High Efficient System for Automatic Classification of the Electrocardiogram Beats

Automatic classification of the electrocardiogram (ECG) signals is an important subject for clinical diagnosis of heart disease. This study investigates the design of a high-efficient system to classify five types of ECG beat namely normal beats and four manifestations of heart arrhythmia, in twofol...

Full description

Saved in:
Bibliographic Details
Published inAnnals of biomedical engineering Vol. 39; no. 3; pp. 996 - 1011
Main Authors Zadeh, Ataollah Ebrahim, Khazaee, Ali
Format Journal Article
LanguageEnglish
Published Boston Boston : Springer US 01.03.2011
Springer US
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0090-6964
1573-9686
1573-9686
DOI10.1007/s10439-010-0229-6

Cover

Abstract Automatic classification of the electrocardiogram (ECG) signals is an important subject for clinical diagnosis of heart disease. This study investigates the design of a high-efficient system to classify five types of ECG beat namely normal beats and four manifestations of heart arrhythmia, in twofold. First, we propose a system that includes two main modules: a feature extraction module and a classification module. Feature extraction module extracts a suitable combination of the ECG's morphological characteristics and timing interval features. Discrete wavelet transform is used to extract the morphological features. In the classification module, a multi-class support vector machine (SVM)-based classifier is employed. The parameters of this system are determined based on a trial and error method and its performance is evaluated for the MIT-BIH arrhythmia database. Extensive experiments on the parameters of this system such as classifier kernels and various types of features are conducted. These experiments show that in SVM training, the kernels, kernel parameters, and feature selection have very important roles for SVM classification accuracy. Therefore, most appropriates of these parameters should be used for SVM training. Then at the second fold, a novel hybrid intelligent system (HIS) is proposed that consists of three main modules. In the HIS, further to the two mentioned modules, an optimization module is added. In this module, a genetic algorithm is used for optimization of the relevant parameters of system. These parameters are: wavelet filter type for feature extraction, wavelet decomposition level, and classifier's parameters. Experimental results show that optimization improves the recognition system, efficiently, and HIS is more superior to the system, which as constant parameters.
AbstractList Automatic classification of the electrocardiogram (ECG) signals is an important subject for clinical diagnosis of heart disease. This study investigates the design of a high-efficient system to classify five types of ECG beat namely normal beats and four manifestations of heart arrhythmia, in twofold. First, we propose a system that includes two main modules: a feature extraction module and a classification module. Feature extraction module extracts a suitable combination of the ECG's morphological characteristics and timing interval features. Discrete wavelet transform is used to extract the morphological features. In the classification module, a multi-class support vector machine (SVM)-based classifier is employed. The parameters of this system are determined based on a trial and error method and its performance is evaluated for the MIT-BIH arrhythmia database. Extensive experiments on the parameters of this system such as classifier kernels and various types of features are conducted. These experiments show that in SVM training, the kernels, kernel parameters, and feature selection have very important roles for SVM classification accuracy. Therefore, most appropriates of these parameters should be used for SVM training. Then at the second fold, a novel hybrid intelligent system (HIS) is proposed that consists of three main modules. In the HIS, further to the two mentioned modules, an optimization module is added. In this module, a genetic algorithm is used for optimization of the relevant parameters of system. These parameters are: wavelet filter type for feature extraction, wavelet decomposition level, and classifier's parameters. Experimental results show that optimization improves the recognition system, efficiently, and HIS is more superior to the system, which as constant parameters.[PUBLICATION ABSTRACT]
Automatic classification of the electrocardiogram (ECG) signals is an important subject for clinical diagnosis of heart disease. This study investigates the design of a high-efficient system to classify five types of ECG beat namely normal beats and four manifestations of heart arrhythmia, in twofold. First, we propose a system that includes two main modules: a feature extraction module and a classification module. Feature extraction module extracts a suitable combination of the ECG's morphological characteristics and timing interval features. Discrete wavelet transform is used to extract the morphological features. In the classification module, a multi-class support vector machine (SVM)-based classifier is employed. The parameters of this system are determined based on a trial and error method and its performance is evaluated for the MIT-BIH arrhythmia database. Extensive experiments on the parameters of this system such as classifier kernels and various types of features are conducted. These experiments show that in SVM training, the kernels, kernel parameters, and feature selection have very important roles for SVM classification accuracy. Therefore, most appropriates of these parameters should be used for SVM training. Then at the second fold, a novel hybrid intelligent system (HIS) is proposed that consists of three main modules. In the HIS, further to the two mentioned modules, an optimization module is added. In this module, a genetic algorithm is used for optimization of the relevant parameters of system. These parameters are: wavelet filter type for feature extraction, wavelet decomposition level, and classifier's parameters. Experimental results show that optimization improves the recognition system, efficiently, and HIS is more superior to the system, which as constant parameters.
Automatic classification of the electrocardiogram (ECG) signals is an important subject for clinical diagnosis of heart disease. This study investigates the design of a high-efficient system to classify five types of ECG beat namely normal beats and four manifestations of heart arrhythmia, in twofold. First, we propose a system that includes two main modules: a feature extraction module and a classification module. Feature extraction module extracts a suitable combination of the ECG's morphological characteristics and timing interval features. Discrete wavelet transform is used to extract the morphological features. In the classification module, a multi-class support vector machine (SVM)-based classifier is employed. The parameters of this system are determined based on a trial and error method and its performance is evaluated for the MIT-BIH arrhythmia database. Extensive experiments on the parameters of this system such as classifier kernels and various types of features are conducted. These experiments show that in SVM training, the kernels, kernel parameters, and feature selection have very important roles for SVM classification accuracy. Therefore, most appropriates of these parameters should be used for SVM training. Then at the second fold, a novel hybrid intelligent system (HIS) is proposed that consists of three main modules. In the HIS, further to the two mentioned modules, an optimization module is added. In this module, a genetic algorithm is used for optimization of the relevant parameters of system. These parameters are: wavelet filter type for feature extraction, wavelet decomposition level, and classifier's parameters. Experimental results show that optimization improves the recognition system, efficiently, and HIS is more superior to the system, which as constant parameters.Automatic classification of the electrocardiogram (ECG) signals is an important subject for clinical diagnosis of heart disease. This study investigates the design of a high-efficient system to classify five types of ECG beat namely normal beats and four manifestations of heart arrhythmia, in twofold. First, we propose a system that includes two main modules: a feature extraction module and a classification module. Feature extraction module extracts a suitable combination of the ECG's morphological characteristics and timing interval features. Discrete wavelet transform is used to extract the morphological features. In the classification module, a multi-class support vector machine (SVM)-based classifier is employed. The parameters of this system are determined based on a trial and error method and its performance is evaluated for the MIT-BIH arrhythmia database. Extensive experiments on the parameters of this system such as classifier kernels and various types of features are conducted. These experiments show that in SVM training, the kernels, kernel parameters, and feature selection have very important roles for SVM classification accuracy. Therefore, most appropriates of these parameters should be used for SVM training. Then at the second fold, a novel hybrid intelligent system (HIS) is proposed that consists of three main modules. In the HIS, further to the two mentioned modules, an optimization module is added. In this module, a genetic algorithm is used for optimization of the relevant parameters of system. These parameters are: wavelet filter type for feature extraction, wavelet decomposition level, and classifier's parameters. Experimental results show that optimization improves the recognition system, efficiently, and HIS is more superior to the system, which as constant parameters.
Author Zadeh, Ataollah Ebrahim
Khazaee, Ali
Author_xml – sequence: 1
  fullname: Zadeh, Ataollah Ebrahim
– sequence: 2
  fullname: Khazaee, Ali
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21140292$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAQhi1URLeFB-ACERe4BMaO7cTHdrVQpEoIlZ4txxlvXSVxsZ1D3x6XFJB6WHwZWfq-GXv-E3I0hxkJeU3hIwVoPyUKvFE1UKiBMVXLZ2RDRdvUSnbyiGwAFNRSSX5MTlK6BaC0a8QLcswo5cAU25DvF35_U-2c89bjnKur-5RxqlyI1dmSw2Syt9V2NCn5gpRbmKvgqnyD1W5Em2OwJg4-7KOZqnM0Ob0kz50ZE756rKfk-vPux_aivvz25ev27LK2golcd7zvHCKT2PSWtYY6KvjglBACxeB6hw4GY50alGNo6GAVN1K5HpUAp9rmlLxf-97F8HPBlPXkk8VxNDOGJelOlt0Ixtj_SUF5yxspCvnhIElVObST0BX03RP0NixxLj8u_UCITkgo0JtHaOknHPRd9JOJ9_rP_gtAV8DGkFJE9xehoB8y1mvGumSsHzLWsjjtE8f6_DuZHI0fD5psNVOZMu8x_nvzIentKjkTtNlHn_T1FQPaAFUcpJTNL5NAwvk
CitedBy_id crossref_primary_10_1016_j_eswax_2019_100003
crossref_primary_10_1177_1460458217717636
crossref_primary_10_3151_jact_16_145
crossref_primary_10_3390_s21030951
crossref_primary_10_1007_s11704_014_2398_1
crossref_primary_10_1007_s00607_023_01243_0
crossref_primary_10_1142_S0219467820500230
crossref_primary_10_1007_s11517_021_02461_4
crossref_primary_10_1109_MIS_2017_3711643
crossref_primary_10_1109_TBCAS_2021_3137646
crossref_primary_10_1016_j_bspc_2018_03_003
crossref_primary_10_1016_j_asoc_2014_05_003
crossref_primary_10_3390_s16101744
crossref_primary_10_1007_s12652_020_02000_3
crossref_primary_10_3390_computers13050109
crossref_primary_10_1007_s44196_023_00256_z
crossref_primary_10_1016_j_ijmedinf_2016_09_005
crossref_primary_10_1080_10798587_2013_771456
Cites_doi 10.1109/TBME.2004.824131
10.1109/TBME.2009.2013934
10.1109/TIM.2006.884279
10.1109/TBME.2005.856281
10.1109/TBME.2004.827359
10.1016/j.measurement.2009.07.002
10.1016/j.patcog.2009.02.008
10.1109/51.932724
10.1016/j.eswa.2007.12.016
10.1109/TBME.2006.877103
10.1016/j.cmpb.2010.04.013
10.1016/j.eswa.2005.09.024
10.1016/j.measurement.2007.07.006
10.1016/j.camwa.2007.04.035
10.1016/j.ins.2008.08.006
10.1023/A:1012427100071
10.1109/10.846677
10.1016/j.engappai.2008.03.012
10.1109/TBME.2006.883802
10.1016/j.artmed.2008.04.007
10.1016/j.eswa.2005.12.008
10.1023/A:1009715923555
10.1016/j.na.2008.10.015
ContentType Journal Article
Copyright Biomedical Engineering Society 2010
Biomedical Engineering Society 2011
Copyright_xml – notice: Biomedical Engineering Society 2010
– notice: Biomedical Engineering Society 2011
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7X7
7XB
88E
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K9.
KR7
L6V
L7M
LK8
L~C
L~D
M0S
M1P
M7P
M7S
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
7X8
DOI 10.1007/s10439-010-0229-6
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
AGRICOLA

Engineering Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
– sequence: 4
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1573-9686
EndPage 1011
ExternalDocumentID 2262366891
21140292
10_1007_s10439_010_0229_6
US201301940666
Genre Journal Article
GroupedDBID ---
-4W
-56
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.86
.GJ
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67N
67Z
6J9
6NX
78A
7X7
85S
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANXM
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABELW
ABFGW
ABFTV
ABHLI
ABHQN
ABIPD
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFO
ACGFS
ACHSB
ACHXU
ACIGE
ACIHN
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACREN
ACTTH
ACVWB
ACWMK
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADMDM
ADOAH
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADYPR
ADZKW
AEAQA
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AI.
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKMHD
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
AOSHJ
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
F5P
FBQ
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
L6V
L7B
LAK
LK8
LLZTM
M1P
M4Y
M7P
M7S
MA-
MK~
ML~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
PTHSS
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UKR
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WJK
WK6
WK8
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z87
Z88
Z8M
Z8N
Z8O
Z8R
Z8T
Z8V
Z8W
Z91
Z92
ZGI
ZMTXR
ZOVNA
ZY4
~EX
~KM
AACDK
AAJBT
AASML
AAYZH
ABAKF
ABQSL
ACAOD
ACDTI
ACPIV
ACZOJ
ADMLS
AEFQL
AEMSY
AEUYN
AFBBN
AGQEE
AGRTI
AIGIU
ALIPV
BSONS
H13
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7XB
8BQ
8FD
8FK
AZQEC
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
PRINS
7S9
L.6
7X8
ID FETCH-LOGICAL-c525t-84b8fee26e3bc27a1f154df9555e5dfbfef0dacf9d9f2ea1dc94a69fbe950f973
IEDL.DBID BENPR
ISSN 0090-6964
1573-9686
IngestDate Tue Oct 07 09:19:26 EDT 2025
Thu Sep 04 20:19:05 EDT 2025
Thu Oct 02 10:15:31 EDT 2025
Tue Oct 07 05:45:43 EDT 2025
Wed Feb 19 01:47:23 EST 2025
Thu Apr 24 23:06:26 EDT 2025
Wed Oct 01 00:52:30 EDT 2025
Fri Feb 21 02:37:45 EST 2025
Wed Dec 27 19:18:28 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords ECG beat classification
Feature selection
Wavelet transform
Support vector machine
Parameter optimization
Genetic algorithm
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c525t-84b8fee26e3bc27a1f154df9555e5dfbfef0dacf9d9f2ea1dc94a69fbe950f973
Notes http://dx.doi.org/10.1007/s10439-010-0229-6
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 21140292
PQID 850558560
PQPubID 54090
PageCount 16
ParticipantIDs proquest_miscellaneous_864395222
proquest_miscellaneous_851474365
proquest_miscellaneous_1999918608
proquest_journals_850558560
pubmed_primary_21140292
crossref_primary_10_1007_s10439_010_0229_6
crossref_citationtrail_10_1007_s10439_010_0229_6
springer_journals_10_1007_s10439_010_0229_6
fao_agris_US201301940666
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-03-01
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: United States
– name: New York
PublicationSubtitle The Journal of the Biomedical Engineering Society
PublicationTitle Annals of biomedical engineering
PublicationTitleAbbrev Ann Biomed Eng
PublicationTitleAlternate Ann Biomed Eng
PublicationYear 2011
Publisher Boston : Springer US
Springer US
Springer Nature B.V
Publisher_xml – name: Boston : Springer US
– name: Springer US
– name: Springer Nature B.V
References Misiti, Misiti, Oppenheim, Poggi (CR20) 2007
Acharya, Sankaranarayanan, Nayak, Xiang, Tamura (CR1) 2008; 178
Burges (CR4) 1998; 2
Mitra, Mitra, Chaudhuri (CR21) 2006; 55
CR18
de Chazal, Reilly (CR7) 2006; 53
JoyMartis, Chakraborty, Ray (CR13) 2009; 42
Bandyopadhyay, Pal (CR3) 2007
Clifford, Azuaje, McShary (CR6) 2006
Vapnik (CR29) 1998
Lagerholm, Peterson, Braccini, Edenbrandt, Sornmo (CR15) 2000; 47
Moody, Mark (CR23) 2001; 20
Osowski, Markiewicz, Hoai (CR24) 2008; 41
Mohammadzadeh Asl, Setarehdan, Mohebbi (CR22) 2008; 44
Ince, Kiranyaz, Gabbouj (CR12) 2009; 56
Yu, Chou (CR31) 2009; 36
Ubeyli (CR28) 2008; 21
Mallat (CR17) 2002
CR25
Hsu, Lin (CR10) 2002; 46
Michalewicz (CR19) 1999
Wu, Tzeng, Goo, Fang (CR30) 2007; 32
Lin (CR16) 2008; 55
Shyu, Wu, Hu (CR26) 2004; 51
Chazal, O’Dwyer, Reilly (CR5) 2004; 51
Ebrahimzadeh, Khazaee (CR8) 2009; 43
Andreao, Dorizzi, Boudy (CR2) 2006; 53
Sumathi, Hamsapriya, Surekha (CR27) 2008
Huang, Wang (CR11) 2006; 31
Ebrahimzadeh, Khazaee, Ranaee (CR9) 2010; 99
Khadra, Al-Fahoum, Binajjaj (CR14) 2005; 52
L Khadra (229_CR14) 2005; 52
229_CR18
A Ebrahimzadeh (229_CR8) 2009; 43
S Osowski (229_CR24) 2008; 41
S Bandyopadhyay (229_CR3) 2007
GD Clifford (229_CR6) 2006
S Sumathi (229_CR27) 2008
B Mohammadzadeh Asl (229_CR22) 2008; 44
V Vapnik (229_CR29) 1998
LY Shyu (229_CR26) 2004; 51
Z Michalewicz (229_CR19) 1999
M Misiti (229_CR20) 2007
F Chazal de (229_CR7) 2006; 53
S Mitra (229_CR21) 2006; 55
ED Ubeyli (229_CR28) 2008; 21
RV Andreao (229_CR2) 2006; 53
S Mallat (229_CR17) 2002
229_CR25
M Lagerholm (229_CR15) 2000; 47
CH Lin (229_CR16) 2008; 55
P Chazal (229_CR5) 2004; 51
C Huang (229_CR11) 2006; 31
T Ince (229_CR12) 2009; 56
R JoyMartis (229_CR13) 2009; 42
GB Moody (229_CR23) 2001; 20
SN Yu (229_CR31) 2009; 36
C Wu (229_CR30) 2007; 32
C Burges (229_CR4) 1998; 2
UR Acharya (229_CR1) 2008; 178
A Ebrahimzadeh (229_CR9) 2010; 99
WC Hsu (229_CR10) 2002; 46
References_xml – volume: 51
  start-page: 1269
  year: 2004
  end-page: 1273
  ident: CR26
  article-title: Using wavelet transform and fuzzy neural network for VPC detection from the Holter ECG
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.824131
– ident: CR18
– volume: 56
  start-page: 1415
  year: 2009
  end-page: 1426
  ident: CR12
  article-title: A generic and robust system for automated patient-specific classification of electrocardiogram signals
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2013934
– volume: 55
  start-page: 2198
  year: 2006
  end-page: 2206
  ident: CR21
  article-title: A rough set-based inference engine for ECG classification
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2006.884279
– year: 1999
  ident: CR19
  publication-title: Genetic Algorithms + Data Structures = Evolution Programs
– year: 2007
  ident: CR3
  publication-title: Classification and Learning Using Genetic Algorithms
– volume: 52
  start-page: 1840
  year: 2005
  end-page: 1845
  ident: CR14
  article-title: A quantitative analysis approach for cardiac arrhythmia classification using higher order spectral techniques
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2005.856281
– volume: 51
  start-page: 1196
  year: 2004
  end-page: 1206
  ident: CR5
  article-title: Automatic classification of heartbeats using ECG morphology and heartbeat interval features
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.827359
– volume: 43
  start-page: 103
  issue: 1
  year: 2009
  end-page: 112
  ident: CR8
  article-title: Detection of premature ventricular contractions using MLP neural networks: a comparative study
  publication-title: Measurement
  doi: 10.1016/j.measurement.2009.07.002
– volume: 42
  start-page: 2979
  year: 2009
  end-page: 2988
  ident: CR13
  article-title: A two-stage mechanism for registration and classification of ECG using Gaussian mixture model
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2009.02.008
– volume: 20
  start-page: 45
  issue: 3
  year: 2001
  end-page: 50
  ident: CR23
  article-title: The impact of the MIT/BIH arrhythmia database
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/51.932724
– year: 2006
  ident: CR6
  publication-title: Advanced Methods and Tools for ECG Data Analysis
– volume: 36
  start-page: 2088
  year: 2009
  end-page: 2096
  ident: CR31
  article-title: Selection of significant for ECG beat classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.12.016
– volume: 53
  start-page: 1541
  year: 2006
  end-page: 1549
  ident: CR2
  article-title: ECG signal analysis through hidden Markov models
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.877103
– volume: 99
  start-page: 179
  year: 2010
  end-page: 194
  ident: CR9
  article-title: Classification of the electrocardiogram signals using supervised classifiers and efficient features
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2010.04.013
– volume: 31
  start-page: 231
  year: 2006
  end-page: 240
  ident: CR11
  article-title: A GA-based feature selection and parameters optimization for support vector machines
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2005.09.024
– ident: CR25
– volume: 41
  start-page: 610
  year: 2008
  end-page: 617
  ident: CR24
  article-title: Recognition and classification system of arrhythmia using ensemble of neural networks
  publication-title: Measurement
  doi: 10.1016/j.measurement.2007.07.006
– volume: 55
  start-page: 680
  year: 2008
  end-page: 690
  ident: CR16
  article-title: Frequency-domain features for ECG beat discrimination using grey relational analysis-based classifier
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2007.04.035
– volume: 178
  start-page: 4571
  year: 2008
  end-page: 4582
  ident: CR1
  article-title: Automatic identification of cardiac health using modeling techniques: a comparative study
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2008.08.006
– volume: 46
  start-page: 219
  year: 2002
  end-page: 314
  ident: CR10
  article-title: A simple decomposition method for support vector machine
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012427100071
– volume: 47
  start-page: 839
  year: 2000
  end-page: 847
  ident: CR15
  article-title: Clustering ECG complexes using Hermite functions and self-organizing maps
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.846677
– year: 2008
  ident: CR27
  publication-title: Evolutionary Intelligence: An Introduction to Theory and Applications with Matlab
– volume: 21
  start-page: 1196
  year: 2008
  end-page: 1203
  ident: CR28
  article-title: Support vector machines for detection of electrocardiographic changes in partial epileptic
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2008.03.012
– volume: 53
  start-page: 2535
  year: 2006
  end-page: 2543
  ident: CR7
  article-title: A patient adapting heart beat classifier using ECG morphology and heartbeat interval features
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.883802
– year: 2007
  ident: CR20
  publication-title: Wavelet Toolbox User’s Guide
– volume: 44
  start-page: 51
  year: 2008
  end-page: 64
  ident: CR22
  article-title: Support vector machine-based arrhythmia classification using reduced features of heart rate variability
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2008.04.007
– volume: 32
  start-page: 397
  year: 2007
  end-page: 408
  ident: CR30
  article-title: A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2005.12.008
– volume: 2
  start-page: 121
  year: 1998
  end-page: 167
  ident: CR4
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009715923555
– year: 2002
  ident: CR17
  publication-title: A Wavelet Tour of Signal Processing
– year: 1998
  ident: CR29
  publication-title: Statistical Learning Theory
– volume: 20
  start-page: 45
  issue: 3
  year: 2001
  ident: 229_CR23
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/51.932724
– volume-title: Statistical Learning Theory
  year: 1998
  ident: 229_CR29
– volume: 52
  start-page: 1840
  year: 2005
  ident: 229_CR14
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2005.856281
– ident: 229_CR18
– volume: 53
  start-page: 2535
  year: 2006
  ident: 229_CR7
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.883802
– volume: 99
  start-page: 179
  year: 2010
  ident: 229_CR9
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2010.04.013
– volume-title: Genetic Algorithms + Data Structures = Evolution Programs
  year: 1999
  ident: 229_CR19
– volume: 178
  start-page: 4571
  year: 2008
  ident: 229_CR1
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2008.08.006
– volume: 2
  start-page: 121
  year: 1998
  ident: 229_CR4
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009715923555
– ident: 229_CR25
  doi: 10.1016/j.na.2008.10.015
– volume: 51
  start-page: 1196
  year: 2004
  ident: 229_CR5
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.827359
– volume: 55
  start-page: 2198
  year: 2006
  ident: 229_CR21
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2006.884279
– volume: 21
  start-page: 1196
  year: 2008
  ident: 229_CR28
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2008.03.012
– volume-title: Advanced Methods and Tools for ECG Data Analysis
  year: 2006
  ident: 229_CR6
– volume: 56
  start-page: 1415
  year: 2009
  ident: 229_CR12
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2013934
– volume-title: A Wavelet Tour of Signal Processing
  year: 2002
  ident: 229_CR17
– volume: 55
  start-page: 680
  year: 2008
  ident: 229_CR16
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2007.04.035
– volume: 44
  start-page: 51
  year: 2008
  ident: 229_CR22
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2008.04.007
– volume: 47
  start-page: 839
  year: 2000
  ident: 229_CR15
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.846677
– volume: 46
  start-page: 219
  year: 2002
  ident: 229_CR10
  publication-title: Mach. Learn.
– volume: 51
  start-page: 1269
  year: 2004
  ident: 229_CR26
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.824131
– volume: 53
  start-page: 1541
  year: 2006
  ident: 229_CR2
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.877103
– volume: 31
  start-page: 231
  year: 2006
  ident: 229_CR11
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2005.09.024
– volume: 32
  start-page: 397
  year: 2007
  ident: 229_CR30
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2005.12.008
– volume-title: Wavelet Toolbox User’s Guide
  year: 2007
  ident: 229_CR20
– volume: 36
  start-page: 2088
  year: 2009
  ident: 229_CR31
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.12.016
– volume: 41
  start-page: 610
  year: 2008
  ident: 229_CR24
  publication-title: Measurement
  doi: 10.1016/j.measurement.2007.07.006
– volume-title: Classification and Learning Using Genetic Algorithms
  year: 2007
  ident: 229_CR3
– volume: 42
  start-page: 2979
  year: 2009
  ident: 229_CR13
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2009.02.008
– volume: 43
  start-page: 103
  issue: 1
  year: 2009
  ident: 229_CR8
  publication-title: Measurement
  doi: 10.1016/j.measurement.2009.07.002
– volume-title: Evolutionary Intelligence: An Introduction to Theory and Applications with Matlab
  year: 2008
  ident: 229_CR27
SSID ssj0011835
Score 2.0943
Snippet Automatic classification of the electrocardiogram (ECG) signals is an important subject for clinical diagnosis of heart disease. This study investigates the...
SourceID proquest
pubmed
crossref
springer
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 996
SubjectTerms Algorithms
Arrhythmias, Cardiac - diagnosis
Arrhythmias, Cardiac - physiopathology
Artificial Intelligence
Biochemistry
Biological and Medical Physics
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Cardiovascular diseases
Classical Mechanics
Classification
Diagnosis, Computer-Assisted - methods
ECG beat classification
Electrocardiography - methods
Feature selection
Genetic algorithm
Heart Rate
Humans
Parameter optimization
Pattern Recognition, Automated - methods
Reproducibility of Results
Sensitivity and Specificity
Support vector machine
Training
Wavelet transform
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB2VRarKobS0hZQPGamnVkFZx_bGxwUtICqQUFmJniwn9nBotam62Ut_fcdOslAKSJzjjWJ7nHmz7-UNwCeZS4GcqpOCa54K6bLUOhuUANoV3qvcucDonl-o06k4u5bX3Xfc817t3lOS8U1952M3Sp5pJG950GyswGq02xrA6vjk-9fJkjygKG0bF2iqjLQSPZn50E3-SUcraOuHkOZ_LGlMPsfrcNU_dqs5-XGwaMqD6s89R8dnzusNvO7AKBu30fMWXvjZBqzdsSjcgJfnHfn-Di6DJoRNoucEpSrWmp0zQr1svGjq6P3KYpPNID-KO85qZIQw2aRttlNF8WvQg7FDygHz9zA9nlwdnaZdR4a0klw2aSHKAr3nyudlxUd2iITAHGoppZcOS_SYOVuhdhq5t0NXaWGVxtJrmaEe5R9gMKtnfguYc4iKo3coS4E6tDAaOXTeeqULm1cJZP3GmKqzKw9dM36aW6PlsHCGFs6EhTMqgc_Ln_xqvTqeGrxFu23sDb1LzfQbDwzuUItQziWw3YeA6U703BQEFam0UlkC-8urdBQDv2Jnvl7MTXB00MNCZUUC7JExBHAFgTYlnxgSQCLBYp7AZht_y9lQtU71vqYrX_pYun3CR6f68Vmjt-FV-7950NntwKD5vfC7BLyacq87aH8BGgwhtg
  priority: 102
  providerName: Springer Nature
Title High Efficient System for Automatic Classification of the Electrocardiogram Beats
URI https://link.springer.com/article/10.1007/s10439-010-0229-6
https://www.ncbi.nlm.nih.gov/pubmed/21140292
https://www.proquest.com/docview/850558560
https://www.proquest.com/docview/1999918608
https://www.proquest.com/docview/851474365
https://www.proquest.com/docview/864395222
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-9686
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0011835
  issn: 0090-6964
  databaseCode: ADMLS
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-9686
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011835
  issn: 0090-6964
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-9686
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0011835
  issn: 0090-6964
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1573-9686
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0011835
  issn: 0090-6964
  databaseCode: 7X7
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-9686
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0011835
  issn: 0090-6964
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-9686
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011835
  issn: 0090-6964
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-9686
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011835
  issn: 0090-6964
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB5tWwnBAcHy2LBQGYkTKCJ1bCc-INRF6a5AXfGqVE6WE9tcULPQ9v8zk9eCYHvJIXGk2B57vvFMvg_ghUylCByjk5xrHgvpktg6S5UA2uXeq9Q5yuguL9XFSrxfy_URLPt_Yaisst8Tm43a1RWdkb_O0VUjtFXJ26ufMYlGUXK1V9CwnbKCe9MwjI1gwokYawyTs-Ly4-chrYD220oaaIyZtBJ9mrP9lw59c9zkhjmVhPzlqEbB1v_DoP_kTxu3tLgHdzs8yeatAdyHI785hjt_sAwew61llz9_AJ-orIMVDW0EehvW8pUzBK5svt_VDX0ra3QyqYKomTRWB4YgkRWtXk7V1K9SSRc7w218-xBWi-Lru4u4E1WIK8nlLs5FmQfvufJpWfHMzgKCKBe0lNJLF8rgQ-JsFbTTgXs7c5UWVulQei2ToLP0EYw39cafAHMuBMWDd0GWImhSIcpccN56pXObVhEk_QiaqmMcJ-GLH-aaK5kG3eCgGxp0oyJ4Obxy1dJtHGp8gtNi7HfcDs3qC6ck7EwLisgiOO3nynSLcmsGE4rg-fAUVxOlSOzG1_utIVIGPctVkkfAbmiDGFUg7lLyQBPCeYhseQSPW0MZeoMBN4bsGp-86i3n-gtv7OqTg_05hdvtUTeVxj2F8e7X3j9DrLQrpzDK1hle88X5FCbz828fimm3KvDuis9_A5GFEuM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB71IfE4ICiPhrZgJLiAIrKO7Y0PFWphqy3trnh0pd5cJ7a5oE1hd4X4cf1vncmrIOjeeo4TxeMZzzf-xjMAL2UqReAYnWRc81hIl8TWWcoE0C7zXqXOEaM7GqvhRHw8lacrcNHehaG0ynZPrDZqVxZ0Rv42Q1eN0FYl785_xNQ0isjVtoOGbToruN2qwlhzr-PI__6FEdxs9_ADLvcrzg8GJ--HcdNkIC4kl_M4E3kWvOfKp3nB-7YXEFS4oKWUXrqQBx8SZ4ugnQ7c254rtLBKh9xrmQTdT_G7q7AuUqEx9lvfH4w_feloDLSXuoWCxhhNK9HSqvXdPcQCccVFc0pB-csxrgZb_g_z_sPXVm7w4D7ca_Ar26sV7gGs-OkG3P2jquEG3Bo1fP1D-ExpJGxQlalA78bq-ugMgTLbW8zLqlwsq_pyUsZSpSSsDAxBKRvU_XmKKl-WUsjYPrqN2SOY3Ih8H8PatJz6TWDOhaB48C7IXARNXY_6LjhvvdKZTYsIklaCpmgqnFOjje_mqjYzCd2g0A0J3agIXnevnNflPZYN3sRlMfYbbr9m8pUT6dvTgiLACLbatTLNJjAzncpG8KJ7itZLlIyd-nIxM1QEQvcylWQRsGvGICYWiPOUXDKEcCUiaR7Bk1pRutlggC8StMMI3rSac_WH10716dL5PIfbw5PRsTk-HB9twZ36mJ3S8rZhbf5z4XcQp83zZ401MDi7aQO8BH0YTvs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61RarggKA8GsrDSHABRc06sRMfECp0Vy2lFQhW2pvrxB4uaNN2d4X4afw7ZvLYgqB76zlOFI9nPN94Ps8AvFCpylBSdFJII-NM-SR23jETwPgiBJ16zxnd4xN9MM4-TNRkDX71d2GYVtnvic1G7euKz8h3C3LVBG11sosdK-LT_ujt2XnMDaQ40dp302g15Cj8_EHR2-zN4T4t9UspR8Ov7w_irsFAXCmp5nGRlQWGIHVIy0rmboAEKDwapVRQHksMmHhXofEGZXADX5nMaYNlMCpBk6f03XW4kaepYTZhPlnGegTb296eiaHozOisT6i2t_YIBcRNFloy-eQvl7iOrv4f2v0nU9s4wNEduN0hV7HXqtpdWAvTLbj1Rz3DLdg87jL19-AzE0jEsClQQX5NtJXRBUFksbeY102hWNF05GSuUqMeokZBcFQM2848VcOUZfKYeEcOY3Yfxtci3QewMa2nYRuE94haYvCoygwN9zvKPfrggjaFS6sIkl6Ctupqm3OLje_2siozC92S0C0L3eoIXi1fOWsLe6wavE3LYt032njt-IvkdO_AZBz7RbDTr5XtzH9ml8oawfPlU7JbTsa4aagXM8vlH8yg0EkRgbhiDKHhjBCeViuGMKIkDC0jeNgqynI2FNpnCVlgBK97zbn8wyun-mjlfJ7BJpmd_Xh4crQDN9vzdebjPYaN-cUiPCGANi-fNqYg4PS6be83UKZMlQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Efficient+System+for+Automatic+Classification+of+the+Electrocardiogram+Beats&rft.jtitle=Annals+of+biomedical+engineering&rft.au=Zadeh%2C+Ataollah+Ebrahim&rft.au=Khazaee%2C+Ali&rft.date=2011-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0090-6964&rft.eissn=1573-9686&rft.volume=39&rft.issue=3&rft.spage=996&rft_id=info:doi/10.1007%2Fs10439-010-0229-6&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2262366891
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6964&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6964&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6964&client=summon