Deep Learning Algorithm for Automated Cardiac Murmur Detection via a Digital Stethoscope Platform
Background Clinicians vary markedly in their ability to detect murmurs during cardiac auscultation and identify the underlying pathological features. Deep learning approaches have shown promise in medicine by transforming collected data into clinically significant information. The objective of this...
Saved in:
| Published in | Journal of the American Heart Association Vol. 10; no. 9; p. e019905 |
|---|---|
| Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
John Wiley and Sons Inc
04.05.2021
Wiley |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2047-9980 2047-9980 |
| DOI | 10.1161/JAHA.120.019905 |
Cover
| Abstract | Background Clinicians vary markedly in their ability to detect murmurs during cardiac auscultation and identify the underlying pathological features. Deep learning approaches have shown promise in medicine by transforming collected data into clinically significant information. The objective of this research is to assess the performance of a deep learning algorithm to detect murmurs and clinically significant valvular heart disease using recordings from a commercial digital stethoscope platform. Methods and Results Using >34 hours of previously acquired and annotated heart sound recordings, we trained a deep neural network to detect murmurs. To test the algorithm, we enrolled 962 patients in a clinical study and collected recordings at the 4 primary auscultation locations. Ground truth was established using patient echocardiograms and annotations by 3 expert cardiologists. Algorithm performance for detecting murmurs has sensitivity and specificity of 76.3% and 91.4%, respectively. By omitting softer murmurs, those with grade 1 intensity, sensitivity increased to 90.0%. Application of the algorithm at the appropriate anatomic auscultation location detected moderate-to-severe or greater aortic stenosis, with sensitivity of 93.2% and specificity of 86.0%, and moderate-to-severe or greater mitral regurgitation, with sensitivity of 66.2% and specificity of 94.6%. Conclusions The deep learning algorithm's ability to detect murmurs and clinically significant aortic stenosis and mitral regurgitation is comparable to expert cardiologists based on the annotated subset of our database. The findings suggest that such algorithms would have utility as front-line clinical support tools to aid clinicians in screening for cardiac murmurs caused by valvular heart disease. Registration URL: https://clinicaltrials.gov; Unique Identifier: NCT03458806. |
|---|---|
| AbstractList | Background Clinicians vary markedly in their ability to detect murmurs during cardiac auscultation and identify the underlying pathological features. Deep learning approaches have shown promise in medicine by transforming collected data into clinically significant information. The objective of this research is to assess the performance of a deep learning algorithm to detect murmurs and clinically significant valvular heart disease using recordings from a commercial digital stethoscope platform. Methods and Results Using >34 hours of previously acquired and annotated heart sound recordings, we trained a deep neural network to detect murmurs. To test the algorithm, we enrolled 962 patients in a clinical study and collected recordings at the 4 primary auscultation locations. Ground truth was established using patient echocardiograms and annotations by 3 expert cardiologists. Algorithm performance for detecting murmurs has sensitivity and specificity of 76.3% and 91.4%, respectively. By omitting softer murmurs, those with grade 1 intensity, sensitivity increased to 90.0%. Application of the algorithm at the appropriate anatomic auscultation location detected moderate-to-severe or greater aortic stenosis, with sensitivity of 93.2% and specificity of 86.0%, and moderate-to-severe or greater mitral regurgitation, with sensitivity of 66.2% and specificity of 94.6%. Conclusions The deep learning algorithm's ability to detect murmurs and clinically significant aortic stenosis and mitral regurgitation is comparable to expert cardiologists based on the annotated subset of our database. The findings suggest that such algorithms would have utility as front-line clinical support tools to aid clinicians in screening for cardiac murmurs caused by valvular heart disease. Registration URL: https://clinicaltrials.gov; Unique Identifier: NCT03458806. Background Clinicians vary markedly in their ability to detect murmurs during cardiac auscultation and identify the underlying pathological features. Deep learning approaches have shown promise in medicine by transforming collected data into clinically significant information. The objective of this research is to assess the performance of a deep learning algorithm to detect murmurs and clinically significant valvular heart disease using recordings from a commercial digital stethoscope platform. Methods and Results Using >34 hours of previously acquired and annotated heart sound recordings, we trained a deep neural network to detect murmurs. To test the algorithm, we enrolled 962 patients in a clinical study and collected recordings at the 4 primary auscultation locations. Ground truth was established using patient echocardiograms and annotations by 3 expert cardiologists. Algorithm performance for detecting murmurs has sensitivity and specificity of 76.3% and 91.4%, respectively. By omitting softer murmurs, those with grade 1 intensity, sensitivity increased to 90.0%. Application of the algorithm at the appropriate anatomic auscultation location detected moderate-to-severe or greater aortic stenosis, with sensitivity of 93.2% and specificity of 86.0%, and moderate-to-severe or greater mitral regurgitation, with sensitivity of 66.2% and specificity of 94.6%. Conclusions The deep learning algorithm's ability to detect murmurs and clinically significant aortic stenosis and mitral regurgitation is comparable to expert cardiologists based on the annotated subset of our database. The findings suggest that such algorithms would have utility as front-line clinical support tools to aid clinicians in screening for cardiac murmurs caused by valvular heart disease. Registration URL: https://clinicaltrials.gov; Unique Identifier: NCT03458806.Background Clinicians vary markedly in their ability to detect murmurs during cardiac auscultation and identify the underlying pathological features. Deep learning approaches have shown promise in medicine by transforming collected data into clinically significant information. The objective of this research is to assess the performance of a deep learning algorithm to detect murmurs and clinically significant valvular heart disease using recordings from a commercial digital stethoscope platform. Methods and Results Using >34 hours of previously acquired and annotated heart sound recordings, we trained a deep neural network to detect murmurs. To test the algorithm, we enrolled 962 patients in a clinical study and collected recordings at the 4 primary auscultation locations. Ground truth was established using patient echocardiograms and annotations by 3 expert cardiologists. Algorithm performance for detecting murmurs has sensitivity and specificity of 76.3% and 91.4%, respectively. By omitting softer murmurs, those with grade 1 intensity, sensitivity increased to 90.0%. Application of the algorithm at the appropriate anatomic auscultation location detected moderate-to-severe or greater aortic stenosis, with sensitivity of 93.2% and specificity of 86.0%, and moderate-to-severe or greater mitral regurgitation, with sensitivity of 66.2% and specificity of 94.6%. Conclusions The deep learning algorithm's ability to detect murmurs and clinically significant aortic stenosis and mitral regurgitation is comparable to expert cardiologists based on the annotated subset of our database. The findings suggest that such algorithms would have utility as front-line clinical support tools to aid clinicians in screening for cardiac murmurs caused by valvular heart disease. Registration URL: https://clinicaltrials.gov; Unique Identifier: NCT03458806. |
| Author | Mihos, Christos G. Fuller, Sophie G. Maidens, John Barbosa, Daniel N. Paek, Jason Currie, Caroline Huskin, Anna Chorba, John S. White, Brent E. Prince, John Brooks, Catherine Ronquillo, Ria Gjergjindreaj, Medeona Mahadevan, Vaikom S. Kim, Roy Geocaris, Jack Elnathan, Dinatu Alam, Zenith H. McCarthy, Patrick M. Forman, Steven T. Lee, John J. Jean, Dina Pham, Steve Kanzawa, Mia M. Le, Le Bravo, Sara A. Venkatraman, Subramaniam Stalker, Grant W. Thomas, James D. Shapiro, Avi M. |
| AuthorAffiliation | 4 Division of Cardiology Bluhm Cardiovascular Institute Northwestern University Chicago IL 3 Eko Oakland CA 5 Los Alamitos Cardiovascular Medical Group Los Alamitos CA 2 Division of Cardiology Zuckerberg San Francisco General Hospital San Francisco CA 1 Division of Cardiology University of California San Francisco San Francisco CA 6 Echocardiography Laboratory Mount Sinai Heart Institute Mount Sinai Medical Center Miami Beach FL |
| AuthorAffiliation_xml | – name: 6 Echocardiography Laboratory Mount Sinai Heart Institute Mount Sinai Medical Center Miami Beach FL – name: 5 Los Alamitos Cardiovascular Medical Group Los Alamitos CA – name: 1 Division of Cardiology University of California San Francisco San Francisco CA – name: 3 Eko Oakland CA – name: 4 Division of Cardiology Bluhm Cardiovascular Institute Northwestern University Chicago IL – name: 2 Division of Cardiology Zuckerberg San Francisco General Hospital San Francisco CA |
| Author_xml | – sequence: 1 givenname: John S. orcidid: 0000-0002-6397-6348 surname: Chorba fullname: Chorba, John S. organization: Division of Cardiology University of California San Francisco San Francisco CA, Division of Cardiology Zuckerberg San Francisco General Hospital San Francisco CA – sequence: 2 givenname: Avi M. orcidid: 0000-0002-8072-6252 surname: Shapiro fullname: Shapiro, Avi M. organization: Eko Oakland CA – sequence: 3 givenname: Le surname: Le fullname: Le, Le organization: Eko Oakland CA – sequence: 4 givenname: John orcidid: 0000-0001-8211-7699 surname: Maidens fullname: Maidens, John organization: Eko Oakland CA – sequence: 5 givenname: John surname: Prince fullname: Prince, John organization: Eko Oakland CA – sequence: 6 givenname: Steve surname: Pham fullname: Pham, Steve organization: Eko Oakland CA – sequence: 7 givenname: Mia M. surname: Kanzawa fullname: Kanzawa, Mia M. organization: Eko Oakland CA – sequence: 8 givenname: Daniel N. surname: Barbosa fullname: Barbosa, Daniel N. organization: Eko Oakland CA – sequence: 9 givenname: Caroline surname: Currie fullname: Currie, Caroline organization: Eko Oakland CA – sequence: 10 givenname: Catherine surname: Brooks fullname: Brooks, Catherine organization: Eko Oakland CA – sequence: 11 givenname: Brent E. orcidid: 0000-0001-6660-2635 surname: White fullname: White, Brent E. organization: Division of Cardiology Bluhm Cardiovascular InstituteNorthwestern University Chicago IL – sequence: 12 givenname: Anna surname: Huskin fullname: Huskin, Anna organization: Division of Cardiology Bluhm Cardiovascular InstituteNorthwestern University Chicago IL – sequence: 13 givenname: Jason surname: Paek fullname: Paek, Jason organization: Division of Cardiology Bluhm Cardiovascular InstituteNorthwestern University Chicago IL – sequence: 14 givenname: Jack surname: Geocaris fullname: Geocaris, Jack organization: Division of Cardiology Bluhm Cardiovascular InstituteNorthwestern University Chicago IL – sequence: 15 givenname: Dinatu surname: Elnathan fullname: Elnathan, Dinatu organization: Division of Cardiology Bluhm Cardiovascular InstituteNorthwestern University Chicago IL – sequence: 16 givenname: Ria surname: Ronquillo fullname: Ronquillo, Ria organization: Los Alamitos Cardiovascular Medical Group Los Alamitos CA – sequence: 17 givenname: Roy surname: Kim fullname: Kim, Roy organization: Los Alamitos Cardiovascular Medical Group Los Alamitos CA – sequence: 18 givenname: Zenith H. orcidid: 0000-0001-8567-7464 surname: Alam fullname: Alam, Zenith H. organization: Echocardiography Laboratory Mount Sinai Heart InstituteMount Sinai Medical Center Miami Beach FL – sequence: 19 givenname: Vaikom S. orcidid: 0000-0001-6354-1873 surname: Mahadevan fullname: Mahadevan, Vaikom S. organization: Division of Cardiology University of California San Francisco San Francisco CA – sequence: 20 givenname: Sophie G. surname: Fuller fullname: Fuller, Sophie G. organization: Division of Cardiology University of California San Francisco San Francisco CA – sequence: 21 givenname: Grant W. surname: Stalker fullname: Stalker, Grant W. organization: Division of Cardiology University of California San Francisco San Francisco CA – sequence: 22 givenname: Sara A. surname: Bravo fullname: Bravo, Sara A. organization: Division of Cardiology University of California San Francisco San Francisco CA – sequence: 23 givenname: Dina surname: Jean fullname: Jean, Dina organization: Division of Cardiology University of California San Francisco San Francisco CA – sequence: 24 givenname: John J. surname: Lee fullname: Lee, John J. organization: Echocardiography Laboratory Mount Sinai Heart InstituteMount Sinai Medical Center Miami Beach FL – sequence: 25 givenname: Medeona surname: Gjergjindreaj fullname: Gjergjindreaj, Medeona organization: Echocardiography Laboratory Mount Sinai Heart InstituteMount Sinai Medical Center Miami Beach FL – sequence: 26 givenname: Christos G. surname: Mihos fullname: Mihos, Christos G. organization: Echocardiography Laboratory Mount Sinai Heart InstituteMount Sinai Medical Center Miami Beach FL – sequence: 27 givenname: Steven T. surname: Forman fullname: Forman, Steven T. organization: Los Alamitos Cardiovascular Medical Group Los Alamitos CA – sequence: 28 givenname: Subramaniam surname: Venkatraman fullname: Venkatraman, Subramaniam organization: Eko Oakland CA – sequence: 29 givenname: Patrick M. surname: McCarthy fullname: McCarthy, Patrick M. organization: Division of Cardiology Bluhm Cardiovascular InstituteNorthwestern University Chicago IL – sequence: 30 givenname: James D. surname: Thomas fullname: Thomas, James D. organization: Division of Cardiology Bluhm Cardiovascular InstituteNorthwestern University Chicago IL |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33899504$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1ktFv0zAQxiM0xMbYM2_Ij7y0s504iV-QqnZsQ0UgAc_Wxb60rpy4OM7Q_vu5ZEwrCL_Yurvvd5_u_Do76X2PWfaW0TljJbv8tLhZzBmnc8qkpOJFdsZpUc2krOnJs_dpdjEMO5pOyatcyFfZaZ7XUgpanGWwQtyTNULobb8hC7fxwcZtR1ofyGKMvoOIhiwhGAuafB5DNwaywog6Wt-TOwsEyMpubARHvkWMWz9ov0fy1UFMkO5N9rIFN-DF432e_fh49X15M1t_ub5dLtYzLbiIMw0N56YyMmc6R10ViFhoyXJelqxta85BGwrSANOihEamvChEaWglhDR1fp7dTlzjYaf2wXYQ7pUHq34HfNgoCNFqhwoLUcgcmkZLWtQUoNa1zqsctETDSppYdGKN_R7uf4FzT0BG1WH4agdbUGn4ahp-knyYJPux6dBo7GMAd-TjONPbrdr4O1VzSivOE-D9IyD4nyMOUXV20Ogc9OjHQXHB6qqgvGKp9N3zXk9N_qw1FVxOBTr4YQjY_mP_8HeO7Yu_FDpt9LDiZNa6_-oeAJWOx10 |
| CitedBy_id | crossref_primary_10_1016_S2589_7500_24_00158_4 crossref_primary_10_1080_03091902_2023_2174198 crossref_primary_10_31893_multirev_2025218 crossref_primary_10_1016_S0140_6736_23_02754_X crossref_primary_10_1016_j_ijcha_2024_101368 crossref_primary_10_34133_hds_0182 crossref_primary_10_3390_app14156825 crossref_primary_10_1007_s00439_022_02439_8 crossref_primary_10_1007_s11886_024_02146_y crossref_primary_10_1109_ACCESS_2024_3351570 crossref_primary_10_1186_s12938_022_01032_4 crossref_primary_10_3390_s24206646 crossref_primary_10_1371_journal_pone_0305633 crossref_primary_10_1016_j_artmed_2024_102867 crossref_primary_10_3390_informatics8040073 crossref_primary_10_1109_ACCESS_2024_3357946 crossref_primary_10_1001_jamainternmed_2022_0405 crossref_primary_10_1109_JBHI_2024_3357506 crossref_primary_10_1093_ehjdh_ztae053 crossref_primary_10_1109_JSEN_2024_3371354 crossref_primary_10_1080_02813432_2022_2159204 crossref_primary_10_3389_fcvm_2022_809301 crossref_primary_10_1038_s44325_024_00027_5 crossref_primary_10_1136_openhrt_2023_002265 crossref_primary_10_3390_s23249834 crossref_primary_10_1002_clc_23826 crossref_primary_10_1088_1361_6579_ace9ac crossref_primary_10_31083_j_rcm2406175 crossref_primary_10_1177_09544119231172858 crossref_primary_10_1016_S2589_7500_21_00256_9 crossref_primary_10_1161_JAHA_123_030377 crossref_primary_10_1007_s11936_023_01032_0 crossref_primary_10_1093_ehjdh_ztac029 crossref_primary_10_3389_frai_2024_1434022 crossref_primary_10_1001_jamainternmed_2022_0399 crossref_primary_10_1016_j_amjmed_2022_04_032 crossref_primary_10_1136_bmjopen_2022_068121 crossref_primary_10_3389_frai_2023_1309750 crossref_primary_10_1016_j_hfc_2023_03_001 crossref_primary_10_1109_JBHI_2023_3275039 crossref_primary_10_1038_s41569_021_00567_8 crossref_primary_10_1016_j_compbiomed_2023_107784 crossref_primary_10_1016_j_ijcard_2024_132653 crossref_primary_10_1371_journal_pdig_0000574 crossref_primary_10_3389_fcvm_2023_1170804 crossref_primary_10_7759_cureus_53914 crossref_primary_10_1016_j_ahjo_2024_100485 crossref_primary_10_1016_j_ijcard_2022_04_010 crossref_primary_10_1038_s41598_023_47308_0 crossref_primary_10_3390_s24165333 crossref_primary_10_1093_eurheartj_ehae415 crossref_primary_10_3390_jpm14030277 crossref_primary_10_1016_j_cjca_2025_03_008 crossref_primary_10_1016_j_bspc_2023_104963 crossref_primary_10_1093_eurheartj_ehad121 crossref_primary_10_3390_diagnostics14212445 crossref_primary_10_31083_j_rcm2501031 crossref_primary_10_1016_j_compbiomed_2023_106547 crossref_primary_10_1186_s12938_023_01136_5 crossref_primary_10_1093_ehjqcco_qcae043 crossref_primary_10_1016_j_jjcc_2021_11_017 crossref_primary_10_1007_s42399_023_01438_8 crossref_primary_10_1038_s41598_025_93989_0 crossref_primary_10_3390_diagnostics12102549 crossref_primary_10_1055_a_2507_1486 crossref_primary_10_1155_2022_4653923 crossref_primary_10_3934_mbe_2022447 |
| Cites_doi | 10.1136/hrt.2010.205096 10.1001/jama.1933.02740310020005 10.1016/j.jclinepi.2008.04.007 10.1016/S0140-6736(06)69208-8 10.1109/EMBC.2016.7590823 10.1001/archinte.166.6.610 10.1088/1361-6579/aa7ec8 10.1016/j.echo.2017.01.007 10.1161/CIRCULATIONAHA.108.836510 10.1016/S0002-9343(00)00361-2 10.1056/NEJMoa2001017 10.1038/s41746-018-0065-x 10.1161/CIRCULATIONAHA.117.026622 10.1136/heartjnl-2012-302265 10.1093/eurheartj/ehp530 10.1148/radiol.2018171820 10.1136/bmj.e6717 10.1109/CVPR.2016.90 10.1016/j.jacc.2015.10.090 10.1001/jama.1997.03540310062036 10.1109/ACCESS.2018.2889437 10.1016/j.ahj.2013.12.030 10.1038/s42003-019-0438-y 10.1001/jama.1997.03550090041030 10.1016/j.jacc.2013.05.015 10.1016/0895-4356(91)90128-V 10.1093/eurheartj/ehs190 10.1093/ehjci/jew335 10.1016/j.jcmg.2008.07.004 10.1007/s00246-018-2036-z 10.1016/S2589-7500(20)30003-0 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors and Eko Devices, Inc. Published on behalf of the American Heart Association, Inc., by Wiley. |
| Copyright_xml | – notice: 2021 The Authors and Eko Devices, Inc. Published on behalf of the American Heart Association, Inc., by Wiley. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1161/JAHA.120.019905 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals - DOAJ (NTUSG) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| DocumentTitleAlternate | Deep Learning Algorithm for Murmur Detection |
| EISSN | 2047-9980 |
| ExternalDocumentID | oai_doaj_org_article_e45493abbc90480aa8c8c373ac9ed160 oai:escholarship.org:ark:/13030/qt95x1r6x2 PMC8200722 33899504 10_1161_JAHA_120_019905 |
| Genre | Multicenter Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R44 HL144297 – fundername: NHLBI NIH HHS grantid: K08 HL124068 – fundername: NHLBI NIH HHS grantid: R43 HL144297 – fundername: Irene D. Pritzker Foundation |
| GroupedDBID | 0R~ 1OC 24P 53G 5VS 8-1 AAMMB AAYXX AAZKR ACGFO ACXQS ADBBV ADKYN ADZMN AEFGJ AEGXH AENEX AGXDD AIAGR AIDQK AIDYY ALAGY ALMA_UNASSIGNED_HOLDINGS AOIJS AVUZU BAWUL BCNDV CITATION DIK EBS EMOBN GODZA GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 RAH RNS RPM WIN ACCMX CGR CUY CVF ECM EIF NPM 7X8 5PM ADRAZ ADTOC EJD H13 UNPAY |
| ID | FETCH-LOGICAL-c525t-cab22d7d931c3ec74eee4c9132661ff822acd0a9da1c56ab9eee5456d07559d83 |
| IEDL.DBID | M48 |
| ISSN | 2047-9980 |
| IngestDate | Fri Oct 03 12:49:58 EDT 2025 Sun Oct 26 02:25:57 EDT 2025 Thu Aug 21 14:02:06 EDT 2025 Fri Sep 05 08:51:39 EDT 2025 Mon Jul 21 05:55:42 EDT 2025 Wed Oct 01 03:54:42 EDT 2025 Thu Apr 24 22:59:45 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | physical examination valvular heart disease machine learning neural networks auscultation |
| Language | English |
| License | This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. cc-by-nc |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c525t-cab22d7d931c3ec74eee4c9132661ff822acd0a9da1c56ab9eee5456d07559d83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Supplementary Material for this article is available at https://www.ahajournals.org/doi/suppl/10.1161/JAHA.120.019905 Preprint posted on MedRxiv, April 20, 2020. doi: https://doi.org/10.1101/2020.04.01.20050518. J.S. Chorba and A.M. Shapiro contributed equally. For Sources of Funding and Disclosures, see page 12. |
| ORCID | 0000-0001-8567-7464 0000-0001-6354-1873 0000-0001-6660-2635 0000-0002-8072-6252 0000-0001-8211-7699 0000-0002-6397-6348 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1161/JAHA.120.019905 |
| PMID | 33899504 |
| PQID | 2518740271 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e45493abbc90480aa8c8c373ac9ed160 unpaywall_primary_10_1161_jaha_120_019905 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8200722 proquest_miscellaneous_2518740271 pubmed_primary_33899504 crossref_primary_10_1161_JAHA_120_019905 crossref_citationtrail_10_1161_JAHA_120_019905 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-05-04 |
| PublicationDateYYYYMMDD | 2021-05-04 |
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Hoboken |
| PublicationTitle | Journal of the American Heart Association |
| PublicationTitleAlternate | J Am Heart Assoc |
| PublicationYear | 2021 |
| Publisher | John Wiley and Sons Inc Wiley |
| Publisher_xml | – name: John Wiley and Sons Inc – name: Wiley |
| References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 Clifford GD (e_1_3_2_19_2) 2016; 43 Guilford‐Blake R (e_1_3_2_38_2) 2018; 12 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_24_2 e_1_3_2_25_2 Mann DL (e_1_3_2_14_2) 2015 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 Bonow RO (e_1_3_2_31_2) 2006; 2006 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_33_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_35_2 Dobrow RJ (e_1_3_2_3_2) 1964; 33 Nishimura RA (e_1_3_2_12_2) 2014; 2014 Potes C (e_1_3_2_23_2) 2016; 43 33976396 - Nat Rev Cardiol. 2021 Jul;18(7):460. doi: 10.1038/s41569-021-00567-8 |
| References_xml | – volume: 43 year: 2016 ident: e_1_3_2_19_2 article-title: Classification of normal/abnormal heart sound recordings: the Physionet/computing in cardiology challenge 2016 publication-title: Comput Cardiol – ident: e_1_3_2_5_2 doi: 10.1136/hrt.2010.205096 – ident: e_1_3_2_28_2 doi: 10.1001/jama.1933.02740310020005 – ident: e_1_3_2_36_2 doi: 10.1016/j.jclinepi.2008.04.007 – ident: e_1_3_2_6_2 doi: 10.1016/S0140-6736(06)69208-8 – ident: e_1_3_2_18_2 doi: 10.1109/EMBC.2016.7590823 – ident: e_1_3_2_37_2 doi: 10.1001/archinte.166.6.610 – ident: e_1_3_2_21_2 doi: 10.1088/1361-6579/aa7ec8 – ident: e_1_3_2_30_2 doi: 10.1016/j.echo.2017.01.007 – ident: e_1_3_2_9_2 doi: 10.1161/CIRCULATIONAHA.108.836510 – ident: e_1_3_2_32_2 doi: 10.1016/S0002-9343(00)00361-2 – ident: e_1_3_2_42_2 doi: 10.1056/NEJMoa2001017 – ident: e_1_3_2_16_2 doi: 10.1038/s41746-018-0065-x – ident: e_1_3_2_39_2 doi: 10.1161/CIRCULATIONAHA.117.026622 – ident: e_1_3_2_33_2 doi: 10.1136/heartjnl-2012-302265 – ident: e_1_3_2_8_2 doi: 10.1093/eurheartj/ehp530 – ident: e_1_3_2_15_2 doi: 10.1148/radiol.2018171820 – ident: e_1_3_2_35_2 doi: 10.1136/bmj.e6717 – ident: e_1_3_2_25_2 doi: 10.1109/CVPR.2016.90 – ident: e_1_3_2_26_2 – ident: e_1_3_2_41_2 doi: 10.1016/j.jacc.2015.10.090 – ident: e_1_3_2_2_2 doi: 10.1001/jama.1997.03540310062036 – volume: 12 start-page: 28 year: 2018 ident: e_1_3_2_38_2 article-title: Tackling the rural access crisis: cardiologists will need an array of tools to meet patients’ needs publication-title: Cardiovasc Bus – volume: 33 start-page: 305 year: 1964 ident: e_1_3_2_3_2 article-title: A study of physician variation in heart‐sound interpretation publication-title: Med Ann Dist Columbia – ident: e_1_3_2_22_2 doi: 10.1109/ACCESS.2018.2889437 – volume: 2006 start-page: e84 year: 2006 ident: e_1_3_2_31_2 article-title: ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines publication-title: Circulation – ident: e_1_3_2_10_2 doi: 10.1016/j.ahj.2013.12.030 – volume: 43 year: 2016 ident: e_1_3_2_23_2 article-title: Ensemble of feature‐based and deep learning‐based classifiers for detection of abnormal heart sounds publication-title: Comput Cardiol – volume: 2014 start-page: e521 year: 2014 ident: e_1_3_2_12_2 article-title: AHA/ACC guideline for the management of patients with valvular heart disease publication-title: Circulation – ident: e_1_3_2_17_2 doi: 10.1038/s42003-019-0438-y – ident: e_1_3_2_4_2 doi: 10.1001/jama.1997.03550090041030 – volume-title: Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine year: 2015 ident: e_1_3_2_14_2 – ident: e_1_3_2_7_2 doi: 10.1016/j.jacc.2013.05.015 – ident: e_1_3_2_27_2 doi: 10.1016/0895-4356(91)90128-V – ident: e_1_3_2_24_2 – ident: e_1_3_2_11_2 doi: 10.1093/eurheartj/ehs190 – ident: e_1_3_2_29_2 doi: 10.1093/ehjci/jew335 – ident: e_1_3_2_40_2 doi: 10.1016/j.jcmg.2008.07.004 – ident: e_1_3_2_20_2 doi: 10.1007/s00246-018-2036-z – ident: e_1_3_2_13_2 – ident: e_1_3_2_34_2 doi: 10.1016/S2589-7500(20)30003-0 – reference: 33976396 - Nat Rev Cardiol. 2021 Jul;18(7):460. doi: 10.1038/s41569-021-00567-8 |
| SSID | ssj0000627359 |
| Score | 2.5704374 |
| Snippet | Background Clinicians vary markedly in their ability to detect murmurs during cardiac auscultation and identify the underlying pathological features. Deep... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e019905 |
| SubjectTerms | Adolescent Adult Aged Aged, 80 and over Algorithms auscultation Cross-Sectional Studies Deep Learning Diagnosis, Computer-Assisted - methods Equipment Design Female Heart Auscultation - instrumentation Heart Murmurs - diagnosis Humans machine learning Male Middle Aged neural networks Original Research physical examination Reproducibility of Results Stethoscopes valvular heart disease Young Adult |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals - DOAJ (NTUSG) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD8AF8Sa8ZCQOcEibl5P4uHSpVpWKkKBSb9bEnuwuSrOrkoD498w46Sqrgrhwje0k9ow939jjb4R4a5WrasIFYW11HZKFgLDMmLYSbR5RCwJ1fHf47FO-OM9OL9TFJNUXx4QN9MDDwB1hRh5MClVlNV9_BihtadMiBavRxbn31qNST5ypYQ0ms6z0yOVDqObodLbgjb_okDCN5mR1EzPk2fr_BDFvRkre6dst_PoJTTMxQyf3xb0RP8rZ8N8PxC1sH4rbZ-MJ-SMBc8StHFlTl3LWLDfk_q8uJYFTOeu7DSFUdPLYK4aVNM6X_ZWcY-dDslr5Yw0S5Hy95GQi8kvHCab9zRX5uYGOEe5jcX7y8evxIhzTKIRWJaoLLVRJ4gqn09imaIsMETOryQ0l21zXhBDAugi0g9iqHCpN5YyrHKEJpV2ZPhEH7abFZ0JiTOirwogWJXqFi7RTdaxrF5dFmRd1HIjD61E1duQY51QXjfG-Rh4bFoMhMZhBDIF4t2uwHeg1_l71A4tpV415sf0D0hYzaov5l7YE4s21kA3NIz4cgRY3_XdDOI-zEyYFdeLpIPTdp1ImIVRRFohiTx32_mW_pF2vPFd3yXvBSRKI9zvFudHRb7CCSUef_4-OvhB3E46-4dDM7KU46K56fEXwqate-5nyG65hGEY priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdQJwEv4xvCl4zEAzwki5M4iR_DylRN2jQJKo2nyLGdNpClVeeMwV_PXZJWLQMJXmM7yenOud_Fd78j5K3iuigBF7ilEqULHkK6aYS0lUbFPqwAUIe1wyen8WQaHZ_z84EsGmthzDqmm1fL7iC_7XuSHQh-zVbxNXxt92IOsHtE9qanZ9kXbB6HbAMQNvgDdQ-AmIOvci49FvgeQBiBvem2vE5Hzv8nRHkzMfJO2yzlj--yrre8ztG9Pl_rsiMrxGSTb15rC0_9_I3K8Z8Euk_2B-xJs95YHpBbpnlIbp8Mp-uPiBwbs6QD4-qMZvVssars_IICsKVZaxeAbo2mh51RKQo6umhXdGxsl87V0KtKUknH1QwbkdBPFptTd1Uv9KyWFtHxYzI9-vj5cOIOLRhcxQNuXSWLINCJFiFToVFJZIyJlIAQFvx6WQK6kEr7UmjJFI9lIWAcMZkGJMKFTsMnZNQsGvOMUMMAuRXGhw8a3EL7QvOSiVKzNEnjpGQO8dYqytXAT45tMuq8i1Nilh9nkywHnea9Th3ybrNg2VNz_H3qB9T5ZhpyancXQCH5sEVzE0GsHMqiUAIL7aVMVarCJJRKGM1i3yFv1haTwx7EgxXZmEV7mQNGxM6GQQJCPO0taPOoEAkMuR85JNmxrZ132R1pqnnH853if-QgcMj7jRXeEBTtfEvQ5_8x9wW5G2CCDmZvRi_JyK5a8woQli1eD3vrF96MJ7c priority: 102 providerName: Unpaywall |
| Title | Deep Learning Algorithm for Automated Cardiac Murmur Detection via a Digital Stethoscope Platform |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33899504 https://www.proquest.com/docview/2518740271 https://pubmed.ncbi.nlm.nih.gov/PMC8200722 https://escholarship.org/uc/item/95x1r6x2 https://doaj.org/article/e45493abbc90480aa8c8c373ac9ed160 |
| UnpaywallVersion | submittedVersion |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2047-9980 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000627359 issn: 2047-9980 databaseCode: KQ8 dateStart: 20150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2047-9980 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000627359 issn: 2047-9980 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2047-9980 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000627359 issn: 2047-9980 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2047-9980 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000627359 issn: 2047-9980 databaseCode: DIK dateStart: 20120101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2047-9980 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000627359 issn: 2047-9980 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2047-9980 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000627359 issn: 2047-9980 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2047-9980 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000627359 issn: 2047-9980 databaseCode: RPM dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2047-9980 dateEnd: 20250831 omitProxy: true ssIdentifier: ssj0000627359 issn: 2047-9980 databaseCode: M48 dateStart: 20120201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 2047-9980 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000627359 issn: 2047-9980 databaseCode: AVUZU dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2047-9980 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000627359 issn: 2047-9980 databaseCode: 24P dateStart: 20120101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQKwEXxJu0sDISBzhkyTvxAaHQpVpV2qoSrFRO0cR2dhelyZImQP89M066dNVF4prETuzxZL7x4_sYeyNDlReIC-xCisLGCAF2EhBtpZaRgyUQ1NHZ4dlpNJ0HJ-fh-V85oKEDL3emdqQnNW_K8e8fVx_R4T8Yh4_c9yfplOb0nDHCFUF8pvsYpgTpOMwGrN__ljFSG_E0j9gJMM1wBqqfHXVsRSlD5r8Lgd7eSHmvq9Zw9QvK8kaUOn7IHgzwkqf9eHjE7ujqMbs7GxbQnzCYaL3mA6nqgqflom5W7fKCI3bladfWCGC14kdm3EiOZrjoGj7RrdmxVfGfK-DAJ6sFaY3wLy3pT5uDLfyshJYA8FM2P_789WhqDyoLtgy9sLUl5J6nYiV8V_paxoHWOpACs1QM3UWBAAKkckAocGUYQS7wPsEuhWAjFCrxn7G9qq70C8a1i-As1w7-s7AK5QgVFq4olJvESRQXrsXG172ayYGCnJQwysykIpGbkRkyNEPWm8FibzcF1j37xr8f_URm2jxGtNnmQt0sssELMx1gOuxDnktBZ-kBEplIP_ZBCq3cyLHY62sjZ-hmtHYCla67ywxhIIkXejE24nlv9M2rfOIoDJ3AYvHWcNj6lu071WppqLwTmir2PIu92wycWw39Dku40dCD_--TQ3bfoy04tD8zeMn22qbTrxBDtfnIzD2MjIeM2P789Cz99gd7MBlu |
| linkProvider | Scholars Portal |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdQJwEv4xvCl4zEAzwki5M4iR_DylRN2jQJKo2nyLGdNpClVeeMwV_PXZJWLQMJXmM7yenOud_Fd78j5K3iuigBF7ilEqULHkK6aYS0lUbFPqwAUIe1wyen8WQaHZ_z84EsGmthzDqmm1fL7iC_7XuSHQh-zVbxNXxt92IOsHtE9qanZ9kXbB6HbAMQNvgDdQ-AmIOvci49FvgeQBiBvem2vE5Hzv8nRHkzMfJO2yzlj--yrre8ztG9Pl_rsiMrxGSTb15rC0_9_I3K8Z8Euk_2B-xJs95YHpBbpnlIbp8Mp-uPiBwbs6QD4-qMZvVssars_IICsKVZaxeAbo2mh51RKQo6umhXdGxsl87V0KtKUknH1QwbkdBPFptTd1Uv9KyWFtHxYzI9-vj5cOIOLRhcxQNuXSWLINCJFiFToVFJZIyJlIAQFvx6WQK6kEr7UmjJFI9lIWAcMZkGJMKFTsMnZNQsGvOMUMMAuRXGhw8a3EL7QvOSiVKzNEnjpGQO8dYqytXAT45tMuq8i1Nilh9nkywHnea9Th3ybrNg2VNz_H3qB9T5ZhpyancXQCH5sEVzE0GsHMqiUAIL7aVMVarCJJRKGM1i3yFv1haTwx7EgxXZmEV7mQNGxM6GQQJCPO0taPOoEAkMuR85JNmxrZ132R1pqnnH853if-QgcMj7jRXeEBTtfEvQ5_8x9wW5G2CCDmZvRi_JyK5a8woQli1eD3vrF96MJ7c |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Algorithm+for+Automated+Cardiac+Murmur+Detection+via+a+Digital+Stethoscope+Platform&rft.jtitle=Journal+of+the+American+Heart+Association&rft.au=Chorba%2C+John+S.&rft.au=Shapiro%2C+Avi+M.&rft.au=Le%2C+Le&rft.au=Maidens%2C+John&rft.date=2021-05-04&rft.issn=2047-9980&rft.eissn=2047-9980&rft.volume=10&rft.issue=9&rft_id=info:doi/10.1161%2FJAHA.120.019905&rft.externalDBID=n%2Fa&rft.externalDocID=10_1161_JAHA_120_019905 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-9980&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-9980&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-9980&client=summon |