalone python code and open-source code is freely available from https://github.com/bioinformatics-IBCH/logloss-beraf along with the models described in this article.
Author Generozov, E.
Kanygina, A.
Govorun, V.
Babalyan, K.
Sultanov, R.
Sharova, E.
Larin, A.
Kostryukova, E.
Arapidi, G.
AuthorAffiliation 2 Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russian Federation
1 Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian Federation
3 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
Stockholm University, SWEDEN
AuthorAffiliation_xml – name: Stockholm University, SWEDEN
– name: 2 Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russian Federation
– name: 3 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
– name: 1 Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian Federation
Author_xml – sequence: 1
  givenname: K.
  orcidid: 0000-0001-7136-3894
  surname: Babalyan
  fullname: Babalyan, K.
– sequence: 2
  givenname: R.
  surname: Sultanov
  fullname: Sultanov, R.
– sequence: 3
  givenname: E.
  orcidid: 0000-0002-6314-4883
  surname: Generozov
  fullname: Generozov, E.
– sequence: 4
  givenname: E.
  orcidid: 0000-0003-3208-9719
  surname: Sharova
  fullname: Sharova, E.
– sequence: 5
  givenname: E.
  surname: Kostryukova
  fullname: Kostryukova, E.
– sequence: 6
  givenname: A.
  surname: Larin
  fullname: Larin, A.
– sequence: 7
  givenname: A.
  orcidid: 0000-0003-4993-9492
  surname: Kanygina
  fullname: Kanygina, A.
– sequence: 8
  givenname: V.
  surname: Govorun
  fullname: Govorun, V.
– sequence: 9
  givenname: G.
  orcidid: 0000-0003-2323-1859
  surname: Arapidi
  fullname: Arapidi, G.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30388122$$D View this record in MEDLINE/PubMed
BookMark eNqNUl1v1DAQjFAR_YB_gMASL7zc4diJL-lDpVK1UOkkJATP1sbZ5Hxy7MN2QPej-I84d9eqrZDgydZ4djy7s6fZkXUWs-x1Tuc5X-Qf1m70Fsx8k-A5ZbRI4LPsJK85mwlG-dGD-3F2GsKa0pJXQrzIjjnlVZUzdpL9Xrp-6UKYfbz-enlzTi4tQRtwaAzOGgjYkgHUSlskBsFbbXsyuBYN6ZwnytkQ_ajiBK90vzJbAkqNHiKSVkNvXYhakYAxENeRAeNqayBqZ0nQEcPEdqPd1U-CK4zoXY8WddwSbcnGJ4VJTYFV6F9mzzswAV8dzrPs-831t6vPs-WXT7dXl8uZKpmIM942Hc-7CqFVRcNpuygByzYHWtNGUFU3ooBc1W1XdXlbV13JFFAGwFXdqbLlZ9nbve7GuCAPkw6S5awqOa9rkRi3e0brYC03Xg_gt9KBljvA-V6CT70blKwSLC-xWrRCFSXWkAtgDYpasHKxENNv5V5rtBvY_gJj7gVzKqew7yzIKWx5CDvVXRxcjs2ArUIbPZhHZh6_WL2Svfspk5-iqMsk8P4g4N2PEUOUgw4KjQGLbtz1m1gVT-tylr17Qv37VN48dHRv5W7fEuF8T1Ap2OCxk0rH3UIkg9r8q9_iSfF_jekPaO0GBg
CitedBy_id crossref_primary_10_1186_s13072_024_00529_7
crossref_primary_10_2174_1568026619666191016155543
crossref_primary_10_3390_su14031734
Cites_doi 10.2217/epi.09.14
10.1016/S0004-3702(97)00063-5
10.18632/oncotarget.7359
10.1016/j.ygeno.2011.07.007
10.1016/S0002-9440(10)65260-1
10.1158/1078-0432.CCR-10-3021
10.1159/000330778
10.1016/j.ejca.2005.02.020
10.1186/1471-2105-15-312
10.1593/neo.122146
10.1111/jcmm.12394
10.1093/bioinformatics/bts170
10.1038/nbt.3605
10.1109/TCBB.2012.33
10.1016/j.devcel.2010.10.005
10.1016/j.juro.2007.09.073
10.1002/jcb.10740
10.1142/S0219720005001004
10.1016/j.patcog.2012.09.007
10.1186/s40364-014-0025-9
10.1093/bioinformatics/btw430
10.1016/j.compbiolchem.2007.09.005
10.1038/bjc.2012.162
10.1016/j.cell.2015.10.025
10.1007/s13277-014-2703-5
10.1186/s12894-016-0171-5
10.1142/S0219720013500054
10.18632/oncotarget.16437
10.3109/07420528.2014.944266
10.1002/ijc.29210
10.7150/jca.12145
10.1007/s40291-017-0271-2
10.1038/nmeth.3115
10.1016/j.ctrv.2017.02.001
10.1186/s12885-017-3252-2
10.1038/aja.2013.6
10.4161/epi.25577
10.1186/1471-2407-13-275
10.1002/ijc.25951
10.1371/annotation/2548989f-1f13-4ea5-8af8-62420b0a590e
10.1371/journal.pone.0127702
10.3892/or.2015.3993
10.1093/bioinformatics/bth469
10.1023/A:1010933404324
10.1134/S199075081702007X
10.1053/j.gastro.2006.06.006
10.1038/onc.2010.488
ContentType Journal Article
Copyright 2018 Babalyan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018 Babalyan et al 2018 Babalyan et al
Copyright_xml – notice: 2018 Babalyan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018 Babalyan et al 2018 Babalyan et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0204371
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
ProQuest Agricultural Science
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database (Proquest)
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database (Proquest)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest: Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Agricultural Science Database



MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Medicine
Chemistry
Physics
DocumentTitleAlternate Diagnostic model accounting for heterogeneity in prostate cancer
EISSN 1932-6203
ExternalDocumentID 2128533996
oai_doaj_org_article_286215e87d6c45e9a16a2be69625776d
10.1371/journal.pone.0204371
PMC6214495
30388122
10_1371_journal_pone_0204371
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Russia
GeographicLocations_xml – name: Russia
GrantInformation_xml – fundername: ;
  grantid: 14.607.21.0068, Sep 23, 2014, unique ID RFMEFI60714X0068
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ALIPV
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
RC3
7X8
5PM
ADTOC
UNPAY
AAPBV
ABPTK
ID FETCH-LOGICAL-c526t-3dbf31f8eadc4b30d75ae5d1a090b60c9b64a1c9df8f1d98f52ca02aa3c9fc5d3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Nov 05 00:20:55 EDT 2023
Fri Oct 03 12:53:37 EDT 2025
Sun Oct 26 04:16:04 EDT 2025
Tue Sep 30 17:00:06 EDT 2025
Sun Sep 28 11:59:48 EDT 2025
Tue Oct 07 07:47:51 EDT 2025
Wed Feb 19 02:36:04 EST 2025
Wed Oct 01 02:52:18 EDT 2025
Thu Apr 24 23:06:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c526t-3dbf31f8eadc4b30d75ae5d1a090b60c9b64a1c9df8f1d98f52ca02aa3c9fc5d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-6314-4883
0000-0003-4993-9492
0000-0001-7136-3894
0000-0003-2323-1859
0000-0003-3208-9719
OpenAccessLink https://doaj.org/article/286215e87d6c45e9a16a2be69625776d
PMID 30388122
PQID 2128533996
PQPubID 1436336
ParticipantIDs plos_journals_2128533996
doaj_primary_oai_doaj_org_article_286215e87d6c45e9a16a2be69625776d
unpaywall_primary_10_1371_journal_pone_0204371
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6214495
proquest_miscellaneous_2129538330
proquest_journals_2128533996
pubmed_primary_30388122
crossref_citationtrail_10_1371_journal_pone_0204371
crossref_primary_10_1371_journal_pone_0204371
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-02
PublicationDateYYYYMMDD 2018-11-02
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2018
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References M Bibikova (ref25) 2009; 1
S Aslibekyan (ref56) 2014; 31
L a Henry (ref69) 2011; 30
LC Li (ref4) 2007
P Cairns (ref40) 2001; 7
S Sertkaya (ref59) 2015; 36
N Puthiyedth (ref17) 2015; 10
M Radovic (ref18) 2017
DK Vanaja (ref58) 2009; 27
C Lazar (ref16) 2012; 9
CJ Labuzzetta (ref20) 2016; 32
Y Chihara (ref26) 2013; 13
T Kok-Sin (ref63) 2015; 34
M Berdasco (ref5) 2010; 19
AE Teschendorff (ref31) 2013; 29
ML Calle (ref21) 2011; 72
M Almeida (ref57) 2014; 18
D Hessels (ref8) 2013; 15
SS Ma (ref10) 2006
F Pedregosa (ref34) 2011; 12
W Chung (ref42) 2008; 3
SB Cho (ref46) 2006; 26
F Chen (ref66) 2016; 16
MK Kirby (ref43) 2017; 17
C Bock (ref51) 2016; 34
M Nakayama (ref39) 2004; 91
DJ Weisenberger (ref30) 2013; 41
R Dammann (ref67) 2005; 41
Y Assenov (ref28) 2014
KJ O'Reilly (ref38) 2008; 179
J Liu (ref32) 2016
GD Stewart (ref41) 2013; 189
A Abeshouse (ref48) 2015; 163
Y Tang (ref44) 2017
LI Kuncheva (ref47) 2007
JD Rodríguez (ref36) 2013; 46
A. Wilin (ref19) 2009
L-Y Chuang (ref14) 2008; 32
P Cornford (ref52) 1999; 154
L Zou (ref55) 2013; 2013
C Ciccarese (ref2) 2017; 54
L Giacinti (ref6) 2008; 15
R. Tibshirani (ref13) 1997; 16
C Ding (ref15) 2005; 3
JT Leek (ref29) 2012; 28
S Yao (ref53) 2012; 107
J Ferlay (ref1) 2015; 136
I V. Bijnsdorp (ref3) 2017; 21
HA Adeola (ref54) 2016; 7
AE Teschendorff (ref11) 2012; 28
A Alkuhlani (ref23) 2016
Y Mori (ref68) 2006; 131
AL Blum (ref12) 1997; 97
W Dai (ref62) 2011; 17
T Pisanic (ref9) 2016
VA Naumov (ref65) 2013; 8
P-C Lin (ref60) 2013; 15
EL De Maturana (ref22) 2013
CM Bishop (ref37) 2006; 209
W Majer (ref27) 2015; 6
I Brikun (ref61) 2014; 2
L. Breiman (ref35) 2001; 45
M Bose (ref49) 2014; 15
M Bibikova (ref7) 2011; 98
Z MA (ref24) 2013; 11
N. Meinshausen (ref33) 2009
L Skorodumova (ref50) 2017; 11
B Øster (ref64) 2011; 129
L Ein-Dor (ref45) 2005; 21
References_xml – start-page: 390
  year: 2007
  ident: ref47
  article-title: A stability index for feature selection
  publication-title: Int Multi-conference Artif Intell Appl
– volume: 16
  start-page: 385
  year: 1997
  ident: ref13
  article-title: Lasso Method for Variable Selection in the Cox Model
– volume: 1
  start-page: 177
  year: 2009
  ident: ref25
  article-title: Genome-wide DNA methylation profiling using Infinium assay
  publication-title: Epigenomics
  doi: 10.2217/epi.09.14
– volume: 97
  start-page: 245
  year: 1997
  ident: ref12
  article-title: Selection of relevant features and examples in machine learning
  publication-title: Artif Intell
  doi: 10.1016/S0004-3702(97)00063-5
– volume: 7
  year: 2016
  ident: ref54
  article-title: Novel potential serological prostate cancer biomarkers using CT100+ cancer antigen microarray platform in a multi-cultural South African cohort
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.7359
– volume: 98
  start-page: 288
  year: 2011
  ident: ref7
  article-title: High density DNA methylation array with single CpG site resolution
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2011.07.007
– volume: 154
  start-page: 137
  year: 1999
  ident: ref52
  article-title: Protein kinase C isoenzyme patterns characteristically modulated in early prostate cancer
  publication-title: Am J Pathol
  doi: 10.1016/S0002-9440(10)65260-1
– volume: 17
  start-page: 4052
  year: 2011
  ident: ref62
  article-title: Systematic CpG islands methylation profiling of genes in the wnt pathway in epithelial ovarian cancer identifies biomarkers of progression-free survival
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-10-3021
– volume: 72
  start-page: 121
  year: 2011
  ident: ref21
  article-title: AUC-RF: A new strategy for genomic profiling with random forest
  publication-title: Hum Hered
  doi: 10.1159/000330778
– volume: 41
  start-page: 1223
  year: 2005
  ident: ref67
  article-title: CpG island methylation and expression of tumour-associated genes in lung carcinoma
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2005.02.020
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref34
  article-title: Scikit-learn: Machine Learning in Python
– volume: 209
  year: 2006
  ident: ref37
– volume: 15
  start-page: 312
  year: 2014
  ident: ref49
  article-title: Evaluation of microarray-based DNA methylation measurement using technical replicates: the Atherosclerosis Risk In Communities (ARIC) Study
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-15-312
– volume: 15
  start-page: 373
  year: 2013
  ident: ref60
  article-title: Epigenomic Alterations in Localized and Advanced Prostate Cancer
  publication-title: Neoplasia
  doi: 10.1593/neo.122146
– volume: 18
  start-page: 2287
  year: 2014
  ident: ref57
  article-title: Epigenetic regulation of EFEMP1 in prostate cancer: Biological relevance and clinical potential
  publication-title: J Cell Mol Med
  doi: 10.1111/jcmm.12394
– volume: 41
  start-page: 1
  year: 2013
  ident: ref30
  article-title: Low-level processing of Illumina Infinium DNA Methylation BeadArrays
– start-page: 82
  year: 2006
  ident: ref10
  article-title: Integrative analysis of cancer genomic data
– volume: 28
  start-page: 1487
  year: 2012
  ident: ref11
  article-title: Differential variability improves the identification of cancer risk markers in DNA methylation studies profiling precursor cancer lesions
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts170
– volume: 34
  start-page: 726
  year: 2016
  ident: ref51
  article-title: Quantitative comparison of DNA methylation assays for biomarker development and clinical applications
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3605
– volume: 9
  start-page: 1106
  year: 2012
  ident: ref16
  article-title: A survey on filter techniques for feature selection in gene expression microarray analysis
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2012.33
– volume: 189
  start-page: 1110
  year: 2013
  ident: ref41
  article-title: Clinical utility of an epigenetic assay to detect occult prostate cancer in histopathologically negative biopsies: Results of the MATLOC study
  publication-title: J Urol. Elsevier Inc.
– volume: 19
  start-page: 698
  year: 2010
  ident: ref5
  article-title: Aberrant Epigenetic Landscape in Cancer: How Cellular Identity Goes Awry
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2010.10.005
– volume: 179
  start-page: 508
  year: 2008
  ident: ref38
  article-title: The usefulness of the detection of GSTP1 methylation in urine as a biomarker in the diagnosis of prostate cancer
  publication-title: J Urol
  doi: 10.1016/j.juro.2007.09.073
– volume: 29
  start-page: 189
  year: 2013
  ident: ref31
  article-title: Gene expression A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data
– volume: 91
  start-page: 540
  year: 2004
  ident: ref39
  article-title: GSTP1 CpG island hypermethylation as a molecular biomarker for prostate cancer
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.10740
– volume: 3
  start-page: 185
  year: 2005
  ident: ref15
  article-title: Minimum redundancy feature selection from microarray gene expression data
  publication-title: J Bioinforma Comput
  doi: 10.1142/S0219720005001004
– volume: 46
  start-page: 855
  year: 2013
  ident: ref36
  article-title: A general framework for the statistical analysis of the sources of variance for classification error estimators
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2012.09.007
– volume: 2
  start-page: 25
  year: 2014
  ident: ref61
  article-title: A panel of DNA methylation markers reveals extensive methylation in histologically benign prostate biopsy cores from cancer patients
  publication-title: Biomark Res
  doi: 10.1186/s40364-014-0025-9
– year: 2016
  ident: ref9
  article-title: Defining, distinguishing and detecting the contribution of heterogeneous methylation to cancer heterogeneity
  publication-title: Semin Cell Dev Biol
– volume: 32
  start-page: i421
  year: 2016
  ident: ref20
  article-title: Complementary feature selection from alternative splicing events and gene expression for phenotype prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw430
– volume: 32
  start-page: 29
  year: 2008
  ident: ref14
  article-title: Improved binary PSO for feature selection using gene expression data
  publication-title: Comput Biol Chem
  doi: 10.1016/j.compbiolchem.2007.09.005
– volume: 26
  start-page: 243
  year: 2006
  ident: ref46
  article-title: Cancer classification using ensemble of neural networks with multiple significant gene subsets
  publication-title: Appl Intell
– volume: 107
  start-page: 388
  year: 2012
  ident: ref53
  article-title: Splice variant PRKC-ζ-PrC is a novel biomarker of human prostate cancer
  publication-title: Br J Cancer
  doi: 10.1038/bjc.2012.162
– volume: 163
  start-page: 1011
  year: 2015
  ident: ref48
  article-title: The Molecular Taxonomy of Primary Prostate Cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2015.10.025
– volume: 36
  start-page: 799
  year: 2015
  ident: ref59
  article-title: Decreased expression of EFS is correlated with the advanced prostate cancer
  publication-title: Tumor Biol
  doi: 10.1007/s13277-014-2703-5
– volume: 28
  start-page: 882
  year: 2012
  ident: ref29
  article-title: The sva package for removing batch effects and other unwanted variation in high-throughput experiments
– volume: 16
  start-page: 52
  year: 2016
  ident: ref66
  article-title: Clinical significance of CDH13 promoter methylation as a biomarker for bladder cancer: a meta-analysis
  publication-title: BMC Urol
  doi: 10.1186/s12894-016-0171-5
– volume: 15
  start-page: 347
  year: 2008
  ident: ref6
  article-title: Epigenome: a new target in cancer therapy
  publication-title: Clin Ter
– volume: 2013
  start-page: 721493
  year: 2013
  ident: ref55
  article-title: Hypermethylation of the PRKCZ Gene in Type 2 Diabetes Mellitus
  publication-title: J Diabetes Res
– volume: 27
  start-page: 549
  year: 2009
  ident: ref58
  article-title: Hypermethylation of Genes for Diagnosis and Risk Stratification of Prostate Cancer
– start-page: 389
  year: 2009
  ident: ref19
  article-title: Gene selection for cancer classification
– start-page: 8
  year: 2013
  ident: ref22
  article-title: Application of multi-SNP approaches Bayesian LASSO and AUC-RF to detect main effects of inflammatory-gene variants associated with bladder cancer risk
  publication-title: PLoS One
– volume: 11
  start-page: 1350005
  year: 2013
  ident: ref24
  article-title: a Variational Bayes Beta Mixture Model for Feature Selection in Dna Methylation Studies
  publication-title: J Bioinform Comput Biol
  doi: 10.1142/S0219720013500054
– start-page: 12
  year: 2007
  ident: ref4
  article-title: Epigenetics of prostate cancer
  publication-title: Front Biosci
– year: 2017
  ident: ref44
  article-title: Promoter DNA methylation analysis reveals a combined diagnosis of CpG-based biomarker for prostate cancer
  doi: 10.18632/oncotarget.16437
– volume: 31
  start-page: 1034
  year: 2014
  ident: ref56
  article-title: PRKCZ methylation is associated with sunlight exposure in a North American but not a Mediterranean population
  publication-title: Chronobiol Int
  doi: 10.3109/07420528.2014.944266
– year: 2016
  ident: ref23
  article-title: Multistage feature selection approach for high-dimensional cancer data
  publication-title: Soft Comput
– volume: 136
  start-page: E359
  year: 2015
  ident: ref1
  article-title: Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012
  publication-title: Int J Cancer
  doi: 10.1002/ijc.29210
– volume: 6
  start-page: 1105
  year: 2015
  ident: ref27
  article-title: Potential approaches and recent advances in biomarker discovery in clear-cell Renal Cell Carcinoma
  publication-title: J Cancer
  doi: 10.7150/jca.12145
– volume: 7
  start-page: 2727
  year: 2001
  ident: ref40
  article-title: Molecular Detection of Prostate Cancer in Urine by GSTP1 Hypermethylation Molecular Detection of Prostate Cancer in Urine by GSTP1
– volume: 21
  start-page: 385
  year: 2017
  ident: ref3
  article-title: The Non-Coding Transcriptome of Prostate Cancer: Implications for Clinical Practice
  publication-title: Mol Diagn Ther
  doi: 10.1007/s40291-017-0271-2
– year: 2014
  ident: ref28
  article-title: Comprehensive analysis of DNA methylation data with RnBeads
  doi: 10.1038/nmeth.3115
– volume: 54
  start-page: 68
  year: 2017
  ident: ref2
  article-title: Prostate cancer heterogeneity: Discovering novel molecular targets for therapy
  publication-title: Cancer Treat Rev. Elsevier Ltd
  doi: 10.1016/j.ctrv.2017.02.001
– volume: 17
  start-page: 273
  year: 2017
  ident: ref43
  article-title: Genome-wide DNA methylation measurements in prostate tissues uncovers novel prostate cancer diagnostic biomarkers and transcription factor binding patterns. BMC Cancer
  publication-title: BMC Cancer
  doi: 10.1186/s12885-017-3252-2
– volume: 15
  start-page: 333
  year: 2013
  ident: ref8
  article-title: Urinary biomarkers for prostate cancer: a review
  publication-title: Asian J Androl
  doi: 10.1038/aja.2013.6
– volume: 8
  start-page: 921
  year: 2013
  ident: ref65
  article-title: Genome-scale analysis of DNA methylation in colorectal cancer using Infinium HumanMethylation450 BeadChips
  publication-title: Epigenetics
  doi: 10.4161/epi.25577
– start-page: 1
  year: 2009
  ident: ref33
  article-title: Stability selection
– volume: 13
  start-page: 275
  year: 2013
  ident: ref26
  article-title: Diagnostic markers of urothelial cancer based on DNA methylation analysis
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-13-275
– start-page: 1
  year: 2016
  ident: ref32
  article-title: An evaluation of processing methods for HumanMethylation450 BeadChip data
  publication-title: BMC Genomics
– volume: 129
  start-page: 2855
  year: 2011
  ident: ref64
  article-title: Identification and validation of highly frequent CpG island hypermethylation in colorectal adenomas and carcinomas
  publication-title: Int J Cancer
  doi: 10.1002/ijc.25951
– volume: 3
  year: 2008
  ident: ref42
  article-title: Identification of novel tumor markers in prostate, colon and breast cancer by unbiased methylation profiling
  publication-title: PLoS One
  doi: 10.1371/annotation/2548989f-1f13-4ea5-8af8-62420b0a590e
– volume: 10
  start-page: e0127702
  year: 2015
  ident: ref17
  article-title: A New Combinatorial Optimization Approach for Integrated Feature Selection Using Different Datasets: A Prostate Cancer Transcriptomic Study
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0127702
– volume: 34
  start-page: 22
  year: 2015
  ident: ref63
  article-title: Identification of diagnostic markers in colorectal cancer via integrative epigenomics and genomics data
  publication-title: Oncol Rep
  doi: 10.3892/or.2015.3993
– volume: 21
  start-page: 171
  year: 2005
  ident: ref45
  article-title: Outcome signature genes in breast cancer: Is there a unique set?
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth469
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: ref35
  article-title: Random Forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– start-page: 1
  year: 2017
  ident: ref18
  article-title: Minimum redundancy maximum relevance feature selection approach for temporal gene expression data
  publication-title: BMC Bioinformatics. BMC Bioinformatics
– volume: 11
  start-page: 194
  year: 2017
  ident: ref50
  article-title: The methylation status of GSTP1, APC, and RASSF1 genes in human prostate cancer samples: Comparative analysis of diagnostic informativeness of MS-HRM and hybridization on the Illumina Infinium HumanMethylation450 BeadChip
  publication-title: Biochem Moscow Suppl Ser.
  doi: 10.1134/S199075081702007X
– volume: 131
  start-page: 797
  year: 2006
  ident: ref68
  article-title: A Genome-Wide Search Identifies Epigenetic Silencing of Somatostatin, Tachykinin-1, and 5 Other Genes in Colon Cancer
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2006.06.006
– volume: 30
  start-page: 1046
  year: 2011
  ident: ref69
  article-title: Endoglin expression in breast tumor cells suppresses invasion and metastasis and correlates with improved clinical outcome
  publication-title: Oncogene
  doi: 10.1038/onc.2010.488
SSID ssj0053866
Score 2.3116515
Snippet Although modern methods of whole genome DNA methylation analysis have a wide range of applications, they are not suitable for clinical diagnostics due to their...
SourceID plos
doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0204371
SubjectTerms Adenocarcinoma
Algorithms
Bioinformatics
Biology and life sciences
Bladder
Bladder cancer
Chemistry
Colorectal cancer
Colorectal carcinoma
CpG Islands
Deoxyribonucleic acid
Diabetes
Diagnostic software
Diagnostic systems
DNA
DNA Methylation
Entropy (Information theory)
Epigenetics
Gene Expression Regulation, Neoplastic
Genomes
Genomics
Heterogeneity
Humans
Kidney cancer
Kidneys
Learning algorithms
Machine Learning
Male
Medical diagnosis
Medicine
Medicine and Health Sciences
Models, Genetic
Neoplasms - diagnosis
Neoplasms - genetics
Panels
Pathogenesis
Physical Sciences
Physics
Prostate cancer
Prostatic Neoplasms - diagnosis
Prostatic Neoplasms - genetics
Rank tests
Source code
Tumors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQL3BBlK8GCjISBzhkG8eJE3Pboq4qVDggKvUW-bOtlCYrsiu0P4r_yIzjrLqiUjlwi2InsT3P8bM884aQ98wWvHbMpD7PfVpoKVNtap5yD5fe8VJ5jB3--k2cnhdfLsqLW6m-0CdslAceB-4oB8rNSldXVpiidFIxoXLthATiXlXC4t83q-W0mRr_wTCLhYiBcrxiR9Eus2XfuVkIB63YzkIU9PpR37Tth7u45t8ukw_X3VJtfqm2vbUeLZ6Qx5FI0vnYgX3ywHVPyX6cqgP9EPWkPz4jv8_6yzNoQnp88n2--ETnHYW9q7vRrUtxEbP0JnhUOhpTSFzSkB-HAp-lpp8kZuE2ahu3G6qMWaPCBLWjnx60gA5uNdDeU8xIvRn96ygeTA9YO-ajCC-8Qv-bHmDrgP_T644uMe4E32YQgD-fk_PFyY_Pp2nM0pCaMherlFvtOfM1QNIUmme2KpUrLVOZzLTIjNSiUMxI62vPrKx9mRuV5UpxI70pLX9B9jqwywGhGuiFBsqkhPGFY0xVvrC1yGpVMcMLmRA-mawxUcIcM2m0TTiXq2ArMw5-g4ZuoqETkm6fWo4SHvfUP0Y0bOuiAHe4AbBsIiyb-2CZkAPE0vSBoQGKAMwI6KBIyOGEr7uL322LYarj-Y3qXL8OdSQgm_MsIS9HOG4byVHVh-V5QqodoO70Yreku74KcuICVfNkmZDZFtL_NE6v_sc4vSaPgILWIbozPyR7gGj3BmjeSr8NM_oPvMZXZw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZGJxgviJXLAgMZiQd4SBfHiZMgIdROrSa0VWhi0t4ix5duUpaUpRXqj-I_cuw4gYoJeItiN3Hsz-dSn_MdhN4SGdFUEeHrMNR-VGSZX4iU-lTDpVY05trkDp_N2clF9PkyvtxB8y4XxoRVdjLRCmpZC_Mf-RGIWNAsoE7Zp-U331SNMqerXQkN7koryI-WYuwe2g0NM9YA7U6m8y_nnWyG3c2YS6CjCTly6zVa1pUa2TTRhGwpKMvjb3hPy7q5ywb9M5Ryb10t-eY7L8vf9NTsMXrkDEw8bhGxj3ZUNUR7x11dtyF6cOaO04fovo3_FM0Q7bs93uB3joj6_RP047RenMIY_cn0fDz7gMcVBqdX3RSl8o32k_jGhmIq7GpPLLAtrIPBEMai7rhp4bYhRS43GOZvbagpsGwD_GCIuFGrBtcam1LWmzYwD5s5bzDvC1nYB16ZwJ0a8K7AccDXFV6ahBXzNGGQe_sUXcymX49PfFfewRdxyFY-lYWmRKeAZREVNJBJzFUsCQ-yoGCByAoWcSIyqVNNZJbqOBQ8CDmnItMilvQZGlSwcAcIF2CXFGBrcSZ0pAjhiY5kyoKUJ0TQKPMQ7dY0F4773JTgKHN7oJeAD9SuTm6QkDskeMjvf7VsuT_-0X9i4NL3Nczd9kZ9u8idIMhDcCFJrNJEMhHFKuOE8bBQLANHNEmY9NCBAVv3gib_BXwPHXYAvLv5Td8MkDIHP7xS9dr2yQD6lAYeet7itR8kNXRAJAw9lGwheesrtluq6yvLQ84M3V4We2jUY_6_5unF37_jJXoIVmlqEz7DQzQArKpXYPmtitduO_8EDbBgXg
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKMhICMEhaWwnTsxti7qqUKkQolI5oMjxo63YJiuyK7Qc-Ef8R8aOs2KhCDhwi-JHnMmMPZOZ-QahJ0RnrDRExZZSG2e1EHGtShYzC5fWsFxalzv8-ogfHGevTvKTDfRhyIUJFAQbcdp23pPvLtrG7AZK7jq8ot57mhBWkGFEMoNOiU_1LMhTjzjk_ozNXQLSFbTJc1DVR2jz-OjN-H3vaaYxpykL6XS_m2ntuPKo_g4FFZZ0mUb6a2Dl1UUzk8vPcjr94dSa3EBfh_ftg1U-Jot5nagvP0FB_jeC3ETXg76Lx_0sW2jDNLfQVthROvwswF4_v42-Hbanh0CDeG__7XjyAo8bDCa2uYCJYnfWanzhAz8NDpUuTrEv44NB7caqHZBw4baDYJ4usVRq4YAwsO7DCWEFuDPzDrcWu8LZyz4MEDv_eed6h7IZfsIzFybUgnQZMFPweYNnLj3GzaacnHy6g44n--9eHsShmESscsrnMdO1ZcSWIDkqq1mqi1yaXBOZirTmqRI1zyRRQtvSEi1Km1MlUyolU8KqXLO7aNQARbcRrkELqkGzk1zZzBAiC5vpkqelLIhimYgQG3imUgFp3RX8mFbefViAxdUTv3KfqAqfKELxatSsRxr5Q_89x46rvg4n3N8AHqkCb1QUDFaSm7LQXGW5EZJwSWvDBZi9RcF1hLYdOw0P6CrQZECBA62VR2hnYPDLmx-vmmFHcm4m2Zh24fsIOEYZSyN0r5eH1SKZAx8ilEaoWJOUtbdYb2nOzzzqOXfgfiKPULKSqb-i0_1_HfAAXQOtuPQJp3QHjYB7zUPQPOf1o7B_fAcnD49n
  priority: 102
  providerName: Unpaywall
Title LogLoss-BERAF: An ensemble-based machine learning model for constructing highly accurate diagnostic sets of methylation sites accounting for heterogeneity in prostate cancer
URI https://www.ncbi.nlm.nih.gov/pubmed/30388122
https://www.proquest.com/docview/2128533996
https://www.proquest.com/docview/2129538330
https://pubmed.ncbi.nlm.nih.gov/PMC6214495
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0204371&type=printable
https://doaj.org/article/286215e87d6c45e9a16a2be69625776d
http://dx.doi.org/10.1371/journal.pone.0204371
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCO Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Medical Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Health & Medical Collection (via ProQuest)
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1da9swFBX9eNhexrqveuuCBmNsDw6RZcv2YIykJCujDaUskD0ZWZbSgmunccKWH7X_uHtlOywsY30xwZIVRffIujdXOoeQtyzzeaSZco3nGddP49hNVcRdbuCj0TyQBs8OX4zF2cT_Og2me6RNtDcDWO0M7VBParLIuz_v1p9hwn-yqg0hax_qzstCd-1hz5C9m9-5KC2FKdhGZ2OfHMLyFaO-w4W_STXAhLcJTXRkXOH1eHO-7l8Nb61fluYfaVHzstrlov690_LBqpjL9Q-Z538sY6PH5FHjf9J-DZgjsqeLJ-SomeEVfd_QUH94Sn6dl7Nz6II7GF71Rx9pv6AQ8urbNNcurn0ZvbUbMTVtlCdm1MrqUHCDqSpbZlq4jZTI-ZpKpVZITEGzensf9IBWelnR0lAUsl7X2_IoDmaFtRsZC9vgNW7bKQHtGsIGelPQOR5XwdYU4nbxjExGw2-nZ24j7uCqwBNLl2ep4cxEgGTlp7yXhYHUQcYkWCgVPRWnwpdMxZmJDMviyASekj1PSq5io4KMPycHBdjlmNAUzJqCpyWFMr5mTIbGzyLRi2TIFPdjh_DWZIlqmM9RgCNPbDovhAioHvwEDZ00hnaIu3lqXjN__Kf-ANGwqYu83fZGuZglzWsg8SCAZIGOwkwoP9CxZEJ6qRYxhKFhKDKHHCOW2i-oEvAswKECL1I45KTF1-7iN5tieENg2kcWulzZOjGgnPOeQ17UcNx0kiMZEPM8h4RbQN36Fdslxc21ZSEXSLYXBw7pbiB9r3F6eY-OviIPwTGN7JlP74QcAGD1a3D-lmmH7IfTEK7RKcPr6EuHHA6G48urjv07pWMnN9ybjC_7338Dcj5nyA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NISgviJWPBQYYCSR4yBbHiZMgIdSNTRvr9oA2aW_B8Uc3qUvKsmrqHwV_I2cnKVRMwMveoth1nNzP57v67ncAr6mKWKqp9E0YGj8qsswvZMp8ZvDSaBYLY3OHDw757nH0-SQ-WYIfXS6MDavsdKJT1KqS9j_yDVSxuLPgdso_Tr75tmqUPV3tSmg0sNjXsyt02eoPe59Qvm_CcGf7aGvXb6sK-DIO-aXPVGEYNSl-QhkVLFBJLHSsqAiyoOCBzAoeCSozZVJDVZaaOJQiCIVgMjMyVgzHvQW3I4a6BNdPcjJ38FB3cN6m57GEbrRoWJ9UpV53SagJXdj-XJUAy6o6rurrLNw_AzV703IiZldiPP5tF9x5APdb85UMGrytwJIu-9Db6qrG9eHuQXtY34c7LrpU1n1YaTVITd62NNfvHsL3YTUa4hz9ze0vg533ZFASdKn1eTHWvt1bFTl3gZ6atJUtRsSV7SFoZhNZdcy3eNtSLo9nREg5tcQXRDXhgzhFUuvLmlSG2ELZsybsj1iJ1rZ3WybDDXhqw4IqXE0a3RJyVpKJTYexo0m7Li4ewfGNiPkxLJcouFUgBVo9BVpygksTaUpFYiKV8iAVCZUsyjxgnUxz2TKr2wIf49wdFyboYTXSyS0S8hYJHvjzX00aZpF_9N-0cJn3tbzg7kZ1McpbNZOH6KDSWKeJ4jKKdSYoF2GheYZubpJw5cGqBVv3gDr_taw8WOsAeH3zq3kzQsoeK4lSV1PXJ0PoMxZ48KTB63ySzJIN0TD0IFlA8sJbLLaUZ6eO5ZxbMr8s9mB9jvn_-k5P__4eL6G3e3QwzId7h_vP4B7av6lLLQ3XYBlxq5-jjXlZvHALm8DXm9YkPwHIFJlR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEBsviJXLAgOMBBI8pI3jxEmQEOou1cYuQohJfQuOL92kLilLq6k_ij_Ar-PYcQoVE_Cytyh2HSfn8_E59TnfQegVkRFNFRG-DkPtR0WW-YVIqU81XGpFY65N7vDxCds_jT4O4-EK-tHmwpiwylYnWkUtK2H-I--BioWdBbZT1tMuLOLT7uDD5JtvKkiZk9a2nEYDkUM1vwL3rX5_sAuyfh2Gg70vO_u-qzDgizhkU5_KQlOiU_icIipoIJOYq1gSHmRBwQKRFSziRGRSp5rILNVxKHgQck5FpkUsKYx7C91OYF4mnDAZLpw90COMuVQ9mpCeQ0Z3UpWqaxNSE7K0FdqKAYZhdVzV11m7fwZtrs_KCZ9f8fH4tx1xcB_dc6Ys7jfY20Arquyg9Z22glwHrR27g_sOumMjTUXdQRtOm9T4jaO8fvsAfT-qRkcwR39773N_8A73Swzutbooxso3-6zEFzboU2FX5WKEbQkfDCY3FlXLggu3Df3yeI65EDNDgoFlE0oIU8S1mta40tgUzZ43IYDYSLQ2vV3JDDvgmQkRqmBlKXBR8HmJJyY1xowmzBq5fIhOb0TMj9BqCYLbRLgAC6gAq44zoSNFCE90JFMWpDwhgkaZh2gr01w4lnVT7GOc26PDBLytRjq5QULukOAhf_GrScMy8o_-2wYui76GI9zeqC5HuVM5eQjOKolVmkgmolhlnDAeFopl4PImCZMe2jRgax9Q57-WmIe2WgBe3_xy0QyQMkdMvFTVzPbJAPqUBh563OB1MUlqiIdIGHooWULy0lsst5TnZ5bxnBlivyz2UHeB-f_6Tk_-_h4v0BrokPzo4OTwKboLpnBqs0zDLbQKsFXPwNycFs_tusbo600rkp-4552U
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXoLwaKMhICMEhaWwnTsxti7qqUKkQolI5oMjxo63YJiuyK7Qc-Ef8R8aOs2KhCDhwi-JHnMmMPZOZ-QahJ0RnrDRExZZSG2e1EHGtShYzC5fWsFxalzv8-ogfHGevTvKTDfRhyIUJFAQbcdp23pPvLtrG7AZK7jq8ot57mhBWkGFEMoNOiU_1LMhTjzjk_ozNXQLSFbTJc1DVR2jz-OjN-H3vaaYxpykL6XS_m2ntuPKo_g4FFZZ0mUb6a2Dl1UUzk8vPcjr94dSa3EBfh_ftg1U-Jot5nagvP0FB_jeC3ETXg76Lx_0sW2jDNLfQVthROvwswF4_v42-Hbanh0CDeG__7XjyAo8bDCa2uYCJYnfWanzhAz8NDpUuTrEv44NB7caqHZBw4baDYJ4usVRq4YAwsO7DCWEFuDPzDrcWu8LZyz4MEDv_eed6h7IZfsIzFybUgnQZMFPweYNnLj3GzaacnHy6g44n--9eHsShmESscsrnMdO1ZcSWIDkqq1mqi1yaXBOZirTmqRI1zyRRQtvSEi1Km1MlUyolU8KqXLO7aNQARbcRrkELqkGzk1zZzBAiC5vpkqelLIhimYgQG3imUgFp3RX8mFbefViAxdUTv3KfqAqfKELxatSsRxr5Q_89x46rvg4n3N8AHqkCb1QUDFaSm7LQXGW5EZJwSWvDBZi9RcF1hLYdOw0P6CrQZECBA62VR2hnYPDLmx-vmmFHcm4m2Zh24fsIOEYZSyN0r5eH1SKZAx8ilEaoWJOUtbdYb2nOzzzqOXfgfiKPULKSqb-i0_1_HfAAXQOtuPQJp3QHjYB7zUPQPOf1o7B_fAcnD49n
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LogLoss-BERAF%3A+An+ensemble-based+machine+learning+model+for+constructing+highly+accurate+diagnostic+sets+of+methylation+sites+accounting+for+heterogeneity+in+prostate+cancer&rft.jtitle=PloS+one&rft.au=Babalyan%2C+K&rft.au=Sultanov%2C+R&rft.au=Generozov%2C+E&rft.au=Sharova%2C+E&rft.date=2018-11-02&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=13&rft.issue=11&rft.spage=e0204371&rft_id=info:doi/10.1371%2Fjournal.pone.0204371&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon