Development and aging of cortical thickness correspond to genetic organization patterns

There is a growing realization that early life influences have lasting impact on brain function and structure. Recent research has demonstrated that genetic relationships in adults can be used to parcellate the cortex into regions of maximal shared genetic influence, and a major hypothesis is that g...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 112; no. 50; pp. 15462 - 15467
Main Authors Fjell, Anders M., Grydeland, Håkon, Krogsrud, Stine K., Amlien, Inge, Rohani, Darius A., Ferschmann, Lia, Storsve, Andreas B., Tamnes, Christian K., Sala-Llonch, Roser, Due-Tønnessen, Paulina, Bjørnerud, Atle, Sølsnes, Anne Elisabeth, Håberg, Asta K., Skranes, Jon, Bartsch, Hauke, Chen, Chi-Hua, Thompson, Wesley K., Panizzon, Matthew S., Kremen, William S., Dale, Anders M., Walhovd, Kristine B.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 15.12.2015
National Acad Sciences
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1508831112

Cover

More Information
Summary:There is a growing realization that early life influences have lasting impact on brain function and structure. Recent research has demonstrated that genetic relationships in adults can be used to parcellate the cortex into regions of maximal shared genetic influence, and a major hypothesis is that genetically programmed neurodevelopmental events cause a lasting impact on the organization of the cerebral cortex observable decades later. Here we tested how developmental and lifespan changes in cortical thickness fit the underlying genetic organizational principles of cortical thickness in a longitudinal sample of 974 participants between 4.1 and 88.5 y of age with a total of 1,633 scans, including 773 scans from children below 12 y. Genetic clustering of cortical thickness was based on an independent dataset of 406 adult twins. Developmental and adult age-related changes in cortical thickness followed closely the genetic organization of the cerebral cortex, with change rates varying as a function of genetic similarity between regions. Cortical regions with overlapping genetic architecture showed correlated developmental and adult age change trajectories and vice versa for regions with low genetic overlap. Thus, effects of genes on regional variations in cortical thickness in middle age can be traced to regional differences in neurodevelopmental change rates and extrapolated to further adult aging-related cortical thinning. This finding suggests that genetic factors contribute to cortical changes through life and calls for a lifespan perspective in research aimed at identifying the genetic and environmental determinants of cortical development and aging.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: A.M.F. and K.B.W. designed research; A.M.F., H.G., S.K.K., I.A., D.A.R., L.F., A.B.S., C.K.T., R.S.-L., P.D.-T., A.B., A.E.S., A.K.H., J.S., H.B., C.-H.C., W.K.T., M.S.P., W.S.K., A.M.D., and K.B.W. performed research; A.M.F., H.G., R.S.-L., and C.-H.C. analyzed data; and A.M.F. and K.B.W. wrote the paper.
Edited by John D. E. Gabrieli, Massachusetts Institute of Technology, Cambridge, MA, and accepted by the Editorial Board September 29, 2015 (received for review May 5, 2015)
ISSN:0027-8424
1091-6490
1091-6490
DOI:10.1073/pnas.1508831112