Deep Learning Algorithm for Automated Cardiac Murmur Detection via a Digital Stethoscope Platform

Background Clinicians vary markedly in their ability to detect murmurs during cardiac auscultation and identify the underlying pathological features. Deep learning approaches have shown promise in medicine by transforming collected data into clinically significant information. The objective of this...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Heart Association Vol. 10; no. 9; p. e019905
Main Authors Chorba, John S., Shapiro, Avi M., Le, Le, Maidens, John, Prince, John, Pham, Steve, Kanzawa, Mia M., Barbosa, Daniel N., Currie, Caroline, Brooks, Catherine, White, Brent E., Huskin, Anna, Paek, Jason, Geocaris, Jack, Elnathan, Dinatu, Ronquillo, Ria, Kim, Roy, Alam, Zenith H., Mahadevan, Vaikom S., Fuller, Sophie G., Stalker, Grant W., Bravo, Sara A., Jean, Dina, Lee, John J., Gjergjindreaj, Medeona, Mihos, Christos G., Forman, Steven T., Venkatraman, Subramaniam, McCarthy, Patrick M., Thomas, James D.
Format Journal Article
LanguageEnglish
Published England John Wiley and Sons Inc 04.05.2021
Wiley
Subjects
Online AccessGet full text
ISSN2047-9980
2047-9980
DOI10.1161/JAHA.120.019905

Cover

Abstract Background Clinicians vary markedly in their ability to detect murmurs during cardiac auscultation and identify the underlying pathological features. Deep learning approaches have shown promise in medicine by transforming collected data into clinically significant information. The objective of this research is to assess the performance of a deep learning algorithm to detect murmurs and clinically significant valvular heart disease using recordings from a commercial digital stethoscope platform. Methods and Results Using >34 hours of previously acquired and annotated heart sound recordings, we trained a deep neural network to detect murmurs. To test the algorithm, we enrolled 962 patients in a clinical study and collected recordings at the 4 primary auscultation locations. Ground truth was established using patient echocardiograms and annotations by 3 expert cardiologists. Algorithm performance for detecting murmurs has sensitivity and specificity of 76.3% and 91.4%, respectively. By omitting softer murmurs, those with grade 1 intensity, sensitivity increased to 90.0%. Application of the algorithm at the appropriate anatomic auscultation location detected moderate-to-severe or greater aortic stenosis, with sensitivity of 93.2% and specificity of 86.0%, and moderate-to-severe or greater mitral regurgitation, with sensitivity of 66.2% and specificity of 94.6%. Conclusions The deep learning algorithm's ability to detect murmurs and clinically significant aortic stenosis and mitral regurgitation is comparable to expert cardiologists based on the annotated subset of our database. The findings suggest that such algorithms would have utility as front-line clinical support tools to aid clinicians in screening for cardiac murmurs caused by valvular heart disease. Registration URL: https://clinicaltrials.gov; Unique Identifier: NCT03458806.
AbstractList Background Clinicians vary markedly in their ability to detect murmurs during cardiac auscultation and identify the underlying pathological features. Deep learning approaches have shown promise in medicine by transforming collected data into clinically significant information. The objective of this research is to assess the performance of a deep learning algorithm to detect murmurs and clinically significant valvular heart disease using recordings from a commercial digital stethoscope platform. Methods and Results Using >34 hours of previously acquired and annotated heart sound recordings, we trained a deep neural network to detect murmurs. To test the algorithm, we enrolled 962 patients in a clinical study and collected recordings at the 4 primary auscultation locations. Ground truth was established using patient echocardiograms and annotations by 3 expert cardiologists. Algorithm performance for detecting murmurs has sensitivity and specificity of 76.3% and 91.4%, respectively. By omitting softer murmurs, those with grade 1 intensity, sensitivity increased to 90.0%. Application of the algorithm at the appropriate anatomic auscultation location detected moderate-to-severe or greater aortic stenosis, with sensitivity of 93.2% and specificity of 86.0%, and moderate-to-severe or greater mitral regurgitation, with sensitivity of 66.2% and specificity of 94.6%. Conclusions The deep learning algorithm's ability to detect murmurs and clinically significant aortic stenosis and mitral regurgitation is comparable to expert cardiologists based on the annotated subset of our database. The findings suggest that such algorithms would have utility as front-line clinical support tools to aid clinicians in screening for cardiac murmurs caused by valvular heart disease. Registration URL: https://clinicaltrials.gov; Unique Identifier: NCT03458806.
Background Clinicians vary markedly in their ability to detect murmurs during cardiac auscultation and identify the underlying pathological features. Deep learning approaches have shown promise in medicine by transforming collected data into clinically significant information. The objective of this research is to assess the performance of a deep learning algorithm to detect murmurs and clinically significant valvular heart disease using recordings from a commercial digital stethoscope platform. Methods and Results Using >34 hours of previously acquired and annotated heart sound recordings, we trained a deep neural network to detect murmurs. To test the algorithm, we enrolled 962 patients in a clinical study and collected recordings at the 4 primary auscultation locations. Ground truth was established using patient echocardiograms and annotations by 3 expert cardiologists. Algorithm performance for detecting murmurs has sensitivity and specificity of 76.3% and 91.4%, respectively. By omitting softer murmurs, those with grade 1 intensity, sensitivity increased to 90.0%. Application of the algorithm at the appropriate anatomic auscultation location detected moderate-to-severe or greater aortic stenosis, with sensitivity of 93.2% and specificity of 86.0%, and moderate-to-severe or greater mitral regurgitation, with sensitivity of 66.2% and specificity of 94.6%. Conclusions The deep learning algorithm's ability to detect murmurs and clinically significant aortic stenosis and mitral regurgitation is comparable to expert cardiologists based on the annotated subset of our database. The findings suggest that such algorithms would have utility as front-line clinical support tools to aid clinicians in screening for cardiac murmurs caused by valvular heart disease. Registration URL: https://clinicaltrials.gov; Unique Identifier: NCT03458806.Background Clinicians vary markedly in their ability to detect murmurs during cardiac auscultation and identify the underlying pathological features. Deep learning approaches have shown promise in medicine by transforming collected data into clinically significant information. The objective of this research is to assess the performance of a deep learning algorithm to detect murmurs and clinically significant valvular heart disease using recordings from a commercial digital stethoscope platform. Methods and Results Using >34 hours of previously acquired and annotated heart sound recordings, we trained a deep neural network to detect murmurs. To test the algorithm, we enrolled 962 patients in a clinical study and collected recordings at the 4 primary auscultation locations. Ground truth was established using patient echocardiograms and annotations by 3 expert cardiologists. Algorithm performance for detecting murmurs has sensitivity and specificity of 76.3% and 91.4%, respectively. By omitting softer murmurs, those with grade 1 intensity, sensitivity increased to 90.0%. Application of the algorithm at the appropriate anatomic auscultation location detected moderate-to-severe or greater aortic stenosis, with sensitivity of 93.2% and specificity of 86.0%, and moderate-to-severe or greater mitral regurgitation, with sensitivity of 66.2% and specificity of 94.6%. Conclusions The deep learning algorithm's ability to detect murmurs and clinically significant aortic stenosis and mitral regurgitation is comparable to expert cardiologists based on the annotated subset of our database. The findings suggest that such algorithms would have utility as front-line clinical support tools to aid clinicians in screening for cardiac murmurs caused by valvular heart disease. Registration URL: https://clinicaltrials.gov; Unique Identifier: NCT03458806.
Author Mihos, Christos G.
Fuller, Sophie G.
Maidens, John
Barbosa, Daniel N.
Paek, Jason
Currie, Caroline
Huskin, Anna
Chorba, John S.
White, Brent E.
Prince, John
Brooks, Catherine
Ronquillo, Ria
Gjergjindreaj, Medeona
Mahadevan, Vaikom S.
Kim, Roy
Geocaris, Jack
Elnathan, Dinatu
Alam, Zenith H.
McCarthy, Patrick M.
Forman, Steven T.
Lee, John J.
Jean, Dina
Pham, Steve
Kanzawa, Mia M.
Le, Le
Bravo, Sara A.
Venkatraman, Subramaniam
Stalker, Grant W.
Thomas, James D.
Shapiro, Avi M.
AuthorAffiliation 4 Division of Cardiology Bluhm Cardiovascular Institute Northwestern University Chicago IL
3 Eko Oakland CA
5 Los Alamitos Cardiovascular Medical Group Los Alamitos CA
2 Division of Cardiology Zuckerberg San Francisco General Hospital San Francisco CA
1 Division of Cardiology University of California San Francisco San Francisco CA
6 Echocardiography Laboratory Mount Sinai Heart Institute Mount Sinai Medical Center Miami Beach FL
AuthorAffiliation_xml – name: 6 Echocardiography Laboratory Mount Sinai Heart Institute Mount Sinai Medical Center Miami Beach FL
– name: 5 Los Alamitos Cardiovascular Medical Group Los Alamitos CA
– name: 1 Division of Cardiology University of California San Francisco San Francisco CA
– name: 3 Eko Oakland CA
– name: 4 Division of Cardiology Bluhm Cardiovascular Institute Northwestern University Chicago IL
– name: 2 Division of Cardiology Zuckerberg San Francisco General Hospital San Francisco CA
Author_xml – sequence: 1
  givenname: John S.
  orcidid: 0000-0002-6397-6348
  surname: Chorba
  fullname: Chorba, John S.
  organization: Division of Cardiology University of California San Francisco San Francisco CA, Division of Cardiology Zuckerberg San Francisco General Hospital San Francisco CA
– sequence: 2
  givenname: Avi M.
  orcidid: 0000-0002-8072-6252
  surname: Shapiro
  fullname: Shapiro, Avi M.
  organization: Eko Oakland CA
– sequence: 3
  givenname: Le
  surname: Le
  fullname: Le, Le
  organization: Eko Oakland CA
– sequence: 4
  givenname: John
  orcidid: 0000-0001-8211-7699
  surname: Maidens
  fullname: Maidens, John
  organization: Eko Oakland CA
– sequence: 5
  givenname: John
  surname: Prince
  fullname: Prince, John
  organization: Eko Oakland CA
– sequence: 6
  givenname: Steve
  surname: Pham
  fullname: Pham, Steve
  organization: Eko Oakland CA
– sequence: 7
  givenname: Mia M.
  surname: Kanzawa
  fullname: Kanzawa, Mia M.
  organization: Eko Oakland CA
– sequence: 8
  givenname: Daniel N.
  surname: Barbosa
  fullname: Barbosa, Daniel N.
  organization: Eko Oakland CA
– sequence: 9
  givenname: Caroline
  surname: Currie
  fullname: Currie, Caroline
  organization: Eko Oakland CA
– sequence: 10
  givenname: Catherine
  surname: Brooks
  fullname: Brooks, Catherine
  organization: Eko Oakland CA
– sequence: 11
  givenname: Brent E.
  orcidid: 0000-0001-6660-2635
  surname: White
  fullname: White, Brent E.
  organization: Division of Cardiology Bluhm Cardiovascular InstituteNorthwestern University Chicago IL
– sequence: 12
  givenname: Anna
  surname: Huskin
  fullname: Huskin, Anna
  organization: Division of Cardiology Bluhm Cardiovascular InstituteNorthwestern University Chicago IL
– sequence: 13
  givenname: Jason
  surname: Paek
  fullname: Paek, Jason
  organization: Division of Cardiology Bluhm Cardiovascular InstituteNorthwestern University Chicago IL
– sequence: 14
  givenname: Jack
  surname: Geocaris
  fullname: Geocaris, Jack
  organization: Division of Cardiology Bluhm Cardiovascular InstituteNorthwestern University Chicago IL
– sequence: 15
  givenname: Dinatu
  surname: Elnathan
  fullname: Elnathan, Dinatu
  organization: Division of Cardiology Bluhm Cardiovascular InstituteNorthwestern University Chicago IL
– sequence: 16
  givenname: Ria
  surname: Ronquillo
  fullname: Ronquillo, Ria
  organization: Los Alamitos Cardiovascular Medical Group Los Alamitos CA
– sequence: 17
  givenname: Roy
  surname: Kim
  fullname: Kim, Roy
  organization: Los Alamitos Cardiovascular Medical Group Los Alamitos CA
– sequence: 18
  givenname: Zenith H.
  orcidid: 0000-0001-8567-7464
  surname: Alam
  fullname: Alam, Zenith H.
  organization: Echocardiography Laboratory Mount Sinai Heart InstituteMount Sinai Medical Center Miami Beach FL
– sequence: 19
  givenname: Vaikom S.
  orcidid: 0000-0001-6354-1873
  surname: Mahadevan
  fullname: Mahadevan, Vaikom S.
  organization: Division of Cardiology University of California San Francisco San Francisco CA
– sequence: 20
  givenname: Sophie G.
  surname: Fuller
  fullname: Fuller, Sophie G.
  organization: Division of Cardiology University of California San Francisco San Francisco CA
– sequence: 21
  givenname: Grant W.
  surname: Stalker
  fullname: Stalker, Grant W.
  organization: Division of Cardiology University of California San Francisco San Francisco CA
– sequence: 22
  givenname: Sara A.
  surname: Bravo
  fullname: Bravo, Sara A.
  organization: Division of Cardiology University of California San Francisco San Francisco CA
– sequence: 23
  givenname: Dina
  surname: Jean
  fullname: Jean, Dina
  organization: Division of Cardiology University of California San Francisco San Francisco CA
– sequence: 24
  givenname: John J.
  surname: Lee
  fullname: Lee, John J.
  organization: Echocardiography Laboratory Mount Sinai Heart InstituteMount Sinai Medical Center Miami Beach FL
– sequence: 25
  givenname: Medeona
  surname: Gjergjindreaj
  fullname: Gjergjindreaj, Medeona
  organization: Echocardiography Laboratory Mount Sinai Heart InstituteMount Sinai Medical Center Miami Beach FL
– sequence: 26
  givenname: Christos G.
  surname: Mihos
  fullname: Mihos, Christos G.
  organization: Echocardiography Laboratory Mount Sinai Heart InstituteMount Sinai Medical Center Miami Beach FL
– sequence: 27
  givenname: Steven T.
  surname: Forman
  fullname: Forman, Steven T.
  organization: Los Alamitos Cardiovascular Medical Group Los Alamitos CA
– sequence: 28
  givenname: Subramaniam
  surname: Venkatraman
  fullname: Venkatraman, Subramaniam
  organization: Eko Oakland CA
– sequence: 29
  givenname: Patrick M.
  surname: McCarthy
  fullname: McCarthy, Patrick M.
  organization: Division of Cardiology Bluhm Cardiovascular InstituteNorthwestern University Chicago IL
– sequence: 30
  givenname: James D.
  surname: Thomas
  fullname: Thomas, James D.
  organization: Division of Cardiology Bluhm Cardiovascular InstituteNorthwestern University Chicago IL
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33899504$$D View this record in MEDLINE/PubMed
BookMark eNp1ktFv0zAQxiM0xMbYM2_Ij7y0s504iV-QqnZsQ0UgAc_Wxb60rpy4OM7Q_vu5ZEwrCL_Yurvvd5_u_Do76X2PWfaW0TljJbv8tLhZzBmnc8qkpOJFdsZpUc2krOnJs_dpdjEMO5pOyatcyFfZaZ7XUgpanGWwQtyTNULobb8hC7fxwcZtR1ofyGKMvoOIhiwhGAuafB5DNwaywog6Wt-TOwsEyMpubARHvkWMWz9ov0fy1UFMkO5N9rIFN-DF432e_fh49X15M1t_ub5dLtYzLbiIMw0N56YyMmc6R10ViFhoyXJelqxta85BGwrSANOihEamvChEaWglhDR1fp7dTlzjYaf2wXYQ7pUHq34HfNgoCNFqhwoLUcgcmkZLWtQUoNa1zqsctETDSppYdGKN_R7uf4FzT0BG1WH4agdbUGn4ahp-knyYJPux6dBo7GMAd-TjONPbrdr4O1VzSivOE-D9IyD4nyMOUXV20Ogc9OjHQXHB6qqgvGKp9N3zXk9N_qw1FVxOBTr4YQjY_mP_8HeO7Yu_FDpt9LDiZNa6_-oeAJWOx10
CitedBy_id crossref_primary_10_1016_S2589_7500_24_00158_4
crossref_primary_10_1080_03091902_2023_2174198
crossref_primary_10_31893_multirev_2025218
crossref_primary_10_1016_S0140_6736_23_02754_X
crossref_primary_10_1016_j_ijcha_2024_101368
crossref_primary_10_34133_hds_0182
crossref_primary_10_3390_app14156825
crossref_primary_10_1007_s00439_022_02439_8
crossref_primary_10_1007_s11886_024_02146_y
crossref_primary_10_1109_ACCESS_2024_3351570
crossref_primary_10_1186_s12938_022_01032_4
crossref_primary_10_3390_s24206646
crossref_primary_10_1371_journal_pone_0305633
crossref_primary_10_1016_j_artmed_2024_102867
crossref_primary_10_3390_informatics8040073
crossref_primary_10_1109_ACCESS_2024_3357946
crossref_primary_10_1001_jamainternmed_2022_0405
crossref_primary_10_1109_JBHI_2024_3357506
crossref_primary_10_1093_ehjdh_ztae053
crossref_primary_10_1109_JSEN_2024_3371354
crossref_primary_10_1080_02813432_2022_2159204
crossref_primary_10_3389_fcvm_2022_809301
crossref_primary_10_1038_s44325_024_00027_5
crossref_primary_10_1136_openhrt_2023_002265
crossref_primary_10_3390_s23249834
crossref_primary_10_1002_clc_23826
crossref_primary_10_1088_1361_6579_ace9ac
crossref_primary_10_31083_j_rcm2406175
crossref_primary_10_1177_09544119231172858
crossref_primary_10_1016_S2589_7500_21_00256_9
crossref_primary_10_1161_JAHA_123_030377
crossref_primary_10_1007_s11936_023_01032_0
crossref_primary_10_1093_ehjdh_ztac029
crossref_primary_10_3389_frai_2024_1434022
crossref_primary_10_1001_jamainternmed_2022_0399
crossref_primary_10_1016_j_amjmed_2022_04_032
crossref_primary_10_1136_bmjopen_2022_068121
crossref_primary_10_3389_frai_2023_1309750
crossref_primary_10_1016_j_hfc_2023_03_001
crossref_primary_10_1109_JBHI_2023_3275039
crossref_primary_10_1038_s41569_021_00567_8
crossref_primary_10_1016_j_compbiomed_2023_107784
crossref_primary_10_1016_j_ijcard_2024_132653
crossref_primary_10_1371_journal_pdig_0000574
crossref_primary_10_3389_fcvm_2023_1170804
crossref_primary_10_7759_cureus_53914
crossref_primary_10_1016_j_ahjo_2024_100485
crossref_primary_10_1016_j_ijcard_2022_04_010
crossref_primary_10_1038_s41598_023_47308_0
crossref_primary_10_3390_s24165333
crossref_primary_10_1093_eurheartj_ehae415
crossref_primary_10_3390_jpm14030277
crossref_primary_10_1016_j_cjca_2025_03_008
crossref_primary_10_1016_j_bspc_2023_104963
crossref_primary_10_1093_eurheartj_ehad121
crossref_primary_10_3390_diagnostics14212445
crossref_primary_10_31083_j_rcm2501031
crossref_primary_10_1016_j_compbiomed_2023_106547
crossref_primary_10_1186_s12938_023_01136_5
crossref_primary_10_1093_ehjqcco_qcae043
crossref_primary_10_1016_j_jjcc_2021_11_017
crossref_primary_10_1007_s42399_023_01438_8
crossref_primary_10_1038_s41598_025_93989_0
crossref_primary_10_3390_diagnostics12102549
crossref_primary_10_1055_a_2507_1486
crossref_primary_10_1155_2022_4653923
crossref_primary_10_3934_mbe_2022447
Cites_doi 10.1136/hrt.2010.205096
10.1001/jama.1933.02740310020005
10.1016/j.jclinepi.2008.04.007
10.1016/S0140-6736(06)69208-8
10.1109/EMBC.2016.7590823
10.1001/archinte.166.6.610
10.1088/1361-6579/aa7ec8
10.1016/j.echo.2017.01.007
10.1161/CIRCULATIONAHA.108.836510
10.1016/S0002-9343(00)00361-2
10.1056/NEJMoa2001017
10.1038/s41746-018-0065-x
10.1161/CIRCULATIONAHA.117.026622
10.1136/heartjnl-2012-302265
10.1093/eurheartj/ehp530
10.1148/radiol.2018171820
10.1136/bmj.e6717
10.1109/CVPR.2016.90
10.1016/j.jacc.2015.10.090
10.1001/jama.1997.03540310062036
10.1109/ACCESS.2018.2889437
10.1016/j.ahj.2013.12.030
10.1038/s42003-019-0438-y
10.1001/jama.1997.03550090041030
10.1016/j.jacc.2013.05.015
10.1016/0895-4356(91)90128-V
10.1093/eurheartj/ehs190
10.1093/ehjci/jew335
10.1016/j.jcmg.2008.07.004
10.1007/s00246-018-2036-z
10.1016/S2589-7500(20)30003-0
ContentType Journal Article
Copyright 2021 The Authors and Eko Devices, Inc. Published on behalf of the American Heart Association, Inc., by Wiley.
Copyright_xml – notice: 2021 The Authors and Eko Devices, Inc. Published on behalf of the American Heart Association, Inc., by Wiley.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1161/JAHA.120.019905
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals - DOAJ (NTUSG)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Deep Learning Algorithm for Murmur Detection
EISSN 2047-9980
ExternalDocumentID oai_doaj_org_article_e45493abbc90480aa8c8c373ac9ed160
oai:escholarship.org:ark:/13030/qt95x1r6x2
PMC8200722
33899504
10_1161_JAHA_120_019905
Genre Multicenter Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R44 HL144297
– fundername: NHLBI NIH HHS
  grantid: K08 HL124068
– fundername: NHLBI NIH HHS
  grantid: R43 HL144297
– fundername: Irene D. Pritzker Foundation
GroupedDBID 0R~
1OC
24P
53G
5VS
8-1
AAMMB
AAYXX
AAZKR
ACGFO
ACXQS
ADBBV
ADKYN
ADZMN
AEFGJ
AEGXH
AENEX
AGXDD
AIAGR
AIDQK
AIDYY
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AVUZU
BAWUL
BCNDV
CITATION
DIK
EBS
EMOBN
GODZA
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
RAH
RNS
RPM
WIN
ACCMX
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADRAZ
ADTOC
EJD
H13
UNPAY
ID FETCH-LOGICAL-c525t-cab22d7d931c3ec74eee4c9132661ff822acd0a9da1c56ab9eee5456d07559d83
IEDL.DBID M48
ISSN 2047-9980
IngestDate Fri Oct 03 12:49:58 EDT 2025
Sun Oct 26 02:25:57 EDT 2025
Thu Aug 21 14:02:06 EDT 2025
Fri Sep 05 08:51:39 EDT 2025
Mon Jul 21 05:55:42 EDT 2025
Wed Oct 01 03:54:42 EDT 2025
Thu Apr 24 22:59:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords physical examination
valvular heart disease
machine learning
neural networks
auscultation
Language English
License This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c525t-cab22d7d931c3ec74eee4c9132661ff822acd0a9da1c56ab9eee5456d07559d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Supplementary Material for this article is available at https://www.ahajournals.org/doi/suppl/10.1161/JAHA.120.019905
Preprint posted on MedRxiv, April 20, 2020. doi: https://doi.org/10.1101/2020.04.01.20050518.
J.S. Chorba and A.M. Shapiro contributed equally.
For Sources of Funding and Disclosures, see page 12.
ORCID 0000-0001-8567-7464
0000-0001-6354-1873
0000-0001-6660-2635
0000-0002-8072-6252
0000-0001-8211-7699
0000-0002-6397-6348
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1161/JAHA.120.019905
PMID 33899504
PQID 2518740271
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_e45493abbc90480aa8c8c373ac9ed160
unpaywall_primary_10_1161_jaha_120_019905
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8200722
proquest_miscellaneous_2518740271
pubmed_primary_33899504
crossref_primary_10_1161_JAHA_120_019905
crossref_citationtrail_10_1161_JAHA_120_019905
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-04
PublicationDateYYYYMMDD 2021-05-04
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-04
  day: 04
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Hoboken
PublicationTitle Journal of the American Heart Association
PublicationTitleAlternate J Am Heart Assoc
PublicationYear 2021
Publisher John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley and Sons Inc
– name: Wiley
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
Clifford GD (e_1_3_2_19_2) 2016; 43
Guilford‐Blake R (e_1_3_2_38_2) 2018; 12
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_24_2
e_1_3_2_25_2
Mann DL (e_1_3_2_14_2) 2015
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
Bonow RO (e_1_3_2_31_2) 2006; 2006
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_33_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_35_2
Dobrow RJ (e_1_3_2_3_2) 1964; 33
Nishimura RA (e_1_3_2_12_2) 2014; 2014
Potes C (e_1_3_2_23_2) 2016; 43
33976396 - Nat Rev Cardiol. 2021 Jul;18(7):460. doi: 10.1038/s41569-021-00567-8
References_xml – volume: 43
  year: 2016
  ident: e_1_3_2_19_2
  article-title: Classification of normal/abnormal heart sound recordings: the Physionet/computing in cardiology challenge 2016
  publication-title: Comput Cardiol
– ident: e_1_3_2_5_2
  doi: 10.1136/hrt.2010.205096
– ident: e_1_3_2_28_2
  doi: 10.1001/jama.1933.02740310020005
– ident: e_1_3_2_36_2
  doi: 10.1016/j.jclinepi.2008.04.007
– ident: e_1_3_2_6_2
  doi: 10.1016/S0140-6736(06)69208-8
– ident: e_1_3_2_18_2
  doi: 10.1109/EMBC.2016.7590823
– ident: e_1_3_2_37_2
  doi: 10.1001/archinte.166.6.610
– ident: e_1_3_2_21_2
  doi: 10.1088/1361-6579/aa7ec8
– ident: e_1_3_2_30_2
  doi: 10.1016/j.echo.2017.01.007
– ident: e_1_3_2_9_2
  doi: 10.1161/CIRCULATIONAHA.108.836510
– ident: e_1_3_2_32_2
  doi: 10.1016/S0002-9343(00)00361-2
– ident: e_1_3_2_42_2
  doi: 10.1056/NEJMoa2001017
– ident: e_1_3_2_16_2
  doi: 10.1038/s41746-018-0065-x
– ident: e_1_3_2_39_2
  doi: 10.1161/CIRCULATIONAHA.117.026622
– ident: e_1_3_2_33_2
  doi: 10.1136/heartjnl-2012-302265
– ident: e_1_3_2_8_2
  doi: 10.1093/eurheartj/ehp530
– ident: e_1_3_2_15_2
  doi: 10.1148/radiol.2018171820
– ident: e_1_3_2_35_2
  doi: 10.1136/bmj.e6717
– ident: e_1_3_2_25_2
  doi: 10.1109/CVPR.2016.90
– ident: e_1_3_2_26_2
– ident: e_1_3_2_41_2
  doi: 10.1016/j.jacc.2015.10.090
– ident: e_1_3_2_2_2
  doi: 10.1001/jama.1997.03540310062036
– volume: 12
  start-page: 28
  year: 2018
  ident: e_1_3_2_38_2
  article-title: Tackling the rural access crisis: cardiologists will need an array of tools to meet patients’ needs
  publication-title: Cardiovasc Bus
– volume: 33
  start-page: 305
  year: 1964
  ident: e_1_3_2_3_2
  article-title: A study of physician variation in heart‐sound interpretation
  publication-title: Med Ann Dist Columbia
– ident: e_1_3_2_22_2
  doi: 10.1109/ACCESS.2018.2889437
– volume: 2006
  start-page: e84
  year: 2006
  ident: e_1_3_2_31_2
  article-title: ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines
  publication-title: Circulation
– ident: e_1_3_2_10_2
  doi: 10.1016/j.ahj.2013.12.030
– volume: 43
  year: 2016
  ident: e_1_3_2_23_2
  article-title: Ensemble of feature‐based and deep learning‐based classifiers for detection of abnormal heart sounds
  publication-title: Comput Cardiol
– volume: 2014
  start-page: e521
  year: 2014
  ident: e_1_3_2_12_2
  article-title: AHA/ACC guideline for the management of patients with valvular heart disease
  publication-title: Circulation
– ident: e_1_3_2_17_2
  doi: 10.1038/s42003-019-0438-y
– ident: e_1_3_2_4_2
  doi: 10.1001/jama.1997.03550090041030
– volume-title: Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine
  year: 2015
  ident: e_1_3_2_14_2
– ident: e_1_3_2_7_2
  doi: 10.1016/j.jacc.2013.05.015
– ident: e_1_3_2_27_2
  doi: 10.1016/0895-4356(91)90128-V
– ident: e_1_3_2_24_2
– ident: e_1_3_2_11_2
  doi: 10.1093/eurheartj/ehs190
– ident: e_1_3_2_29_2
  doi: 10.1093/ehjci/jew335
– ident: e_1_3_2_40_2
  doi: 10.1016/j.jcmg.2008.07.004
– ident: e_1_3_2_20_2
  doi: 10.1007/s00246-018-2036-z
– ident: e_1_3_2_13_2
– ident: e_1_3_2_34_2
  doi: 10.1016/S2589-7500(20)30003-0
– reference: 33976396 - Nat Rev Cardiol. 2021 Jul;18(7):460. doi: 10.1038/s41569-021-00567-8
SSID ssj0000627359
Score 2.5704374
Snippet Background Clinicians vary markedly in their ability to detect murmurs during cardiac auscultation and identify the underlying pathological features. Deep...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e019905
SubjectTerms Adolescent
Adult
Aged
Aged, 80 and over
Algorithms
auscultation
Cross-Sectional Studies
Deep Learning
Diagnosis, Computer-Assisted - methods
Equipment Design
Female
Heart Auscultation - instrumentation
Heart Murmurs - diagnosis
Humans
machine learning
Male
Middle Aged
neural networks
Original Research
physical examination
Reproducibility of Results
Stethoscopes
valvular heart disease
Young Adult
SummonAdditionalLinks – databaseName: Directory of Open Access Journals - DOAJ (NTUSG)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD8AF8Sa8ZCQOcEibl5P4uHSpVpWKkKBSb9bEnuwuSrOrkoD498w46Sqrgrhwje0k9ow939jjb4R4a5WrasIFYW11HZKFgLDMmLYSbR5RCwJ1fHf47FO-OM9OL9TFJNUXx4QN9MDDwB1hRh5MClVlNV9_BihtadMiBavRxbn31qNST5ypYQ0ms6z0yOVDqObodLbgjb_okDCN5mR1EzPk2fr_BDFvRkre6dst_PoJTTMxQyf3xb0RP8rZ8N8PxC1sH4rbZ-MJ-SMBc8StHFlTl3LWLDfk_q8uJYFTOeu7DSFUdPLYK4aVNM6X_ZWcY-dDslr5Yw0S5Hy95GQi8kvHCab9zRX5uYGOEe5jcX7y8evxIhzTKIRWJaoLLVRJ4gqn09imaIsMETOryQ0l21zXhBDAugi0g9iqHCpN5YyrHKEJpV2ZPhEH7abFZ0JiTOirwogWJXqFi7RTdaxrF5dFmRd1HIjD61E1duQY51QXjfG-Rh4bFoMhMZhBDIF4t2uwHeg1_l71A4tpV415sf0D0hYzaov5l7YE4s21kA3NIz4cgRY3_XdDOI-zEyYFdeLpIPTdp1ImIVRRFohiTx32_mW_pF2vPFd3yXvBSRKI9zvFudHRb7CCSUef_4-OvhB3E46-4dDM7KU46K56fEXwqate-5nyG65hGEY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdQJwEv4xvCl4zEAzwki5M4iR_DylRN2jQJKo2nyLGdNpClVeeMwV_PXZJWLQMJXmM7yenOud_Fd78j5K3iuigBF7ilEqULHkK6aYS0lUbFPqwAUIe1wyen8WQaHZ_z84EsGmthzDqmm1fL7iC_7XuSHQh-zVbxNXxt92IOsHtE9qanZ9kXbB6HbAMQNvgDdQ-AmIOvci49FvgeQBiBvem2vE5Hzv8nRHkzMfJO2yzlj--yrre8ztG9Pl_rsiMrxGSTb15rC0_9_I3K8Z8Euk_2B-xJs95YHpBbpnlIbp8Mp-uPiBwbs6QD4-qMZvVssars_IICsKVZaxeAbo2mh51RKQo6umhXdGxsl87V0KtKUknH1QwbkdBPFptTd1Uv9KyWFtHxYzI9-vj5cOIOLRhcxQNuXSWLINCJFiFToVFJZIyJlIAQFvx6WQK6kEr7UmjJFI9lIWAcMZkGJMKFTsMnZNQsGvOMUMMAuRXGhw8a3EL7QvOSiVKzNEnjpGQO8dYqytXAT45tMuq8i1Nilh9nkywHnea9Th3ybrNg2VNz_H3qB9T5ZhpyancXQCH5sEVzE0GsHMqiUAIL7aVMVarCJJRKGM1i3yFv1haTwx7EgxXZmEV7mQNGxM6GQQJCPO0taPOoEAkMuR85JNmxrZ132R1pqnnH853if-QgcMj7jRXeEBTtfEvQ5_8x9wW5G2CCDmZvRi_JyK5a8woQli1eD3vrF96MJ7c
  priority: 102
  providerName: Unpaywall
Title Deep Learning Algorithm for Automated Cardiac Murmur Detection via a Digital Stethoscope Platform
URI https://www.ncbi.nlm.nih.gov/pubmed/33899504
https://www.proquest.com/docview/2518740271
https://pubmed.ncbi.nlm.nih.gov/PMC8200722
https://escholarship.org/uc/item/95x1r6x2
https://doaj.org/article/e45493abbc90480aa8c8c373ac9ed160
UnpaywallVersion submittedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2047-9980
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000627359
  issn: 2047-9980
  databaseCode: KQ8
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2047-9980
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000627359
  issn: 2047-9980
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2047-9980
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000627359
  issn: 2047-9980
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2047-9980
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000627359
  issn: 2047-9980
  databaseCode: DIK
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2047-9980
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000627359
  issn: 2047-9980
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2047-9980
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000627359
  issn: 2047-9980
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2047-9980
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000627359
  issn: 2047-9980
  databaseCode: RPM
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2047-9980
  dateEnd: 20250831
  omitProxy: true
  ssIdentifier: ssj0000627359
  issn: 2047-9980
  databaseCode: M48
  dateStart: 20120201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 2047-9980
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000627359
  issn: 2047-9980
  databaseCode: AVUZU
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2047-9980
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000627359
  issn: 2047-9980
  databaseCode: 24P
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQKwEXxJu0sDISBzhkyTvxAaHQpVpV2qoSrFRO0cR2dhelyZImQP89M066dNVF4prETuzxZL7x4_sYeyNDlReIC-xCisLGCAF2EhBtpZaRgyUQ1NHZ4dlpNJ0HJ-fh-V85oKEDL3emdqQnNW_K8e8fVx_R4T8Yh4_c9yfplOb0nDHCFUF8pvsYpgTpOMwGrN__ljFSG_E0j9gJMM1wBqqfHXVsRSlD5r8Lgd7eSHmvq9Zw9QvK8kaUOn7IHgzwkqf9eHjE7ujqMbs7GxbQnzCYaL3mA6nqgqflom5W7fKCI3bladfWCGC14kdm3EiOZrjoGj7RrdmxVfGfK-DAJ6sFaY3wLy3pT5uDLfyshJYA8FM2P_789WhqDyoLtgy9sLUl5J6nYiV8V_paxoHWOpACs1QM3UWBAAKkckAocGUYQS7wPsEuhWAjFCrxn7G9qq70C8a1i-As1w7-s7AK5QgVFq4olJvESRQXrsXG172ayYGCnJQwysykIpGbkRkyNEPWm8FibzcF1j37xr8f_URm2jxGtNnmQt0sssELMx1gOuxDnktBZ-kBEplIP_ZBCq3cyLHY62sjZ-hmtHYCla67ywxhIIkXejE24nlv9M2rfOIoDJ3AYvHWcNj6lu071WppqLwTmir2PIu92wycWw39Dku40dCD_--TQ3bfoy04tD8zeMn22qbTrxBDtfnIzD2MjIeM2P789Cz99gd7MBlu
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdQJwEv4xvCl4zEAzwki5M4iR_DylRN2jQJKo2nyLGdNpClVeeMwV_PXZJWLQMJXmM7yenOud_Fd78j5K3iuigBF7ilEqULHkK6aYS0lUbFPqwAUIe1wyen8WQaHZ_z84EsGmthzDqmm1fL7iC_7XuSHQh-zVbxNXxt92IOsHtE9qanZ9kXbB6HbAMQNvgDdQ-AmIOvci49FvgeQBiBvem2vE5Hzv8nRHkzMfJO2yzlj--yrre8ztG9Pl_rsiMrxGSTb15rC0_9_I3K8Z8Euk_2B-xJs95YHpBbpnlIbp8Mp-uPiBwbs6QD4-qMZvVssars_IICsKVZaxeAbo2mh51RKQo6umhXdGxsl87V0KtKUknH1QwbkdBPFptTd1Uv9KyWFtHxYzI9-vj5cOIOLRhcxQNuXSWLINCJFiFToVFJZIyJlIAQFvx6WQK6kEr7UmjJFI9lIWAcMZkGJMKFTsMnZNQsGvOMUMMAuRXGhw8a3EL7QvOSiVKzNEnjpGQO8dYqytXAT45tMuq8i1Nilh9nkywHnea9Th3ybrNg2VNz_H3qB9T5ZhpyancXQCH5sEVzE0GsHMqiUAIL7aVMVarCJJRKGM1i3yFv1haTwx7EgxXZmEV7mQNGxM6GQQJCPO0taPOoEAkMuR85JNmxrZ132R1pqnnH853if-QgcMj7jRXeEBTtfEvQ5_8x9wW5G2CCDmZvRi_JyK5a8woQli1eD3vrF96MJ7c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Algorithm+for+Automated+Cardiac+Murmur+Detection+via+a+Digital+Stethoscope+Platform&rft.jtitle=Journal+of+the+American+Heart+Association&rft.au=Chorba%2C+John+S.&rft.au=Shapiro%2C+Avi+M.&rft.au=Le%2C+Le&rft.au=Maidens%2C+John&rft.date=2021-05-04&rft.issn=2047-9980&rft.eissn=2047-9980&rft.volume=10&rft.issue=9&rft_id=info:doi/10.1161%2FJAHA.120.019905&rft.externalDBID=n%2Fa&rft.externalDocID=10_1161_JAHA_120_019905
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-9980&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-9980&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-9980&client=summon