Estimation of the quasi-static Young's modulus of the eardrum using a pressurization technique

The quasi-static Young's modulus of the eardrum's pars tensa is an important modeling parameter in computer simulations. Recent developments in indentation testing and inverse modeling allow estimation of this parameter with the eardrum in situ. These approaches are challenging because of...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 110; no. 3; pp. 231 - 239
Main Authors Ghadarghadar, Nastaran, Agrawal, Sumit K., Samani, Abbas, Ladak, Hanif M.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ireland Ltd 01.06.2013
Elsevier
Subjects
Online AccessGet full text
ISSN0169-2607
1872-7565
1872-7565
DOI10.1016/j.cmpb.2012.11.006

Cover

More Information
Summary:The quasi-static Young's modulus of the eardrum's pars tensa is an important modeling parameter in computer simulations. Recent developments in indentation testing and inverse modeling allow estimation of this parameter with the eardrum in situ. These approaches are challenging because of the curved shape of the pars tensa which requires special care during experimentation to keep the indenter perpendicular to the local surface at the point of contact. Moreover, they involve complicated contact modeling. An alternative computer-based method is presented here in which pressurization is used instead of indentation. The Young's modulus of a thin-shell model of the eardrum with subject-specific geometry is numerically optimized such that simulated pressurized shapes match measured counterparts. The technique was evaluated on six healthy rat eardrums, resulting in a Young's modulus estimate of 22.8±1.5MPa. This is comparable to values estimated using indentation testing. The new pressurization-based approach is simpler to use than the indentation-based method for the two reasons noted above.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0169-2607
1872-7565
1872-7565
DOI:10.1016/j.cmpb.2012.11.006