Quality control for bone quality parameters affected by subject motion in high-resolution peripheral quantitative computed tomography

Subject motion during high-resolution peripheral quantitative computed tomography (HR-pQCT) causes image artifacts that affect morphological analysis of bone quality. The aim of our study was to determine effectiveness of techniques for quality control in the presence of motion in vivo including aut...

Full description

Saved in:
Bibliographic Details
Published inBone (New York, N.Y.) Vol. 50; no. 6; pp. 1304 - 1310
Main Authors Pauchard, Yves, Liphardt, Anna-Maria, Macdonald, Heather M., Hanley, David A., Boyd, Steven K.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 01.06.2012
Elsevier
Subjects
Online AccessGet full text
ISSN8756-3282
1873-2763
1873-2763
DOI10.1016/j.bone.2012.03.003

Cover

Abstract Subject motion during high-resolution peripheral quantitative computed tomography (HR-pQCT) causes image artifacts that affect morphological analysis of bone quality. The aim of our study was to determine effectiveness of techniques for quality control in the presence of motion in vivo including automated and manual approaches. First, repeatability of manual grading was determined within and between laboratories. Given proper training using a standardized scale and training images (provided by the manufacturer), we found that manual grading is suitable for repeatable image quality grading within and across sites (ICC>0.7). Both a new automated technique providing motion measures based on projection moments, and traditional manual grading (1=best, 5=worst) were subsequently used to assess subject data for motion in N=137 image pairs (scan/re-scan) from the Canadian Multicentre Osteoporosis Study (CaMos) Calgary cohort. High quality image pairs were selected and measurement precision was estimated by calculating the coefficient of variation (CV). Consistent with previous data, density parameters (e.g. total bone mineral density) are more robust than structural (e.g. trabecular number) or finite element parameters (e.g. failure load). To obtain acceptable measurement precision, images should not exceed a manual grading of 3 (on a scale from 1 to 5) or an automatic (εT) grading of 1.2. Automatic and manual grading provide comparable quality control, but the advantage of the automated technique is its ability to provide a motion value at scan time (providing a basis for real time decision regarding re-scan requirements), and the assessment is objective. Notably, automatic motion measurement can be performed retrospectively based on original scan data, and is therefore well suited for multi-center studies as well as any research where objective quality control is paramount. ►Presents manual and automatic grading for motion monitoring in HR-pQCT. ►Manual grading is reproducible across and between sites with training. ►Density parameters are more robust to motion than structural and FE parameters. ►Manual grade of 3 or automatic grade of 1.2 yield acceptable reproducibility. ►Tables are provided for determining appropriate grading thresholds.
AbstractList Subject motion during high-resolution peripheral quantitative computed tomography (HR-pQCT) causes image artifacts that affect morphological analysis of bone quality. The aim of our study was to determine effectiveness of techniques for quality control in the presence of motion in vivo including automated and manual approaches. First, repeatability of manual grading was determined within and between laboratories. Given proper training using a standardized scale and training images (provided by the manufacturer), we found that manual grading is suitable for repeatable image quality grading within and across sites (ICC>0.7). Both a new automated technique providing motion measures based on projection moments, and traditional manual grading (1=best, 5=worst) were subsequently used to assess subject data for motion in N=137 image pairs (scan/re-scan) from the Canadian Multicentre Osteoporosis Study (CaMos) Calgary cohort. High quality image pairs were selected and measurement precision was estimated by calculating the coefficient of variation (CV). Consistent with previous data, density parameters (e.g. total bone mineral density) are more robust than structural (e.g. trabecular number) or finite element parameters (e.g. failure load). To obtain acceptable measurement precision, images should not exceed a manual grading of 3 (on a scale from 1 to 5) or an automatic ( epsilon T) grading of 1.2. Automatic and manual grading provide comparable quality control, but the advantage of the automated technique is its ability to provide a motion value at scan time (providing a basis for real time decision regarding re-scan requirements), and the assessment is objective. Notably, automatic motion measurement can be performed retrospectively based on original scan data, and is therefore well suited for multi-center studies as well as any research where objective quality control is paramount.
Subject motion during high-resolution peripheral quantitative computed tomography (HR-pQCT) causes image artifacts that affect morphological analysis of bone quality. The aim of our study was to determine effectiveness of techniques for quality control in the presence of motion in vivo including automated and manual approaches. First, repeatability of manual grading was determined within and between laboratories. Given proper training using a standardized scale and training images (provided by the manufacturer), we found that manual grading is suitable for repeatable image quality grading within and across sites (ICC>0.7). Both a new automated technique providing motion measures based on projection moments, and traditional manual grading (1=best, 5=worst) were subsequently used to assess subject data for motion in N=137 image pairs (scan/re-scan) from the Canadian Multicentre Osteoporosis Study (CaMos) Calgary cohort. High quality image pairs were selected and measurement precision was estimated by calculating the coefficient of variation (CV). Consistent with previous data, density parameters (e.g. total bone mineral density) are more robust than structural (e.g. trabecular number) or finite element parameters (e.g. failure load). To obtain acceptable measurement precision, images should not exceed a manual grading of 3 (on a scale from 1 to 5) or an automatic (εT) grading of 1.2. Automatic and manual grading provide comparable quality control, but the advantage of the automated technique is its ability to provide a motion value at scan time (providing a basis for real time decision regarding re-scan requirements), and the assessment is objective. Notably, automatic motion measurement can be performed retrospectively based on original scan data, and is therefore well suited for multi-center studies as well as any research where objective quality control is paramount. ►Presents manual and automatic grading for motion monitoring in HR-pQCT. ►Manual grading is reproducible across and between sites with training. ►Density parameters are more robust to motion than structural and FE parameters. ►Manual grade of 3 or automatic grade of 1.2 yield acceptable reproducibility. ►Tables are provided for determining appropriate grading thresholds.
Abstract Subject motion during high-resolution peripheral quantitative computed tomography (HR-pQCT) causes image artifacts that affect morphological analysis of bone quality. The aim of our study was to determine effectiveness of techniques for quality control in the presence of motion in vivo including automated and manual approaches. First, repeatability of manual grading was determined within and between laboratories. Given proper training using a standardized scale and training images (provided by the manufacturer), we found that manual grading is suitable for repeatable image quality grading within and across sites (ICC > 0.7). Both a new automated technique providing motion measures based on projection moments, and traditional manual grading (1 = best, 5 = worst) were subsequently used to assess subject data for motion in N = 137 image pairs (scan/re-scan) from the Canadian Multicentre Osteoporosis Study (CaMos) Calgary cohort. High quality image pairs were selected and measurement precision was estimated by calculating the coefficient of variation (CV). Consistent with previous data, density parameters ( e.g. total bone mineral density) are more robust than structural ( e.g. trabecular number) or finite element parameters ( e.g. failure load). To obtain acceptable measurement precision, images should not exceed a manual grading of 3 (on a scale from 1 to 5) or an automatic (εT ) grading of 1.2. Automatic and manual grading provide comparable quality control, but the advantage of the automated technique is its ability to provide a motion value at scan time (providing a basis for real time decision regarding re-scan requirements), and the assessment is objective. Notably, automatic motion measurement can be performed retrospectively based on original scan data, and is therefore well suited for multi-center studies as well as any research where objective quality control is paramount.
Subject motion during high-resolution peripheral quantitative computed tomography (HR-pQCT) causes image artifacts that affect morphological analysis of bone quality. The aim of our study was to determine effectiveness of techniques for quality control in the presence of motion in vivo including automated and manual approaches. First, repeatability of manual grading was determined within and between laboratories. Given proper training using a standardized scale and training images (provided by the manufacturer), we found that manual grading is suitable for repeatable image quality grading within and across sites (ICC>0.7). Both a new automated technique providing motion measures based on projection moments, and traditional manual grading (1=best, 5=worst) were subsequently used to assess subject data for motion in N=137 image pairs (scan/re-scan) from the Canadian Multicentre Osteoporosis Study (CaMos) Calgary cohort. High quality image pairs were selected and measurement precision was estimated by calculating the coefficient of variation (CV). Consistent with previous data, density parameters (e.g. total bone mineral density) are more robust than structural (e.g. trabecular number) or finite element parameters (e.g. failure load). To obtain acceptable measurement precision, images should not exceed a manual grading of 3 (on a scale from 1 to 5) or an automatic (ε(T)) grading of 1.2. Automatic and manual grading provide comparable quality control, but the advantage of the automated technique is its ability to provide a motion value at scan time (providing a basis for real time decision regarding re-scan requirements), and the assessment is objective. Notably, automatic motion measurement can be performed retrospectively based on original scan data, and is therefore well suited for multi-center studies as well as any research where objective quality control is paramount.
Subject motion during high-resolution peripheral quantitative computed tomography (HR-pQCT) causes image artifacts that affect morphological analysis of bone quality. The aim of our study was to determine effectiveness of techniques for quality control in the presence of motion in vivo including automated and manual approaches. First, repeatability of manual grading was determined within and between laboratories. Given proper training using a standardized scale and training images (provided by the manufacturer), we found that manual grading is suitable for repeatable image quality grading within and across sites (ICC>0.7). Both a new automated technique providing motion measures based on projection moments, and traditional manual grading (1=best, 5=worst) were subsequently used to assess subject data for motion in N=137 image pairs (scan/re-scan) from the Canadian Multicentre Osteoporosis Study (CaMos) Calgary cohort. High quality image pairs were selected and measurement precision was estimated by calculating the coefficient of variation (CV). Consistent with previous data, density parameters (e.g. total bone mineral density) are more robust than structural (e.g. trabecular number) or finite element parameters (e.g. failure load). To obtain acceptable measurement precision, images should not exceed a manual grading of 3 (on a scale from 1 to 5) or an automatic (ε(T)) grading of 1.2. Automatic and manual grading provide comparable quality control, but the advantage of the automated technique is its ability to provide a motion value at scan time (providing a basis for real time decision regarding re-scan requirements), and the assessment is objective. Notably, automatic motion measurement can be performed retrospectively based on original scan data, and is therefore well suited for multi-center studies as well as any research where objective quality control is paramount.Subject motion during high-resolution peripheral quantitative computed tomography (HR-pQCT) causes image artifacts that affect morphological analysis of bone quality. The aim of our study was to determine effectiveness of techniques for quality control in the presence of motion in vivo including automated and manual approaches. First, repeatability of manual grading was determined within and between laboratories. Given proper training using a standardized scale and training images (provided by the manufacturer), we found that manual grading is suitable for repeatable image quality grading within and across sites (ICC>0.7). Both a new automated technique providing motion measures based on projection moments, and traditional manual grading (1=best, 5=worst) were subsequently used to assess subject data for motion in N=137 image pairs (scan/re-scan) from the Canadian Multicentre Osteoporosis Study (CaMos) Calgary cohort. High quality image pairs were selected and measurement precision was estimated by calculating the coefficient of variation (CV). Consistent with previous data, density parameters (e.g. total bone mineral density) are more robust than structural (e.g. trabecular number) or finite element parameters (e.g. failure load). To obtain acceptable measurement precision, images should not exceed a manual grading of 3 (on a scale from 1 to 5) or an automatic (ε(T)) grading of 1.2. Automatic and manual grading provide comparable quality control, but the advantage of the automated technique is its ability to provide a motion value at scan time (providing a basis for real time decision regarding re-scan requirements), and the assessment is objective. Notably, automatic motion measurement can be performed retrospectively based on original scan data, and is therefore well suited for multi-center studies as well as any research where objective quality control is paramount.
Author Pauchard, Yves
Boyd, Steven K.
Liphardt, Anna-Maria
Hanley, David A.
Macdonald, Heather M.
Author_xml – sequence: 1
  givenname: Yves
  surname: Pauchard
  fullname: Pauchard, Yves
  organization: Schulich School of Engineering, University of Calgary, Calgary, Canada
– sequence: 2
  givenname: Anna-Maria
  surname: Liphardt
  fullname: Liphardt, Anna-Maria
  organization: Schulich School of Engineering, University of Calgary, Calgary, Canada
– sequence: 3
  givenname: Heather M.
  surname: Macdonald
  fullname: Macdonald, Heather M.
  organization: Department of Orthopaedics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
– sequence: 4
  givenname: David A.
  surname: Hanley
  fullname: Hanley, David A.
  organization: McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada
– sequence: 5
  givenname: Steven K.
  surname: Boyd
  fullname: Boyd, Steven K.
  email: skboyd@ucalgary.ca
  organization: Schulich School of Engineering, University of Calgary, Calgary, Canada
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26767455$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22445540$$D View this record in MEDLINE/PubMed
BookMark eNqNkt9qFDEUxoNU7Lb6Al7I3AjezJo_M5MZkYKUVoWCiHodzmTOdLPOJNMkU9gH8L3NdLcIBatXISe_7zvkfOeEHFlnkZCXjK4ZZdXb7bpNhTWnjK-pWFMqnpAVq6XIuazEEVnVsqxywWt-TE5C2NJENJI9I8ecF0VZFnRFfn2dYTBxl2lno3dD1jufLbbZzeFhAg8jRvQhg75HHbHL2l0W5nabLtnoonE2MzbbmOtN7jG4Yb4rTejNtEEPw-Jlo4kQzS2mTuM0Ly7Rje7aw7TZPSdPexgCvjicp-TH5cX380_51ZePn88_XOW65GXMQUtB20Ji2xS0bYSkNXSs7cq2hIb2sq1oXfOG1yAEAOeVZh3IihZFLxgyIU7Jm73v5N3NjCGq0QSNwwAW3RwUo5zWJS_K6j9QJhpOuSwS-uqAzu2InZq8GcHv1P2UE_D6AEDQMPQerDbhD1fJSiYycfWe096F4LFX-m5oSzRghtRzaVuprVoSUkvwigqVYk1S_kB67_6o6P1ehGnmtwa9Ctqg1dgZn7JVnTOPy88eyPVgrEk__Ik7DFs3e5vSVEyFpFHflnVctpFxSiVnLBm8-7vBv7r_BnsD8NY
CitedBy_id crossref_primary_10_1016_j_jocd_2017_07_002
crossref_primary_10_1016_j_bone_2020_115575
crossref_primary_10_1016_j_bone_2017_05_004
crossref_primary_10_1016_j_jocd_2020_11_001
crossref_primary_10_1016_j_jocd_2014_07_004
crossref_primary_10_1002_jbmr_3129
crossref_primary_10_1016_j_jocd_2014_07_005
crossref_primary_10_1016_j_jocd_2014_07_003
crossref_primary_10_1007_s00198_019_05029_z
crossref_primary_10_1007_s00198_019_05186_1
crossref_primary_10_1007_s00198_022_06652_z
crossref_primary_10_1177_1759720X241288060
crossref_primary_10_1093_rheumatology_keaa415
crossref_primary_10_3899_jrheum_220623
crossref_primary_10_1136_bjsports_2020_103602
crossref_primary_10_1007_s10439_013_0871_x
crossref_primary_10_1016_j_bone_2022_116653
crossref_primary_10_1007_s00198_020_05405_0
crossref_primary_10_1016_j_fuspru_2021_02_003
crossref_primary_10_1002_jbm4_10615
crossref_primary_10_1007_s00223_013_9808_5
crossref_primary_10_1002_jbmr_3998
crossref_primary_10_1007_s00223_015_0091_5
crossref_primary_10_1002_jbmr_2796
crossref_primary_10_1002_jbmr_3128
crossref_primary_10_3390_diagnostics14050568
crossref_primary_10_1016_j_rhum_2021_07_010
crossref_primary_10_1136_bmjsem_2024_002320
crossref_primary_10_1016_j_bone_2024_117376
crossref_primary_10_2139_ssrn_4169782
crossref_primary_10_1080_14397595_2020_1804669
crossref_primary_10_1038_s41598_022_27350_0
crossref_primary_10_1093_rheumatology_keab446
crossref_primary_10_1016_j_jocd_2018_11_005
crossref_primary_10_2139_ssrn_4130780
crossref_primary_10_1002_jbmr_3307
crossref_primary_10_1002_cnm_3515
crossref_primary_10_1016_j_bone_2016_12_014
crossref_primary_10_1186_1471_2474_14_367
crossref_primary_10_1002_jbmr_3399
crossref_primary_10_1002_jbmr_4488
crossref_primary_10_1002_jbm4_10493
crossref_primary_10_1002_jbmr_2982
crossref_primary_10_1186_s12891_016_1238_x
crossref_primary_10_3389_fendo_2022_990442
crossref_primary_10_1016_j_jocd_2015_02_005
crossref_primary_10_1016_j_ymgmr_2020_100606
crossref_primary_10_1007_s00198_016_3900_4
crossref_primary_10_1186_s13075_022_02907_6
crossref_primary_10_1007_s00198_021_06288_5
crossref_primary_10_1016_j_bone_2023_116893
crossref_primary_10_1007_s11657_014_0183_2
crossref_primary_10_3389_fmed_2024_1387532
crossref_primary_10_1016_j_cct_2018_02_009
crossref_primary_10_1186_s12880_020_00437_8
crossref_primary_10_3389_fendo_2021_738895
crossref_primary_10_1016_j_jocd_2016_12_001
crossref_primary_10_3389_fmed_2020_00337
crossref_primary_10_1016_j_rbr_2014_07_010
crossref_primary_10_1002_jbmr_4114
crossref_primary_10_1002_jbmr_4116
crossref_primary_10_1055_s_0044_1788623
crossref_primary_10_1038_s41526_019_0073_4
crossref_primary_10_1111_1756_185X_14169
crossref_primary_10_1016_j_bone_2015_06_006
crossref_primary_10_1016_j_bone_2022_116582
crossref_primary_10_1016_j_jsams_2021_09_001
crossref_primary_10_1016_j_jbspin_2020_07_014
crossref_primary_10_1007_s00198_018_4678_3
crossref_primary_10_1016_j_afos_2021_05_003
crossref_primary_10_1007_s00774_018_0976_2
crossref_primary_10_1002_jbmr_2915
crossref_primary_10_1002_jbmr_4663
crossref_primary_10_3389_fspor_2022_1021442
crossref_primary_10_1002_jbmr_3456
crossref_primary_10_1002_jbmr_1795
crossref_primary_10_1007_s00198_015_3133_y
crossref_primary_10_1016_j_jmbbm_2021_104506
crossref_primary_10_1007_s11914_023_00811_9
crossref_primary_10_1002_jbmr_1939
crossref_primary_10_1007_s00223_013_9803_x
crossref_primary_10_1016_j_bone_2022_116571
crossref_primary_10_1007_s00198_020_05449_2
crossref_primary_10_1007_s00198_019_05214_0
crossref_primary_10_1007_s11914_013_0140_9
crossref_primary_10_1302_2633_1462_63_BJO_2024_0107_R1
crossref_primary_10_1016_j_bone_2017_01_016
crossref_primary_10_2217_iim_12_45
crossref_primary_10_1002_jbmr_4808
crossref_primary_10_1210_clinem_dgab506
crossref_primary_10_1002_jbmr_3200
crossref_primary_10_1016_j_jocd_2019_08_003
crossref_primary_10_1002_jbmr_2873
crossref_primary_10_1016_j_bone_2019_01_013
crossref_primary_10_1016_j_bone_2021_115937
crossref_primary_10_1186_s13052_016_0297_9
crossref_primary_10_1002_jbmr_1784
crossref_primary_10_3390_diagnostics14151589
crossref_primary_10_1016_j_bone_2022_116607
crossref_primary_10_1016_j_jocd_2020_12_003
crossref_primary_10_1007_s00198_014_2995_8
crossref_primary_10_1016_j_bone_2023_116901
crossref_primary_10_1002_jbmr_4494
crossref_primary_10_1007_s00223_023_01143_7
crossref_primary_10_1016_j_bonr_2021_100748
crossref_primary_10_1007_s00198_024_07321_z
crossref_primary_10_1007_s00198_020_05438_5
crossref_primary_10_1007_s00223_023_01120_0
crossref_primary_10_1007_s11695_019_03753_3
crossref_primary_10_1016_j_rbre_2014_07_010
crossref_primary_10_1002_jbmr_2817
crossref_primary_10_1093_jbmr_zjae039
crossref_primary_10_1038_s41598_022_13461_1
crossref_primary_10_1007_s00223_018_0416_2
crossref_primary_10_1002_jbmr_3115
crossref_primary_10_1007_s00223_019_00564_7
crossref_primary_10_1007_s00198_023_06784_w
crossref_primary_10_1093_jbmrpl_ziae158
crossref_primary_10_1016_j_bone_2016_02_016
crossref_primary_10_1016_j_bone_2020_115785
crossref_primary_10_1186_s13023_020_01521_6
crossref_primary_10_1080_03009742_2020_1869303
crossref_primary_10_1016_j_bone_2021_116013
crossref_primary_10_1123_pes_2017_0043
crossref_primary_10_1016_j_bone_2014_03_001
crossref_primary_10_1016_j_jocd_2021_01_004
crossref_primary_10_1016_j_jocd_2014_01_006
crossref_primary_10_1016_j_jshs_2015_01_007
crossref_primary_10_1002_jbmr_3188
crossref_primary_10_1002_jbmr_3347
crossref_primary_10_1007_s11657_023_01352_5
crossref_primary_10_1210_clinem_dgae511
crossref_primary_10_1007_s00198_014_2994_9
crossref_primary_10_1002_jbmr_4152
crossref_primary_10_1155_2020_9201979
Cites_doi 10.1210/jc.2005-1258
10.1007/s00198-008-0833-6
10.1007/s00296-010-1542-y
10.1016/j.bone.2008.10.045
10.1016/S8756-3282(02)00736-6
10.1016/j.bone.2007.07.007
10.1007/s00198-010-1226-1
10.1016/j.bone.2011.03.755
10.1016/j.medengphy.2007.11.003
10.1359/JBMR.050916
10.1016/j.bone.2008.01.017
10.1002/jbmr.171
10.1016/j.bone.2010.05.034
10.1016/j.bone.2011.10.003
10.1088/0031-9155/56/20/001
10.1359/jbmr.091020
10.1002/jbmr.157
10.1359/jbmr.061206
10.1007/s00198-011-1829-1
10.1002/jbmr.81
ContentType Journal Article
Copyright 2012 Elsevier Inc.
Elsevier Inc.
2014 INIST-CNRS
Copyright © 2012 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2012 Elsevier Inc.
– notice: Elsevier Inc.
– notice: 2014 INIST-CNRS
– notice: Copyright © 2012 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QP
DOI 10.1016/j.bone.2012.03.003
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Calcium & Calcified Tissue Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Calcium & Calcified Tissue Abstracts
DatabaseTitleList Calcium & Calcified Tissue Abstracts



MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1873-2763
EndPage 1310
ExternalDocumentID 22445540
26767455
10_1016_j_bone_2012_03_003
S8756328212007211
1_s2_0_S8756328212007211
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABGSF
ABJNI
ABLJU
ABMAC
ABMZM
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEB
HMK
HMO
HVGLF
HZ~
IHE
J1W
J5H
K-O
KOM
L7B
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OF0
OR.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
WUQ
X7M
Z5R
ZGI
ZMT
~02
~G-
~HD
1RT
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
DOVZS
LCYCR
ZA5
AAYXX
CITATION
AGCQF
AGRNS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QP
ID FETCH-LOGICAL-c525t-ac730b47eb940b93708ad1bd5b5a90f7b60882928a33aa226c1da76044f31e133
IEDL.DBID .~1
ISSN 8756-3282
1873-2763
IngestDate Sun Sep 28 07:55:01 EDT 2025
Sun Sep 28 00:34:38 EDT 2025
Thu Apr 03 07:05:25 EDT 2025
Mon Jul 21 09:12:20 EDT 2025
Thu Apr 24 23:10:15 EDT 2025
Wed Oct 01 04:20:15 EDT 2025
Fri Feb 23 02:31:33 EST 2024
Sun Feb 23 10:19:36 EST 2025
Tue Oct 14 19:35:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Image quality
Subject motion artifacts
HR-pQCT
Bone quality parameters
Morphological analysis
Human
Motion
High resolution
Radiodiagnosis
Artefact
Morphology
Medical imagery
Computerized axial tomography
Bone
Quantitative analysis
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright © 2012 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c525t-ac730b47eb940b93708ad1bd5b5a90f7b60882928a33aa226c1da76044f31e133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 22445540
PQID 1013920274
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_1020852456
proquest_miscellaneous_1013920274
pubmed_primary_22445540
pascalfrancis_primary_26767455
crossref_citationtrail_10_1016_j_bone_2012_03_003
crossref_primary_10_1016_j_bone_2012_03_003
elsevier_sciencedirect_doi_10_1016_j_bone_2012_03_003
elsevier_clinicalkeyesjournals_1_s2_0_S8756328212007211
elsevier_clinicalkey_doi_10_1016_j_bone_2012_03_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-06-01
PublicationDateYYYYMMDD 2012-06-01
PublicationDate_xml – month: 06
  year: 2012
  text: 2012-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: United States
PublicationTitle Bone (New York, N.Y.)
PublicationTitleAlternate Bone
PublicationYear 2012
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Sornay-Rendu, Boutroy, Munoz, Delmas (bb0025) 2007; 22
Burghardt, Buie, Laib, Majumdar, Boyd (bb0120) 2010; 47
Pauchard, Ayres, Boyd (bb0080) June 2009
Seeman, Delmas, Hanley, Sellmeyer, Cheung, Shane (bb0040) 2010; 25
Seeram (bb0130) 2001
Macdonald, Nishiyama, Hanley, Boyd (bb0045) 2010; 22
Macneil, Boyd (bb0050) 2008; 42
Howell (bb0095) May 2006
MacNeil, Boyd (bb0060) 2008; 30
Ens, Ulrici, Hell, Buzug (bb0125) April 2010
Engelke K, Stampa B, Timm W, Dardzinski B, de Papp AE, Genant HK, et al. Short-term in vivo precision of BMD and parameters of trabecular architecture at the distal forearm and tibia. Osteoporos Int in press
Boutroy, Bouxsein, Munoz, Delmas (bb0065) 2005; 90
Burghardt, Kazakia, Sode, de Papp, Link, Majumdar (bb0030) Dec. 2010; 25
Pauchard, Boyd (bb0135) Feb. 2008; vol. 6913
Buie, Campbell, Klinck, MacNeil, Boyd (bb0100) 2007; 41
Nishiyama, Macdonald, Buie, Hanley, Boyd (bb0020) 2010; 25
Dalzell, Kaptoge, Morris, Berthier, Koller, Braak (bb0010) 2009; 20
.
Mueller, Stauber, Kohler, Eckstein, Müller, van Lenthe (bb0055) 2009; 44
Macdonald, Nishiyama, Kang, Hanley, Boyd (bb0015) 2011; 26
Pialat, Burghardt, Sode, Link, Majumdar (bb0070) 2012; 50
Pauchard, Ayres, Boyd (bb0085) 2011; 56
Khosla, Riggs, Atkinson, Oberg, McDaniel, Holets (bb0005) 2006; 21
Nunnally (bb0115) Feb. 1978
Pistoia, van Rietbergen, Lochmüller, Lill, Eckstein, Rüegsegger (bb0105) 2002; 30
Rizzoli, Laroche, Krieg, Frieling, Thomas, Delmas (bb0035) 2010; 30
Langton, Njeh (bb0110) 2004
Sode, Burghardt, Pialat, Link, Majumdar (bb0090) 2011; 48
Nunnally (10.1016/j.bone.2012.03.003_bb0115) 1978
Pistoia (10.1016/j.bone.2012.03.003_bb0105) 2002; 30
Burghardt (10.1016/j.bone.2012.03.003_bb0030) 2010; 25
Dalzell (10.1016/j.bone.2012.03.003_bb0010) 2009; 20
Mueller (10.1016/j.bone.2012.03.003_bb0055) 2009; 44
Macdonald (10.1016/j.bone.2012.03.003_bb0045) 2010; 22
Pauchard (10.1016/j.bone.2012.03.003_bb0085) 2011; 56
Nishiyama (10.1016/j.bone.2012.03.003_bb0020) 2010; 25
MacNeil (10.1016/j.bone.2012.03.003_bb0060) 2008; 30
Buie (10.1016/j.bone.2012.03.003_bb0100) 2007; 41
Langton (10.1016/j.bone.2012.03.003_bb0110) 2004
Sode (10.1016/j.bone.2012.03.003_bb0090) 2011; 48
Macdonald (10.1016/j.bone.2012.03.003_bb0015) 2011; 26
Pauchard (10.1016/j.bone.2012.03.003_bb0135) 2008; vol. 6913
Sornay-Rendu (10.1016/j.bone.2012.03.003_bb0025) 2007; 22
Pialat (10.1016/j.bone.2012.03.003_bb0070) 2012; 50
Seeram (10.1016/j.bone.2012.03.003_bb0130) 2001
Seeman (10.1016/j.bone.2012.03.003_bb0040) 2010; 25
Khosla (10.1016/j.bone.2012.03.003_bb0005) 2006; 21
Rizzoli (10.1016/j.bone.2012.03.003_bb0035) 2010; 30
Macneil (10.1016/j.bone.2012.03.003_bb0050) 2008; 42
Boutroy (10.1016/j.bone.2012.03.003_bb0065) 2005; 90
Burghardt (10.1016/j.bone.2012.03.003_bb0120) 2010; 47
Howell (10.1016/j.bone.2012.03.003_bb0095) 2006
10.1016/j.bone.2012.03.003_bb0075
Pauchard (10.1016/j.bone.2012.03.003_bb0080) 2009
Ens (10.1016/j.bone.2012.03.003_bb0125) 2010
References_xml – volume: 20
  start-page: 1683
  year: 2009
  end-page: 1694
  ident: bb0010
  article-title: Bone micro-architecture and determinants of strength in the radius and tibia: age-related changes in a population-based study of normal adults measured with high-resolution pQCT
  publication-title: Osteoporos Int
– volume: 22
  start-page: 357
  year: 2010
  end-page: 362
  ident: bb0045
  article-title: Changes in trabecular and cortical bone microarchitecture at peripheral sites associated with 18
  publication-title: Osteoporos Int
– start-page: 1257
  year: April 2010
  end-page: 1260
  ident: bb0125
  article-title: Automatic detection of patient motion in cone-beam computed tomography
  publication-title: Proc. 7th IEEE international symposium on biomedical imaging: from nano to macro (ISBI'10), Rotterdam, The Netherlands
– volume: 30
  start-page: 842
  year: 2002
  end-page: 848
  ident: bb0105
  article-title: Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images
  publication-title: Bone
– volume: 50
  start-page: 111
  year: 2012
  end-page: 118
  ident: bb0070
  article-title: Visual grading of motion induced image degradation in high resolution peripheral computed tomography: impact of image quality on measures of bone density and micro-architecture
  publication-title: Bone
– volume: 56
  start-page: 6523
  year: 2011
  end-page: 6543
  ident: bb0085
  article-title: Automated quantification of three-dimensional subject motion to monitor image quality in high-resolution peripheral quantitative computed tomography
  publication-title: Phys Med Biol
– volume: 25
  start-page: 882
  year: 2010
  end-page: 890
  ident: bb0020
  article-title: Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal aBMD: an
  publication-title: J Bone Miner Res
– year: Feb. 1978
  ident: bb0115
  article-title: Psychometric theory
– reference: Engelke K, Stampa B, Timm W, Dardzinski B, de Papp AE, Genant HK, et al. Short-term in vivo precision of BMD and parameters of trabecular architecture at the distal forearm and tibia. Osteoporos Int in press,
– volume: 30
  start-page: 1341
  year: 2010
  end-page: 1348
  ident: bb0035
  article-title: Strontium ranelate and alendronate have differing effects on distal tibia bone microstructure in women with osteoporosis
  publication-title: Rheumatol Int
– volume: 26
  start-page: 50
  year: 2011
  end-page: 62
  ident: bb0015
  article-title: Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: a population-based HR-pQCT study
  publication-title: J Bone Miner Res
– volume: 48
  start-page: 1291
  year: 2011
  end-page: 1297
  ident: bb0090
  article-title: Quantitative characterization of subject motion in HR-pQCT images of the distal radius and tibia
  publication-title: Bone
– volume: 41
  start-page: 505
  year: 2007
  end-page: 515
  ident: bb0100
  article-title: Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for
  publication-title: Bone
– volume: 44
  start-page: 364
  year: 2009
  end-page: 371
  ident: bb0055
  article-title: Non-invasive bone competence analysis by high-resolution pQCT: an
  publication-title: Bone
– start-page: 338
  year: June 2009
  end-page: 341
  ident: bb0080
  article-title: Measuring patient motion in HR-pQCT
  publication-title: Proc. 6th IEEE international symposium on biomedical imaging: from nano to macro (ISBI'09), Boston, MA, USA
– volume: vol. 6913
  start-page: 69133C
  year: Feb. 2008
  ident: bb0135
  article-title: Landmark based compensation of patient motion artifacts in computed tomography
  publication-title: Proceedings of SPIE
– reference: .
– volume: 42
  start-page: 1203
  year: 2008
  end-page: 1213
  ident: bb0050
  article-title: Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method
  publication-title: Bone
– year: 2004
  ident: bb0110
  article-title: The physical measurement of bone
– volume: 25
  start-page: 1886
  year: 2010
  end-page: 1894
  ident: bb0040
  article-title: Microarchitectural deterioration of cortical and trabecular bone: differing effects of denosumab and alendronate
  publication-title: J Bone Miner Res
– year: May 2006
  ident: bb0095
  article-title: Statistical methods for psychology
– volume: 25
  start-page: 2558
  year: Dec. 2010
  end-page: 2571
  ident: bb0030
  article-title: A longitudinal HR-pQCT study of alendronate treatment in postmenopausal women with low bone density: relations among density, cortical and trabecular microarchitecture, biomechanics, and bone turnover
  publication-title: J Bone Miner Res
– volume: 21
  start-page: 124
  year: 2006
  end-page: 131
  ident: bb0005
  article-title: Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive
  publication-title: J Bone Miner Res
– year: 2001
  ident: bb0130
  article-title: Computed tomography: physical principles, clinical applications and quality control
– volume: 22
  start-page: 425
  year: 2007
  end-page: 433
  ident: bb0025
  article-title: Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study
  publication-title: J Bone Miner Res
– volume: 30
  start-page: 792
  year: 2008
  end-page: 799
  ident: bb0060
  article-title: Improved reproducibility of high resolution peripheral quantitative computed tomography for measurement of bone quality
  publication-title: Med Eng Phys
– volume: 47
  start-page: 519
  year: 2010
  end-page: 528
  ident: bb0120
  article-title: Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT
  publication-title: Bone
– volume: 90
  start-page: 6508
  year: 2005
  end-page: 6515
  ident: bb0065
  article-title: assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography
  publication-title: J Clin Endocrinol Metab
– volume: 90
  start-page: 6508
  issue: 12
  year: 2005
  ident: 10.1016/j.bone.2012.03.003_bb0065
  article-title: In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2005-1258
– volume: 20
  start-page: 1683
  issue: 10
  year: 2009
  ident: 10.1016/j.bone.2012.03.003_bb0010
  article-title: Bone micro-architecture and determinants of strength in the radius and tibia: age-related changes in a population-based study of normal adults measured with high-resolution pQCT
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-008-0833-6
– volume: 30
  start-page: 1341
  issue: 10
  year: 2010
  ident: 10.1016/j.bone.2012.03.003_bb0035
  article-title: Strontium ranelate and alendronate have differing effects on distal tibia bone microstructure in women with osteoporosis
  publication-title: Rheumatol Int
  doi: 10.1007/s00296-010-1542-y
– volume: 44
  start-page: 364
  issue: 2
  year: 2009
  ident: 10.1016/j.bone.2012.03.003_bb0055
  article-title: Non-invasive bone competence analysis by high-resolution pQCT: an in vitro reproducibility study on structural and mechanical properties at the human radius
  publication-title: Bone
  doi: 10.1016/j.bone.2008.10.045
– volume: 30
  start-page: 842
  issue: 6
  year: 2002
  ident: 10.1016/j.bone.2012.03.003_bb0105
  article-title: Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images
  publication-title: Bone
  doi: 10.1016/S8756-3282(02)00736-6
– year: 2001
  ident: 10.1016/j.bone.2012.03.003_bb0130
– volume: 41
  start-page: 505
  issue: 4
  year: 2007
  ident: 10.1016/j.bone.2012.03.003_bb0100
  article-title: Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis
  publication-title: Bone
  doi: 10.1016/j.bone.2007.07.007
– volume: vol. 6913
  start-page: 69133C
  year: 2008
  ident: 10.1016/j.bone.2012.03.003_bb0135
  article-title: Landmark based compensation of patient motion artifacts in computed tomography
– volume: 22
  start-page: 357
  issue: 1
  year: 2010
  ident: 10.1016/j.bone.2012.03.003_bb0045
  article-title: Changes in trabecular and cortical bone microarchitecture at peripheral sites associated with 18months of teriparatide therapy in postmenopausal women with osteoporosis
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-010-1226-1
– volume: 48
  start-page: 1291
  issue: 6
  year: 2011
  ident: 10.1016/j.bone.2012.03.003_bb0090
  article-title: Quantitative characterization of subject motion in HR-pQCT images of the distal radius and tibia
  publication-title: Bone
  doi: 10.1016/j.bone.2011.03.755
– start-page: 1257
  year: 2010
  ident: 10.1016/j.bone.2012.03.003_bb0125
  article-title: Automatic detection of patient motion in cone-beam computed tomography
– year: 1978
  ident: 10.1016/j.bone.2012.03.003_bb0115
– year: 2006
  ident: 10.1016/j.bone.2012.03.003_bb0095
– volume: 30
  start-page: 792
  year: 2008
  ident: 10.1016/j.bone.2012.03.003_bb0060
  article-title: Improved reproducibility of high resolution peripheral quantitative computed tomography for measurement of bone quality
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2007.11.003
– volume: 21
  start-page: 124
  issue: 1
  year: 2006
  ident: 10.1016/j.bone.2012.03.003_bb0005
  article-title: Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment
  publication-title: J Bone Miner Res
  doi: 10.1359/JBMR.050916
– volume: 42
  start-page: 1203
  issue: 6
  year: 2008
  ident: 10.1016/j.bone.2012.03.003_bb0050
  article-title: Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method
  publication-title: Bone
  doi: 10.1016/j.bone.2008.01.017
– volume: 26
  start-page: 50
  issue: 1
  year: 2011
  ident: 10.1016/j.bone.2012.03.003_bb0015
  article-title: Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: a population-based HR-pQCT study
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.171
– start-page: 338
  year: 2009
  ident: 10.1016/j.bone.2012.03.003_bb0080
  article-title: Measuring patient motion in HR-pQCT
– volume: 47
  start-page: 519
  issue: 3
  year: 2010
  ident: 10.1016/j.bone.2012.03.003_bb0120
  article-title: Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT
  publication-title: Bone
  doi: 10.1016/j.bone.2010.05.034
– volume: 50
  start-page: 111
  issue: 1
  year: 2012
  ident: 10.1016/j.bone.2012.03.003_bb0070
  article-title: Visual grading of motion induced image degradation in high resolution peripheral computed tomography: impact of image quality on measures of bone density and micro-architecture
  publication-title: Bone
  doi: 10.1016/j.bone.2011.10.003
– volume: 56
  start-page: 6523
  issue: 20
  year: 2011
  ident: 10.1016/j.bone.2012.03.003_bb0085
  article-title: Automated quantification of three-dimensional subject motion to monitor image quality in high-resolution peripheral quantitative computed tomography
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/56/20/001
– volume: 25
  start-page: 882
  issue: 4
  year: 2010
  ident: 10.1016/j.bone.2012.03.003_bb0020
  article-title: Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal aBMD: an in vivo HR-pQCT study
  publication-title: J Bone Miner Res
  doi: 10.1359/jbmr.091020
– volume: 25
  start-page: 2558
  issue: 12
  year: 2010
  ident: 10.1016/j.bone.2012.03.003_bb0030
  article-title: A longitudinal HR-pQCT study of alendronate treatment in postmenopausal women with low bone density: relations among density, cortical and trabecular microarchitecture, biomechanics, and bone turnover
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.157
– volume: 22
  start-page: 425
  issue: 3
  year: 2007
  ident: 10.1016/j.bone.2012.03.003_bb0025
  article-title: Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study
  publication-title: J Bone Miner Res
  doi: 10.1359/jbmr.061206
– year: 2004
  ident: 10.1016/j.bone.2012.03.003_bb0110
– ident: 10.1016/j.bone.2012.03.003_bb0075
  doi: 10.1007/s00198-011-1829-1
– volume: 25
  start-page: 1886
  issue: 8
  year: 2010
  ident: 10.1016/j.bone.2012.03.003_bb0040
  article-title: Microarchitectural deterioration of cortical and trabecular bone: differing effects of denosumab and alendronate
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.81
SSID ssj0003971
Score 2.4411328
Snippet Subject motion during high-resolution peripheral quantitative computed tomography (HR-pQCT) causes image artifacts that affect morphological analysis of bone...
Abstract Subject motion during high-resolution peripheral quantitative computed tomography (HR-pQCT) causes image artifacts that affect morphological analysis...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1304
SubjectTerms Adult
Aged
Aged, 80 and over
Algorithms
Biological and medical sciences
Bone and Bones - diagnostic imaging
Bone Density
Bone mineral density
Bone quality parameters
Computed tomography
Data processing
Female
Finite Element Analysis
Fundamental and applied biological sciences. Psychology
HR-pQCT
Humans
Image quality
Imaging, Three-Dimensional - standards
Male
Middle Aged
Morphological analysis
Motion
Orthopedics
Osteoporosis
Quality Control
Reproducibility of Results
Subject motion artifacts
Tomography, X-Ray Computed - methods
Tomography, X-Ray Computed - standards
Tomography, X-Ray Computed - statistics & numerical data
Vertebrates: anatomy and physiology, studies on body, several organs or systems
X-Ray Microtomography - methods
X-Ray Microtomography - standards
X-Ray Microtomography - statistics & numerical data
Young Adult
Title Quality control for bone quality parameters affected by subject motion in high-resolution peripheral quantitative computed tomography
URI https://www.clinicalkey.com/#!/content/1-s2.0-S8756328212007211
https://www.clinicalkey.es/playcontent/1-s2.0-S8756328212007211
https://dx.doi.org/10.1016/j.bone.2012.03.003
https://www.ncbi.nlm.nih.gov/pubmed/22445540
https://www.proquest.com/docview/1013920274
https://www.proquest.com/docview/1020852456
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2763
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003971
  issn: 8756-3282
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1873-2763
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003971
  issn: 8756-3282
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-2763
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003971
  issn: 8756-3282
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-2763
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003971
  issn: 8756-3282
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2763
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003971
  issn: 8756-3282
  databaseCode: AKRWK
  dateStart: 19850101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED5NQ0JICMEGLAwqIyFeUGhix0nzWE1MBcReYNLeLDt2pKItK6R96Atv_O_d2U6nia2TeGxqJ459uft8vvsO4J1zkhfCmDRvuUjRQpfppLQ2bS23XDfOOu2jLU7K2Wnx5Uye7cDRkAtDYZVR9wed7rV1vDKOszlezOfj74i0S4E7hpzcbdzn9xZFRVUMPv65DvNAe5sHH1-ZUuuYOBNivMxlR1SZ5A8kolNxl3F6vNA9Tlkbal3cDUa9UTp-Ck8immTTMOBnsOO6PdifdriTvliz98zHd3rH-R48_BaP0ffhb2DOWLMYqM4QuTIaJfsV_yBG8AuKlOmZ9hEfzjKzZv3KkN-Ghdo_bN4xojtOccseJZgRcbJnKjine3U-hQ0VKmtC9QjLcGSRJfs5nB5_-nE0S2M9hrSRXC5T3aA6MEXlTF1kBnFNNtE2N1YaqeusrUxJeL3mEy2E1ojrmtzqqsyKohW5w83wC9jt8F0OgCFsqicmc7xGOFNnTW2bFpGhrasWzWrOE8iHhVBNJCunmhnnaohK-6loWhQtnsoEUZwm8GHTZxGoOra2FsP6qiEJFdWmQkuytVd1Wy_Xxy-_V7nqsbH6RzoTkJueNwT83ieObgjf5tU4Ue0VUibwdpBGhaqBznt05y5XPd0R0S_5Hba1oSKtdPqdwMsgytdPQOiHy5O9-s-hH8Ij-hUC617D7vL3yr1BCLc0I_-NjuDB9PPX2ckV1bVGpQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRQIkhKDlER7FSIgLCpvYcbI5VhXVAm0vtFJvlh070lZtujS7h730xv9mxna2qqCLxDWxE8eezHwzHn8D8ME5yQthTJq3XKRooct0XFqbtpZbrhtnnfbZFkfl5KT4dipPN2BvOAtDaZVR9wed7rV1vDKKszmaTaejH4i0S4EeQ07hNk7ne-8VklfkgX2-vsnzQIObhyBfmVLzeHImJHmZy464MikgSEyn4i7r9Gime5yzNhS7uBuNequ0_wQeRzjJdsOIn8KG67Zge7dDV_piyT4yn-DpI-dbcP8w7qNvw69AnbFkMVOdIXRlNEr2M94gSvALSpXpmfYpH84ys2T9wlDghoXiP2zaMeI7TtFnjyLMiDnZUxWc07M6f4YNNSprQvkIy3BkkSb7GZzsfznem6SxIEPaSC7nqW5QH5iicqYuMoPAJhtrmxsrjdR11lamJMBe87EWQmsEdk1udVVmRdGK3KE3_Bw2O_yWl8AQN9VjkzleI56ps6a2TYvQ0NZVi3Y15wnkw0KoJrKVU9GMczWkpZ0pmhZFi6cyQRynCXxa9ZkFro61rcWwvmo4hYp6U6EpWdur-lsv18dfv1e56rGx-kM8E5Crnrck_J9v3LklfKtP48S1V0iZwPtBGhXqBtrw0Z27XPT0RIS_FHhY14aqtNL2dwIvgijfvAGxHy5P9uo_h_4OHkyODw_Uwdej76_hId0JWXZvYHN-tXBvEc_NzY7_X38D_mFIOg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quality+control+for+bone+quality+parameters+affected+by+subject+motion+in+high-resolution+peripheral+quantitative+computed+tomography&rft.jtitle=Bone+%28New+York%2C+N.Y.%29&rft.au=Pauchard%2C+Yves&rft.au=Liphardt%2C+Anna-Maria&rft.au=Macdonald%2C+Heather+M&rft.au=Hanley%2C+David+A&rft.date=2012-06-01&rft.issn=1873-2763&rft.eissn=1873-2763&rft.volume=50&rft.issue=6&rft.spage=1304&rft_id=info:doi/10.1016%2Fj.bone.2012.03.003&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F87563282%2FS8756328212X00061%2Fcov150h.gif