Electrophoresis deposition of Ag nanoparticles on TiO2 nanotube arrays electrode for hydrogen peroxide sensing

In this paper, a simple and green strategy, based on the electrophoresis deposition technology, was reported to prepare Ag nanoparticles (NPs) modified TiO2 nanotube arrays (NTs). The morphologies of AgNPs, TiO2NTs and AgNPs/TiO2NTs were characterized by transmission electron microscope (TEM) and sc...

Full description

Saved in:
Bibliographic Details
Published inTalanta (Oxford) Vol. 112; pp. 129 - 135
Main Authors Jiang, Yanshu, Zheng, Baozhan, Du, Juan, Liu, Guangyue, Guo, Yong, Xiao, Dan
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.08.2013
Subjects
Online AccessGet full text
ISSN0039-9140
1873-3573
1873-3573
DOI10.1016/j.talanta.2013.03.015

Cover

Abstract In this paper, a simple and green strategy, based on the electrophoresis deposition technology, was reported to prepare Ag nanoparticles (NPs) modified TiO2 nanotube arrays (NTs). The morphologies of AgNPs, TiO2NTs and AgNPs/TiO2NTs were characterized by transmission electron microscope (TEM) and scanning electron microscope (SEM). The results demonstrate that the surface of TiO2NTs was homogeneously decorated with AgNPs, of which the morphology could be easily controlled by the electrophoretic deposition (EPD) time. In order to investigate the co-effects of AgNPs and TiO2NTs on the catalysis of H2O2, the electrochemical performances of TiO2 NTs, AgNPs/Ti and AgNPs/TiO2NTs electrodes were investigated in this work. It is found that the response of AgNPs/TiO2NTs electrode to H2O2 was remarkably enhanced due to the co-effects of AgNPs and TiO2NTs. Therefore, it could be used to fabricate H2O2 sensor. The effects of conditions were investigated in detail, such as EPD time, the operating potential, etc.. Under the optimal experimental condition, the sensor had a quick response to H2O2 at −0.12V with a high sensitivity (184.24mA·M−1cm−2), wide linear range (0.75μM–11.16mM) and low detection limit (85.6nM). In addition, the sensor also has good stability and excellent selectivity. The developed H2O2 sensor has been successfully applied to the detection of H2O2 in real samples. This work also demonstrated that the AgNPs/TiO2NTs has potential application in fabricating glucose sensor by immobilizing glucose oxidase onto the prepared electrode. ► We fabricate a highly dispersed AgNPs modified TiO2NTs structure by EPD technology.► We control the morphology and sensitivity of AgNPs/TiO2NTs electrode by EPD time.► The sensor has a quick response to H2O2 due to the co-effects of AgNPs and TiO2NTs.► The sensor has a low detection limit (85.6nM) to H2O2 with a wide linear range.► The AgNPs/TiO2NTs allows direct electrochemical reactions for glucose oxidase.
AbstractList In this paper, a simple and green strategy, based on the electrophoresis deposition technology, was reported to prepare Ag nanoparticles (NPs) modified TiO2 nanotube arrays (NTs). The morphologies of AgNPs, TiO2NTs and AgNPs/TiO2NTs were characterized by transmission electron microscope (TEM) and scanning electron microscope (SEM). The results demonstrate that the surface of TiO2NTs was homogeneously decorated with AgNPs, of which the morphology could be easily controlled by the electrophoretic deposition (EPD) time. In order to investigate the co-effects of AgNPs and TiO2NTs on the catalysis of H2O2, the electrochemical performances of TiO2 NTs, AgNPs/Ti and AgNPs/TiO2NTs electrodes were investigated in this work. It is found that the response of AgNPs/TiO2NTs electrode to H2O2 was remarkably enhanced due to the co-effects of AgNPs and TiO2NTs. Therefore, it could be used to fabricate H2O2 sensor. The effects of conditions were investigated in detail, such as EPD time, the operating potential, etc.. Under the optimal experimental condition, the sensor had a quick response to H2O2 at a0.12 V with a high sensitivity (184.24 mAADTMa1 cm-2), wide linear range (0.75 mu Ma11.16 mM) and low detection limit (85.6 nM). In addition, the sensor also has good stability and excellent selectivity. The developed H2O2 sensor has been successfully applied to the detection of H2O2 in real samples. This work also demonstrated that the AgNPs/TiO2NTs has potential application in fabricating glucose sensor by immobilizing glucose oxidase onto the prepared electrode.
In this paper, a simple and green strategy, based on the electrophoresis deposition technology, was reported to prepare Ag nanoparticles (NPs) modified TiO2 nanotube arrays (NTs). The morphologies of AgNPs, TiO2NTs and AgNPs/TiO2NTs were characterized by transmission electron microscope (TEM) and scanning electron microscope (SEM). The results demonstrate that the surface of TiO2NTs was homogeneously decorated with AgNPs, of which the morphology could be easily controlled by the electrophoretic deposition (EPD) time. In order to investigate the co-effects of AgNPs and TiO2NTs on the catalysis of H2O2, the electrochemical performances of TiO2 NTs, AgNPs/Ti and AgNPs/TiO2NTs electrodes were investigated in this work. It is found that the response of AgNPs/TiO2NTs electrode to H2O2 was remarkably enhanced due to the co-effects of AgNPs and TiO2NTs. Therefore, it could be used to fabricate H2O2 sensor. The effects of conditions were investigated in detail, such as EPD time, the operating potential, etc.. Under the optimal experimental condition, the sensor had a quick response to H2O2 at −0.12V with a high sensitivity (184.24mA·M−1cm−2), wide linear range (0.75μM–11.16mM) and low detection limit (85.6nM). In addition, the sensor also has good stability and excellent selectivity. The developed H2O2 sensor has been successfully applied to the detection of H2O2 in real samples. This work also demonstrated that the AgNPs/TiO2NTs has potential application in fabricating glucose sensor by immobilizing glucose oxidase onto the prepared electrode. ► We fabricate a highly dispersed AgNPs modified TiO2NTs structure by EPD technology.► We control the morphology and sensitivity of AgNPs/TiO2NTs electrode by EPD time.► The sensor has a quick response to H2O2 due to the co-effects of AgNPs and TiO2NTs.► The sensor has a low detection limit (85.6nM) to H2O2 with a wide linear range.► The AgNPs/TiO2NTs allows direct electrochemical reactions for glucose oxidase.
In this paper, a simple and green strategy, based on the electrophoresis deposition technology, was reported to prepare Ag nanoparticles (NPs) modified TiO₂ nanotube arrays (NTs). The morphologies of AgNPs, TiO₂NTs and AgNPs/TiO₂NTs were characterized by transmission electron microscope (TEM) and scanning electron microscope (SEM). The results demonstrate that the surface of TiO₂NTs was homogeneously decorated with AgNPs, of which the morphology could be easily controlled by the electrophoretic deposition (EPD) time. In order to investigate the co-effects of AgNPs and TiO₂NTs on the catalysis of H₂O₂, the electrochemical performances of TiO₂ NTs, AgNPs/Ti and AgNPs/TiO₂NTs electrodes were investigated in this work. It is found that the response of AgNPs/TiO₂NTs electrode to H₂O₂ was remarkably enhanced due to the co-effects of AgNPs and TiO₂NTs. Therefore, it could be used to fabricate H₂O₂ sensor. The effects of conditions were investigated in detail, such as EPD time, the operating potential, etc.. Under the optimal experimental condition, the sensor had a quick response to H₂O₂ at −0.12V with a high sensitivity (184.24mA·M⁻¹cm⁻²), wide linear range (0.75μM–11.16mM) and low detection limit (85.6nM). In addition, the sensor also has good stability and excellent selectivity. The developed H₂O₂ sensor has been successfully applied to the detection of H₂O₂ in real samples. This work also demonstrated that the AgNPs/TiO₂NTs has potential application in fabricating glucose sensor by immobilizing glucose oxidase onto the prepared electrode.
In this paper, a simple and green strategy, based on the electrophoresis deposition technology, was reported to prepare Ag nanoparticles (NPs) modified TiO2 nanotube arrays (NTs). The morphologies of AgNPs, TiO2NTs and AgNPs/TiO2NTs were characterized by transmission electron microscope (TEM) and scanning electron microscope (SEM). The results demonstrate that the surface of TiO2NTs was homogeneously decorated with AgNPs, of which the morphology could be easily controlled by the electrophoretic deposition (EPD) time. In order to investigate the co-effects of AgNPs and TiO2NTs on the catalysis of H2O2, the electrochemical performances of TiO2 NTs, AgNPs/Ti and AgNPs/TiO2NTs electrodes were investigated in this work. It is found that the response of AgNPs/TiO2NTs electrode to H2O2 was remarkably enhanced due to the co-effects of AgNPs and TiO2NTs. Therefore, it could be used to fabricate H2O2 sensor. The effects of conditions were investigated in detail, such as EPD time, the operating potential, etc.. Under the optimal experimental condition, the sensor had a quick response to H2O2 at -0.12 V with a high sensitivity (184.24 mA·M(-1)cm(-2)), wide linear range (0.75 μM-11.16 mM) and low detection limit (85.6 nM). In addition, the sensor also has good stability and excellent selectivity. The developed H2O2 sensor has been successfully applied to the detection of H2O2 in real samples. This work also demonstrated that the AgNPs/TiO2NTs has potential application in fabricating glucose sensor by immobilizing glucose oxidase onto the prepared electrode.In this paper, a simple and green strategy, based on the electrophoresis deposition technology, was reported to prepare Ag nanoparticles (NPs) modified TiO2 nanotube arrays (NTs). The morphologies of AgNPs, TiO2NTs and AgNPs/TiO2NTs were characterized by transmission electron microscope (TEM) and scanning electron microscope (SEM). The results demonstrate that the surface of TiO2NTs was homogeneously decorated with AgNPs, of which the morphology could be easily controlled by the electrophoretic deposition (EPD) time. In order to investigate the co-effects of AgNPs and TiO2NTs on the catalysis of H2O2, the electrochemical performances of TiO2 NTs, AgNPs/Ti and AgNPs/TiO2NTs electrodes were investigated in this work. It is found that the response of AgNPs/TiO2NTs electrode to H2O2 was remarkably enhanced due to the co-effects of AgNPs and TiO2NTs. Therefore, it could be used to fabricate H2O2 sensor. The effects of conditions were investigated in detail, such as EPD time, the operating potential, etc.. Under the optimal experimental condition, the sensor had a quick response to H2O2 at -0.12 V with a high sensitivity (184.24 mA·M(-1)cm(-2)), wide linear range (0.75 μM-11.16 mM) and low detection limit (85.6 nM). In addition, the sensor also has good stability and excellent selectivity. The developed H2O2 sensor has been successfully applied to the detection of H2O2 in real samples. This work also demonstrated that the AgNPs/TiO2NTs has potential application in fabricating glucose sensor by immobilizing glucose oxidase onto the prepared electrode.
In this paper, a simple and green strategy, based on the electrophoresis deposition technology, was reported to prepare Ag nanoparticles (NPs) modified TiO2 nanotube arrays (NTs). The morphologies of AgNPs, TiO2NTs and AgNPs/TiO2NTs were characterized by transmission electron microscope (TEM) and scanning electron microscope (SEM). The results demonstrate that the surface of TiO2NTs was homogeneously decorated with AgNPs, of which the morphology could be easily controlled by the electrophoretic deposition (EPD) time. In order to investigate the co-effects of AgNPs and TiO2NTs on the catalysis of H2O2, the electrochemical performances of TiO2 NTs, AgNPs/Ti and AgNPs/TiO2NTs electrodes were investigated in this work. It is found that the response of AgNPs/TiO2NTs electrode to H2O2 was remarkably enhanced due to the co-effects of AgNPs and TiO2NTs. Therefore, it could be used to fabricate H2O2 sensor. The effects of conditions were investigated in detail, such as EPD time, the operating potential, etc.. Under the optimal experimental condition, the sensor had a quick response to H2O2 at -0.12 V with a high sensitivity (184.24 mA·M(-1)cm(-2)), wide linear range (0.75 μM-11.16 mM) and low detection limit (85.6 nM). In addition, the sensor also has good stability and excellent selectivity. The developed H2O2 sensor has been successfully applied to the detection of H2O2 in real samples. This work also demonstrated that the AgNPs/TiO2NTs has potential application in fabricating glucose sensor by immobilizing glucose oxidase onto the prepared electrode.
Author Jiang, Yanshu
Du, Juan
Zheng, Baozhan
Xiao, Dan
Liu, Guangyue
Guo, Yong
Author_xml – sequence: 1
  givenname: Yanshu
  surname: Jiang
  fullname: Jiang, Yanshu
  organization: College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
– sequence: 2
  givenname: Baozhan
  surname: Zheng
  fullname: Zheng, Baozhan
  organization: College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
– sequence: 3
  givenname: Juan
  surname: Du
  fullname: Du, Juan
  organization: College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
– sequence: 4
  givenname: Guangyue
  surname: Liu
  fullname: Liu, Guangyue
  organization: College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
– sequence: 5
  givenname: Yong
  surname: Guo
  fullname: Guo, Yong
  organization: College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
– sequence: 6
  givenname: Dan
  surname: Xiao
  fullname: Xiao, Dan
  email: xiaodan@scu.edu.cn
  organization: College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23708548$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFvEzEQhS1URNPCTwB85LLB9ti7G3FAVdUWpEo90J4tr3c2dbSxF9tB5N_jdAMHLpFGsvz0vRnpvQty5oNHQt5ztuSM1583y2xG47NZCsZhycpw9YoseNtABaqBM7JgDFbVikt2Ti5S2jDGBDB4Q84FNKxVsl0QfzOizTFMzyFicon2OIXksguehoFerak3PkwmZmdHTLTIj-5BvKh51yE1MZp9ojiv6ZEOIdLnfR_DGj2dMIbfrqgJfXJ-_Za8HsyY8N3xvSRPtzeP19-q-4e779dX95VVQuXK9F3DlTW1qIcam65uUCrsm65tRSeEBCmg7VTXtSBqzqRhXED52AKu1LCCS_Jp3jvF8HOHKeutSxbHkhiGXdKiZMGgqRt-EuWKg2xBSjiNgqphJeXL1g9HdNdtsddTdFsT9_pv8gVQM2BjSCni8A_hTB8a1ht9bFgfGtasDFfF9-U_n3XZHPrK0bjxpPvj7B5M0GYdXdJPPwpQz3koVoivM4Glnl8Oo07WobfYu1gq1n1wJ278Aaifze0
CitedBy_id crossref_primary_10_1021_acsanm_3c04186
crossref_primary_10_1007_s13738_015_0611_2
crossref_primary_10_1016_j_materresbull_2022_112134
crossref_primary_10_1007_s00604_020_04695_9
crossref_primary_10_1021_cr500061m
crossref_primary_10_3390_app10155243
crossref_primary_10_1016_j_ceramint_2014_12_083
crossref_primary_10_1039_C4AN01734J
crossref_primary_10_1016_j_jelechem_2014_05_027
crossref_primary_10_1016_j_msec_2018_12_045
crossref_primary_10_1016_j_talanta_2024_127306
crossref_primary_10_1088_1361_6528_ac40be
crossref_primary_10_1557_opl_2014_202
crossref_primary_10_1039_D4NR03219E
crossref_primary_10_3390_ma14133767
crossref_primary_10_1016_j_vacuum_2023_111953
crossref_primary_10_1016_j_aca_2020_03_039
crossref_primary_10_1016_j_cap_2022_02_008
crossref_primary_10_3390_nano9081072
crossref_primary_10_1007_s10854_020_03153_9
crossref_primary_10_1021_acs_jpcc_9b06555
crossref_primary_10_1016_j_ijhydene_2015_12_028
crossref_primary_10_1016_j_matchemphys_2025_130573
crossref_primary_10_3390_ma16031261
crossref_primary_10_1016_j_snb_2014_11_038
crossref_primary_10_1016_j_apsusc_2016_06_066
crossref_primary_10_1016_j_electacta_2018_01_048
crossref_primary_10_1016_j_ceramint_2020_08_255
crossref_primary_10_1007_s11164_020_04354_x
crossref_primary_10_1039_C5RA26857E
crossref_primary_10_1016_j_talanta_2024_127423
crossref_primary_10_1080_19443994_2015_1041052
crossref_primary_10_1039_C9AY00665F
crossref_primary_10_1016_j_ijhydene_2022_10_086
crossref_primary_10_1016_j_talanta_2015_05_069
crossref_primary_10_1016_j_snb_2017_11_163
crossref_primary_10_1016_j_apmt_2020_100647
crossref_primary_10_1039_C4AY02881C
crossref_primary_10_1007_s11706_017_0386_8
crossref_primary_10_1080_00032719_2014_999279
crossref_primary_10_1039_C5NJ01983D
crossref_primary_10_1080_15569543_2024_2397651
crossref_primary_10_3390_coatings10020130
crossref_primary_10_1039_D3BM00300K
crossref_primary_10_1016_j_talanta_2022_123407
crossref_primary_10_1021_acsbiomaterials_0c01207
crossref_primary_10_1088_1361_6528_ac7882
crossref_primary_10_1016_j_mtcomm_2022_105013
crossref_primary_10_1016_j_jelechem_2013_12_011
crossref_primary_10_1007_s00604_014_1258_x
crossref_primary_10_1016_j_snb_2016_04_167
crossref_primary_10_1002_celc_202000570
crossref_primary_10_1007_s10853_020_05470_0
crossref_primary_10_1016_j_ceramint_2014_07_119
crossref_primary_10_1016_j_snb_2017_04_100
crossref_primary_10_1016_j_ijhydene_2023_08_062
crossref_primary_10_1016_j_spmi_2015_08_022
Cites_doi 10.1007/s00216-005-3205-5
10.1016/j.elecom.2006.10.008
10.1016/j.elecom.2011.08.003
10.1016/j.bios.2011.06.008
10.1016/j.snb.2009.11.004
10.1021/ja1025112
10.1088/0957-4484/20/10/105501
10.1016/j.matlet.2011.08.098
10.1021/jp021235v
10.1016/j.jcrysgro.2010.07.034
10.1021/ac0624142
10.1016/j.talanta.2011.09.011
10.1021/cr0500535
10.1016/j.talanta.2011.03.011
10.1021/ja076092a
10.1016/S0956-5663(02)00185-9
10.1016/j.elecom.2008.12.026
10.1002/(SICI)1521-4109(199809)10:11<776::AID-ELAN776>3.0.CO;2-5
10.1021/nl048204r
10.1016/j.elecom.2008.02.016
10.1021/nn202714c
10.1021/la034917y
10.1021/cg201243n
10.1016/S0001-8686(01)00068-9
10.1021/jp8046054
10.1016/j.matlet.2012.04.031
10.1021/es201675m
10.1021/ac702358d
10.1016/j.electacta.2010.04.017
10.1002/adfm.200700729
10.1021/es0300259
10.1016/j.snb.2008.09.051
10.1021/jp8114012
10.1016/j.talanta.2009.04.036
10.1016/j.snb.2010.06.019
10.1016/j.tsf.2010.12.239
10.1021/cm0257825
10.1021/ac034859l
10.1016/j.talanta.2010.04.047
10.1039/b9nj00780f
10.1016/j.bios.2011.02.010
10.1016/j.snb.2010.01.048
10.1016/j.elecom.2006.05.013
10.1021/la904723a
10.1021/ac050580o
10.1016/j.snb.2007.10.006
10.1021/jf071062c
10.1021/cr068127f
10.1021/ac101392f
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Copyright © 2013 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: Copyright © 2013 Elsevier B.V. All rights reserved.
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QQ
7SP
7SR
7U5
8FD
JG9
L7M
7S9
L.6
DOI 10.1016/j.talanta.2013.03.015
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Ceramic Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Ceramic Abstracts
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database


MEDLINE - Academic
AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3573
EndPage 135
ExternalDocumentID 23708548
10_1016_j_talanta_2013_03_015
US201600003750
S0039914013001641
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADECG
ADEZE
ADIYS
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SCH
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSZ
T5K
TN5
TWZ
WH7
XPP
YK3
YNT
ZMT
~02
~G-
29Q
3O-
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
ABDPE
ABEFU
ABFNM
ABWVN
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AJQLL
AKRWK
ANKPU
ASPBG
AVWKF
AZFZN
BNPGV
EJD
FBQ
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
RIG
SCB
SEW
SSH
WUQ
XOL
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QQ
7SP
7SR
7U5
8FD
JG9
L7M
7S9
L.6
ID FETCH-LOGICAL-c525t-adb715ca626f6e7b67e45ed7b882b22434238b5bb8326104a0123b83c67e95f93
IEDL.DBID AIKHN
ISSN 0039-9140
1873-3573
IngestDate Sat Sep 27 22:10:33 EDT 2025
Sun Sep 28 00:57:38 EDT 2025
Fri Sep 05 00:10:41 EDT 2025
Mon Jul 21 05:55:54 EDT 2025
Thu Sep 25 00:35:33 EDT 2025
Thu Apr 24 23:06:52 EDT 2025
Thu Apr 03 09:43:35 EDT 2025
Fri Feb 23 02:20:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords TiO2 nanotube arrays
Hydrogen peroxide sensor
AgNPs/TiO2NTs
Electrophoretic deposition
Language English
License Copyright © 2013 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c525t-adb715ca626f6e7b67e45ed7b882b22434238b5bb8326104a0123b83c67e95f93
Notes http://dx.doi.org/10.1016/j.talanta.2013.03.015
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23708548
PQID 1356394471
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2000037671
proquest_miscellaneous_1513483443
proquest_miscellaneous_1356394471
pubmed_primary_23708548
crossref_primary_10_1016_j_talanta_2013_03_015
crossref_citationtrail_10_1016_j_talanta_2013_03_015
fao_agris_US201600003750
elsevier_sciencedirect_doi_10_1016_j_talanta_2013_03_015
PublicationCentury 2000
PublicationDate 2013-08-15
PublicationDateYYYYMMDD 2013-08-15
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-15
  day: 15
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Talanta (Oxford)
PublicationTitleAlternate Talanta
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Potyrailo, Mirsky (bib6) 2008; 108
Li, Zhang, Zhu, Yang, Yang (bib12) 2010; 55
Zhu, Liu, Liu, Tong, Yang, Peng (bib19) 2010; 132
Si, Ding, Yuan, Lou, Kim (bib21) 2011; 5
Hosseini, Faraji, Momeni (bib20) 2011; 519
Serra, Re, Palmisano, Vittori Antisari, Filippo, Buccolieri, Manno (bib30) 2010; 145
Chen, Mao (bib22) 2007; 107
Welch, Banks, Simm, Compton (bib16) 2005; 382
de Abreu Franchini, de Souza, Colombara, Costa Matos, Matos (bib1) 2007; 55
Chen, Zhang, Cai, Zhang, Zhang, Tang, Wu (bib17) 2011; 86
Li, Xu, Dai, Fan (bib26) 2009; 113
Yonghai (bib47) 2009; 20
Chen, Lu, Mo, Xu, Xie, Yuan, Xiao, Choi (bib45) 2011; 85
Liu, Liu, Hao, Chu (bib34) 2012; 80
Vione, Maurino, Minero, Borghesi, Lucchiari, Pelizzetti (bib3) 2003; 37
Wang, Huang, Zhang, Wei, Zhou (bib4) 1998; 10
Su, Chang (bib31) 2008; 129
Shu, Chen, Yuan, Gao, Xiao (bib44) 2007; 79
de Mattos, Gorton, Ruzgas (bib5) 2003; 18
He, Dong, Li (bib28) 2007; 9
Gilpin, Pachla (bib2) 2005; 77
Chanmanee, Watcharenwong, Chenthamarakshan, Kajitvichyanukul, de Tacconi, Rajeshwar (bib39) 2007; 130
Lai, Zhuang, Xie, Gong, Tang, Sun, Lin, Chen (bib33) 2010; 34
Wu, Zhao, Ju, Shi, Zhao (bib13) 2006; 8
Li, Noriega-Trevino, Nino-Martinez, Marambio-Jones, Wang, Damoiseaux, Ruiz, Hoek (bib27) 2011; 45
Redmond, Hallock, Brus (bib40) 2004; 5
Chen, Sun, Gao (bib9) 2009; 11
Bui, Pham, Nan, Li, Kim, Seong (bib11) 2010; 150
Sun, Fu, Yang, Sui, Zhao, Yin, Li, Zhao, Zou (bib29) 2011; 13
He, Hu, Liu, Du, Xi, Jiang (bib10) 2010; 144
Noberi, Zaman, Üstündağ, Kaya, Kaya (bib37) 2012; 67
He, Cai, Lin, Chen (bib38) 2010; 26
Jang, Lim, Choi, Park, Huh, Suh, Huh, Haam (bib41) 2011; 12
Chen, Ji, Wang (bib42) 2010; 312
Dong, Feng, Shi, Li, Xu (bib24) 2003; 15
Lu, Luo, Chang, Sun (bib48) 2011; 26
Cai, Pang, He, Luo (bib49) 2009; 137
Rajh, Chen, Lukas, Liu, Thurnauer, Tiede (bib46) 2002; 106
Karyakin, Puganova, Budashov, Kurochkin, Karyakina, Levchenko, Matveyenko, Varfolomeyev (bib8) 2003; 76
Zhitomirsky (bib35) 2002; 97
Zhang, Guan, Li, Zhang, Chen, Zeng (bib23) 2003; 19
Cui, Song, Yao, Huang, Wang (bib18) 2008; 10
Du, Wei, Xin, Li (bib43) 2011; 26
Guo, Yu, Yu, Chen (bib25) 2009; 79
Karam, Halaoui (bib7) 2008; 80
Li, Yang, Luo, Chen, Li, Lin, Cai, Yao (bib32) 2010; 82
Lin, Lai, Balamurugan, Vittal, Lin, Ho (bib15) 2010; 82
Huang, Wang, Hou, You (bib14) 2008; 18
Hosseini, Taghavinia, Sharifi, Chavoshi, Rahman (bib36) 2008; 112
Redmond (10.1016/j.talanta.2013.03.015_bib40) 2004; 5
He (10.1016/j.talanta.2013.03.015_bib28) 2007; 9
Karam (10.1016/j.talanta.2013.03.015_bib7) 2008; 80
Serra (10.1016/j.talanta.2013.03.015_bib30) 2010; 145
Cui (10.1016/j.talanta.2013.03.015_bib18) 2008; 10
Bui (10.1016/j.talanta.2013.03.015_bib11) 2010; 150
Welch (10.1016/j.talanta.2013.03.015_bib16) 2005; 382
Liu (10.1016/j.talanta.2013.03.015_bib34) 2012; 80
Yonghai (10.1016/j.talanta.2013.03.015_bib47) 2009; 20
Lin (10.1016/j.talanta.2013.03.015_bib15) 2010; 82
Hosseini (10.1016/j.talanta.2013.03.015_bib20) 2011; 519
Hosseini (10.1016/j.talanta.2013.03.015_bib36) 2008; 112
Zhitomirsky (10.1016/j.talanta.2013.03.015_bib35) 2002; 97
Gilpin (10.1016/j.talanta.2013.03.015_bib2) 2005; 77
Chen (10.1016/j.talanta.2013.03.015_bib45) 2011; 85
de Abreu Franchini (10.1016/j.talanta.2013.03.015_bib1) 2007; 55
Li (10.1016/j.talanta.2013.03.015_bib12) 2010; 55
Shu (10.1016/j.talanta.2013.03.015_bib44) 2007; 79
Dong (10.1016/j.talanta.2013.03.015_bib24) 2003; 15
Huang (10.1016/j.talanta.2013.03.015_bib14) 2008; 18
Chen (10.1016/j.talanta.2013.03.015_bib42) 2010; 312
Rajh (10.1016/j.talanta.2013.03.015_bib46) 2002; 106
Lai (10.1016/j.talanta.2013.03.015_bib33) 2010; 34
Li (10.1016/j.talanta.2013.03.015_bib32) 2010; 82
Chen (10.1016/j.talanta.2013.03.015_bib17) 2011; 86
Potyrailo (10.1016/j.talanta.2013.03.015_bib6) 2008; 108
Su (10.1016/j.talanta.2013.03.015_bib31) 2008; 129
Chen (10.1016/j.talanta.2013.03.015_bib9) 2009; 11
Chen (10.1016/j.talanta.2013.03.015_bib22) 2007; 107
de Mattos (10.1016/j.talanta.2013.03.015_bib5) 2003; 18
He (10.1016/j.talanta.2013.03.015_bib38) 2010; 26
Chanmanee (10.1016/j.talanta.2013.03.015_bib39) 2007; 130
Karyakin (10.1016/j.talanta.2013.03.015_bib8) 2003; 76
Zhu (10.1016/j.talanta.2013.03.015_bib19) 2010; 132
Noberi (10.1016/j.talanta.2013.03.015_bib37) 2012; 67
Si (10.1016/j.talanta.2013.03.015_bib21) 2011; 5
Guo (10.1016/j.talanta.2013.03.015_bib25) 2009; 79
Li (10.1016/j.talanta.2013.03.015_bib26) 2009; 113
Li (10.1016/j.talanta.2013.03.015_bib27) 2011; 45
Cai (10.1016/j.talanta.2013.03.015_bib49) 2009; 137
He (10.1016/j.talanta.2013.03.015_bib10) 2010; 144
Wang (10.1016/j.talanta.2013.03.015_bib4) 1998; 10
Du (10.1016/j.talanta.2013.03.015_bib43) 2011; 26
Sun (10.1016/j.talanta.2013.03.015_bib29) 2011; 13
Lu (10.1016/j.talanta.2013.03.015_bib48) 2011; 26
Wu (10.1016/j.talanta.2013.03.015_bib13) 2006; 8
Zhang (10.1016/j.talanta.2013.03.015_bib23) 2003; 19
Jang (10.1016/j.talanta.2013.03.015_bib41) 2011; 12
Vione (10.1016/j.talanta.2013.03.015_bib3) 2003; 37
References_xml – volume: 132
  start-page: 12619
  year: 2010
  end-page: 12626
  ident: bib19
  publication-title: J. Am. Chem. Soc.
– volume: 85
  start-page: 56
  year: 2011
  end-page: 62
  ident: bib45
  publication-title: Talanta
– volume: 19
  start-page: 8230
  year: 2003
  end-page: 8234
  ident: bib23
  publication-title: Langmuir
– volume: 519
  start-page: 3457
  year: 2011
  end-page: 3461
  ident: bib20
  publication-title: Thin Solid Films
– volume: 144
  start-page: 289
  year: 2010
  end-page: 294
  ident: bib10
  publication-title: Sens. Actuators B
– volume: 18
  start-page: 441
  year: 2008
  end-page: 448
  ident: bib14
  publication-title: Adv. Funct. Mater.
– volume: 97
  start-page: 279
  year: 2002
  end-page: 317
  ident: bib35
  publication-title: Adv. Colloid Interface Sci.
– volume: 79
  start-page: 3695
  year: 2007
  end-page: 3702
  ident: bib44
  publication-title: Anal. Chem.
– volume: 77
  start-page: 3755
  year: 2005
  end-page: 3770
  ident: bib2
  publication-title: Anal. Chem.
– volume: 112
  start-page: 18686
  year: 2008
  end-page: 18689
  ident: bib36
  publication-title: J. Phys. Chem. C
– volume: 107
  start-page: 2891
  year: 2007
  end-page: 2959
  ident: bib22
  publication-title: Chem. Rev.
– volume: 20
  start-page: 105501
  year: 2009
  ident: bib47
  publication-title: Nanotechnology
– volume: 80
  start-page: 66
  year: 2012
  end-page: 68
  ident: bib34
  publication-title: Mater. Lett.
– volume: 15
  start-page: 1941
  year: 2003
  end-page: 1943
  ident: bib24
  publication-title: Chem. Mater.
– volume: 113
  start-page: 8343
  year: 2009
  end-page: 8349
  ident: bib26
  publication-title: J. Phys. Chem. C
– volume: 34
  start-page: 1335
  year: 2010
  end-page: 1340
  ident: bib33
  publication-title: New J. Chem.
– volume: 130
  start-page: 965
  year: 2007
  end-page: 974
  ident: bib39
  publication-title: J. Am. Chem. Soc.
– volume: 82
  start-page: 7357
  year: 2010
  end-page: 7361
  ident: bib32
  publication-title: Anal. Chem.
– volume: 137
  start-page: 134
  year: 2009
  end-page: 138
  ident: bib49
  publication-title: Sens. Actuators B
– volume: 86
  start-page: 266
  year: 2011
  end-page: 270
  ident: bib17
  publication-title: Talanta
– volume: 10
  start-page: 663
  year: 2008
  end-page: 667
  ident: bib18
  publication-title: Electrochem. Commun.
– volume: 108
  start-page: 770
  year: 2008
  end-page: 813
  ident: bib6
  publication-title: Chem. Rev.
– volume: 145
  start-page: 794
  year: 2010
  end-page: 799
  ident: bib30
  publication-title: Sens. Actuators, B
– volume: 106
  start-page: 10543
  year: 2002
  end-page: 10552
  ident: bib46
  publication-title: J. Phys. Chem. B
– volume: 150
  start-page: 436
  year: 2010
  end-page: 441
  ident: bib11
  publication-title: Sens. Actuators B
– volume: 18
  start-page: 193
  year: 2003
  end-page: 200
  ident: bib5
  publication-title: Biosensors Bioelectron.
– volume: 26
  start-page: 4791
  year: 2011
  end-page: 4797
  ident: bib48
  publication-title: Biosensors Bioelectron.
– volume: 5
  start-page: 131
  year: 2004
  end-page: 135
  ident: bib40
  publication-title: Nano Lett.
– volume: 10
  start-page: 776
  year: 1998
  end-page: 778
  ident: bib4
  publication-title: Electroanalysis
– volume: 26
  start-page: 3602
  year: 2011
  end-page: 3607
  ident: bib43
  publication-title: Biosensors Bioelectron.
– volume: 67
  start-page: 113
  year: 2012
  end-page: 116
  ident: bib37
  publication-title: Mater. Lett.
– volume: 45
  start-page: 8989
  year: 2011
  end-page: 8995
  ident: bib27
  publication-title: Environ. Sci. Technol.
– volume: 76
  start-page: 474
  year: 2003
  end-page: 478
  ident: bib8
  publication-title: Anal. Chem.
– volume: 11
  start-page: 450
  year: 2009
  end-page: 453
  ident: bib9
  publication-title: Electrochem. Commun.
– volume: 9
  start-page: 425
  year: 2007
  end-page: 430
  ident: bib28
  publication-title: Electrochem. Commun.
– volume: 13
  start-page: 1324
  year: 2011
  end-page: 1327
  ident: bib29
  publication-title: Electrochem. Commun.
– volume: 382
  start-page: 12
  year: 2005
  end-page: 21
  ident: bib16
  publication-title: Anal. Bioanal. Chem.
– volume: 80
  start-page: 5441
  year: 2008
  end-page: 5448
  ident: bib7
  publication-title: Anal. Chem.
– volume: 55
  start-page: 6885
  year: 2007
  end-page: 6890
  ident: bib1
  publication-title: J. Agric. Food. Chem.
– volume: 82
  start-page: 340
  year: 2010
  end-page: 347
  ident: bib15
  publication-title: Talanta
– volume: 312
  start-page: 3191
  year: 2010
  end-page: 3197
  ident: bib42
  publication-title: J. Cryst. Growth
– volume: 26
  start-page: 8925
  year: 2010
  end-page: 8932
  ident: bib38
  publication-title: Langmuir
– volume: 5
  start-page: 7617
  year: 2011
  end-page: 7626
  ident: bib21
  publication-title: ACS Nano
– volume: 129
  start-page: 915
  year: 2008
  end-page: 920
  ident: bib31
  publication-title: Sens. Actuators, B
– volume: 37
  start-page: 4635
  year: 2003
  end-page: 4641
  ident: bib3
  publication-title: Environ. Sci. Technol.
– volume: 55
  start-page: 5123
  year: 2010
  end-page: 5128
  ident: bib12
  publication-title: Electrochim. Acta
– volume: 79
  start-page: 570
  year: 2009
  end-page: 575
  ident: bib25
  publication-title: Talanta
– volume: 8
  start-page: 1197
  year: 2006
  end-page: 1203
  ident: bib13
  publication-title: Electrochem. Commun.
– volume: 12
  start-page: 37
  year: 2011
  end-page: 39
  ident: bib41
  publication-title: Cryst. Growth Des.
– volume: 382
  start-page: 12
  year: 2005
  ident: 10.1016/j.talanta.2013.03.015_bib16
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-005-3205-5
– volume: 9
  start-page: 425
  year: 2007
  ident: 10.1016/j.talanta.2013.03.015_bib28
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2006.10.008
– volume: 13
  start-page: 1324
  year: 2011
  ident: 10.1016/j.talanta.2013.03.015_bib29
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2011.08.003
– volume: 26
  start-page: 4791
  year: 2011
  ident: 10.1016/j.talanta.2013.03.015_bib48
  publication-title: Biosensors Bioelectron.
  doi: 10.1016/j.bios.2011.06.008
– volume: 144
  start-page: 289
  year: 2010
  ident: 10.1016/j.talanta.2013.03.015_bib10
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2009.11.004
– volume: 132
  start-page: 12619
  year: 2010
  ident: 10.1016/j.talanta.2013.03.015_bib19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1025112
– volume: 20
  start-page: 105501
  year: 2009
  ident: 10.1016/j.talanta.2013.03.015_bib47
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/20/10/105501
– volume: 67
  start-page: 113
  year: 2012
  ident: 10.1016/j.talanta.2013.03.015_bib37
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2011.08.098
– volume: 106
  start-page: 10543
  year: 2002
  ident: 10.1016/j.talanta.2013.03.015_bib46
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp021235v
– volume: 312
  start-page: 3191
  year: 2010
  ident: 10.1016/j.talanta.2013.03.015_bib42
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2010.07.034
– volume: 79
  start-page: 3695
  year: 2007
  ident: 10.1016/j.talanta.2013.03.015_bib44
  publication-title: Anal. Chem.
  doi: 10.1021/ac0624142
– volume: 86
  start-page: 266
  year: 2011
  ident: 10.1016/j.talanta.2013.03.015_bib17
  publication-title: Talanta
  doi: 10.1016/j.talanta.2011.09.011
– volume: 107
  start-page: 2891
  year: 2007
  ident: 10.1016/j.talanta.2013.03.015_bib22
  publication-title: Chem. Rev.
  doi: 10.1021/cr0500535
– volume: 85
  start-page: 56
  year: 2011
  ident: 10.1016/j.talanta.2013.03.015_bib45
  publication-title: Talanta
  doi: 10.1016/j.talanta.2011.03.011
– volume: 130
  start-page: 965
  year: 2007
  ident: 10.1016/j.talanta.2013.03.015_bib39
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja076092a
– volume: 18
  start-page: 193
  year: 2003
  ident: 10.1016/j.talanta.2013.03.015_bib5
  publication-title: Biosensors Bioelectron.
  doi: 10.1016/S0956-5663(02)00185-9
– volume: 11
  start-page: 450
  year: 2009
  ident: 10.1016/j.talanta.2013.03.015_bib9
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2008.12.026
– volume: 10
  start-page: 776
  year: 1998
  ident: 10.1016/j.talanta.2013.03.015_bib4
  publication-title: Electroanalysis
  doi: 10.1002/(SICI)1521-4109(199809)10:11<776::AID-ELAN776>3.0.CO;2-5
– volume: 5
  start-page: 131
  year: 2004
  ident: 10.1016/j.talanta.2013.03.015_bib40
  publication-title: Nano Lett.
  doi: 10.1021/nl048204r
– volume: 10
  start-page: 663
  year: 2008
  ident: 10.1016/j.talanta.2013.03.015_bib18
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2008.02.016
– volume: 5
  start-page: 7617
  year: 2011
  ident: 10.1016/j.talanta.2013.03.015_bib21
  publication-title: ACS Nano
  doi: 10.1021/nn202714c
– volume: 19
  start-page: 8230
  year: 2003
  ident: 10.1016/j.talanta.2013.03.015_bib23
  publication-title: Langmuir
  doi: 10.1021/la034917y
– volume: 12
  start-page: 37
  year: 2011
  ident: 10.1016/j.talanta.2013.03.015_bib41
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg201243n
– volume: 97
  start-page: 279
  year: 2002
  ident: 10.1016/j.talanta.2013.03.015_bib35
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/S0001-8686(01)00068-9
– volume: 112
  start-page: 18686
  year: 2008
  ident: 10.1016/j.talanta.2013.03.015_bib36
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp8046054
– volume: 80
  start-page: 66
  year: 2012
  ident: 10.1016/j.talanta.2013.03.015_bib34
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2012.04.031
– volume: 45
  start-page: 8989
  year: 2011
  ident: 10.1016/j.talanta.2013.03.015_bib27
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es201675m
– volume: 80
  start-page: 5441
  year: 2008
  ident: 10.1016/j.talanta.2013.03.015_bib7
  publication-title: Anal. Chem.
  doi: 10.1021/ac702358d
– volume: 55
  start-page: 5123
  year: 2010
  ident: 10.1016/j.talanta.2013.03.015_bib12
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2010.04.017
– volume: 18
  start-page: 441
  year: 2008
  ident: 10.1016/j.talanta.2013.03.015_bib14
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200700729
– volume: 37
  start-page: 4635
  year: 2003
  ident: 10.1016/j.talanta.2013.03.015_bib3
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0300259
– volume: 137
  start-page: 134
  year: 2009
  ident: 10.1016/j.talanta.2013.03.015_bib49
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2008.09.051
– volume: 113
  start-page: 8343
  year: 2009
  ident: 10.1016/j.talanta.2013.03.015_bib26
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp8114012
– volume: 79
  start-page: 570
  year: 2009
  ident: 10.1016/j.talanta.2013.03.015_bib25
  publication-title: Talanta
  doi: 10.1016/j.talanta.2009.04.036
– volume: 150
  start-page: 436
  year: 2010
  ident: 10.1016/j.talanta.2013.03.015_bib11
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2010.06.019
– volume: 519
  start-page: 3457
  year: 2011
  ident: 10.1016/j.talanta.2013.03.015_bib20
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2010.12.239
– volume: 15
  start-page: 1941
  year: 2003
  ident: 10.1016/j.talanta.2013.03.015_bib24
  publication-title: Chem. Mater.
  doi: 10.1021/cm0257825
– volume: 76
  start-page: 474
  year: 2003
  ident: 10.1016/j.talanta.2013.03.015_bib8
  publication-title: Anal. Chem.
  doi: 10.1021/ac034859l
– volume: 82
  start-page: 340
  year: 2010
  ident: 10.1016/j.talanta.2013.03.015_bib15
  publication-title: Talanta
  doi: 10.1016/j.talanta.2010.04.047
– volume: 34
  start-page: 1335
  year: 2010
  ident: 10.1016/j.talanta.2013.03.015_bib33
  publication-title: New J. Chem.
  doi: 10.1039/b9nj00780f
– volume: 26
  start-page: 3602
  year: 2011
  ident: 10.1016/j.talanta.2013.03.015_bib43
  publication-title: Biosensors Bioelectron.
  doi: 10.1016/j.bios.2011.02.010
– volume: 145
  start-page: 794
  year: 2010
  ident: 10.1016/j.talanta.2013.03.015_bib30
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2010.01.048
– volume: 8
  start-page: 1197
  year: 2006
  ident: 10.1016/j.talanta.2013.03.015_bib13
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2006.05.013
– volume: 26
  start-page: 8925
  year: 2010
  ident: 10.1016/j.talanta.2013.03.015_bib38
  publication-title: Langmuir
  doi: 10.1021/la904723a
– volume: 77
  start-page: 3755
  year: 2005
  ident: 10.1016/j.talanta.2013.03.015_bib2
  publication-title: Anal. Chem.
  doi: 10.1021/ac050580o
– volume: 129
  start-page: 915
  year: 2008
  ident: 10.1016/j.talanta.2013.03.015_bib31
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2007.10.006
– volume: 55
  start-page: 6885
  year: 2007
  ident: 10.1016/j.talanta.2013.03.015_bib1
  publication-title: J. Agric. Food. Chem.
  doi: 10.1021/jf071062c
– volume: 108
  start-page: 770
  year: 2008
  ident: 10.1016/j.talanta.2013.03.015_bib6
  publication-title: Chem. Rev.
  doi: 10.1021/cr068127f
– volume: 82
  start-page: 7357
  year: 2010
  ident: 10.1016/j.talanta.2013.03.015_bib32
  publication-title: Anal. Chem.
  doi: 10.1021/ac101392f
SSID ssj0002303
Score 2.3469388
Snippet In this paper, a simple and green strategy, based on the electrophoresis deposition technology, was reported to prepare Ag nanoparticles (NPs) modified TiO2...
In this paper, a simple and green strategy, based on the electrophoresis deposition technology, was reported to prepare Ag nanoparticles (NPs) modified TiO₂...
SourceID proquest
pubmed
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 129
SubjectTerms AgNPs/TiO2NTs
Arrays
catalytic activity
detection limit
Disinfectants - analysis
electrochemistry
Electrodes
Electrophoresis
Electrophoretic deposition
glucose
glucose oxidase
hydrogen peroxide
Hydrogen Peroxide - analysis
Hydrogen Peroxide - chemistry
Hydrogen peroxide sensor
Metal Nanoparticles - chemistry
Metal Nanoparticles - ultrastructure
Microscopy, Electron, Scanning
Microscopy, Electron, Transmission
nanosilver
Nanostructure
nanotubes
Nanotubes - chemistry
Nanotubes - ultrastructure
scanning electron microscopes
Scanning electron microscopy
Sensors
Silver
Silver - chemistry
TiO2 nanotube arrays
Titanium - chemistry
Titanium dioxide
transmission electron microscopes
transmission electron microscopy
Title Electrophoresis deposition of Ag nanoparticles on TiO2 nanotube arrays electrode for hydrogen peroxide sensing
URI https://dx.doi.org/10.1016/j.talanta.2013.03.015
https://www.ncbi.nlm.nih.gov/pubmed/23708548
https://www.proquest.com/docview/1356394471
https://www.proquest.com/docview/1513483443
https://www.proquest.com/docview/2000037671
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbJ5tBeSt_ZPoIKvTq7ljS297gsCduWpodmITchydLGIdjLPqC59Ld3xpa3FJoGCr5YSLblkWa-sWe-YexjGkTIZEDvREqXKOVQD0JwCZTKFA5saYByh79eZPOF-nwFVwds1ufCUFhl1P2dTm-1dWwZxbc5WlUV5fiicW39g5YnCl2gI4HWvhiwo-mnL_OLvUJGlB25dycJDfidyDO6IZ5BnAIxEKWypTulArl_N1GHwTT3A9HWIJ0_ZU8ikuTT7mGfsQNfP2ePZn0BtxesPutK3KyuG_Spqw0vfR-ixZvAp0temxp95hgax7H5svom2tbtznpu1mtzt-GxUk7pOQJcfn1XrhtcdZwYxn9U2LqhGPh6-ZItzs8uZ_MklldIHAjYJqa0eQrOoEsTMp_bLPcKfJlbBN0WLTtxAxYWrMVNjyBLGYJfeOKw4wTCRL5ig7qp_THj4MY-R6HnKpPKGkAfrkRg5AIKXHjIhkz1b1S7yD1OJTBudR9kdqOjIDQJQo_xSGHITvfDVh35xkMDil5c-o9VpNFAPDT0GMWrzRJ1q158F8S817LzwHjIPvQy1yhC-qNiat_sNjqVkFFmcZ7-ow-kkr7YKnl_H9HdKqPrvO4W1X7CQuYIi1Xx5v_n9pY9Fm0VD9yS8I4Ntuudf49YamtP2OHpz_Qk7phfb04cZg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBa69NBdhr2bdus0YFcvsSXayTEIWqSv7LAE6E2QZCl1MdhBHkD770vacoYB6woM8MWCZFumRH60yY-MfYt94lPh0TsRwkZSWtSD4G0EudQDCybXQLnD19N0MpcXN3Czx8ZtLgyFVQbd3-j0WluHll54m71lUVCOLxrX2j-oeaLQBdqXVNS6w_ZH55eT6U4hI8oO3LvDiAb8TuTp3RHPIE6BGIhiUdOdUoHcv5uoF15XTwPR2iCdvWavApLko-Zh37A9V75lB-O2gNs7Vp42JW6WtxX61MWa564N0eKV56MFL3WJPnMIjePYPCt-JHXrZmsc16uVfljzUCkndxwBLr99yFcVrjpODOP3BbauKQa-XLxn87PT2XgShfIKkYUENpHOTRaD1ejS-NRlJs2cBJdnBkG3QctO3IADA8bgpkeQJTXBLzyx2HEIfig-sE5Zle6QcbB9l6HQM5kKaTSgD5cjMLIeBZ44SLtMtm9U2cA9TiUwfqk2yOxOBUEoEoTq4xFDl33fDVs25BvPDRi04lJ_rCKFBuK5oYcoXqUXqFvV_GdCzHs1Ow_0u-xrK3OFIqQ_Krp01XatYgEpZRZn8T_6QCzoi60UT_dJmluldJ2PzaLaTTgRGcJiOTj6_7l9YQeT2fWVujqfXh6zl0ld0QO3J3xinc1q6z4jrtqYk7BvHgEe4R5M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrophoresis+deposition+of+Ag+nanoparticles+on+TiO%E2%82%82+nanotube+arrays+electrode+for+hydrogen+peroxide+sensing&rft.jtitle=Talanta+%28Oxford%29&rft.au=Jiang%2C+Yanshu&rft.au=Zheng%2C+Baozhan&rft.au=Du%2C+Juan&rft.au=Liu%2C+Guangyue&rft.date=2013-08-15&rft.issn=0039-9140&rft.volume=112+p.129-135&rft.spage=129&rft.epage=135&rft_id=info:doi/10.1016%2Fj.talanta.2013.03.015&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-9140&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-9140&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-9140&client=summon