High Efficient System for Automatic Classification of the Electrocardiogram Beats
Automatic classification of the electrocardiogram (ECG) signals is an important subject for clinical diagnosis of heart disease. This study investigates the design of a high-efficient system to classify five types of ECG beat namely normal beats and four manifestations of heart arrhythmia, in twofol...
Saved in:
| Published in | Annals of biomedical engineering Vol. 39; no. 3; pp. 996 - 1011 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Boston
Boston : Springer US
01.03.2011
Springer US Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0090-6964 1573-9686 1573-9686 |
| DOI | 10.1007/s10439-010-0229-6 |
Cover
| Abstract | Automatic classification of the electrocardiogram (ECG) signals is an important subject for clinical diagnosis of heart disease. This study investigates the design of a high-efficient system to classify five types of ECG beat namely normal beats and four manifestations of heart arrhythmia, in twofold. First, we propose a system that includes two main modules: a feature extraction module and a classification module. Feature extraction module extracts a suitable combination of the ECG's morphological characteristics and timing interval features. Discrete wavelet transform is used to extract the morphological features. In the classification module, a multi-class support vector machine (SVM)-based classifier is employed. The parameters of this system are determined based on a trial and error method and its performance is evaluated for the MIT-BIH arrhythmia database. Extensive experiments on the parameters of this system such as classifier kernels and various types of features are conducted. These experiments show that in SVM training, the kernels, kernel parameters, and feature selection have very important roles for SVM classification accuracy. Therefore, most appropriates of these parameters should be used for SVM training. Then at the second fold, a novel hybrid intelligent system (HIS) is proposed that consists of three main modules. In the HIS, further to the two mentioned modules, an optimization module is added. In this module, a genetic algorithm is used for optimization of the relevant parameters of system. These parameters are: wavelet filter type for feature extraction, wavelet decomposition level, and classifier's parameters. Experimental results show that optimization improves the recognition system, efficiently, and HIS is more superior to the system, which as constant parameters. |
|---|---|
| AbstractList | Automatic classification of the electrocardiogram (ECG) signals is an important subject for clinical diagnosis of heart disease. This study investigates the design of a high-efficient system to classify five types of ECG beat namely normal beats and four manifestations of heart arrhythmia, in twofold. First, we propose a system that includes two main modules: a feature extraction module and a classification module. Feature extraction module extracts a suitable combination of the ECG's morphological characteristics and timing interval features. Discrete wavelet transform is used to extract the morphological features. In the classification module, a multi-class support vector machine (SVM)-based classifier is employed. The parameters of this system are determined based on a trial and error method and its performance is evaluated for the MIT-BIH arrhythmia database. Extensive experiments on the parameters of this system such as classifier kernels and various types of features are conducted. These experiments show that in SVM training, the kernels, kernel parameters, and feature selection have very important roles for SVM classification accuracy. Therefore, most appropriates of these parameters should be used for SVM training. Then at the second fold, a novel hybrid intelligent system (HIS) is proposed that consists of three main modules. In the HIS, further to the two mentioned modules, an optimization module is added. In this module, a genetic algorithm is used for optimization of the relevant parameters of system. These parameters are: wavelet filter type for feature extraction, wavelet decomposition level, and classifier's parameters. Experimental results show that optimization improves the recognition system, efficiently, and HIS is more superior to the system, which as constant parameters.[PUBLICATION ABSTRACT] Automatic classification of the electrocardiogram (ECG) signals is an important subject for clinical diagnosis of heart disease. This study investigates the design of a high-efficient system to classify five types of ECG beat namely normal beats and four manifestations of heart arrhythmia, in twofold. First, we propose a system that includes two main modules: a feature extraction module and a classification module. Feature extraction module extracts a suitable combination of the ECG's morphological characteristics and timing interval features. Discrete wavelet transform is used to extract the morphological features. In the classification module, a multi-class support vector machine (SVM)-based classifier is employed. The parameters of this system are determined based on a trial and error method and its performance is evaluated for the MIT-BIH arrhythmia database. Extensive experiments on the parameters of this system such as classifier kernels and various types of features are conducted. These experiments show that in SVM training, the kernels, kernel parameters, and feature selection have very important roles for SVM classification accuracy. Therefore, most appropriates of these parameters should be used for SVM training. Then at the second fold, a novel hybrid intelligent system (HIS) is proposed that consists of three main modules. In the HIS, further to the two mentioned modules, an optimization module is added. In this module, a genetic algorithm is used for optimization of the relevant parameters of system. These parameters are: wavelet filter type for feature extraction, wavelet decomposition level, and classifier's parameters. Experimental results show that optimization improves the recognition system, efficiently, and HIS is more superior to the system, which as constant parameters. Automatic classification of the electrocardiogram (ECG) signals is an important subject for clinical diagnosis of heart disease. This study investigates the design of a high-efficient system to classify five types of ECG beat namely normal beats and four manifestations of heart arrhythmia, in twofold. First, we propose a system that includes two main modules: a feature extraction module and a classification module. Feature extraction module extracts a suitable combination of the ECG's morphological characteristics and timing interval features. Discrete wavelet transform is used to extract the morphological features. In the classification module, a multi-class support vector machine (SVM)-based classifier is employed. The parameters of this system are determined based on a trial and error method and its performance is evaluated for the MIT-BIH arrhythmia database. Extensive experiments on the parameters of this system such as classifier kernels and various types of features are conducted. These experiments show that in SVM training, the kernels, kernel parameters, and feature selection have very important roles for SVM classification accuracy. Therefore, most appropriates of these parameters should be used for SVM training. Then at the second fold, a novel hybrid intelligent system (HIS) is proposed that consists of three main modules. In the HIS, further to the two mentioned modules, an optimization module is added. In this module, a genetic algorithm is used for optimization of the relevant parameters of system. These parameters are: wavelet filter type for feature extraction, wavelet decomposition level, and classifier's parameters. Experimental results show that optimization improves the recognition system, efficiently, and HIS is more superior to the system, which as constant parameters.Automatic classification of the electrocardiogram (ECG) signals is an important subject for clinical diagnosis of heart disease. This study investigates the design of a high-efficient system to classify five types of ECG beat namely normal beats and four manifestations of heart arrhythmia, in twofold. First, we propose a system that includes two main modules: a feature extraction module and a classification module. Feature extraction module extracts a suitable combination of the ECG's morphological characteristics and timing interval features. Discrete wavelet transform is used to extract the morphological features. In the classification module, a multi-class support vector machine (SVM)-based classifier is employed. The parameters of this system are determined based on a trial and error method and its performance is evaluated for the MIT-BIH arrhythmia database. Extensive experiments on the parameters of this system such as classifier kernels and various types of features are conducted. These experiments show that in SVM training, the kernels, kernel parameters, and feature selection have very important roles for SVM classification accuracy. Therefore, most appropriates of these parameters should be used for SVM training. Then at the second fold, a novel hybrid intelligent system (HIS) is proposed that consists of three main modules. In the HIS, further to the two mentioned modules, an optimization module is added. In this module, a genetic algorithm is used for optimization of the relevant parameters of system. These parameters are: wavelet filter type for feature extraction, wavelet decomposition level, and classifier's parameters. Experimental results show that optimization improves the recognition system, efficiently, and HIS is more superior to the system, which as constant parameters. |
| Author | Zadeh, Ataollah Ebrahim Khazaee, Ali |
| Author_xml | – sequence: 1 fullname: Zadeh, Ataollah Ebrahim – sequence: 2 fullname: Khazaee, Ali |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21140292$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkcFu1DAQhi1URLeFB-ACERe4BMaO7cTHdrVQpEoIlZ4txxlvXSVxsZ1D3x6XFJB6WHwZWfq-GXv-E3I0hxkJeU3hIwVoPyUKvFE1UKiBMVXLZ2RDRdvUSnbyiGwAFNRSSX5MTlK6BaC0a8QLcswo5cAU25DvF35_U-2c89bjnKur-5RxqlyI1dmSw2Syt9V2NCn5gpRbmKvgqnyD1W5Em2OwJg4-7KOZqnM0Ob0kz50ZE756rKfk-vPux_aivvz25ev27LK2golcd7zvHCKT2PSWtYY6KvjglBACxeB6hw4GY50alGNo6GAVN1K5HpUAp9rmlLxf-97F8HPBlPXkk8VxNDOGJelOlt0Ixtj_SUF5yxspCvnhIElVObST0BX03RP0NixxLj8u_UCITkgo0JtHaOknHPRd9JOJ9_rP_gtAV8DGkFJE9xehoB8y1mvGumSsHzLWsjjtE8f6_DuZHI0fD5psNVOZMu8x_nvzIentKjkTtNlHn_T1FQPaAFUcpJTNL5NAwvk |
| CitedBy_id | crossref_primary_10_1016_j_eswax_2019_100003 crossref_primary_10_1177_1460458217717636 crossref_primary_10_3151_jact_16_145 crossref_primary_10_3390_s21030951 crossref_primary_10_1007_s11704_014_2398_1 crossref_primary_10_1007_s00607_023_01243_0 crossref_primary_10_1142_S0219467820500230 crossref_primary_10_1007_s11517_021_02461_4 crossref_primary_10_1109_MIS_2017_3711643 crossref_primary_10_1109_TBCAS_2021_3137646 crossref_primary_10_1016_j_bspc_2018_03_003 crossref_primary_10_1016_j_asoc_2014_05_003 crossref_primary_10_3390_s16101744 crossref_primary_10_1007_s12652_020_02000_3 crossref_primary_10_3390_computers13050109 crossref_primary_10_1007_s44196_023_00256_z crossref_primary_10_1016_j_ijmedinf_2016_09_005 crossref_primary_10_1080_10798587_2013_771456 |
| Cites_doi | 10.1109/TBME.2004.824131 10.1109/TBME.2009.2013934 10.1109/TIM.2006.884279 10.1109/TBME.2005.856281 10.1109/TBME.2004.827359 10.1016/j.measurement.2009.07.002 10.1016/j.patcog.2009.02.008 10.1109/51.932724 10.1016/j.eswa.2007.12.016 10.1109/TBME.2006.877103 10.1016/j.cmpb.2010.04.013 10.1016/j.eswa.2005.09.024 10.1016/j.measurement.2007.07.006 10.1016/j.camwa.2007.04.035 10.1016/j.ins.2008.08.006 10.1023/A:1012427100071 10.1109/10.846677 10.1016/j.engappai.2008.03.012 10.1109/TBME.2006.883802 10.1016/j.artmed.2008.04.007 10.1016/j.eswa.2005.12.008 10.1023/A:1009715923555 10.1016/j.na.2008.10.015 |
| ContentType | Journal Article |
| Copyright | Biomedical Engineering Society 2010 Biomedical Engineering Society 2011 |
| Copyright_xml | – notice: Biomedical Engineering Society 2010 – notice: Biomedical Engineering Society 2011 |
| DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7X7 7XB 88E 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K9. KR7 L6V L7M LK8 L~C L~D M0S M1P M7P M7S P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 7X8 |
| DOI | 10.1007/s10439-010-0229-6 |
| DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences ProQuest One Sustainability Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic AGRICOLA Engineering Research Database MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database – sequence: 4 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1573-9686 |
| EndPage | 1011 |
| ExternalDocumentID | 2262366891 21140292 10_1007_s10439_010_0229_6 US201301940666 |
| Genre | Journal Article |
| GroupedDBID | --- -4W -56 -5G -BR -DZ -EM -Y2 -~C -~X .86 .GJ .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23M 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5RE 5VS 67N 67Z 6J9 6NX 78A 7X7 85S 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANXM AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABELW ABFGW ABFTV ABHLI ABHQN ABIPD ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFO ACGFS ACHSB ACHXU ACIGE ACIHN ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACREN ACTTH ACVWB ACWMK ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADMDM ADOAH ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADYPR ADZKW AEAQA AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AI. AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKMHD AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG AOSHJ ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBD EBLON EBS EIOEI EJD EMOBN EN4 EPAXT ESBYG F5P FBQ FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH L6V L7B LAK LK8 LLZTM M1P M4Y M7P M7S MA- MK~ ML~ N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 PF0 PQQKQ PROAC PSQYO PT4 PT5 PTHSS Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UKR UNUBA UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WJK WK6 WK8 YLTOR Z45 Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z87 Z88 Z8M Z8N Z8O Z8R Z8T Z8V Z8W Z91 Z92 ZGI ZMTXR ZOVNA ZY4 ~EX ~KM AACDK AAJBT AASML AAYZH ABAKF ABQSL ACAOD ACDTI ACPIV ACZOJ ADMLS AEFQL AEMSY AEUYN AFBBN AGQEE AGRTI AIGIU ALIPV BSONS H13 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7XB 8BQ 8FD 8FK AZQEC DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 PKEHL PQEST PQUKI PRINS 7S9 L.6 7X8 |
| ID | FETCH-LOGICAL-c525t-84b8fee26e3bc27a1f154df9555e5dfbfef0dacf9d9f2ea1dc94a69fbe950f973 |
| IEDL.DBID | BENPR |
| ISSN | 0090-6964 1573-9686 |
| IngestDate | Tue Oct 07 09:19:26 EDT 2025 Thu Sep 04 20:19:05 EDT 2025 Thu Oct 02 10:15:31 EDT 2025 Tue Oct 07 05:45:43 EDT 2025 Wed Feb 19 01:47:23 EST 2025 Thu Apr 24 23:06:26 EDT 2025 Wed Oct 01 00:52:30 EDT 2025 Fri Feb 21 02:37:45 EST 2025 Wed Dec 27 19:18:28 EST 2023 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | ECG beat classification Feature selection Wavelet transform Support vector machine Parameter optimization Genetic algorithm |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c525t-84b8fee26e3bc27a1f154df9555e5dfbfef0dacf9d9f2ea1dc94a69fbe950f973 |
| Notes | http://dx.doi.org/10.1007/s10439-010-0229-6 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PMID | 21140292 |
| PQID | 850558560 |
| PQPubID | 54090 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_864395222 proquest_miscellaneous_851474365 proquest_miscellaneous_1999918608 proquest_journals_850558560 pubmed_primary_21140292 crossref_primary_10_1007_s10439_010_0229_6 crossref_citationtrail_10_1007_s10439_010_0229_6 springer_journals_10_1007_s10439_010_0229_6 fao_agris_US201301940666 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2011-03-01 |
| PublicationDateYYYYMMDD | 2011-03-01 |
| PublicationDate_xml | – month: 03 year: 2011 text: 2011-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Boston |
| PublicationPlace_xml | – name: Boston – name: United States – name: New York |
| PublicationSubtitle | The Journal of the Biomedical Engineering Society |
| PublicationTitle | Annals of biomedical engineering |
| PublicationTitleAbbrev | Ann Biomed Eng |
| PublicationTitleAlternate | Ann Biomed Eng |
| PublicationYear | 2011 |
| Publisher | Boston : Springer US Springer US Springer Nature B.V |
| Publisher_xml | – name: Boston : Springer US – name: Springer US – name: Springer Nature B.V |
| References | Misiti, Misiti, Oppenheim, Poggi (CR20) 2007 Acharya, Sankaranarayanan, Nayak, Xiang, Tamura (CR1) 2008; 178 Burges (CR4) 1998; 2 Mitra, Mitra, Chaudhuri (CR21) 2006; 55 CR18 de Chazal, Reilly (CR7) 2006; 53 JoyMartis, Chakraborty, Ray (CR13) 2009; 42 Bandyopadhyay, Pal (CR3) 2007 Clifford, Azuaje, McShary (CR6) 2006 Vapnik (CR29) 1998 Lagerholm, Peterson, Braccini, Edenbrandt, Sornmo (CR15) 2000; 47 Moody, Mark (CR23) 2001; 20 Osowski, Markiewicz, Hoai (CR24) 2008; 41 Mohammadzadeh Asl, Setarehdan, Mohebbi (CR22) 2008; 44 Ince, Kiranyaz, Gabbouj (CR12) 2009; 56 Yu, Chou (CR31) 2009; 36 Ubeyli (CR28) 2008; 21 Mallat (CR17) 2002 CR25 Hsu, Lin (CR10) 2002; 46 Michalewicz (CR19) 1999 Wu, Tzeng, Goo, Fang (CR30) 2007; 32 Lin (CR16) 2008; 55 Shyu, Wu, Hu (CR26) 2004; 51 Chazal, O’Dwyer, Reilly (CR5) 2004; 51 Ebrahimzadeh, Khazaee (CR8) 2009; 43 Andreao, Dorizzi, Boudy (CR2) 2006; 53 Sumathi, Hamsapriya, Surekha (CR27) 2008 Huang, Wang (CR11) 2006; 31 Ebrahimzadeh, Khazaee, Ranaee (CR9) 2010; 99 Khadra, Al-Fahoum, Binajjaj (CR14) 2005; 52 L Khadra (229_CR14) 2005; 52 229_CR18 A Ebrahimzadeh (229_CR8) 2009; 43 S Osowski (229_CR24) 2008; 41 S Bandyopadhyay (229_CR3) 2007 GD Clifford (229_CR6) 2006 S Sumathi (229_CR27) 2008 B Mohammadzadeh Asl (229_CR22) 2008; 44 V Vapnik (229_CR29) 1998 LY Shyu (229_CR26) 2004; 51 Z Michalewicz (229_CR19) 1999 M Misiti (229_CR20) 2007 F Chazal de (229_CR7) 2006; 53 S Mitra (229_CR21) 2006; 55 ED Ubeyli (229_CR28) 2008; 21 RV Andreao (229_CR2) 2006; 53 S Mallat (229_CR17) 2002 229_CR25 M Lagerholm (229_CR15) 2000; 47 CH Lin (229_CR16) 2008; 55 P Chazal (229_CR5) 2004; 51 C Huang (229_CR11) 2006; 31 T Ince (229_CR12) 2009; 56 R JoyMartis (229_CR13) 2009; 42 GB Moody (229_CR23) 2001; 20 SN Yu (229_CR31) 2009; 36 C Wu (229_CR30) 2007; 32 C Burges (229_CR4) 1998; 2 UR Acharya (229_CR1) 2008; 178 A Ebrahimzadeh (229_CR9) 2010; 99 WC Hsu (229_CR10) 2002; 46 |
| References_xml | – volume: 51 start-page: 1269 year: 2004 end-page: 1273 ident: CR26 article-title: Using wavelet transform and fuzzy neural network for VPC detection from the Holter ECG publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.824131 – ident: CR18 – volume: 56 start-page: 1415 year: 2009 end-page: 1426 ident: CR12 article-title: A generic and robust system for automated patient-specific classification of electrocardiogram signals publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2009.2013934 – volume: 55 start-page: 2198 year: 2006 end-page: 2206 ident: CR21 article-title: A rough set-based inference engine for ECG classification publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2006.884279 – year: 1999 ident: CR19 publication-title: Genetic Algorithms + Data Structures = Evolution Programs – year: 2007 ident: CR3 publication-title: Classification and Learning Using Genetic Algorithms – volume: 52 start-page: 1840 year: 2005 end-page: 1845 ident: CR14 article-title: A quantitative analysis approach for cardiac arrhythmia classification using higher order spectral techniques publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2005.856281 – volume: 51 start-page: 1196 year: 2004 end-page: 1206 ident: CR5 article-title: Automatic classification of heartbeats using ECG morphology and heartbeat interval features publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.827359 – volume: 43 start-page: 103 issue: 1 year: 2009 end-page: 112 ident: CR8 article-title: Detection of premature ventricular contractions using MLP neural networks: a comparative study publication-title: Measurement doi: 10.1016/j.measurement.2009.07.002 – volume: 42 start-page: 2979 year: 2009 end-page: 2988 ident: CR13 article-title: A two-stage mechanism for registration and classification of ECG using Gaussian mixture model publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2009.02.008 – volume: 20 start-page: 45 issue: 3 year: 2001 end-page: 50 ident: CR23 article-title: The impact of the MIT/BIH arrhythmia database publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/51.932724 – year: 2006 ident: CR6 publication-title: Advanced Methods and Tools for ECG Data Analysis – volume: 36 start-page: 2088 year: 2009 end-page: 2096 ident: CR31 article-title: Selection of significant for ECG beat classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.12.016 – volume: 53 start-page: 1541 year: 2006 end-page: 1549 ident: CR2 article-title: ECG signal analysis through hidden Markov models publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.877103 – volume: 99 start-page: 179 year: 2010 end-page: 194 ident: CR9 article-title: Classification of the electrocardiogram signals using supervised classifiers and efficient features publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2010.04.013 – volume: 31 start-page: 231 year: 2006 end-page: 240 ident: CR11 article-title: A GA-based feature selection and parameters optimization for support vector machines publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2005.09.024 – ident: CR25 – volume: 41 start-page: 610 year: 2008 end-page: 617 ident: CR24 article-title: Recognition and classification system of arrhythmia using ensemble of neural networks publication-title: Measurement doi: 10.1016/j.measurement.2007.07.006 – volume: 55 start-page: 680 year: 2008 end-page: 690 ident: CR16 article-title: Frequency-domain features for ECG beat discrimination using grey relational analysis-based classifier publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2007.04.035 – volume: 178 start-page: 4571 year: 2008 end-page: 4582 ident: CR1 article-title: Automatic identification of cardiac health using modeling techniques: a comparative study publication-title: Inform. Sci. doi: 10.1016/j.ins.2008.08.006 – volume: 46 start-page: 219 year: 2002 end-page: 314 ident: CR10 article-title: A simple decomposition method for support vector machine publication-title: Mach. Learn. doi: 10.1023/A:1012427100071 – volume: 47 start-page: 839 year: 2000 end-page: 847 ident: CR15 article-title: Clustering ECG complexes using Hermite functions and self-organizing maps publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.846677 – year: 2008 ident: CR27 publication-title: Evolutionary Intelligence: An Introduction to Theory and Applications with Matlab – volume: 21 start-page: 1196 year: 2008 end-page: 1203 ident: CR28 article-title: Support vector machines for detection of electrocardiographic changes in partial epileptic publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2008.03.012 – volume: 53 start-page: 2535 year: 2006 end-page: 2543 ident: CR7 article-title: A patient adapting heart beat classifier using ECG morphology and heartbeat interval features publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.883802 – year: 2007 ident: CR20 publication-title: Wavelet Toolbox User’s Guide – volume: 44 start-page: 51 year: 2008 end-page: 64 ident: CR22 article-title: Support vector machine-based arrhythmia classification using reduced features of heart rate variability publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2008.04.007 – volume: 32 start-page: 397 year: 2007 end-page: 408 ident: CR30 article-title: A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2005.12.008 – volume: 2 start-page: 121 year: 1998 end-page: 167 ident: CR4 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Min. Knowl. Discov. doi: 10.1023/A:1009715923555 – year: 2002 ident: CR17 publication-title: A Wavelet Tour of Signal Processing – year: 1998 ident: CR29 publication-title: Statistical Learning Theory – volume: 20 start-page: 45 issue: 3 year: 2001 ident: 229_CR23 publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/51.932724 – volume-title: Statistical Learning Theory year: 1998 ident: 229_CR29 – volume: 52 start-page: 1840 year: 2005 ident: 229_CR14 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2005.856281 – ident: 229_CR18 – volume: 53 start-page: 2535 year: 2006 ident: 229_CR7 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.883802 – volume: 99 start-page: 179 year: 2010 ident: 229_CR9 publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2010.04.013 – volume-title: Genetic Algorithms + Data Structures = Evolution Programs year: 1999 ident: 229_CR19 – volume: 178 start-page: 4571 year: 2008 ident: 229_CR1 publication-title: Inform. Sci. doi: 10.1016/j.ins.2008.08.006 – volume: 2 start-page: 121 year: 1998 ident: 229_CR4 publication-title: Data Min. Knowl. Discov. doi: 10.1023/A:1009715923555 – ident: 229_CR25 doi: 10.1016/j.na.2008.10.015 – volume: 51 start-page: 1196 year: 2004 ident: 229_CR5 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.827359 – volume: 55 start-page: 2198 year: 2006 ident: 229_CR21 publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2006.884279 – volume: 21 start-page: 1196 year: 2008 ident: 229_CR28 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2008.03.012 – volume-title: Advanced Methods and Tools for ECG Data Analysis year: 2006 ident: 229_CR6 – volume: 56 start-page: 1415 year: 2009 ident: 229_CR12 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2009.2013934 – volume-title: A Wavelet Tour of Signal Processing year: 2002 ident: 229_CR17 – volume: 55 start-page: 680 year: 2008 ident: 229_CR16 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2007.04.035 – volume: 44 start-page: 51 year: 2008 ident: 229_CR22 publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2008.04.007 – volume: 47 start-page: 839 year: 2000 ident: 229_CR15 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.846677 – volume: 46 start-page: 219 year: 2002 ident: 229_CR10 publication-title: Mach. Learn. – volume: 51 start-page: 1269 year: 2004 ident: 229_CR26 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.824131 – volume: 53 start-page: 1541 year: 2006 ident: 229_CR2 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.877103 – volume: 31 start-page: 231 year: 2006 ident: 229_CR11 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2005.09.024 – volume: 32 start-page: 397 year: 2007 ident: 229_CR30 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2005.12.008 – volume-title: Wavelet Toolbox User’s Guide year: 2007 ident: 229_CR20 – volume: 36 start-page: 2088 year: 2009 ident: 229_CR31 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.12.016 – volume: 41 start-page: 610 year: 2008 ident: 229_CR24 publication-title: Measurement doi: 10.1016/j.measurement.2007.07.006 – volume-title: Classification and Learning Using Genetic Algorithms year: 2007 ident: 229_CR3 – volume: 42 start-page: 2979 year: 2009 ident: 229_CR13 publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2009.02.008 – volume: 43 start-page: 103 issue: 1 year: 2009 ident: 229_CR8 publication-title: Measurement doi: 10.1016/j.measurement.2009.07.002 – volume-title: Evolutionary Intelligence: An Introduction to Theory and Applications with Matlab year: 2008 ident: 229_CR27 |
| SSID | ssj0011835 |
| Score | 2.0943 |
| Snippet | Automatic classification of the electrocardiogram (ECG) signals is an important subject for clinical diagnosis of heart disease. This study investigates the... |
| SourceID | proquest pubmed crossref springer fao |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 996 |
| SubjectTerms | Algorithms Arrhythmias, Cardiac - diagnosis Arrhythmias, Cardiac - physiopathology Artificial Intelligence Biochemistry Biological and Medical Physics Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics Cardiovascular diseases Classical Mechanics Classification Diagnosis, Computer-Assisted - methods ECG beat classification Electrocardiography - methods Feature selection Genetic algorithm Heart Rate Humans Parameter optimization Pattern Recognition, Automated - methods Reproducibility of Results Sensitivity and Specificity Support vector machine Training Wavelet transform |
| SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB2VRarKobS0hZQPGamnVkFZx_bGxwUtICqQUFmJniwn9nBotam62Ut_fcdOslAKSJzjjWJ7nHmz7-UNwCeZS4GcqpOCa54K6bLUOhuUANoV3qvcucDonl-o06k4u5bX3Xfc817t3lOS8U1952M3Sp5pJG950GyswGq02xrA6vjk-9fJkjygKG0bF2iqjLQSPZn50E3-SUcraOuHkOZ_LGlMPsfrcNU_dqs5-XGwaMqD6s89R8dnzusNvO7AKBu30fMWXvjZBqzdsSjcgJfnHfn-Di6DJoRNoucEpSrWmp0zQr1svGjq6P3KYpPNID-KO85qZIQw2aRttlNF8WvQg7FDygHz9zA9nlwdnaZdR4a0klw2aSHKAr3nyudlxUd2iITAHGoppZcOS_SYOVuhdhq5t0NXaWGVxtJrmaEe5R9gMKtnfguYc4iKo3coS4E6tDAaOXTeeqULm1cJZP3GmKqzKw9dM36aW6PlsHCGFs6EhTMqgc_Ln_xqvTqeGrxFu23sDb1LzfQbDwzuUItQziWw3YeA6U703BQEFam0UlkC-8urdBQDv2Jnvl7MTXB00MNCZUUC7JExBHAFgTYlnxgSQCLBYp7AZht_y9lQtU71vqYrX_pYun3CR6f68Vmjt-FV-7950NntwKD5vfC7BLyacq87aH8BGgwhtg priority: 102 providerName: Springer Nature |
| Title | High Efficient System for Automatic Classification of the Electrocardiogram Beats |
| URI | https://link.springer.com/article/10.1007/s10439-010-0229-6 https://www.ncbi.nlm.nih.gov/pubmed/21140292 https://www.proquest.com/docview/850558560 https://www.proquest.com/docview/1999918608 https://www.proquest.com/docview/851474365 https://www.proquest.com/docview/864395222 |
| Volume | 39 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-9686 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0011835 issn: 0090-6964 databaseCode: ADMLS dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-9686 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011835 issn: 0090-6964 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-9686 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0011835 issn: 0090-6964 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1573-9686 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0011835 issn: 0090-6964 databaseCode: 7X7 dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-9686 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0011835 issn: 0090-6964 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-9686 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011835 issn: 0090-6964 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-9686 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011835 issn: 0090-6964 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB5tWwnBAcHy2LBQGYkTKCJ1bCc-INRF6a5AXfGqVE6WE9tcULPQ9v8zk9eCYHvJIXGk2B57vvFMvg_ghUylCByjk5xrHgvpktg6S5UA2uXeq9Q5yuguL9XFSrxfy_URLPt_Yaisst8Tm43a1RWdkb_O0VUjtFXJ26ufMYlGUXK1V9CwnbKCe9MwjI1gwokYawyTs-Ly4-chrYD220oaaIyZtBJ9mrP9lw59c9zkhjmVhPzlqEbB1v_DoP_kTxu3tLgHdzs8yeatAdyHI785hjt_sAwew61llz9_AJ-orIMVDW0EehvW8pUzBK5svt_VDX0ra3QyqYKomTRWB4YgkRWtXk7V1K9SSRc7w218-xBWi-Lru4u4E1WIK8nlLs5FmQfvufJpWfHMzgKCKBe0lNJLF8rgQ-JsFbTTgXs7c5UWVulQei2ToLP0EYw39cafAHMuBMWDd0GWImhSIcpccN56pXObVhEk_QiaqmMcJ-GLH-aaK5kG3eCgGxp0oyJ4Obxy1dJtHGp8gtNi7HfcDs3qC6ck7EwLisgiOO3nynSLcmsGE4rg-fAUVxOlSOzG1_utIVIGPctVkkfAbmiDGFUg7lLyQBPCeYhseQSPW0MZeoMBN4bsGp-86i3n-gtv7OqTg_05hdvtUTeVxj2F8e7X3j9DrLQrpzDK1hle88X5FCbz828fimm3KvDuis9_A5GFEuM |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB71IfE4ICiPhrZgJLiAIrKO7Y0PFWphqy3trnh0pd5cJ7a5oE1hd4X4cf1vncmrIOjeeo4TxeMZzzf-xjMAL2UqReAYnWRc81hIl8TWWcoE0C7zXqXOEaM7GqvhRHw8lacrcNHehaG0ynZPrDZqVxZ0Rv42Q1eN0FYl785_xNQ0isjVtoOGbToruN2qwlhzr-PI__6FEdxs9_ADLvcrzg8GJ--HcdNkIC4kl_M4E3kWvOfKp3nB-7YXEFS4oKWUXrqQBx8SZ4ugnQ7c254rtLBKh9xrmQTdT_G7q7AuUqEx9lvfH4w_feloDLSXuoWCxhhNK9HSqvXdPcQCccVFc0pB-csxrgZb_g_z_sPXVm7w4D7ca_Ar26sV7gGs-OkG3P2jquEG3Bo1fP1D-ExpJGxQlalA78bq-ugMgTLbW8zLqlwsq_pyUsZSpSSsDAxBKRvU_XmKKl-WUsjYPrqN2SOY3Ih8H8PatJz6TWDOhaB48C7IXARNXY_6LjhvvdKZTYsIklaCpmgqnFOjje_mqjYzCd2g0A0J3agIXnevnNflPZYN3sRlMfYbbr9m8pUT6dvTgiLACLbatTLNJjAzncpG8KJ7itZLlIyd-nIxM1QEQvcylWQRsGvGICYWiPOUXDKEcCUiaR7Bk1pRutlggC8StMMI3rSac_WH10716dL5PIfbw5PRsTk-HB9twZ36mJ3S8rZhbf5z4XcQp83zZ401MDi7aQO8BH0YTvs |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61RarggKA8GsrDSHABRc06sRMfECp0Vy2lFQhW2pvrxB4uaNN2d4X4afw7ZvLYgqB76zlOFI9nPN94Ps8AvFCpylBSdFJII-NM-SR23jETwPgiBJ16zxnd4xN9MM4-TNRkDX71d2GYVtnvic1G7euKz8h3C3LVBG11sosdK-LT_ujt2XnMDaQ40dp302g15Cj8_EHR2-zN4T4t9UspR8Ov7w_irsFAXCmp5nGRlQWGIHVIy0rmboAEKDwapVRQHksMmHhXofEGZXADX5nMaYNlMCpBk6f03XW4kaepYTZhPlnGegTb296eiaHozOisT6i2t_YIBcRNFloy-eQvl7iOrv4f2v0nU9s4wNEduN0hV7HXqtpdWAvTLbj1Rz3DLdg87jL19-AzE0jEsClQQX5NtJXRBUFksbeY102hWNF05GSuUqMeokZBcFQM2848VcOUZfKYeEcOY3Yfxtci3QewMa2nYRuE94haYvCoygwN9zvKPfrggjaFS6sIkl6Ctupqm3OLje_2siozC92S0C0L3eoIXi1fOWsLe6wavE3LYt032njt-IvkdO_AZBz7RbDTr5XtzH9ml8oawfPlU7JbTsa4aagXM8vlH8yg0EkRgbhiDKHhjBCeViuGMKIkDC0jeNgqynI2FNpnCVlgBK97zbn8wyun-mjlfJ7BJpmd_Xh4crQDN9vzdebjPYaN-cUiPCGANi-fNqYg4PS6be83UKZMlQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Efficient+System+for+Automatic+Classification+of+the+Electrocardiogram+Beats&rft.jtitle=Annals+of+biomedical+engineering&rft.au=Zadeh%2C+Ataollah+Ebrahim&rft.au=Khazaee%2C+Ali&rft.date=2011-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0090-6964&rft.eissn=1573-9686&rft.volume=39&rft.issue=3&rft.spage=996&rft_id=info:doi/10.1007%2Fs10439-010-0229-6&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2262366891 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6964&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6964&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6964&client=summon |