Orexin 1 Receptor Antagonism in the Basolateral Amygdala Shifts the Balance From Pro- to Antistress Signaling and Behavior
Stress produces differential behavioral responses through select molecular modifications to specific neurocircuitry elements. The orexin (Orx) system targets key components of this neurocircuitry in the basolateral amygdala (BLA). We assessed the contribution of intra-BLA Orx1 receptors (Orx1Rs) in...
Saved in:
Published in | Biological psychiatry (1969) Vol. 91; no. 9; pp. 841 - 852 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.05.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0006-3223 1873-2402 1873-2402 |
DOI | 10.1016/j.biopsych.2021.12.019 |
Cover
Abstract | Stress produces differential behavioral responses through select molecular modifications to specific neurocircuitry elements. The orexin (Orx) system targets key components of this neurocircuitry in the basolateral amygdala (BLA).
We assessed the contribution of intra-BLA Orx1 receptors (Orx1Rs) in the expression of stress-induced phenotypes of mice. Using the Stress Alternatives Model, a social stress paradigm that produces two behavioral phenotypes, we characterized the role of intra-BLA Orx1R using acute pharmacological inhibition (SB-674042) and genetic knockdown (AAV-U6-Orx1R-shRNA) strategies.
In the BLA, we observed that Orx1R (Hcrtr1) messenger RNA is predominantly expressed in CamKIIα+ glutamatergic neurons and rarely in GABAergic (gamma-aminobutyric acidergic) cells. While there is a slight overlap in Hcrtr1 and Orx2 receptor (Hcrtr2) messenger RNA expression in the BLA, we find that these receptors are most often expressed in separate cells. Antagonism of intra-BLA Orx1R after phenotype formation shifted behavioral expression from stress-sensitive (Stay) to stress-resilient (Escape) responses, an effect that was mimicked by genetic knockdown. Acute inhibition of Orx1R in the BLA also reduced contextual and cued fear freezing responses in Stay animals. This phenotype-specific behavioral change was accompanied by biased molecular transcription favoring Hcrtr2 over Hcrtr1 and Mapk3 over Plcb1 cell signaling cascades and enhanced Bdnf messenger RNA.
Functional reorganization of intra-BLA gene expression is produced by antagonism of Orx1R, which promotes elevated Hcrtr2, greater Mapk3, and increased Bdnf expression. Together, these results provide evidence for a receptor-driven mechanism that balances pro- and antistress responses within the BLA. |
---|---|
AbstractList | Stress produces differential behavioral responses through select molecular modifications to specific neurocircuitry elements. The orexin (Orx) system targets key components of this neurocircuitry in the basolateral amygdala (BLA).
We assessed the contribution of intra-BLA Orx
receptors (Orx
Rs) in the expression of stress-induced phenotypes of mice. Using the Stress Alternatives Model, a social stress paradigm that produces two behavioral phenotypes, we characterized the role of intra-BLA Orx
R using acute pharmacological inhibition (SB-674042) and genetic knockdown (AAV-U6-Orx
R-shRNA) strategies.
In the BLA, we observed that Orx
R (Hcrtr1) messenger RNA is predominantly expressed in CamKIIα
glutamatergic neurons and rarely in GABAergic (gamma-aminobutyric acidergic) cells. While there is a slight overlap in Hcrtr1 and Orx
receptor (Hcrtr2) messenger RNA expression in the BLA, we find that these receptors are most often expressed in separate cells. Antagonism of intra-BLA Orx
R after phenotype formation shifted behavioral expression from stress-sensitive (Stay) to stress-resilient (Escape) responses, an effect that was mimicked by genetic knockdown. Acute inhibition of Orx
R in the BLA also reduced contextual and cued fear freezing responses in Stay animals. This phenotype-specific behavioral change was accompanied by biased molecular transcription favoring Hcrtr2 over Hcrtr1 and Mapk3 over Plcb1 cell signaling cascades and enhanced Bdnf messenger RNA.
Functional reorganization of intra-BLA gene expression is produced by antagonism of Orx
R, which promotes elevated Hcrtr2, greater Mapk3, and increased Bdnf expression. Together, these results provide evidence for a receptor-driven mechanism that balances pro- and antistress responses within the BLA. AbstractBackgroundStress produces differential behavioral responses through select molecular modifications to specific neurocircuitry elements. The orexin (Orx) system targets key components of this neurocircuitry in the basolateral amygdala (BLA). MethodsWe assessed the contribution of intra-BLA Orx 1 receptors (Orx 1Rs) in the expression of stress-induced phenotypes of mice. Using the Stress Alternatives Model, a social stress paradigm that produces two behavioral phenotypes, we characterized the role of intra-BLA Orx 1R using acute pharmacological inhibition (SB-674042) and genetic knockdown (AAV-U6-Orx 1R-shRNA) strategies. ResultsIn the BLA, we observed that Orx 1R ( Hcrtr1) messenger RNA is predominantly expressed in CamKIIα + glutamatergic neurons and rarely in GABAergic (gamma-aminobutyric acidergic) cells. While there is a slight overlap in Hcrtr1 and Orx 2 receptor ( Hcrtr2) messenger RNA expression in the BLA, we find that these receptors are most often expressed in separate cells. Antagonism of intra-BLA Orx 1R after phenotype formation shifted behavioral expression from stress-sensitive (Stay) to stress-resilient (Escape) responses, an effect that was mimicked by genetic knockdown. Acute inhibition of Orx 1R in the BLA also reduced contextual and cued fear freezing responses in Stay animals. This phenotype-specific behavioral change was accompanied by biased molecular transcription favoring Hcrtr2 over Hcrtr1 and Mapk3 over Plcb1 cell signaling cascades and enhanced Bdnf messenger RNA. ConclusionsFunctional reorganization of intra-BLA gene expression is produced by antagonism of Orx 1R, which promotes elevated Hcrtr2, greater Mapk3, and increased Bdnf expression. Together, these results provide evidence for a receptor-driven mechanism that balances pro- and antistress responses within the BLA. Stress produces differential behavioral responses through select molecular modifications to specific neurocircuitry elements. The orexin (Orx) system targets key components of this neurocircuitry in the basolateral amygdala (BLA).BACKGROUNDStress produces differential behavioral responses through select molecular modifications to specific neurocircuitry elements. The orexin (Orx) system targets key components of this neurocircuitry in the basolateral amygdala (BLA).We assessed the contribution of intra-BLA Orx1 receptors (Orx1Rs) in the expression of stress-induced phenotypes of mice. Using the Stress Alternatives Model, a social stress paradigm that produces two behavioral phenotypes, we characterized the role of intra-BLA Orx1R using acute pharmacological inhibition (SB-674042) and genetic knockdown (AAV-U6-Orx1R-shRNA) strategies.METHODSWe assessed the contribution of intra-BLA Orx1 receptors (Orx1Rs) in the expression of stress-induced phenotypes of mice. Using the Stress Alternatives Model, a social stress paradigm that produces two behavioral phenotypes, we characterized the role of intra-BLA Orx1R using acute pharmacological inhibition (SB-674042) and genetic knockdown (AAV-U6-Orx1R-shRNA) strategies.In the BLA, we observed that Orx1R (Hcrtr1) messenger RNA is predominantly expressed in CamKIIα+ glutamatergic neurons and rarely in GABAergic (gamma-aminobutyric acidergic) cells. While there is a slight overlap in Hcrtr1 and Orx2 receptor (Hcrtr2) messenger RNA expression in the BLA, we find that these receptors are most often expressed in separate cells. Antagonism of intra-BLA Orx1R after phenotype formation shifted behavioral expression from stress-sensitive (Stay) to stress-resilient (Escape) responses, an effect that was mimicked by genetic knockdown. Acute inhibition of Orx1R in the BLA also reduced contextual and cued fear freezing responses in Stay animals. This phenotype-specific behavioral change was accompanied by biased molecular transcription favoring Hcrtr2 over Hcrtr1 and Mapk3 over Plcb1 cell signaling cascades and enhanced Bdnf messenger RNA.RESULTSIn the BLA, we observed that Orx1R (Hcrtr1) messenger RNA is predominantly expressed in CamKIIα+ glutamatergic neurons and rarely in GABAergic (gamma-aminobutyric acidergic) cells. While there is a slight overlap in Hcrtr1 and Orx2 receptor (Hcrtr2) messenger RNA expression in the BLA, we find that these receptors are most often expressed in separate cells. Antagonism of intra-BLA Orx1R after phenotype formation shifted behavioral expression from stress-sensitive (Stay) to stress-resilient (Escape) responses, an effect that was mimicked by genetic knockdown. Acute inhibition of Orx1R in the BLA also reduced contextual and cued fear freezing responses in Stay animals. This phenotype-specific behavioral change was accompanied by biased molecular transcription favoring Hcrtr2 over Hcrtr1 and Mapk3 over Plcb1 cell signaling cascades and enhanced Bdnf messenger RNA.Functional reorganization of intra-BLA gene expression is produced by antagonism of Orx1R, which promotes elevated Hcrtr2, greater Mapk3, and increased Bdnf expression. Together, these results provide evidence for a receptor-driven mechanism that balances pro- and antistress responses within the BLA.CONCLUSIONSFunctional reorganization of intra-BLA gene expression is produced by antagonism of Orx1R, which promotes elevated Hcrtr2, greater Mapk3, and increased Bdnf expression. Together, these results provide evidence for a receptor-driven mechanism that balances pro- and antistress responses within the BLA. Stress produces differential behavioral responses through select molecular modifications to specific neurocircuitry elements. The orexin (Orx) system targets key components of this neurocircuitry in the basolateral amygdala (BLA). We assessed the contribution of intra-BLA Orx1 receptors (Orx1Rs) in the expression of stress-induced phenotypes of mice. Using the Stress Alternatives Model, a social stress paradigm that produces two behavioral phenotypes, we characterized the role of intra-BLA Orx1R using acute pharmacological inhibition (SB-674042) and genetic knockdown (AAV-U6-Orx1R-shRNA) strategies. In the BLA, we observed that Orx1R (Hcrtr1) messenger RNA is predominantly expressed in CamKIIα+ glutamatergic neurons and rarely in GABAergic (gamma-aminobutyric acidergic) cells. While there is a slight overlap in Hcrtr1 and Orx2 receptor (Hcrtr2) messenger RNA expression in the BLA, we find that these receptors are most often expressed in separate cells. Antagonism of intra-BLA Orx1R after phenotype formation shifted behavioral expression from stress-sensitive (Stay) to stress-resilient (Escape) responses, an effect that was mimicked by genetic knockdown. Acute inhibition of Orx1R in the BLA also reduced contextual and cued fear freezing responses in Stay animals. This phenotype-specific behavioral change was accompanied by biased molecular transcription favoring Hcrtr2 over Hcrtr1 and Mapk3 over Plcb1 cell signaling cascades and enhanced Bdnf messenger RNA. Functional reorganization of intra-BLA gene expression is produced by antagonism of Orx1R, which promotes elevated Hcrtr2, greater Mapk3, and increased Bdnf expression. Together, these results provide evidence for a receptor-driven mechanism that balances pro- and antistress responses within the BLA. |
Author | Yaeger, Jazmine D.W. Jacobs, Benjamin M. Ronan, Patrick J. Renner, Kenneth J. Meyerink, Brandon L. Summers, Cliff H. DiLeone, Ralph J. Krupp, Kevin T. Onserio, Benard O. Cain, Jacob T. |
Author_xml | – sequence: 1 givenname: Jazmine D.W. orcidid: 0000-0001-6629-0897 surname: Yaeger fullname: Yaeger, Jazmine D.W. organization: Department of Biology, University of South Dakota, Vermillion, South Dakota – sequence: 2 givenname: Kevin T. surname: Krupp fullname: Krupp, Kevin T. organization: Department of Biology, University of South Dakota, Vermillion, South Dakota – sequence: 3 givenname: Benjamin M. surname: Jacobs fullname: Jacobs, Benjamin M. organization: Department of Biology, University of South Dakota, Vermillion, South Dakota – sequence: 4 givenname: Benard O. surname: Onserio fullname: Onserio, Benard O. organization: Department of Biology, University of South Dakota, Vermillion, South Dakota – sequence: 5 givenname: Brandon L. surname: Meyerink fullname: Meyerink, Brandon L. organization: Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota – sequence: 6 givenname: Jacob T. surname: Cain fullname: Cain, Jacob T. organization: Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota – sequence: 7 givenname: Patrick J. surname: Ronan fullname: Ronan, Patrick J. organization: Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota – sequence: 8 givenname: Kenneth J. surname: Renner fullname: Renner, Kenneth J. organization: Department of Biology, University of South Dakota, Vermillion, South Dakota – sequence: 9 givenname: Ralph J. surname: DiLeone fullname: DiLeone, Ralph J. organization: Division of Molecular Psychiatry, Ribicoff Research Facilities, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut – sequence: 10 givenname: Cliff H. orcidid: 0000-0002-9051-2696 surname: Summers fullname: Summers, Cliff H. email: cliff@usd.edu organization: Department of Biology, University of South Dakota, Vermillion, South Dakota |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35279280$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUsFuEzEQtVARTVt-ofKRyy72bNablSpEWlFAqlREytnyemcTp7t2sJ2K8PV4leTSSzjZ43nvefTeXJAz6ywScs1ZzhkXH9d5Y9wm7PQqBwY855AzXr8hEz6rigymDM7IhDEmsgKgOCcXIaxTWQHwd-S8KKGqYcYm5O-jxz_GUk5_osZNdJ7ObVRLZ00YaGrEFdJbFVyvInrV0_mwW7aqV3SxMl0Mh36vrEZ6791Af3iX0ehGGROixxDowiyt6o1dUmVbeosr9WKcvyJvO9UHfH84L8mv-y9Pd9-yh8ev3-_mD5kuQcSMgxCgFVaNKOtatLWuFOOI0MwK5IJDq7BjTde0la7akjPsulJjqotifCguyYe97sa731sMUQ4maOzTzOi2QYIoZrVgYjpN0OsDdNsM2MqNN4PyO3n0KwFu9gDtXQgeO6lNVNE4G70yveRMjvHItTzGI8d4JAeZ4kl08Yp-_OEk8fOeiMmoF4NeBm0wed4ajzrK1pnTEp9eSegUidGqf8YdhrXb-hRSkFyGRJCLcXnG3QFINxAnBP5ngn_wdNmY |
CitedBy_id | crossref_primary_10_1038_s41386_024_01937_9 crossref_primary_10_1038_s41598_024_81590_w crossref_primary_10_1016_j_biopsych_2022_02_957 crossref_primary_10_1016_j_nsa_2023_103922 crossref_primary_10_1016_j_neuropharm_2023_109418 crossref_primary_10_3389_fnins_2023_1152594 crossref_primary_10_1016_j_biopsych_2022_06_027 crossref_primary_10_1016_j_bbi_2022_05_014 crossref_primary_10_1016_j_bbr_2022_114123 crossref_primary_10_1016_j_neuroscience_2024_11_031 crossref_primary_10_1038_s41398_022_02161_z crossref_primary_10_1016_j_neuropharm_2022_109168 crossref_primary_10_5664_jcsm_10418 crossref_primary_10_1007_s40263_022_00974_6 crossref_primary_10_1016_j_bbr_2022_114258 crossref_primary_10_3390_ijms25031482 crossref_primary_10_1016_j_neuropharm_2024_109949 crossref_primary_10_1124_pharmrev_123_000953 crossref_primary_10_1111_bph_17325 crossref_primary_10_1097_FBP_0000000000000703 crossref_primary_10_1007_s00213_024_06701_x crossref_primary_10_1016_j_yfrne_2023_101066 |
Cites_doi | 10.1016/j.cell.2007.09.018 10.1038/s41593-018-0198-x 10.1016/j.nlm.2009.01.009 10.1038/s41398-019-0553-z 10.1016/B978-0-444-59489-1.00009-4 10.1016/j.psyneuen.2015.10.016 10.1038/s41598-019-40390-3 10.2165/11534530-000000000-00000 10.1016/j.neuropharm.2018.09.034 10.1016/j.psyneuen.2021.105317 10.1073/pnas.86.8.2923 10.1016/j.biopsych.2010.05.026 10.1016/j.physbeh.2015.03.036 10.1093/ijnp/pyx029 10.1016/j.nbd.2015.04.004 10.1038/nn1718 10.1038/npp.2014.146 10.1016/S0092-8674(00)80949-6 10.3389/fnbeh.2013.00028 10.1073/pnas.1320325110 10.1016/S0306-4522(01)00214-7 10.1038/nn.3810 10.1016/j.neuroscience.2017.03.061 10.1016/j.bbr.2019.112455 10.1037/a0031442 10.1037/h0025984 10.1523/JNEUROSCI.1130-13.2013 10.1016/S0031-9384(01)00490-5 10.3389/fneur.2018.00413 10.3389/fpsyt.2015.00159 10.1016/j.brainresbull.2013.09.007 10.3389/fnins.2017.00515 10.1016/j.psyneuen.2013.10.010 10.1037/h0027676 10.1523/JNEUROSCI.21-16-j0005.2001 10.1254/jphs.92.259 10.1016/j.pnpbp.2004.05.031 10.1016/j.neuroscience.2021.06.006 10.1016/j.medidd.2020.100059 10.1038/nn.4414 10.1126/science.1120972 10.1017/S1461145708009309 10.1016/j.neuropharm.2016.03.054 10.1038/nrn3945 10.1017/S1461145711001891 10.1002/cne.902220410 10.1016/j.brainres.2018.12.036 10.3389/fnbeh.2014.00121 10.1523/JNEUROSCI.3273-17.2018 10.1016/j.neuropharm.2018.09.016 10.1038/nm.2075 10.1016/S0014-5793(02)03101-0 10.1007/s12079-012-0182-2 10.1016/j.neuroscience.2020.02.026 10.1038/s41537-017-0020-x 10.1038/s41380-019-0639-2 10.1124/jpet.102.048025 10.1146/annurev.psych.48.1.191 10.1038/s41598-017-10207-2 10.1016/j.conb.2014.07.006 10.1002/da.22837 10.1016/j.tins.2015.06.005 |
ContentType | Journal Article |
Copyright | 2022 Society of Biological Psychiatry Society of Biological Psychiatry Copyright © 2022 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2022 Society of Biological Psychiatry – notice: Society of Biological Psychiatry – notice: Copyright © 2022 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.biopsych.2021.12.019 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Biology |
EISSN | 1873-2402 |
EndPage | 852 |
ExternalDocumentID | 35279280 10_1016_j_biopsych_2021_12_019 S0006322322000269 1_s2_0_S0006322322000269 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R15 MH104485 – fundername: NIMH NIH HHS grantid: R15 MH125306 – fundername: NIDA NIH HHS grantid: R25 DA033674 – fundername: NIGMS NIH HHS grantid: U54 GM128729 |
GroupedDBID | --- --K --M -DZ .1- .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5RE 5VS 6J9 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABCQX ABFNM ABFRF ABIVO ABJNI ABLJU ABMAC ABMZM ACDAQ ACGFO ACIEU ACIUM ACNCT ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGWIK AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM L7B M29 M2V M39 M41 MO0 MOBAO N9A O-L O9- OAUVE OH0 OU- OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAE SCC SDF SDG SDP SEL SES SPCBC SSH SSN SSZ T5K UNMZH UPT UV1 WH7 Z5R ZCA ~G- .GJ 3O- 53G AAQXK ABDPE ABWVN ABXDB ACRPL ADMUD ADNMO AFFNX AFJKZ AGQPQ AHHHB ASPBG AVWKF AZFZN EFLBG EJD FEDTE FGOYB G-2 HEG HMK HMO HMQ HVGLF HZ~ H~9 R2- SNS UAP WUQ XJT XOL ZGI ZKB ZXP ~HD 6I. AACTN AADPK AAFTH AAIAV ABLVK ABYKQ AFCTW AFKWA AJOXV AMFUW LCYCR ZA5 AAYXX CITATION AGRNS CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c526t-12662cae7b65996d9c7a01ee2b83e1612daef0bfbd7c7d510eff5cefbd33c7d53 |
IEDL.DBID | .~1 |
ISSN | 0006-3223 1873-2402 |
IngestDate | Thu Sep 04 21:41:55 EDT 2025 Mon Jul 21 05:46:03 EDT 2025 Thu Apr 24 23:04:28 EDT 2025 Thu Sep 18 00:26:08 EDT 2025 Fri Feb 23 02:40:58 EST 2024 Sat Sep 20 19:12:28 EDT 2025 Tue Aug 26 17:46:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Anxious behavior Social stress Hypocretin Stress Alternatives Model Fear conditioning Resilience |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2022 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c526t-12662cae7b65996d9c7a01ee2b83e1612daef0bfbd7c7d510eff5cefbd33c7d53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6629-0897 0000-0002-9051-2696 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0006322322000269 |
PMID | 35279280 |
PQID | 2638960644 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2638960644 pubmed_primary_35279280 crossref_citationtrail_10_1016_j_biopsych_2021_12_019 crossref_primary_10_1016_j_biopsych_2021_12_019 elsevier_sciencedirect_doi_10_1016_j_biopsych_2021_12_019 elsevier_clinicalkeyesjournals_1_s2_0_S0006322322000269 elsevier_clinicalkey_doi_10_1016_j_biopsych_2021_12_019 |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Biological psychiatry (1969) |
PublicationTitleAlternate | Biol Psychiatry |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Cabana-Domínguez, Roncero, Pineda-Cirera, Palma-Álvarez, Ros-Cucurull, Grau-López (bib16) 2017; 7 Carpenter, Summers (bib33) 2009; 91 Sargin (bib41) 2019; 154 McDonald (bib31) 1984; 222 Robertson, Prince, Achua, Carpenter, Arendt, Smith (bib26) 2015; 146 Recourt, de Boer, Zuiker, Luthringer, Kent, van der Ark (bib61) 2019; 9 Brunoni, Lopes, Fregni (bib37) 2008; 11 Johnson, Truitt, Fitz, Minick, Dietrich, Sanghani (bib7) 2010; 16 Mahler, Moorman, Smith, James, Aston-Jones (bib8) 2014; 17 Johnson, Molosh, Fitz, Truitt, Shekhar (bib6) 2012; 198 Kim, Cho, Lee (bib17) 2015; 6 Chhatwal, Stanek-Rattiner, Davis, Ressler (bib63) 2006; 9 Zoicas, Menon, Neumann (bib54) 2016; 108 Vindas, Helland-Riise, Nilsson, Øverli (bib48) 2019; 9 Arendt, Hassell, Li, Achua, Guarnieri, DiLeone (bib25) 2014; 40 Zhu, Miwa, Yamanaka, Yada, Shibahara, Abe (bib36) 2003; 92 Zimmerman, Martin, McGonigal, Harris, Kerr, Balling (bib47) 2019; 36 Flores, Herry, Maldonado, Berrendero (bib21) 2017; 20 Staton, Yaeger, Khalid, Haroun, Fernandez, Fernandez (bib28) 2018; 143 Summers, Summers, Carpenter, Smith, Young, Meyerink (bib35) 2017; 11 Blanchard, Blanchard (bib53) 1969; 68 Lu, Walker, Davis (bib62) 2001; 21 Berton, McClung, DiLeone, Krishnan, Renthal, Russo (bib44) 2006; 311 Kessler (bib50) 1997; 48 Kim, Pignatelli, Xu, Itohara, Tonegawa (bib3) 2016; 19 Giardino, de Lecea (bib40) 2014; 29 Knaepen, Goekint, Heyman, Meeusen (bib38) 2010; 40 Yaeger, Krupp, Gale, Summers (bib2) 2020; 8 Summers, Yaeger, Staton, Arendt, Summers (bib30) 2020; 1731 Sears, Fink, Wigestrand, Farb, de Lecea, LeDoux (bib57) 2013; 110 Ammoun, Holmqvist, Shariatmadari, Oonk, Detheux, Parmentier (bib10) 2003; 305 Smith, Prince, Achua, Robertson, Anderson, Ronan, Summers (bib29) 2016; 63 Han, Han, Shi, Zheng, Wen (bib43) 2020; 432 Rescorla (bib52) 1968; 66 Holmqvist, Åkerman, Kukkonen (bib12) 2002; 526 Robertson, Achua, Smith, Prince, Staton, Ronan (bib34) 2017; 352 Björkqvist (bib49) 2001; 73 Lo Vasco, Longo, Polonia (bib15) 2013; 7 Flores, Saravia, Maldonado, Berrendero (bib22) 2015; 38 Kim, Kim, Park, Lee, Choi, Kim (bib23) 2015; 79 Notaras, van den Buuse (bib39) 2020; 25 Li, Chang, Peng (bib59) 2021; 131 James, Campbell, Dayas (bib42) 2017 McDonald, Mascagni (bib32) 2001; 105 Flores, Valls-Comamala, Costa, Saravia, Maldonado, Berrendero (bib56) 2014; 39 Tyree, Borniger, de Lecea (bib9) 2018; 9 Cestari, Rossi-Arnaud, Saraulli, Costanzi (bib19) 2014; 105 Smith, Achua, Summers, Ronan, Summers (bib27) 2014; 8 van Praag (bib1) 2004; 28 Arendt, Ronan, Oliver, Callahan, Summers, Summers (bib24) 2013; 127 Nissen, Holz, Blechert, Feige, Riemann, Voderholzer, Normann (bib46) 2010; 68 Tsujino, Sakurai (bib51) 2013; 7 Soya, Shoji, Hasegawa, Hondo, Miyakawa, Yanagisawa (bib55) 2013; 33 Udawela, Scarr, Boer, Um, Hannan, McOmish (bib18) 2017; 3 Ross, MacCumber, Glatt, Snyder (bib13) 1989; 86 Kao, Jia, Zhao, Kuo (bib14) 2012; 15 Tovote, Fadok, Lüthi (bib5) 2015; 16 Soares, de Andrade, Canteras, Coimbra, Wotjak, Almada (bib60) 2021; 468 Krishnan, Han, Graham, Berton, Renthal, Russo (bib45) 2007; 131 Giardino, Eban-Rothschild, Christoffel, Li, Malenka, de Lecea (bib4) 2018; 21 Merlo, Milton, Everitt (bib20) 2018; 38 Sakurai, Amemiya, Ishii, Matsuzaki, Chemelli, Tanaka (bib11) 1998; 92 Salehabadi, Abrari, Elahdadi Salmani, Nasiri, Lashkarbolouki (bib58) 2020; 384 Kao (10.1016/j.biopsych.2021.12.019_bib14) 2012; 15 Björkqvist (10.1016/j.biopsych.2021.12.019_bib49) 2001; 73 Yaeger (10.1016/j.biopsych.2021.12.019_bib2) 2020; 8 James (10.1016/j.biopsych.2021.12.019_bib42) 2017 Zimmerman (10.1016/j.biopsych.2021.12.019_bib47) 2019; 36 Ross (10.1016/j.biopsych.2021.12.019_bib13) 1989; 86 Han (10.1016/j.biopsych.2021.12.019_bib43) 2020; 432 Krishnan (10.1016/j.biopsych.2021.12.019_bib45) 2007; 131 Johnson (10.1016/j.biopsych.2021.12.019_bib6) 2012; 198 McDonald (10.1016/j.biopsych.2021.12.019_bib31) 1984; 222 Blanchard (10.1016/j.biopsych.2021.12.019_bib53) 1969; 68 Flores (10.1016/j.biopsych.2021.12.019_bib56) 2014; 39 Soya (10.1016/j.biopsych.2021.12.019_bib55) 2013; 33 Holmqvist (10.1016/j.biopsych.2021.12.019_bib12) 2002; 526 Sears (10.1016/j.biopsych.2021.12.019_bib57) 2013; 110 Giardino (10.1016/j.biopsych.2021.12.019_bib4) 2018; 21 Ammoun (10.1016/j.biopsych.2021.12.019_bib10) 2003; 305 Arendt (10.1016/j.biopsych.2021.12.019_bib24) 2013; 127 Merlo (10.1016/j.biopsych.2021.12.019_bib20) 2018; 38 Smith (10.1016/j.biopsych.2021.12.019_bib29) 2016; 63 Zoicas (10.1016/j.biopsych.2021.12.019_bib54) 2016; 108 Tovote (10.1016/j.biopsych.2021.12.019_bib5) 2015; 16 Summers (10.1016/j.biopsych.2021.12.019_bib30) 2020; 1731 Nissen (10.1016/j.biopsych.2021.12.019_bib46) 2010; 68 Sargin (10.1016/j.biopsych.2021.12.019_bib41) 2019; 154 Lu (10.1016/j.biopsych.2021.12.019_bib62) 2001; 21 McDonald (10.1016/j.biopsych.2021.12.019_bib32) 2001; 105 Kim (10.1016/j.biopsych.2021.12.019_bib17) 2015; 6 Smith (10.1016/j.biopsych.2021.12.019_bib27) 2014; 8 Vindas (10.1016/j.biopsych.2021.12.019_bib48) 2019; 9 Flores (10.1016/j.biopsych.2021.12.019_bib21) 2017; 20 Kessler (10.1016/j.biopsych.2021.12.019_bib50) 1997; 48 Notaras (10.1016/j.biopsych.2021.12.019_bib39) 2020; 25 Rescorla (10.1016/j.biopsych.2021.12.019_bib52) 1968; 66 Chhatwal (10.1016/j.biopsych.2021.12.019_bib63) 2006; 9 Staton (10.1016/j.biopsych.2021.12.019_bib28) 2018; 143 Zhu (10.1016/j.biopsych.2021.12.019_bib36) 2003; 92 Robertson (10.1016/j.biopsych.2021.12.019_bib34) 2017; 352 Berton (10.1016/j.biopsych.2021.12.019_bib44) 2006; 311 Flores (10.1016/j.biopsych.2021.12.019_bib22) 2015; 38 Udawela (10.1016/j.biopsych.2021.12.019_bib18) 2017; 3 Tsujino (10.1016/j.biopsych.2021.12.019_bib51) 2013; 7 Kim (10.1016/j.biopsych.2021.12.019_bib23) 2015; 79 Salehabadi (10.1016/j.biopsych.2021.12.019_bib58) 2020; 384 Kim (10.1016/j.biopsych.2021.12.019_bib3) 2016; 19 Giardino (10.1016/j.biopsych.2021.12.019_bib40) 2014; 29 Sakurai (10.1016/j.biopsych.2021.12.019_bib11) 1998; 92 Carpenter (10.1016/j.biopsych.2021.12.019_bib33) 2009; 91 Cestari (10.1016/j.biopsych.2021.12.019_bib19) 2014; 105 Tyree (10.1016/j.biopsych.2021.12.019_bib9) 2018; 9 Cabana-Domínguez (10.1016/j.biopsych.2021.12.019_bib16) 2017; 7 Brunoni (10.1016/j.biopsych.2021.12.019_bib37) 2008; 11 van Praag (10.1016/j.biopsych.2021.12.019_bib1) 2004; 28 Summers (10.1016/j.biopsych.2021.12.019_bib35) 2017; 11 Arendt (10.1016/j.biopsych.2021.12.019_bib25) 2014; 40 Lo Vasco (10.1016/j.biopsych.2021.12.019_bib15) 2013; 7 Mahler (10.1016/j.biopsych.2021.12.019_bib8) 2014; 17 Robertson (10.1016/j.biopsych.2021.12.019_bib26) 2015; 146 Li (10.1016/j.biopsych.2021.12.019_bib59) 2021; 131 Soares (10.1016/j.biopsych.2021.12.019_bib60) 2021; 468 Johnson (10.1016/j.biopsych.2021.12.019_bib7) 2010; 16 Knaepen (10.1016/j.biopsych.2021.12.019_bib38) 2010; 40 Recourt (10.1016/j.biopsych.2021.12.019_bib61) 2019; 9 35422236 - Biol Psychiatry. 2022 May 1;91(9):775-777. doi: 10.1016/j.biopsych.2022.02.957 |
References_xml | – volume: 40 start-page: 765 year: 2010 end-page: 801 ident: bib38 article-title: Neuroplasticity—Exercise-induced response of peripheral brain-derived neurotrophic factor: A systematic review of experimental studies in human subjects publication-title: Sports Med – volume: 110 start-page: 20260 year: 2013 end-page: 20265 ident: bib57 article-title: Orexin/hypocretin system modulates amygdala-dependent threat learning through the locus coeruleus publication-title: Proc Natl Acad Sci U S A – volume: 20 start-page: 654 year: 2017 end-page: 659 ident: bib21 article-title: Facilitation of contextual fear extinction by orexin-1 receptor antagonism is associated with the activation of specific amygdala cell subpopulations publication-title: Int J Neuropsychopharmacol – volume: 38 start-page: 550 year: 2015 end-page: 559 ident: bib22 article-title: Orexins and fear: Implications for the treatment of anxiety disorders publication-title: Trends Neurosci – volume: 7 start-page: 25 year: 2013 end-page: 29 ident: bib15 article-title: Phosphoinositide-specific phospholipase C β1 gene deletion in bipolar disorder affected patient publication-title: J Cell Commun Signal – volume: 21 start-page: 1084 year: 2018 end-page: 1095 ident: bib4 article-title: Parallel circuits from the bed nuclei of stria terminalis to the lateral hypothalamus drive opposing emotional states publication-title: Nat Neurosci – volume: 8 start-page: 100059 year: 2020 ident: bib2 article-title: Counterbalanced microcircuits for Orx1 and Orx2 regulation of stress reactivity publication-title: Med Drug Discov – volume: 16 start-page: 111 year: 2010 end-page: 115 ident: bib7 article-title: A key role for orexin in panic anxiety publication-title: Nat Med – volume: 63 start-page: 351 year: 2016 end-page: 361 ident: bib29 article-title: Intensity of anxiety is modified via complex integrative stress circuitries publication-title: Psychoneuroendocrinology – volume: 384 start-page: 112455 year: 2020 ident: bib58 article-title: Investigating the role of the amygdala orexin receptor 1 in memory acquisition and extinction in a rat model of PTSD publication-title: Behav Brain Res – volume: 33 start-page: 14549 year: 2013 end-page: 14557 ident: bib55 article-title: Orexin receptor-1 in the locus coeruleus plays an important role in cue-dependent fear memory consolidation publication-title: J Neurosci – volume: 105 start-page: 681 year: 2001 end-page: 693 ident: bib32 article-title: Colocalization of calcium-binding proteins and GABA in neurons of the rat basolateral amygdala publication-title: Neuroscience – volume: 9 start-page: 870 year: 2006 end-page: 872 ident: bib63 article-title: Amygdala BDNF signaling is required for consolidation but not encoding of extinction publication-title: Nat Neurosci – volume: 108 start-page: 284 year: 2016 end-page: 291 ident: bib54 article-title: Neuropeptide S reduces fear and avoidance of con-specifics induced by social fear conditioning and social defeat, respectively publication-title: Neuropharmacology – volume: 86 start-page: 2923 year: 1989 end-page: 2927 ident: bib13 article-title: Brain phospholipase C isozymes: Differential mRNA localizations by in situ hybridization publication-title: Proc Natl Acad Sci U S A – volume: 29 start-page: 103 year: 2014 end-page: 108 ident: bib40 article-title: Hypocretin (orexin) neuromodulation of stress and reward pathways publication-title: Curr Opin Neurobiol – volume: 73 start-page: 435 year: 2001 end-page: 442 ident: bib49 article-title: Social defeat as a stressor in humans publication-title: Physiol Behav – volume: 16 start-page: 317 year: 2015 end-page: 331 ident: bib5 article-title: Neuronal circuits for fear and anxiety [published correction appears in Nat Rev Neurosci 2015; 16:439] publication-title: Nat Rev Neurosci – volume: 48 start-page: 191 year: 1997 end-page: 214 ident: bib50 article-title: The effects of stressful life events on depression publication-title: Annu Rev Psychol – volume: 143 start-page: 79 year: 2018 end-page: 94 ident: bib28 article-title: Orexin 2 receptor stimulation enhances resilience, while orexin 2 inhibition promotes susceptibility, to social stress, anxiety and depression publication-title: Neuropharmacology – volume: 198 start-page: 133 year: 2012 end-page: 161 ident: bib6 article-title: Orexin, stress, and anxiety/panic states publication-title: Prog Brain Res – volume: 311 start-page: 864 year: 2006 end-page: 868 ident: bib44 article-title: Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress publication-title: Science – volume: 19 start-page: 1636 year: 2016 end-page: 1646 ident: bib3 article-title: Antagonistic negative and positive neurons of the basolateral amygdala publication-title: Nat Neurosci – volume: 91 start-page: 415 year: 2009 end-page: 423 ident: bib33 article-title: Learning strategies during fear conditioning publication-title: Neurobiol Learn Mem – volume: 25 start-page: 2251 year: 2020 end-page: 2274 ident: bib39 article-title: Neurobiology of BDNF in fear memory, sensitivity to stress, and stress-related disorders publication-title: Mol Psychiatry – volume: 68 start-page: 129 year: 1969 end-page: 135 ident: bib53 article-title: Passive and active reactions to fear-eliciting stimuli publication-title: J Comp Physiol Psychol – volume: 68 start-page: 544 year: 2010 end-page: 552 ident: bib46 article-title: Learning as a model for neural plasticity in major depression publication-title: Biol Psychiatry – volume: 131 start-page: 391 year: 2007 end-page: 404 ident: bib45 article-title: Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions publication-title: Cell – volume: 131 start-page: 105317 year: 2021 ident: bib59 article-title: Orexin 2 receptor in the nucleus accumbens is critical for the modulation of acute stress-induced anxiety publication-title: Psychoneuroendocrinology – volume: 79 start-page: 59 year: 2015 end-page: 69 ident: bib23 article-title: Antidepressant effects of exercise are produced via suppression of hypocretin/orexin and melanin-concentrating hormone in the basolateral amygdala publication-title: Neurobiol Dis – volume: 92 start-page: 573 year: 1998 end-page: 585 ident: bib11 article-title: Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior publication-title: Cell – volume: 6 start-page: 159 year: 2015 ident: bib17 article-title: Phospholipase C-β1 hypofunction in the pathogenesis of schizophrenia publication-title: Front Psychiatry – volume: 146 start-page: 86 year: 2015 end-page: 97 ident: bib26 article-title: Nuance and behavioral cogency: How the Visible Burrow System inspired the Stress-Alternatives Model and conceptualization of the continuum of anxiety publication-title: Physiol Behav – volume: 352 start-page: 273 year: 2017 end-page: 284 ident: bib34 article-title: Anxious behavior induces elevated hippocampal Cb2 receptor gene expression publication-title: Neuroscience – volume: 526 start-page: 11 year: 2002 end-page: 14 ident: bib12 article-title: Orexin signaling in recombinant neuron-like cells publication-title: FEBS Lett – volume: 8 start-page: 121 year: 2014 ident: bib27 article-title: Neuropeptide S and BDNF gene expression in the amygdala are influenced by social decision-making under stress publication-title: Front Behav Neurosci – volume: 39 start-page: 2732 year: 2014 end-page: 2741 ident: bib56 article-title: The hypocretin/orexin system mediates the extinction of fear memories publication-title: Neuropsychopharmacology – volume: 11 start-page: 1169 year: 2008 end-page: 1180 ident: bib37 article-title: A systematic review and meta-analysis of clinical studies on major depression and BDNF levels: Implications for the role of neuroplasticity in depression publication-title: Int J Neuropsychopharmacol – volume: 9 start-page: 216 year: 2019 ident: bib61 article-title: The selective orexin-2 antagonist seltorexant (JNJ-42847922/MIN-202) shows antidepressant and sleep-promoting effects in patients with major depressive disorder [published correction appears in Transl Psychiatry 2019; 9:240] publication-title: Transl Psychiatry – volume: 66 start-page: 1 year: 1968 end-page: 5 ident: bib52 article-title: Probability of shock in the presence and absence of CS in fear conditioning publication-title: J Comp Physiol Psychol – volume: 36 start-page: 31 year: 2019 end-page: 38 ident: bib47 article-title: Validity of the DSM-5 anxious distress specifier for major depressive disorder publication-title: Depress Anxiety – volume: 15 start-page: 1401 year: 2012 end-page: 1411 ident: bib14 article-title: Enriched pathways for major depressive disorder identified from a genome-wide association study publication-title: Int J Neuropsychopharmacol – volume: 127 start-page: 86 year: 2013 end-page: 94 ident: bib24 article-title: Depressive behavior and activation of the orexin/hypocretin system publication-title: Behav Neurosci – start-page: 197 year: 2017 end-page: 219 ident: bib42 article-title: Role of the orexin/hypocretin system in stress-related psychiatric disorders publication-title: Behavioral Neuroscience of Orexin/Hypocretin – volume: 3 start-page: 19 year: 2017 ident: bib18 article-title: Isoform specific differences in phospholipase C beta 1 expression in the prefrontal cortex in schizophrenia and suicide publication-title: NPJ Schizophr – volume: 92 start-page: 259 year: 2003 end-page: 266 ident: bib36 article-title: Orexin receptor type-1 couples exclusively to pertussis toxin-insensitive G-proteins, while orexin receptor type-2 couples to both pertussis toxin-sensitive and -insensitive G-proteins publication-title: J Pharmacol Sci – volume: 9 start-page: 413 year: 2018 ident: bib9 article-title: Hypocretin as a hub for arousal and motivation publication-title: Front Neurol – volume: 21 start-page: RC162 year: 2001 ident: bib62 article-title: Mitogen-activated protein kinase cascade in the basolateral nucleus of amygdala is involved in extinction of fear-potentiated startle publication-title: J Neurosci – volume: 7 start-page: 10110 year: 2017 ident: bib16 article-title: Association of the PLCB1 gene with drug dependence publication-title: Sci Rep – volume: 432 start-page: 126 year: 2020 end-page: 136 ident: bib43 article-title: Mechanisms of memory impairment induced by orexin-A via orexin 1 and orexin 2 receptors in post-traumatic stress disorder rats publication-title: Neuroscience – volume: 1731 start-page: 146085 year: 2020 ident: bib30 article-title: Orexin/hypocretin receptor modulation of anxiolytic and antidepressive responses during social stress and decision-making: Potential for therapy publication-title: Brain Res – volume: 305 start-page: 507 year: 2003 end-page: 514 ident: bib10 article-title: Distinct recognition of OX1 and OX2 receptors by orexin peptides publication-title: J Pharmacol Exp Ther – volume: 105 start-page: 8 year: 2014 end-page: 16 ident: bib19 article-title: The MAP(K) of fear: From memory consolidation to memory extinction publication-title: Brain Res Bull – volume: 17 start-page: 1298 year: 2014 end-page: 1303 ident: bib8 article-title: Motivational activation: A unifying hypothesis of orexin/hypocretin function publication-title: Nat Neurosci – volume: 11 start-page: 515 year: 2017 ident: bib35 article-title: Learning and CRF-induced indecision during escape and submission in rainbow trout during socially aggressive interactions in the stress-alternatives model publication-title: Front Neurosci – volume: 9 start-page: 3792 year: 2019 ident: bib48 article-title: Depression-like state behavioural outputs may confer beneficial outcomes in risky environments publication-title: Sci Rep – volume: 7 start-page: 28 year: 2013 ident: bib51 article-title: Role of orexin in modulating arousal, feeding, and motivation publication-title: Front Behav Neurosci – volume: 38 start-page: 3199 year: 2018 end-page: 3207 ident: bib20 article-title: A novel retrieval-dependent memory process revealed by the arrest of ERK1/2 activation in the basolateral amygdala publication-title: J Neurosci – volume: 222 start-page: 589 year: 1984 end-page: 606 ident: bib31 article-title: Neuronal organization of the lateral and basolateral amygdaloid nuclei in the rat publication-title: J Comp Neurol – volume: 154 start-page: 68 year: 2019 end-page: 78 ident: bib41 article-title: The role of the orexin system in stress response publication-title: Neuropharmacology – volume: 468 start-page: 158 year: 2021 end-page: 167 ident: bib60 article-title: Orexin 1 and 2 receptors in the prelimbic cortex modulate threat valuation publication-title: Neuroscience – volume: 28 start-page: 891 year: 2004 end-page: 907 ident: bib1 article-title: Can stress cause depression? publication-title: Prog Neuropsychopharmacol Biol Psychiatry – volume: 40 start-page: 17 year: 2014 end-page: 26 ident: bib25 article-title: Anxiolytic function of the orexin 2/hypocretin A receptor in the basolateral amygdala publication-title: Psychoneuroendocrinology – volume: 131 start-page: 391 year: 2007 ident: 10.1016/j.biopsych.2021.12.019_bib45 article-title: Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions publication-title: Cell doi: 10.1016/j.cell.2007.09.018 – volume: 21 start-page: 1084 year: 2018 ident: 10.1016/j.biopsych.2021.12.019_bib4 article-title: Parallel circuits from the bed nuclei of stria terminalis to the lateral hypothalamus drive opposing emotional states publication-title: Nat Neurosci doi: 10.1038/s41593-018-0198-x – volume: 91 start-page: 415 year: 2009 ident: 10.1016/j.biopsych.2021.12.019_bib33 article-title: Learning strategies during fear conditioning publication-title: Neurobiol Learn Mem doi: 10.1016/j.nlm.2009.01.009 – volume: 9 start-page: 216 year: 2019 ident: 10.1016/j.biopsych.2021.12.019_bib61 article-title: The selective orexin-2 antagonist seltorexant (JNJ-42847922/MIN-202) shows antidepressant and sleep-promoting effects in patients with major depressive disorder [published correction appears in Transl Psychiatry 2019; 9:240] publication-title: Transl Psychiatry doi: 10.1038/s41398-019-0553-z – volume: 198 start-page: 133 year: 2012 ident: 10.1016/j.biopsych.2021.12.019_bib6 article-title: Orexin, stress, and anxiety/panic states publication-title: Prog Brain Res doi: 10.1016/B978-0-444-59489-1.00009-4 – volume: 63 start-page: 351 year: 2016 ident: 10.1016/j.biopsych.2021.12.019_bib29 article-title: Intensity of anxiety is modified via complex integrative stress circuitries publication-title: Psychoneuroendocrinology doi: 10.1016/j.psyneuen.2015.10.016 – start-page: 197 year: 2017 ident: 10.1016/j.biopsych.2021.12.019_bib42 article-title: Role of the orexin/hypocretin system in stress-related psychiatric disorders – volume: 9 start-page: 3792 year: 2019 ident: 10.1016/j.biopsych.2021.12.019_bib48 article-title: Depression-like state behavioural outputs may confer beneficial outcomes in risky environments publication-title: Sci Rep doi: 10.1038/s41598-019-40390-3 – volume: 40 start-page: 765 year: 2010 ident: 10.1016/j.biopsych.2021.12.019_bib38 article-title: Neuroplasticity—Exercise-induced response of peripheral brain-derived neurotrophic factor: A systematic review of experimental studies in human subjects publication-title: Sports Med doi: 10.2165/11534530-000000000-00000 – volume: 154 start-page: 68 year: 2019 ident: 10.1016/j.biopsych.2021.12.019_bib41 article-title: The role of the orexin system in stress response publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2018.09.034 – volume: 131 start-page: 105317 year: 2021 ident: 10.1016/j.biopsych.2021.12.019_bib59 article-title: Orexin 2 receptor in the nucleus accumbens is critical for the modulation of acute stress-induced anxiety publication-title: Psychoneuroendocrinology doi: 10.1016/j.psyneuen.2021.105317 – volume: 86 start-page: 2923 year: 1989 ident: 10.1016/j.biopsych.2021.12.019_bib13 article-title: Brain phospholipase C isozymes: Differential mRNA localizations by in situ hybridization publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.86.8.2923 – volume: 68 start-page: 544 year: 2010 ident: 10.1016/j.biopsych.2021.12.019_bib46 article-title: Learning as a model for neural plasticity in major depression publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2010.05.026 – volume: 146 start-page: 86 year: 2015 ident: 10.1016/j.biopsych.2021.12.019_bib26 article-title: Nuance and behavioral cogency: How the Visible Burrow System inspired the Stress-Alternatives Model and conceptualization of the continuum of anxiety publication-title: Physiol Behav doi: 10.1016/j.physbeh.2015.03.036 – volume: 20 start-page: 654 year: 2017 ident: 10.1016/j.biopsych.2021.12.019_bib21 article-title: Facilitation of contextual fear extinction by orexin-1 receptor antagonism is associated with the activation of specific amygdala cell subpopulations publication-title: Int J Neuropsychopharmacol doi: 10.1093/ijnp/pyx029 – volume: 79 start-page: 59 year: 2015 ident: 10.1016/j.biopsych.2021.12.019_bib23 article-title: Antidepressant effects of exercise are produced via suppression of hypocretin/orexin and melanin-concentrating hormone in the basolateral amygdala publication-title: Neurobiol Dis doi: 10.1016/j.nbd.2015.04.004 – volume: 9 start-page: 870 year: 2006 ident: 10.1016/j.biopsych.2021.12.019_bib63 article-title: Amygdala BDNF signaling is required for consolidation but not encoding of extinction publication-title: Nat Neurosci doi: 10.1038/nn1718 – volume: 39 start-page: 2732 year: 2014 ident: 10.1016/j.biopsych.2021.12.019_bib56 article-title: The hypocretin/orexin system mediates the extinction of fear memories publication-title: Neuropsychopharmacology doi: 10.1038/npp.2014.146 – volume: 92 start-page: 573 year: 1998 ident: 10.1016/j.biopsych.2021.12.019_bib11 article-title: Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior publication-title: Cell doi: 10.1016/S0092-8674(00)80949-6 – volume: 7 start-page: 28 year: 2013 ident: 10.1016/j.biopsych.2021.12.019_bib51 article-title: Role of orexin in modulating arousal, feeding, and motivation publication-title: Front Behav Neurosci doi: 10.3389/fnbeh.2013.00028 – volume: 110 start-page: 20260 year: 2013 ident: 10.1016/j.biopsych.2021.12.019_bib57 article-title: Orexin/hypocretin system modulates amygdala-dependent threat learning through the locus coeruleus publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1320325110 – volume: 105 start-page: 681 year: 2001 ident: 10.1016/j.biopsych.2021.12.019_bib32 article-title: Colocalization of calcium-binding proteins and GABA in neurons of the rat basolateral amygdala publication-title: Neuroscience doi: 10.1016/S0306-4522(01)00214-7 – volume: 17 start-page: 1298 year: 2014 ident: 10.1016/j.biopsych.2021.12.019_bib8 article-title: Motivational activation: A unifying hypothesis of orexin/hypocretin function publication-title: Nat Neurosci doi: 10.1038/nn.3810 – volume: 352 start-page: 273 year: 2017 ident: 10.1016/j.biopsych.2021.12.019_bib34 article-title: Anxious behavior induces elevated hippocampal Cb2 receptor gene expression publication-title: Neuroscience doi: 10.1016/j.neuroscience.2017.03.061 – volume: 384 start-page: 112455 year: 2020 ident: 10.1016/j.biopsych.2021.12.019_bib58 article-title: Investigating the role of the amygdala orexin receptor 1 in memory acquisition and extinction in a rat model of PTSD publication-title: Behav Brain Res doi: 10.1016/j.bbr.2019.112455 – volume: 127 start-page: 86 year: 2013 ident: 10.1016/j.biopsych.2021.12.019_bib24 article-title: Depressive behavior and activation of the orexin/hypocretin system publication-title: Behav Neurosci doi: 10.1037/a0031442 – volume: 66 start-page: 1 year: 1968 ident: 10.1016/j.biopsych.2021.12.019_bib52 article-title: Probability of shock in the presence and absence of CS in fear conditioning publication-title: J Comp Physiol Psychol doi: 10.1037/h0025984 – volume: 33 start-page: 14549 year: 2013 ident: 10.1016/j.biopsych.2021.12.019_bib55 article-title: Orexin receptor-1 in the locus coeruleus plays an important role in cue-dependent fear memory consolidation publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1130-13.2013 – volume: 73 start-page: 435 year: 2001 ident: 10.1016/j.biopsych.2021.12.019_bib49 article-title: Social defeat as a stressor in humans publication-title: Physiol Behav doi: 10.1016/S0031-9384(01)00490-5 – volume: 9 start-page: 413 year: 2018 ident: 10.1016/j.biopsych.2021.12.019_bib9 article-title: Hypocretin as a hub for arousal and motivation publication-title: Front Neurol doi: 10.3389/fneur.2018.00413 – volume: 6 start-page: 159 year: 2015 ident: 10.1016/j.biopsych.2021.12.019_bib17 article-title: Phospholipase C-β1 hypofunction in the pathogenesis of schizophrenia publication-title: Front Psychiatry doi: 10.3389/fpsyt.2015.00159 – volume: 105 start-page: 8 year: 2014 ident: 10.1016/j.biopsych.2021.12.019_bib19 article-title: The MAP(K) of fear: From memory consolidation to memory extinction publication-title: Brain Res Bull doi: 10.1016/j.brainresbull.2013.09.007 – volume: 11 start-page: 515 year: 2017 ident: 10.1016/j.biopsych.2021.12.019_bib35 article-title: Learning and CRF-induced indecision during escape and submission in rainbow trout during socially aggressive interactions in the stress-alternatives model publication-title: Front Neurosci doi: 10.3389/fnins.2017.00515 – volume: 40 start-page: 17 year: 2014 ident: 10.1016/j.biopsych.2021.12.019_bib25 article-title: Anxiolytic function of the orexin 2/hypocretin A receptor in the basolateral amygdala publication-title: Psychoneuroendocrinology doi: 10.1016/j.psyneuen.2013.10.010 – volume: 68 start-page: 129 year: 1969 ident: 10.1016/j.biopsych.2021.12.019_bib53 article-title: Passive and active reactions to fear-eliciting stimuli publication-title: J Comp Physiol Psychol doi: 10.1037/h0027676 – volume: 21 start-page: RC162 year: 2001 ident: 10.1016/j.biopsych.2021.12.019_bib62 article-title: Mitogen-activated protein kinase cascade in the basolateral nucleus of amygdala is involved in extinction of fear-potentiated startle publication-title: J Neurosci doi: 10.1523/JNEUROSCI.21-16-j0005.2001 – volume: 92 start-page: 259 year: 2003 ident: 10.1016/j.biopsych.2021.12.019_bib36 article-title: Orexin receptor type-1 couples exclusively to pertussis toxin-insensitive G-proteins, while orexin receptor type-2 couples to both pertussis toxin-sensitive and -insensitive G-proteins publication-title: J Pharmacol Sci doi: 10.1254/jphs.92.259 – volume: 28 start-page: 891 year: 2004 ident: 10.1016/j.biopsych.2021.12.019_bib1 article-title: Can stress cause depression? publication-title: Prog Neuropsychopharmacol Biol Psychiatry doi: 10.1016/j.pnpbp.2004.05.031 – volume: 468 start-page: 158 year: 2021 ident: 10.1016/j.biopsych.2021.12.019_bib60 article-title: Orexin 1 and 2 receptors in the prelimbic cortex modulate threat valuation publication-title: Neuroscience doi: 10.1016/j.neuroscience.2021.06.006 – volume: 8 start-page: 100059 year: 2020 ident: 10.1016/j.biopsych.2021.12.019_bib2 article-title: Counterbalanced microcircuits for Orx1 and Orx2 regulation of stress reactivity publication-title: Med Drug Discov doi: 10.1016/j.medidd.2020.100059 – volume: 19 start-page: 1636 year: 2016 ident: 10.1016/j.biopsych.2021.12.019_bib3 article-title: Antagonistic negative and positive neurons of the basolateral amygdala publication-title: Nat Neurosci doi: 10.1038/nn.4414 – volume: 311 start-page: 864 year: 2006 ident: 10.1016/j.biopsych.2021.12.019_bib44 article-title: Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress publication-title: Science doi: 10.1126/science.1120972 – volume: 11 start-page: 1169 year: 2008 ident: 10.1016/j.biopsych.2021.12.019_bib37 article-title: A systematic review and meta-analysis of clinical studies on major depression and BDNF levels: Implications for the role of neuroplasticity in depression publication-title: Int J Neuropsychopharmacol doi: 10.1017/S1461145708009309 – volume: 108 start-page: 284 year: 2016 ident: 10.1016/j.biopsych.2021.12.019_bib54 article-title: Neuropeptide S reduces fear and avoidance of con-specifics induced by social fear conditioning and social defeat, respectively publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2016.03.054 – volume: 16 start-page: 317 year: 2015 ident: 10.1016/j.biopsych.2021.12.019_bib5 article-title: Neuronal circuits for fear and anxiety [published correction appears in Nat Rev Neurosci 2015; 16:439] publication-title: Nat Rev Neurosci doi: 10.1038/nrn3945 – volume: 15 start-page: 1401 year: 2012 ident: 10.1016/j.biopsych.2021.12.019_bib14 article-title: Enriched pathways for major depressive disorder identified from a genome-wide association study publication-title: Int J Neuropsychopharmacol doi: 10.1017/S1461145711001891 – volume: 222 start-page: 589 year: 1984 ident: 10.1016/j.biopsych.2021.12.019_bib31 article-title: Neuronal organization of the lateral and basolateral amygdaloid nuclei in the rat publication-title: J Comp Neurol doi: 10.1002/cne.902220410 – volume: 1731 start-page: 146085 year: 2020 ident: 10.1016/j.biopsych.2021.12.019_bib30 article-title: Orexin/hypocretin receptor modulation of anxiolytic and antidepressive responses during social stress and decision-making: Potential for therapy publication-title: Brain Res doi: 10.1016/j.brainres.2018.12.036 – volume: 8 start-page: 121 year: 2014 ident: 10.1016/j.biopsych.2021.12.019_bib27 article-title: Neuropeptide S and BDNF gene expression in the amygdala are influenced by social decision-making under stress publication-title: Front Behav Neurosci doi: 10.3389/fnbeh.2014.00121 – volume: 38 start-page: 3199 year: 2018 ident: 10.1016/j.biopsych.2021.12.019_bib20 article-title: A novel retrieval-dependent memory process revealed by the arrest of ERK1/2 activation in the basolateral amygdala publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3273-17.2018 – volume: 143 start-page: 79 year: 2018 ident: 10.1016/j.biopsych.2021.12.019_bib28 article-title: Orexin 2 receptor stimulation enhances resilience, while orexin 2 inhibition promotes susceptibility, to social stress, anxiety and depression publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2018.09.016 – volume: 16 start-page: 111 year: 2010 ident: 10.1016/j.biopsych.2021.12.019_bib7 article-title: A key role for orexin in panic anxiety publication-title: Nat Med doi: 10.1038/nm.2075 – volume: 526 start-page: 11 year: 2002 ident: 10.1016/j.biopsych.2021.12.019_bib12 article-title: Orexin signaling in recombinant neuron-like cells publication-title: FEBS Lett doi: 10.1016/S0014-5793(02)03101-0 – volume: 7 start-page: 25 year: 2013 ident: 10.1016/j.biopsych.2021.12.019_bib15 article-title: Phosphoinositide-specific phospholipase C β1 gene deletion in bipolar disorder affected patient publication-title: J Cell Commun Signal doi: 10.1007/s12079-012-0182-2 – volume: 432 start-page: 126 year: 2020 ident: 10.1016/j.biopsych.2021.12.019_bib43 article-title: Mechanisms of memory impairment induced by orexin-A via orexin 1 and orexin 2 receptors in post-traumatic stress disorder rats publication-title: Neuroscience doi: 10.1016/j.neuroscience.2020.02.026 – volume: 3 start-page: 19 year: 2017 ident: 10.1016/j.biopsych.2021.12.019_bib18 article-title: Isoform specific differences in phospholipase C beta 1 expression in the prefrontal cortex in schizophrenia and suicide publication-title: NPJ Schizophr doi: 10.1038/s41537-017-0020-x – volume: 25 start-page: 2251 year: 2020 ident: 10.1016/j.biopsych.2021.12.019_bib39 article-title: Neurobiology of BDNF in fear memory, sensitivity to stress, and stress-related disorders publication-title: Mol Psychiatry doi: 10.1038/s41380-019-0639-2 – volume: 305 start-page: 507 year: 2003 ident: 10.1016/j.biopsych.2021.12.019_bib10 article-title: Distinct recognition of OX1 and OX2 receptors by orexin peptides publication-title: J Pharmacol Exp Ther doi: 10.1124/jpet.102.048025 – volume: 48 start-page: 191 year: 1997 ident: 10.1016/j.biopsych.2021.12.019_bib50 article-title: The effects of stressful life events on depression publication-title: Annu Rev Psychol doi: 10.1146/annurev.psych.48.1.191 – volume: 7 start-page: 10110 year: 2017 ident: 10.1016/j.biopsych.2021.12.019_bib16 article-title: Association of the PLCB1 gene with drug dependence publication-title: Sci Rep doi: 10.1038/s41598-017-10207-2 – volume: 29 start-page: 103 year: 2014 ident: 10.1016/j.biopsych.2021.12.019_bib40 article-title: Hypocretin (orexin) neuromodulation of stress and reward pathways publication-title: Curr Opin Neurobiol doi: 10.1016/j.conb.2014.07.006 – volume: 36 start-page: 31 year: 2019 ident: 10.1016/j.biopsych.2021.12.019_bib47 article-title: Validity of the DSM-5 anxious distress specifier for major depressive disorder publication-title: Depress Anxiety doi: 10.1002/da.22837 – volume: 38 start-page: 550 year: 2015 ident: 10.1016/j.biopsych.2021.12.019_bib22 article-title: Orexins and fear: Implications for the treatment of anxiety disorders publication-title: Trends Neurosci doi: 10.1016/j.tins.2015.06.005 – reference: 35422236 - Biol Psychiatry. 2022 May 1;91(9):775-777. doi: 10.1016/j.biopsych.2022.02.957 |
SSID | ssj0007221 |
Score | 2.5142071 |
Snippet | Stress produces differential behavioral responses through select molecular modifications to specific neurocircuitry elements. The orexin (Orx) system targets... AbstractBackgroundStress produces differential behavioral responses through select molecular modifications to specific neurocircuitry elements. The orexin... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 841 |
SubjectTerms | Animals Anxiety - metabolism Anxious behavior Basolateral Nuclear Complex - metabolism Brain-Derived Neurotrophic Factor - metabolism Fear conditioning Hypocretin Mice Orexin Receptors - genetics Psychiatric/Mental Health Resilience RNA, Messenger - metabolism Signal Transduction Social stress Stress Alternatives Model |
Title | Orexin 1 Receptor Antagonism in the Basolateral Amygdala Shifts the Balance From Pro- to Antistress Signaling and Behavior |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0006322322000269 https://www.clinicalkey.es/playcontent/1-s2.0-S0006322322000269 https://dx.doi.org/10.1016/j.biopsych.2021.12.019 https://www.ncbi.nlm.nih.gov/pubmed/35279280 https://www.proquest.com/docview/2638960644 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemIWAvCMrHysdkJF6zJk4cJ49dRVVAG0hj0t4s23FKpjapkkza9sDfvrvEKSBAIHhMnIsj39n3c3y_O0LecG24YBn3EhMoL1KaeSpW1jNCMd-EynCF_zuOT-LFWfT-nJ_vkNnAhcGwSrf292t6t1q7OxM3mpNNUSDHF9wreDeGbBMWI4kvigTa-uHXb2EegjFXNS_28OnvWMIXh7qouqBi2CeyoPstiBl3fu2gfgdAO0c0f0geOARJp_1HPiI7thyRu31NyesRuT8bSriNyL1jd3L-mNx8rO1VUdKAAlC0G9hp02mJJ1Jl0awpNAAQpEcKLFEhJxnev75eZmql6OmXIm8b175CI6HzulrTT3Xl0bbC1xQ944SeFkvE9eWSqjKjLvVi_YSczd9-ni08V3fBM5zFrReA02ZGWaFjTN6SpaA4P7CW6SS0gBBZpmzu61xnwogMJrXNc24sXIch3gifkt2yKu0-oULYOE259XmiI5OaBOa7CiM_5FGextofEz4MtjQuKTnWxljJIfrsQg5KkqgkGTAJShqTyVZu06fl-KOEGHQpB9IpLJMSPMe_SdrGzfZGBrKBJ-VPFjkm6VbyB6P-q15fDwYnwWrwGEeVtrpsJEOQCfvOKBqTZ70lbscA4LRIWeI__4-eX5A9hhyPLqrzJdlt60v7CpBXqw-6qXVA7kzffVic3AIFUi5Y |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NIRgvCAqD8mkkXrMmThwnj6OiKrAOpG3S3izbcUqmNqmSTGI88LdzTpwCAgSCx9g-O_KdfT_b9wHwkinNOM2Yl-hAepFU1JOxNJ7mkvo6lJpJe9-xOI7nZ9Hbc3a-A9PBF8aaVbq9v9_Tu93alUzcbE42RWF9fFG9onaj1tuExuk1uB7ZNAco1Adfvtl5cEpd2rzYs82_cxO-OFBF1VkV40GRBt29oA2582sN9TsE2mmi2R247SAkOez_8i7smHIEN_qkklcj2JsOOdxGcHPhns7vwef3tflUlCQgiBTNBo_a5LC0T1Jl0awJViASJK8kiqK0TsnY__pqmcmVJCcfi7xtXP3KSgmZ1dWafKgrj7SV7aboXU7ISbG0wL5cEllmxMVerO_D2ez16XTuucQLnmY0br0AtTbV0nAV2-gtWYqc8wNjqEpCgxCRZtLkvspVxjXPcFWbPGfa4HcY2oJwH3bLqjQPgXBu4jRlxmeJinSqE1zwMoz8kEV5Git_DGyYbKFdVHKbHGMlBvOzCzEwSVgmiYAKZNIYJlu6TR-X448UfOClGLxOcZ8UqDr-jdI0brk3IhANthQ_ieQY0i3lD1L9V6O-GAROoNTYdxxZmuqyEdSiTDx4RtEYHvSSuJ0DxNM8pYn_6D9Gfg5789PFkTh6c_zuMdyi1uGjM_F8ArttfWmeIgxr1bNumX0Fky0v4Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orexin+1+Receptor+Antagonism+in+the+Basolateral+Amygdala+Shifts+the+Balance+From+Pro-+to+Antistress+Signaling+and+Behavior&rft.jtitle=Biological+psychiatry+%281969%29&rft.au=Yaeger%2C+Jazmine+D.W&rft.au=Krupp%2C+Kevin+T&rft.au=Jacobs%2C+Benjamin+M&rft.au=Onserio%2C+Benard+O&rft.date=2022-05-01&rft.issn=0006-3223&rft.volume=91&rft.issue=9&rft.spage=841&rft.epage=852&rft_id=info:doi/10.1016%2Fj.biopsych.2021.12.019&rft.externalDBID=ECK1-s2.0-S0006322322000269&rft.externalDocID=1_s2_0_S0006322322000269 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00063223%2FS0006322321X00108%2Fcov150h.gif |