Electrophoresis deposition of Ag nanoparticles on TiO2 nanotube arrays electrode for hydrogen peroxide sensing
In this paper, a simple and green strategy, based on the electrophoresis deposition technology, was reported to prepare Ag nanoparticles (NPs) modified TiO2 nanotube arrays (NTs). The morphologies of AgNPs, TiO2NTs and AgNPs/TiO2NTs were characterized by transmission electron microscope (TEM) and sc...
Saved in:
Published in | Talanta (Oxford) Vol. 112; pp. 129 - 135 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.08.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 0039-9140 1873-3573 1873-3573 |
DOI | 10.1016/j.talanta.2013.03.015 |
Cover
Abstract | In this paper, a simple and green strategy, based on the electrophoresis deposition technology, was reported to prepare Ag nanoparticles (NPs) modified TiO2 nanotube arrays (NTs). The morphologies of AgNPs, TiO2NTs and AgNPs/TiO2NTs were characterized by transmission electron microscope (TEM) and scanning electron microscope (SEM). The results demonstrate that the surface of TiO2NTs was homogeneously decorated with AgNPs, of which the morphology could be easily controlled by the electrophoretic deposition (EPD) time. In order to investigate the co-effects of AgNPs and TiO2NTs on the catalysis of H2O2, the electrochemical performances of TiO2 NTs, AgNPs/Ti and AgNPs/TiO2NTs electrodes were investigated in this work. It is found that the response of AgNPs/TiO2NTs electrode to H2O2 was remarkably enhanced due to the co-effects of AgNPs and TiO2NTs. Therefore, it could be used to fabricate H2O2 sensor. The effects of conditions were investigated in detail, such as EPD time, the operating potential, etc.. Under the optimal experimental condition, the sensor had a quick response to H2O2 at −0.12V with a high sensitivity (184.24mA·M−1cm−2), wide linear range (0.75μM–11.16mM) and low detection limit (85.6nM). In addition, the sensor also has good stability and excellent selectivity. The developed H2O2 sensor has been successfully applied to the detection of H2O2 in real samples. This work also demonstrated that the AgNPs/TiO2NTs has potential application in fabricating glucose sensor by immobilizing glucose oxidase onto the prepared electrode.
► We fabricate a highly dispersed AgNPs modified TiO2NTs structure by EPD technology.► We control the morphology and sensitivity of AgNPs/TiO2NTs electrode by EPD time.► The sensor has a quick response to H2O2 due to the co-effects of AgNPs and TiO2NTs.► The sensor has a low detection limit (85.6nM) to H2O2 with a wide linear range.► The AgNPs/TiO2NTs allows direct electrochemical reactions for glucose oxidase. |
---|---|
AbstractList | In this paper, a simple and green strategy, based on the electrophoresis deposition technology, was reported to prepare Ag nanoparticles (NPs) modified TiO2 nanotube arrays (NTs). The morphologies of AgNPs, TiO2NTs and AgNPs/TiO2NTs were characterized by transmission electron microscope (TEM) and scanning electron microscope (SEM). The results demonstrate that the surface of TiO2NTs was homogeneously decorated with AgNPs, of which the morphology could be easily controlled by the electrophoretic deposition (EPD) time. In order to investigate the co-effects of AgNPs and TiO2NTs on the catalysis of H2O2, the electrochemical performances of TiO2 NTs, AgNPs/Ti and AgNPs/TiO2NTs electrodes were investigated in this work. It is found that the response of AgNPs/TiO2NTs electrode to H2O2 was remarkably enhanced due to the co-effects of AgNPs and TiO2NTs. Therefore, it could be used to fabricate H2O2 sensor. The effects of conditions were investigated in detail, such as EPD time, the operating potential, etc.. Under the optimal experimental condition, the sensor had a quick response to H2O2 at a0.12 V with a high sensitivity (184.24 mAADTMa1 cm-2), wide linear range (0.75 mu Ma11.16 mM) and low detection limit (85.6 nM). In addition, the sensor also has good stability and excellent selectivity. The developed H2O2 sensor has been successfully applied to the detection of H2O2 in real samples. This work also demonstrated that the AgNPs/TiO2NTs has potential application in fabricating glucose sensor by immobilizing glucose oxidase onto the prepared electrode. In this paper, a simple and green strategy, based on the electrophoresis deposition technology, was reported to prepare Ag nanoparticles (NPs) modified TiO2 nanotube arrays (NTs). The morphologies of AgNPs, TiO2NTs and AgNPs/TiO2NTs were characterized by transmission electron microscope (TEM) and scanning electron microscope (SEM). The results demonstrate that the surface of TiO2NTs was homogeneously decorated with AgNPs, of which the morphology could be easily controlled by the electrophoretic deposition (EPD) time. In order to investigate the co-effects of AgNPs and TiO2NTs on the catalysis of H2O2, the electrochemical performances of TiO2 NTs, AgNPs/Ti and AgNPs/TiO2NTs electrodes were investigated in this work. It is found that the response of AgNPs/TiO2NTs electrode to H2O2 was remarkably enhanced due to the co-effects of AgNPs and TiO2NTs. Therefore, it could be used to fabricate H2O2 sensor. The effects of conditions were investigated in detail, such as EPD time, the operating potential, etc.. Under the optimal experimental condition, the sensor had a quick response to H2O2 at −0.12V with a high sensitivity (184.24mA·M−1cm−2), wide linear range (0.75μM–11.16mM) and low detection limit (85.6nM). In addition, the sensor also has good stability and excellent selectivity. The developed H2O2 sensor has been successfully applied to the detection of H2O2 in real samples. This work also demonstrated that the AgNPs/TiO2NTs has potential application in fabricating glucose sensor by immobilizing glucose oxidase onto the prepared electrode. ► We fabricate a highly dispersed AgNPs modified TiO2NTs structure by EPD technology.► We control the morphology and sensitivity of AgNPs/TiO2NTs electrode by EPD time.► The sensor has a quick response to H2O2 due to the co-effects of AgNPs and TiO2NTs.► The sensor has a low detection limit (85.6nM) to H2O2 with a wide linear range.► The AgNPs/TiO2NTs allows direct electrochemical reactions for glucose oxidase. In this paper, a simple and green strategy, based on the electrophoresis deposition technology, was reported to prepare Ag nanoparticles (NPs) modified TiO₂ nanotube arrays (NTs). The morphologies of AgNPs, TiO₂NTs and AgNPs/TiO₂NTs were characterized by transmission electron microscope (TEM) and scanning electron microscope (SEM). The results demonstrate that the surface of TiO₂NTs was homogeneously decorated with AgNPs, of which the morphology could be easily controlled by the electrophoretic deposition (EPD) time. In order to investigate the co-effects of AgNPs and TiO₂NTs on the catalysis of H₂O₂, the electrochemical performances of TiO₂ NTs, AgNPs/Ti and AgNPs/TiO₂NTs electrodes were investigated in this work. It is found that the response of AgNPs/TiO₂NTs electrode to H₂O₂ was remarkably enhanced due to the co-effects of AgNPs and TiO₂NTs. Therefore, it could be used to fabricate H₂O₂ sensor. The effects of conditions were investigated in detail, such as EPD time, the operating potential, etc.. Under the optimal experimental condition, the sensor had a quick response to H₂O₂ at −0.12V with a high sensitivity (184.24mA·M⁻¹cm⁻²), wide linear range (0.75μM–11.16mM) and low detection limit (85.6nM). In addition, the sensor also has good stability and excellent selectivity. The developed H₂O₂ sensor has been successfully applied to the detection of H₂O₂ in real samples. This work also demonstrated that the AgNPs/TiO₂NTs has potential application in fabricating glucose sensor by immobilizing glucose oxidase onto the prepared electrode. In this paper, a simple and green strategy, based on the electrophoresis deposition technology, was reported to prepare Ag nanoparticles (NPs) modified TiO2 nanotube arrays (NTs). The morphologies of AgNPs, TiO2NTs and AgNPs/TiO2NTs were characterized by transmission electron microscope (TEM) and scanning electron microscope (SEM). The results demonstrate that the surface of TiO2NTs was homogeneously decorated with AgNPs, of which the morphology could be easily controlled by the electrophoretic deposition (EPD) time. In order to investigate the co-effects of AgNPs and TiO2NTs on the catalysis of H2O2, the electrochemical performances of TiO2 NTs, AgNPs/Ti and AgNPs/TiO2NTs electrodes were investigated in this work. It is found that the response of AgNPs/TiO2NTs electrode to H2O2 was remarkably enhanced due to the co-effects of AgNPs and TiO2NTs. Therefore, it could be used to fabricate H2O2 sensor. The effects of conditions were investigated in detail, such as EPD time, the operating potential, etc.. Under the optimal experimental condition, the sensor had a quick response to H2O2 at -0.12 V with a high sensitivity (184.24 mA·M(-1)cm(-2)), wide linear range (0.75 μM-11.16 mM) and low detection limit (85.6 nM). In addition, the sensor also has good stability and excellent selectivity. The developed H2O2 sensor has been successfully applied to the detection of H2O2 in real samples. This work also demonstrated that the AgNPs/TiO2NTs has potential application in fabricating glucose sensor by immobilizing glucose oxidase onto the prepared electrode.In this paper, a simple and green strategy, based on the electrophoresis deposition technology, was reported to prepare Ag nanoparticles (NPs) modified TiO2 nanotube arrays (NTs). The morphologies of AgNPs, TiO2NTs and AgNPs/TiO2NTs were characterized by transmission electron microscope (TEM) and scanning electron microscope (SEM). The results demonstrate that the surface of TiO2NTs was homogeneously decorated with AgNPs, of which the morphology could be easily controlled by the electrophoretic deposition (EPD) time. In order to investigate the co-effects of AgNPs and TiO2NTs on the catalysis of H2O2, the electrochemical performances of TiO2 NTs, AgNPs/Ti and AgNPs/TiO2NTs electrodes were investigated in this work. It is found that the response of AgNPs/TiO2NTs electrode to H2O2 was remarkably enhanced due to the co-effects of AgNPs and TiO2NTs. Therefore, it could be used to fabricate H2O2 sensor. The effects of conditions were investigated in detail, such as EPD time, the operating potential, etc.. Under the optimal experimental condition, the sensor had a quick response to H2O2 at -0.12 V with a high sensitivity (184.24 mA·M(-1)cm(-2)), wide linear range (0.75 μM-11.16 mM) and low detection limit (85.6 nM). In addition, the sensor also has good stability and excellent selectivity. The developed H2O2 sensor has been successfully applied to the detection of H2O2 in real samples. This work also demonstrated that the AgNPs/TiO2NTs has potential application in fabricating glucose sensor by immobilizing glucose oxidase onto the prepared electrode. In this paper, a simple and green strategy, based on the electrophoresis deposition technology, was reported to prepare Ag nanoparticles (NPs) modified TiO2 nanotube arrays (NTs). The morphologies of AgNPs, TiO2NTs and AgNPs/TiO2NTs were characterized by transmission electron microscope (TEM) and scanning electron microscope (SEM). The results demonstrate that the surface of TiO2NTs was homogeneously decorated with AgNPs, of which the morphology could be easily controlled by the electrophoretic deposition (EPD) time. In order to investigate the co-effects of AgNPs and TiO2NTs on the catalysis of H2O2, the electrochemical performances of TiO2 NTs, AgNPs/Ti and AgNPs/TiO2NTs electrodes were investigated in this work. It is found that the response of AgNPs/TiO2NTs electrode to H2O2 was remarkably enhanced due to the co-effects of AgNPs and TiO2NTs. Therefore, it could be used to fabricate H2O2 sensor. The effects of conditions were investigated in detail, such as EPD time, the operating potential, etc.. Under the optimal experimental condition, the sensor had a quick response to H2O2 at -0.12 V with a high sensitivity (184.24 mA·M(-1)cm(-2)), wide linear range (0.75 μM-11.16 mM) and low detection limit (85.6 nM). In addition, the sensor also has good stability and excellent selectivity. The developed H2O2 sensor has been successfully applied to the detection of H2O2 in real samples. This work also demonstrated that the AgNPs/TiO2NTs has potential application in fabricating glucose sensor by immobilizing glucose oxidase onto the prepared electrode. |
Author | Jiang, Yanshu Du, Juan Zheng, Baozhan Xiao, Dan Liu, Guangyue Guo, Yong |
Author_xml | – sequence: 1 givenname: Yanshu surname: Jiang fullname: Jiang, Yanshu organization: College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China – sequence: 2 givenname: Baozhan surname: Zheng fullname: Zheng, Baozhan organization: College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China – sequence: 3 givenname: Juan surname: Du fullname: Du, Juan organization: College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China – sequence: 4 givenname: Guangyue surname: Liu fullname: Liu, Guangyue organization: College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China – sequence: 5 givenname: Yong surname: Guo fullname: Guo, Yong organization: College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China – sequence: 6 givenname: Dan surname: Xiao fullname: Xiao, Dan email: xiaodan@scu.edu.cn organization: College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23708548$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFvEzEQhS1URNPCTwB85LLB9ti7G3FAVdUWpEo90J4tr3c2dbSxF9tB5N_jdAMHLpFGsvz0vRnpvQty5oNHQt5ztuSM1583y2xG47NZCsZhycpw9YoseNtABaqBM7JgDFbVikt2Ti5S2jDGBDB4Q84FNKxVsl0QfzOizTFMzyFicon2OIXksguehoFerak3PkwmZmdHTLTIj-5BvKh51yE1MZp9ojiv6ZEOIdLnfR_DGj2dMIbfrqgJfXJ-_Za8HsyY8N3xvSRPtzeP19-q-4e779dX95VVQuXK9F3DlTW1qIcam65uUCrsm65tRSeEBCmg7VTXtSBqzqRhXED52AKu1LCCS_Jp3jvF8HOHKeutSxbHkhiGXdKiZMGgqRt-EuWKg2xBSjiNgqphJeXL1g9HdNdtsddTdFsT9_pv8gVQM2BjSCni8A_hTB8a1ht9bFgfGtasDFfF9-U_n3XZHPrK0bjxpPvj7B5M0GYdXdJPPwpQz3koVoivM4Glnl8Oo07WobfYu1gq1n1wJ278Aaifze0 |
CitedBy_id | crossref_primary_10_1021_acsanm_3c04186 crossref_primary_10_1007_s13738_015_0611_2 crossref_primary_10_1016_j_materresbull_2022_112134 crossref_primary_10_1007_s00604_020_04695_9 crossref_primary_10_1021_cr500061m crossref_primary_10_3390_app10155243 crossref_primary_10_1016_j_ceramint_2014_12_083 crossref_primary_10_1039_C4AN01734J crossref_primary_10_1016_j_jelechem_2014_05_027 crossref_primary_10_1016_j_msec_2018_12_045 crossref_primary_10_1016_j_talanta_2024_127306 crossref_primary_10_1088_1361_6528_ac40be crossref_primary_10_1557_opl_2014_202 crossref_primary_10_1039_D4NR03219E crossref_primary_10_3390_ma14133767 crossref_primary_10_1016_j_vacuum_2023_111953 crossref_primary_10_1016_j_aca_2020_03_039 crossref_primary_10_1016_j_cap_2022_02_008 crossref_primary_10_3390_nano9081072 crossref_primary_10_1007_s10854_020_03153_9 crossref_primary_10_1021_acs_jpcc_9b06555 crossref_primary_10_1016_j_ijhydene_2015_12_028 crossref_primary_10_1016_j_matchemphys_2025_130573 crossref_primary_10_3390_ma16031261 crossref_primary_10_1016_j_snb_2014_11_038 crossref_primary_10_1016_j_apsusc_2016_06_066 crossref_primary_10_1016_j_electacta_2018_01_048 crossref_primary_10_1016_j_ceramint_2020_08_255 crossref_primary_10_1007_s11164_020_04354_x crossref_primary_10_1039_C5RA26857E crossref_primary_10_1016_j_talanta_2024_127423 crossref_primary_10_1080_19443994_2015_1041052 crossref_primary_10_1039_C9AY00665F crossref_primary_10_1016_j_ijhydene_2022_10_086 crossref_primary_10_1016_j_talanta_2015_05_069 crossref_primary_10_1016_j_snb_2017_11_163 crossref_primary_10_1016_j_apmt_2020_100647 crossref_primary_10_1039_C4AY02881C crossref_primary_10_1007_s11706_017_0386_8 crossref_primary_10_1080_00032719_2014_999279 crossref_primary_10_1039_C5NJ01983D crossref_primary_10_1080_15569543_2024_2397651 crossref_primary_10_3390_coatings10020130 crossref_primary_10_1039_D3BM00300K crossref_primary_10_1016_j_talanta_2022_123407 crossref_primary_10_1021_acsbiomaterials_0c01207 crossref_primary_10_1088_1361_6528_ac7882 crossref_primary_10_1016_j_mtcomm_2022_105013 crossref_primary_10_1016_j_jelechem_2013_12_011 crossref_primary_10_1007_s00604_014_1258_x crossref_primary_10_1016_j_snb_2016_04_167 crossref_primary_10_1002_celc_202000570 crossref_primary_10_1007_s10853_020_05470_0 crossref_primary_10_1016_j_ceramint_2014_07_119 crossref_primary_10_1016_j_snb_2017_04_100 crossref_primary_10_1016_j_ijhydene_2023_08_062 crossref_primary_10_1016_j_spmi_2015_08_022 |
Cites_doi | 10.1007/s00216-005-3205-5 10.1016/j.elecom.2006.10.008 10.1016/j.elecom.2011.08.003 10.1016/j.bios.2011.06.008 10.1016/j.snb.2009.11.004 10.1021/ja1025112 10.1088/0957-4484/20/10/105501 10.1016/j.matlet.2011.08.098 10.1021/jp021235v 10.1016/j.jcrysgro.2010.07.034 10.1021/ac0624142 10.1016/j.talanta.2011.09.011 10.1021/cr0500535 10.1016/j.talanta.2011.03.011 10.1021/ja076092a 10.1016/S0956-5663(02)00185-9 10.1016/j.elecom.2008.12.026 10.1002/(SICI)1521-4109(199809)10:11<776::AID-ELAN776>3.0.CO;2-5 10.1021/nl048204r 10.1016/j.elecom.2008.02.016 10.1021/nn202714c 10.1021/la034917y 10.1021/cg201243n 10.1016/S0001-8686(01)00068-9 10.1021/jp8046054 10.1016/j.matlet.2012.04.031 10.1021/es201675m 10.1021/ac702358d 10.1016/j.electacta.2010.04.017 10.1002/adfm.200700729 10.1021/es0300259 10.1016/j.snb.2008.09.051 10.1021/jp8114012 10.1016/j.talanta.2009.04.036 10.1016/j.snb.2010.06.019 10.1016/j.tsf.2010.12.239 10.1021/cm0257825 10.1021/ac034859l 10.1016/j.talanta.2010.04.047 10.1039/b9nj00780f 10.1016/j.bios.2011.02.010 10.1016/j.snb.2010.01.048 10.1016/j.elecom.2006.05.013 10.1021/la904723a 10.1021/ac050580o 10.1016/j.snb.2007.10.006 10.1021/jf071062c 10.1021/cr068127f 10.1021/ac101392f |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. Copyright © 2013 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2013 Elsevier B.V. – notice: Copyright © 2013 Elsevier B.V. All rights reserved. |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QQ 7SP 7SR 7U5 8FD JG9 L7M 7S9 L.6 |
DOI | 10.1016/j.talanta.2013.03.015 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Ceramic Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Ceramic Abstracts Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-3573 |
EndPage | 135 |
ExternalDocumentID | 23708548 10_1016_j_talanta_2013_03_015 US201600003750 S0039914013001641 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNCT ACRLP ADBBV ADECG ADEZE ADIYS AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SCH SDF SDG SDP SES SPC SPCBC SSK SSZ T5K TN5 TWZ WH7 XPP YK3 YNT ZMT ~02 ~G- 29Q 3O- AAHBH AAQXK AATTM AAXKI AAYJJ ABDPE ABEFU ABFNM ABWVN ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AJQLL AKRWK ANKPU ASPBG AVWKF AZFZN BNPGV EJD FBQ FEDTE FGOYB HMU HVGLF HZ~ R2- RIG SCB SEW SSH WUQ XOL AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7X8 7QQ 7SP 7SR 7U5 8FD JG9 L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c525t-adb715ca626f6e7b67e45ed7b882b22434238b5bb8326104a0123b83c67e95f93 |
IEDL.DBID | AIKHN |
ISSN | 0039-9140 1873-3573 |
IngestDate | Sat Sep 27 22:10:33 EDT 2025 Sun Sep 28 00:57:38 EDT 2025 Fri Sep 05 00:10:41 EDT 2025 Mon Jul 21 05:55:54 EDT 2025 Thu Sep 25 00:35:33 EDT 2025 Thu Apr 24 23:06:52 EDT 2025 Thu Apr 03 09:43:35 EDT 2025 Fri Feb 23 02:20:20 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | TiO2 nanotube arrays Hydrogen peroxide sensor AgNPs/TiO2NTs Electrophoretic deposition |
Language | English |
License | Copyright © 2013 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c525t-adb715ca626f6e7b67e45ed7b882b22434238b5bb8326104a0123b83c67e95f93 |
Notes | http://dx.doi.org/10.1016/j.talanta.2013.03.015 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23708548 |
PQID | 1356394471 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2000037671 proquest_miscellaneous_1513483443 proquest_miscellaneous_1356394471 pubmed_primary_23708548 crossref_primary_10_1016_j_talanta_2013_03_015 crossref_citationtrail_10_1016_j_talanta_2013_03_015 fao_agris_US201600003750 elsevier_sciencedirect_doi_10_1016_j_talanta_2013_03_015 |
PublicationCentury | 2000 |
PublicationDate | 2013-08-15 |
PublicationDateYYYYMMDD | 2013-08-15 |
PublicationDate_xml | – month: 08 year: 2013 text: 2013-08-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Talanta (Oxford) |
PublicationTitleAlternate | Talanta |
PublicationYear | 2013 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Potyrailo, Mirsky (bib6) 2008; 108 Li, Zhang, Zhu, Yang, Yang (bib12) 2010; 55 Zhu, Liu, Liu, Tong, Yang, Peng (bib19) 2010; 132 Si, Ding, Yuan, Lou, Kim (bib21) 2011; 5 Hosseini, Faraji, Momeni (bib20) 2011; 519 Serra, Re, Palmisano, Vittori Antisari, Filippo, Buccolieri, Manno (bib30) 2010; 145 Chen, Mao (bib22) 2007; 107 Welch, Banks, Simm, Compton (bib16) 2005; 382 de Abreu Franchini, de Souza, Colombara, Costa Matos, Matos (bib1) 2007; 55 Chen, Zhang, Cai, Zhang, Zhang, Tang, Wu (bib17) 2011; 86 Li, Xu, Dai, Fan (bib26) 2009; 113 Yonghai (bib47) 2009; 20 Chen, Lu, Mo, Xu, Xie, Yuan, Xiao, Choi (bib45) 2011; 85 Liu, Liu, Hao, Chu (bib34) 2012; 80 Vione, Maurino, Minero, Borghesi, Lucchiari, Pelizzetti (bib3) 2003; 37 Wang, Huang, Zhang, Wei, Zhou (bib4) 1998; 10 Su, Chang (bib31) 2008; 129 Shu, Chen, Yuan, Gao, Xiao (bib44) 2007; 79 de Mattos, Gorton, Ruzgas (bib5) 2003; 18 He, Dong, Li (bib28) 2007; 9 Gilpin, Pachla (bib2) 2005; 77 Chanmanee, Watcharenwong, Chenthamarakshan, Kajitvichyanukul, de Tacconi, Rajeshwar (bib39) 2007; 130 Lai, Zhuang, Xie, Gong, Tang, Sun, Lin, Chen (bib33) 2010; 34 Wu, Zhao, Ju, Shi, Zhao (bib13) 2006; 8 Li, Noriega-Trevino, Nino-Martinez, Marambio-Jones, Wang, Damoiseaux, Ruiz, Hoek (bib27) 2011; 45 Redmond, Hallock, Brus (bib40) 2004; 5 Chen, Sun, Gao (bib9) 2009; 11 Bui, Pham, Nan, Li, Kim, Seong (bib11) 2010; 150 Sun, Fu, Yang, Sui, Zhao, Yin, Li, Zhao, Zou (bib29) 2011; 13 He, Hu, Liu, Du, Xi, Jiang (bib10) 2010; 144 Noberi, Zaman, Üstündağ, Kaya, Kaya (bib37) 2012; 67 He, Cai, Lin, Chen (bib38) 2010; 26 Jang, Lim, Choi, Park, Huh, Suh, Huh, Haam (bib41) 2011; 12 Chen, Ji, Wang (bib42) 2010; 312 Dong, Feng, Shi, Li, Xu (bib24) 2003; 15 Lu, Luo, Chang, Sun (bib48) 2011; 26 Cai, Pang, He, Luo (bib49) 2009; 137 Rajh, Chen, Lukas, Liu, Thurnauer, Tiede (bib46) 2002; 106 Karyakin, Puganova, Budashov, Kurochkin, Karyakina, Levchenko, Matveyenko, Varfolomeyev (bib8) 2003; 76 Zhitomirsky (bib35) 2002; 97 Zhang, Guan, Li, Zhang, Chen, Zeng (bib23) 2003; 19 Cui, Song, Yao, Huang, Wang (bib18) 2008; 10 Du, Wei, Xin, Li (bib43) 2011; 26 Guo, Yu, Yu, Chen (bib25) 2009; 79 Karam, Halaoui (bib7) 2008; 80 Li, Yang, Luo, Chen, Li, Lin, Cai, Yao (bib32) 2010; 82 Lin, Lai, Balamurugan, Vittal, Lin, Ho (bib15) 2010; 82 Huang, Wang, Hou, You (bib14) 2008; 18 Hosseini, Taghavinia, Sharifi, Chavoshi, Rahman (bib36) 2008; 112 Redmond (10.1016/j.talanta.2013.03.015_bib40) 2004; 5 He (10.1016/j.talanta.2013.03.015_bib28) 2007; 9 Karam (10.1016/j.talanta.2013.03.015_bib7) 2008; 80 Serra (10.1016/j.talanta.2013.03.015_bib30) 2010; 145 Cui (10.1016/j.talanta.2013.03.015_bib18) 2008; 10 Bui (10.1016/j.talanta.2013.03.015_bib11) 2010; 150 Welch (10.1016/j.talanta.2013.03.015_bib16) 2005; 382 Liu (10.1016/j.talanta.2013.03.015_bib34) 2012; 80 Yonghai (10.1016/j.talanta.2013.03.015_bib47) 2009; 20 Lin (10.1016/j.talanta.2013.03.015_bib15) 2010; 82 Hosseini (10.1016/j.talanta.2013.03.015_bib20) 2011; 519 Hosseini (10.1016/j.talanta.2013.03.015_bib36) 2008; 112 Zhitomirsky (10.1016/j.talanta.2013.03.015_bib35) 2002; 97 Gilpin (10.1016/j.talanta.2013.03.015_bib2) 2005; 77 Chen (10.1016/j.talanta.2013.03.015_bib45) 2011; 85 de Abreu Franchini (10.1016/j.talanta.2013.03.015_bib1) 2007; 55 Li (10.1016/j.talanta.2013.03.015_bib12) 2010; 55 Shu (10.1016/j.talanta.2013.03.015_bib44) 2007; 79 Dong (10.1016/j.talanta.2013.03.015_bib24) 2003; 15 Huang (10.1016/j.talanta.2013.03.015_bib14) 2008; 18 Chen (10.1016/j.talanta.2013.03.015_bib42) 2010; 312 Rajh (10.1016/j.talanta.2013.03.015_bib46) 2002; 106 Lai (10.1016/j.talanta.2013.03.015_bib33) 2010; 34 Li (10.1016/j.talanta.2013.03.015_bib32) 2010; 82 Chen (10.1016/j.talanta.2013.03.015_bib17) 2011; 86 Potyrailo (10.1016/j.talanta.2013.03.015_bib6) 2008; 108 Su (10.1016/j.talanta.2013.03.015_bib31) 2008; 129 Chen (10.1016/j.talanta.2013.03.015_bib9) 2009; 11 Chen (10.1016/j.talanta.2013.03.015_bib22) 2007; 107 de Mattos (10.1016/j.talanta.2013.03.015_bib5) 2003; 18 He (10.1016/j.talanta.2013.03.015_bib38) 2010; 26 Chanmanee (10.1016/j.talanta.2013.03.015_bib39) 2007; 130 Karyakin (10.1016/j.talanta.2013.03.015_bib8) 2003; 76 Zhu (10.1016/j.talanta.2013.03.015_bib19) 2010; 132 Noberi (10.1016/j.talanta.2013.03.015_bib37) 2012; 67 Si (10.1016/j.talanta.2013.03.015_bib21) 2011; 5 Guo (10.1016/j.talanta.2013.03.015_bib25) 2009; 79 Li (10.1016/j.talanta.2013.03.015_bib26) 2009; 113 Li (10.1016/j.talanta.2013.03.015_bib27) 2011; 45 Cai (10.1016/j.talanta.2013.03.015_bib49) 2009; 137 He (10.1016/j.talanta.2013.03.015_bib10) 2010; 144 Wang (10.1016/j.talanta.2013.03.015_bib4) 1998; 10 Du (10.1016/j.talanta.2013.03.015_bib43) 2011; 26 Sun (10.1016/j.talanta.2013.03.015_bib29) 2011; 13 Lu (10.1016/j.talanta.2013.03.015_bib48) 2011; 26 Wu (10.1016/j.talanta.2013.03.015_bib13) 2006; 8 Zhang (10.1016/j.talanta.2013.03.015_bib23) 2003; 19 Jang (10.1016/j.talanta.2013.03.015_bib41) 2011; 12 Vione (10.1016/j.talanta.2013.03.015_bib3) 2003; 37 |
References_xml | – volume: 132 start-page: 12619 year: 2010 end-page: 12626 ident: bib19 publication-title: J. Am. Chem. Soc. – volume: 85 start-page: 56 year: 2011 end-page: 62 ident: bib45 publication-title: Talanta – volume: 19 start-page: 8230 year: 2003 end-page: 8234 ident: bib23 publication-title: Langmuir – volume: 519 start-page: 3457 year: 2011 end-page: 3461 ident: bib20 publication-title: Thin Solid Films – volume: 144 start-page: 289 year: 2010 end-page: 294 ident: bib10 publication-title: Sens. Actuators B – volume: 18 start-page: 441 year: 2008 end-page: 448 ident: bib14 publication-title: Adv. Funct. Mater. – volume: 97 start-page: 279 year: 2002 end-page: 317 ident: bib35 publication-title: Adv. Colloid Interface Sci. – volume: 79 start-page: 3695 year: 2007 end-page: 3702 ident: bib44 publication-title: Anal. Chem. – volume: 77 start-page: 3755 year: 2005 end-page: 3770 ident: bib2 publication-title: Anal. Chem. – volume: 112 start-page: 18686 year: 2008 end-page: 18689 ident: bib36 publication-title: J. Phys. Chem. C – volume: 107 start-page: 2891 year: 2007 end-page: 2959 ident: bib22 publication-title: Chem. Rev. – volume: 20 start-page: 105501 year: 2009 ident: bib47 publication-title: Nanotechnology – volume: 80 start-page: 66 year: 2012 end-page: 68 ident: bib34 publication-title: Mater. Lett. – volume: 15 start-page: 1941 year: 2003 end-page: 1943 ident: bib24 publication-title: Chem. Mater. – volume: 113 start-page: 8343 year: 2009 end-page: 8349 ident: bib26 publication-title: J. Phys. Chem. C – volume: 34 start-page: 1335 year: 2010 end-page: 1340 ident: bib33 publication-title: New J. Chem. – volume: 130 start-page: 965 year: 2007 end-page: 974 ident: bib39 publication-title: J. Am. Chem. Soc. – volume: 82 start-page: 7357 year: 2010 end-page: 7361 ident: bib32 publication-title: Anal. Chem. – volume: 137 start-page: 134 year: 2009 end-page: 138 ident: bib49 publication-title: Sens. Actuators B – volume: 86 start-page: 266 year: 2011 end-page: 270 ident: bib17 publication-title: Talanta – volume: 10 start-page: 663 year: 2008 end-page: 667 ident: bib18 publication-title: Electrochem. Commun. – volume: 108 start-page: 770 year: 2008 end-page: 813 ident: bib6 publication-title: Chem. Rev. – volume: 145 start-page: 794 year: 2010 end-page: 799 ident: bib30 publication-title: Sens. Actuators, B – volume: 106 start-page: 10543 year: 2002 end-page: 10552 ident: bib46 publication-title: J. Phys. Chem. B – volume: 150 start-page: 436 year: 2010 end-page: 441 ident: bib11 publication-title: Sens. Actuators B – volume: 18 start-page: 193 year: 2003 end-page: 200 ident: bib5 publication-title: Biosensors Bioelectron. – volume: 26 start-page: 4791 year: 2011 end-page: 4797 ident: bib48 publication-title: Biosensors Bioelectron. – volume: 5 start-page: 131 year: 2004 end-page: 135 ident: bib40 publication-title: Nano Lett. – volume: 10 start-page: 776 year: 1998 end-page: 778 ident: bib4 publication-title: Electroanalysis – volume: 26 start-page: 3602 year: 2011 end-page: 3607 ident: bib43 publication-title: Biosensors Bioelectron. – volume: 67 start-page: 113 year: 2012 end-page: 116 ident: bib37 publication-title: Mater. Lett. – volume: 45 start-page: 8989 year: 2011 end-page: 8995 ident: bib27 publication-title: Environ. Sci. Technol. – volume: 76 start-page: 474 year: 2003 end-page: 478 ident: bib8 publication-title: Anal. Chem. – volume: 11 start-page: 450 year: 2009 end-page: 453 ident: bib9 publication-title: Electrochem. Commun. – volume: 9 start-page: 425 year: 2007 end-page: 430 ident: bib28 publication-title: Electrochem. Commun. – volume: 13 start-page: 1324 year: 2011 end-page: 1327 ident: bib29 publication-title: Electrochem. Commun. – volume: 382 start-page: 12 year: 2005 end-page: 21 ident: bib16 publication-title: Anal. Bioanal. Chem. – volume: 80 start-page: 5441 year: 2008 end-page: 5448 ident: bib7 publication-title: Anal. Chem. – volume: 55 start-page: 6885 year: 2007 end-page: 6890 ident: bib1 publication-title: J. Agric. Food. Chem. – volume: 82 start-page: 340 year: 2010 end-page: 347 ident: bib15 publication-title: Talanta – volume: 312 start-page: 3191 year: 2010 end-page: 3197 ident: bib42 publication-title: J. Cryst. Growth – volume: 26 start-page: 8925 year: 2010 end-page: 8932 ident: bib38 publication-title: Langmuir – volume: 5 start-page: 7617 year: 2011 end-page: 7626 ident: bib21 publication-title: ACS Nano – volume: 129 start-page: 915 year: 2008 end-page: 920 ident: bib31 publication-title: Sens. Actuators, B – volume: 37 start-page: 4635 year: 2003 end-page: 4641 ident: bib3 publication-title: Environ. Sci. Technol. – volume: 55 start-page: 5123 year: 2010 end-page: 5128 ident: bib12 publication-title: Electrochim. Acta – volume: 79 start-page: 570 year: 2009 end-page: 575 ident: bib25 publication-title: Talanta – volume: 8 start-page: 1197 year: 2006 end-page: 1203 ident: bib13 publication-title: Electrochem. Commun. – volume: 12 start-page: 37 year: 2011 end-page: 39 ident: bib41 publication-title: Cryst. Growth Des. – volume: 382 start-page: 12 year: 2005 ident: 10.1016/j.talanta.2013.03.015_bib16 publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-005-3205-5 – volume: 9 start-page: 425 year: 2007 ident: 10.1016/j.talanta.2013.03.015_bib28 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2006.10.008 – volume: 13 start-page: 1324 year: 2011 ident: 10.1016/j.talanta.2013.03.015_bib29 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2011.08.003 – volume: 26 start-page: 4791 year: 2011 ident: 10.1016/j.talanta.2013.03.015_bib48 publication-title: Biosensors Bioelectron. doi: 10.1016/j.bios.2011.06.008 – volume: 144 start-page: 289 year: 2010 ident: 10.1016/j.talanta.2013.03.015_bib10 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2009.11.004 – volume: 132 start-page: 12619 year: 2010 ident: 10.1016/j.talanta.2013.03.015_bib19 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1025112 – volume: 20 start-page: 105501 year: 2009 ident: 10.1016/j.talanta.2013.03.015_bib47 publication-title: Nanotechnology doi: 10.1088/0957-4484/20/10/105501 – volume: 67 start-page: 113 year: 2012 ident: 10.1016/j.talanta.2013.03.015_bib37 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2011.08.098 – volume: 106 start-page: 10543 year: 2002 ident: 10.1016/j.talanta.2013.03.015_bib46 publication-title: J. Phys. Chem. B doi: 10.1021/jp021235v – volume: 312 start-page: 3191 year: 2010 ident: 10.1016/j.talanta.2013.03.015_bib42 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2010.07.034 – volume: 79 start-page: 3695 year: 2007 ident: 10.1016/j.talanta.2013.03.015_bib44 publication-title: Anal. Chem. doi: 10.1021/ac0624142 – volume: 86 start-page: 266 year: 2011 ident: 10.1016/j.talanta.2013.03.015_bib17 publication-title: Talanta doi: 10.1016/j.talanta.2011.09.011 – volume: 107 start-page: 2891 year: 2007 ident: 10.1016/j.talanta.2013.03.015_bib22 publication-title: Chem. Rev. doi: 10.1021/cr0500535 – volume: 85 start-page: 56 year: 2011 ident: 10.1016/j.talanta.2013.03.015_bib45 publication-title: Talanta doi: 10.1016/j.talanta.2011.03.011 – volume: 130 start-page: 965 year: 2007 ident: 10.1016/j.talanta.2013.03.015_bib39 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja076092a – volume: 18 start-page: 193 year: 2003 ident: 10.1016/j.talanta.2013.03.015_bib5 publication-title: Biosensors Bioelectron. doi: 10.1016/S0956-5663(02)00185-9 – volume: 11 start-page: 450 year: 2009 ident: 10.1016/j.talanta.2013.03.015_bib9 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2008.12.026 – volume: 10 start-page: 776 year: 1998 ident: 10.1016/j.talanta.2013.03.015_bib4 publication-title: Electroanalysis doi: 10.1002/(SICI)1521-4109(199809)10:11<776::AID-ELAN776>3.0.CO;2-5 – volume: 5 start-page: 131 year: 2004 ident: 10.1016/j.talanta.2013.03.015_bib40 publication-title: Nano Lett. doi: 10.1021/nl048204r – volume: 10 start-page: 663 year: 2008 ident: 10.1016/j.talanta.2013.03.015_bib18 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2008.02.016 – volume: 5 start-page: 7617 year: 2011 ident: 10.1016/j.talanta.2013.03.015_bib21 publication-title: ACS Nano doi: 10.1021/nn202714c – volume: 19 start-page: 8230 year: 2003 ident: 10.1016/j.talanta.2013.03.015_bib23 publication-title: Langmuir doi: 10.1021/la034917y – volume: 12 start-page: 37 year: 2011 ident: 10.1016/j.talanta.2013.03.015_bib41 publication-title: Cryst. Growth Des. doi: 10.1021/cg201243n – volume: 97 start-page: 279 year: 2002 ident: 10.1016/j.talanta.2013.03.015_bib35 publication-title: Adv. Colloid Interface Sci. doi: 10.1016/S0001-8686(01)00068-9 – volume: 112 start-page: 18686 year: 2008 ident: 10.1016/j.talanta.2013.03.015_bib36 publication-title: J. Phys. Chem. C doi: 10.1021/jp8046054 – volume: 80 start-page: 66 year: 2012 ident: 10.1016/j.talanta.2013.03.015_bib34 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2012.04.031 – volume: 45 start-page: 8989 year: 2011 ident: 10.1016/j.talanta.2013.03.015_bib27 publication-title: Environ. Sci. Technol. doi: 10.1021/es201675m – volume: 80 start-page: 5441 year: 2008 ident: 10.1016/j.talanta.2013.03.015_bib7 publication-title: Anal. Chem. doi: 10.1021/ac702358d – volume: 55 start-page: 5123 year: 2010 ident: 10.1016/j.talanta.2013.03.015_bib12 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2010.04.017 – volume: 18 start-page: 441 year: 2008 ident: 10.1016/j.talanta.2013.03.015_bib14 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200700729 – volume: 37 start-page: 4635 year: 2003 ident: 10.1016/j.talanta.2013.03.015_bib3 publication-title: Environ. Sci. Technol. doi: 10.1021/es0300259 – volume: 137 start-page: 134 year: 2009 ident: 10.1016/j.talanta.2013.03.015_bib49 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2008.09.051 – volume: 113 start-page: 8343 year: 2009 ident: 10.1016/j.talanta.2013.03.015_bib26 publication-title: J. Phys. Chem. C doi: 10.1021/jp8114012 – volume: 79 start-page: 570 year: 2009 ident: 10.1016/j.talanta.2013.03.015_bib25 publication-title: Talanta doi: 10.1016/j.talanta.2009.04.036 – volume: 150 start-page: 436 year: 2010 ident: 10.1016/j.talanta.2013.03.015_bib11 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2010.06.019 – volume: 519 start-page: 3457 year: 2011 ident: 10.1016/j.talanta.2013.03.015_bib20 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2010.12.239 – volume: 15 start-page: 1941 year: 2003 ident: 10.1016/j.talanta.2013.03.015_bib24 publication-title: Chem. Mater. doi: 10.1021/cm0257825 – volume: 76 start-page: 474 year: 2003 ident: 10.1016/j.talanta.2013.03.015_bib8 publication-title: Anal. Chem. doi: 10.1021/ac034859l – volume: 82 start-page: 340 year: 2010 ident: 10.1016/j.talanta.2013.03.015_bib15 publication-title: Talanta doi: 10.1016/j.talanta.2010.04.047 – volume: 34 start-page: 1335 year: 2010 ident: 10.1016/j.talanta.2013.03.015_bib33 publication-title: New J. Chem. doi: 10.1039/b9nj00780f – volume: 26 start-page: 3602 year: 2011 ident: 10.1016/j.talanta.2013.03.015_bib43 publication-title: Biosensors Bioelectron. doi: 10.1016/j.bios.2011.02.010 – volume: 145 start-page: 794 year: 2010 ident: 10.1016/j.talanta.2013.03.015_bib30 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2010.01.048 – volume: 8 start-page: 1197 year: 2006 ident: 10.1016/j.talanta.2013.03.015_bib13 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2006.05.013 – volume: 26 start-page: 8925 year: 2010 ident: 10.1016/j.talanta.2013.03.015_bib38 publication-title: Langmuir doi: 10.1021/la904723a – volume: 77 start-page: 3755 year: 2005 ident: 10.1016/j.talanta.2013.03.015_bib2 publication-title: Anal. Chem. doi: 10.1021/ac050580o – volume: 129 start-page: 915 year: 2008 ident: 10.1016/j.talanta.2013.03.015_bib31 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2007.10.006 – volume: 55 start-page: 6885 year: 2007 ident: 10.1016/j.talanta.2013.03.015_bib1 publication-title: J. Agric. Food. Chem. doi: 10.1021/jf071062c – volume: 108 start-page: 770 year: 2008 ident: 10.1016/j.talanta.2013.03.015_bib6 publication-title: Chem. Rev. doi: 10.1021/cr068127f – volume: 82 start-page: 7357 year: 2010 ident: 10.1016/j.talanta.2013.03.015_bib32 publication-title: Anal. Chem. doi: 10.1021/ac101392f |
SSID | ssj0002303 |
Score | 2.3469388 |
Snippet | In this paper, a simple and green strategy, based on the electrophoresis deposition technology, was reported to prepare Ag nanoparticles (NPs) modified TiO2... In this paper, a simple and green strategy, based on the electrophoresis deposition technology, was reported to prepare Ag nanoparticles (NPs) modified TiO₂... |
SourceID | proquest pubmed crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 129 |
SubjectTerms | AgNPs/TiO2NTs Arrays catalytic activity detection limit Disinfectants - analysis electrochemistry Electrodes Electrophoresis Electrophoretic deposition glucose glucose oxidase hydrogen peroxide Hydrogen Peroxide - analysis Hydrogen Peroxide - chemistry Hydrogen peroxide sensor Metal Nanoparticles - chemistry Metal Nanoparticles - ultrastructure Microscopy, Electron, Scanning Microscopy, Electron, Transmission nanosilver Nanostructure nanotubes Nanotubes - chemistry Nanotubes - ultrastructure scanning electron microscopes Scanning electron microscopy Sensors Silver Silver - chemistry TiO2 nanotube arrays Titanium - chemistry Titanium dioxide transmission electron microscopes transmission electron microscopy |
Title | Electrophoresis deposition of Ag nanoparticles on TiO2 nanotube arrays electrode for hydrogen peroxide sensing |
URI | https://dx.doi.org/10.1016/j.talanta.2013.03.015 https://www.ncbi.nlm.nih.gov/pubmed/23708548 https://www.proquest.com/docview/1356394471 https://www.proquest.com/docview/1513483443 https://www.proquest.com/docview/2000037671 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbJ5tBeSt_ZPoIKvTq7ljS297gsCduWpodmITchydLGIdjLPqC59Ld3xpa3FJoGCr5YSLblkWa-sWe-YexjGkTIZEDvREqXKOVQD0JwCZTKFA5saYByh79eZPOF-nwFVwds1ufCUFhl1P2dTm-1dWwZxbc5WlUV5fiicW39g5YnCl2gI4HWvhiwo-mnL_OLvUJGlB25dycJDfidyDO6IZ5BnAIxEKWypTulArl_N1GHwTT3A9HWIJ0_ZU8ikuTT7mGfsQNfP2ePZn0BtxesPutK3KyuG_Spqw0vfR-ixZvAp0temxp95hgax7H5svom2tbtznpu1mtzt-GxUk7pOQJcfn1XrhtcdZwYxn9U2LqhGPh6-ZItzs8uZ_MklldIHAjYJqa0eQrOoEsTMp_bLPcKfJlbBN0WLTtxAxYWrMVNjyBLGYJfeOKw4wTCRL5ig7qp_THj4MY-R6HnKpPKGkAfrkRg5AIKXHjIhkz1b1S7yD1OJTBudR9kdqOjIDQJQo_xSGHITvfDVh35xkMDil5c-o9VpNFAPDT0GMWrzRJ1q158F8S817LzwHjIPvQy1yhC-qNiat_sNjqVkFFmcZ7-ow-kkr7YKnl_H9HdKqPrvO4W1X7CQuYIi1Xx5v_n9pY9Fm0VD9yS8I4Ntuudf49YamtP2OHpz_Qk7phfb04cZg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBa69NBdhr2bdus0YFcvsSXayTEIWqSv7LAE6E2QZCl1MdhBHkD770vacoYB6woM8MWCZFumRH60yY-MfYt94lPh0TsRwkZSWtSD4G0EudQDCybXQLnD19N0MpcXN3Czx8ZtLgyFVQbd3-j0WluHll54m71lUVCOLxrX2j-oeaLQBdqXVNS6w_ZH55eT6U4hI8oO3LvDiAb8TuTp3RHPIE6BGIhiUdOdUoHcv5uoF15XTwPR2iCdvWavApLko-Zh37A9V75lB-O2gNs7Vp42JW6WtxX61MWa564N0eKV56MFL3WJPnMIjePYPCt-JHXrZmsc16uVfljzUCkndxwBLr99yFcVrjpODOP3BbauKQa-XLxn87PT2XgShfIKkYUENpHOTRaD1ejS-NRlJs2cBJdnBkG3QctO3IADA8bgpkeQJTXBLzyx2HEIfig-sE5Zle6QcbB9l6HQM5kKaTSgD5cjMLIeBZ44SLtMtm9U2cA9TiUwfqk2yOxOBUEoEoTq4xFDl33fDVs25BvPDRi04lJ_rCKFBuK5oYcoXqUXqFvV_GdCzHs1Ow_0u-xrK3OFIqQ_Krp01XatYgEpZRZn8T_6QCzoi60UT_dJmluldJ2PzaLaTTgRGcJiOTj6_7l9YQeT2fWVujqfXh6zl0ld0QO3J3xinc1q6z4jrtqYk7BvHgEe4R5M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrophoresis+deposition+of+Ag+nanoparticles+on+TiO%E2%82%82+nanotube+arrays+electrode+for+hydrogen+peroxide+sensing&rft.jtitle=Talanta+%28Oxford%29&rft.au=Jiang%2C+Yanshu&rft.au=Zheng%2C+Baozhan&rft.au=Du%2C+Juan&rft.au=Liu%2C+Guangyue&rft.date=2013-08-15&rft.issn=0039-9140&rft.volume=112+p.129-135&rft.spage=129&rft.epage=135&rft_id=info:doi/10.1016%2Fj.talanta.2013.03.015&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-9140&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-9140&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-9140&client=summon |